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Abstract

In this thesis, we present a system to make personalized lifestyle and health decisions
for diabetes management, as well as for general health and diet management. In
particular, we address the following components of the system: (a) efficiently learning
preferences through a dynamic questionnaire that accounts for human behavior; (b)
modeling blood glucose behavior and updating these models to match individual
measurements; and (c) using the learned preferences and blood glucose models to
generate an overall diet and exercise plan using mixed-integer robust optimization.

In the first part, we propose a method to address (a) above, using integer
and robust optimization. Despite the importance of personalization for successful
lifestyle modification, current systems for diabetes and dieting do not attempt to use
individual preferences to make suggestions. We present a general approach to learning
preferences, that includes an efficient and dynamic questionnaire that accounts for
response errors, and robust optimization models using risk measures to account for
the commonly seen human behavior of loss aversion.

We then address part (b) of our system, by first modeling blood glucose behavior
as a function of food consumed and exercise performed. We rely on known attributes
of different foods as well as individual data to build these models. We also show how
we use optimization to dynamically update the parameters of the model using new
data as it becomes available.

In the third part of this thesis, we address (c) by using mixed-integer optimization
to find an optimal meal and exercise plan for the user that minimizes blood glucose
levels while maximizing preferences. We then present a robust counterpart to the
formulation, that minimizes blood glucose levels subject to uncertainty in the blood
glucose models.

We have implemented our system as an online application, and conclude by
showing a demonstration of the overall program.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Leaders for Global Operations Professor
Co-Director, Operations Research Center
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Chapter 1

Introduction

In 1998, about 10.4 million people in the United States had diabetes [21]. Today,

about 25.8 million people in the U.S. have diabetes (8.3% of the population), and by

2050, it is projected that as many as one in three U.S. adults could have diabetes [24].

These statistics also reflect the growth of diabetes internationally. An estimated 285

million people had diabetes worldwide in 2010, and it is predicted that as many as

438 million people will have diabetes by 2030.

This alarming increase in diabetes rates is due to several factors, including the

current obesity epidemic. Figure 1-1 shows how the obesity rates in the United States

have changed in the past twenty years. In 1990, no state had an obesity rate of greater

than 15%. Today, no state has an obesity rate of less than 20%, and many states

have an obesity rate of greater than 30%. Type II diabetes, the type that is causing

the majority of new cases, is known to be an obesity-related condition. Because of

this, the number of people with type II diabetes is projected to continue increasing,

and will only get worse as the obesity epidemic continues.

Diabetes has very serious complications if it is not controlled, including heart

disease, kidney disease, blindness, and amputation. It was also responsible for $245

billion in healthcare costs in 2012 [2]. It has become a national priority to help reduce

the number of new cases of diabetes and obesity. The 2013 Standards of Medical Care

for Diabetes recommends weight loss, regular physical activity, and dietary changes

to individuals with prediabetes or diabetes [8]. Additionally, there is evidence that
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low-glycemic index diets can improve blood glucose control in people with diabetes,

as well as help prevent the development of type II diabetes [22, 70].

Motivated by the severity of diabetes and obesity, the focus of this thesis is a

comprehensive system for personalized diabetes and diet management. We believe

that optimization and analytics can help treat and prevent diabetes and obesity. It

can be challenging for medical professionals to give personalized advice to patients

and to give day to day guidance to help them manage their health. On the contrary,

an interactive online system that uses data, optimization, and analytics has the power

to make personalized suggestions on a patient by patient basis.

2000 

2010 

1990 

Source: Behavioral Risk Factor Surveillance System, Centers for Disease Control and Prevention  

Obesity Trends Among U.S. Adults 
 

No Data           <10%          10%–14%         15%-19%         20%-24%          25%-29%          ≥30% 

Figure 1-1: Obesity trends among U.S. adults, from 1990 through 2010. The color
of each state gives the percentage of adults who are considered obese (BMI > 30) in
that state.

1.1 Contributions

In this thesis, we propose a mixed-integer robust optimization approach for per-

sonalized diabetes and diet management that suggests meals and exercise times to

14



individuals that are customized to their preferences, attributes, and blood glucose

measurements. We minimize blood glucose levels, while maximizing preferences and

accounting for nutritional constraints. Our approach includes the following key steps:

(a) We generate personal preferences for the user based on their re-

sponses to carefully selected comparison questions.

(b) We develop models to estimate how a person’s blood glucose levels

will change after eating and exercising. We then use optimization

to update our knowledge of the individual’s blood glucose behavior

using data from the user.

(c) Using the blood glucose models, the user’s preferences, and a

comprehensive recipe and nutritional database, we generate a daily

meal and exercise plan using mixed integer optimization. We

incorporate robust optimization into the plan generation to account

for uncertainty in the blood glucose parameters.

The most important contribution of this work is combining these individual

pieces into a comprehensive system for diabetes and diet management. We have

implemented this system as an online application, and use this implementation to

provide empirical evidence for the strength of our methodology. In this chapter, we

give an introduction to the contents of the subsequent chapters.

In Section 1.2, we give a literature review of the field of preference learning,

and introduce the methodology we have developed to learn preferences, which is the

focus of Chapter 2. In Section 1.3, we introduce Chapter 3, specifically, the idea

of modeling blood glucose dynamics and an optimization approach to updating the

model parameters, and the recipe database that we constructed. In Section 1.4, we

introduce the idea of using mixed-integer optimization to find a diet and exercise

plan, which is described in detail in Chapter 4. We also discuss previous work that

has been done in this area. We give a demonstration of the overall system and provide

concluding remarks in Chapter 5.
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1.2 Learning Preferences

While it is widely believed that diabetic patients with good eating and exercise habits

can significantly improve the state of their disease, it is also known that patients with

diabetes are particularly prone to regimen adherence problems [29]. It has been

argued that one way to improve adherence rates may be to increase the number of

diet options available, and to better match individual food preferences [26].

For these reasons, in Chapter 2 we present our approach to learning individual

food preferences. To learn preferences, we wanted our system to have the following

characteristics: (a) it should be efficient and quick for the user to complete; (b) it

should be natural and enjoyable for the user to answer the questions; and (c) it should

account for observations that have been made about human behavior.

Learning preferences or utilities for items has been a topic of interest for many

years. The goal is to learn user preferences or utilities for a set of items given limited

information, with the final outcome being a recommendation made to the user for the

item with the highest utility. Some of the earliest work in preference learning was in

the field of economics, in which the emphasis was placed on learning how people

behave when faced with a choice between different options. One of the original

theories was that of expected utility theory, which claimed that rational people

maximize the expectation of a utility function [13, 82]. Since then, there have been

several influential works disputing the claims of expected utility theory, and instead

claiming that users behave in what could be considered “irrational” ways [5, 49, 79].

Evidence given in this research shows that when describing their preferences, users

are often inconsistent, loss averse, influenced by the framing of the questions, and

define outcomes with respect to a reference point.

The field of preference learning has also recently become more popular in machine

learning and operations research due to its importance in many web applications,

including search and recommendation systems [31, 37]. The emphasis here is not

placed on observing how people behave, but on how to build a preference model given

limited data on preferences. This model is often built to predict revenues from offering
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a subset of products to customers, or to rank a fixed set of options [35, 46]. Preference

learning is also used to find weights for multiple criteria optimization problems,

or multiple criteria decision-making (MCDM) problems [88]. Several interactive

approaches to learning weights in MCDM problems have been proposed [57], and

there is some work on incorporating robustness into these approaches [28, 69, 85].

However, there has been limited work on incorporating human behavior into the

preference learning and final weight selection [33, 84].

While there have been many methods proposed to learn preferences, we feel that

there is a need for a systematic and comprehensive methodology to algorithmically

derive preferences and ultimately make suggestions to users that adhere to human

behavior. Our approach uses an adaptive comparison questionnaire to find utilities

for the attributes of items. The idea of using an adaptive questionnaire comes from

the marketing literature [77, 78]. Adaptive questionnaires are increasingly being used,

but the results often suffer from response errors to early questions that influence the

selection of later questions. Some work has been done using complexity control or

a Bayesian framework to be robust to response error [1, 76]. We instead address

the inconsistency and response errors of users through a self-correcting mechanism

that uses integer optimization. This accounts for the fact that while transitivity (if

x > y and y > w then x > w) is rational and ideal, people are often inconsistent.

Additionally, people may incorrectly answer questions, resulting in response errors

that add noise to the data.

In order to model the commonly seen human behavior of loss aversion, we solve a

robust optimization problem to optimize the worst utility within the uncertainty set

of utilities. This differs from previous work, in which the standard approach was to

select a particular estimate for the utilities out of all possible choices in the feasible

set. Additionally, we propose a robust optimization method to control the tradeoff

between robustness and optimality. In this method, we maximize the Conditional

Value at Risk (CV aR) of the utility function.

In our empirical study at the end of Chapter 2, we use CV aR to compute the loss

aversion of each method quantitatively, which demonstrates the edge our methods
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have over the traditional approach. We feel this work also makes the following

methodological contributions: (a) to the robust optimization literature by proposing

to derive uncertainty sets from adaptive questionnaires, (b) to the marketing literature

by using the analytic center of discrete sets (as opposed to polyhedra) to capture

inconsistencies and errors, and (c) to the risk modeling literature by using efficient

methods from computer science for sampling to optimize CV aR.

1.3 Blood Glucose Modeling and Nutritional Data

In Chapter 3, we describe models we have developed to capture blood glucose

dynamics. The monitoring of blood glucose is critical for the treatment of diabetes,

due to the nature of the disease. Type II diabetes is characterized by an insufficient

production of insulin; either the body does not produce enough insulin, or the cells

ignore the insulin that is produced. Typically, the body breaks down sugars and

starches into glucose and then uses insulin to absorb this glucose from the bloodstream

into the cells. In someone with diabetes, this glucose stays in the bloodstream

which causes abnormally high blood glucose levels. This can lead to very serious

complications, including glaucoma, cataracts, amputation, kidney disease, nerve

damage, and heart disease [2]. If a person with type II diabetes can successfully

lower their blood glucose levels through diet and exercise, they not only lower their

risk for these complications, but they can avoid the side-effects of the various diabetic

medications.

Our models predict the blood glucose levels of a person, given the food they have

consumed and the exercise they have performed. The models use parameters that

have initial starting values, defined using the glycemic index and medical studies,

but can be personalized to the individual [36, 40, 65, 67, 75, 25, 64]. These medical

studies have measured blood glucose levels of individuals and provided aggregate

blood glucose curves, but to our knowledge, no one has developed mathematical

models to capture the blood glucose dynamics.

We then propose a way to update the blood glucose parameters used in the
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modeling of blood glucose dynamics. For each user, we store a set of blood glucose

parameters to capture how their blood glucose changes after exercising or eating

certain foods. While we can initialize these parameters to default values, we would

ideally like them to match the user’s personal blood glucose measurements. In

this chapter, we provide a method for adjusting the parameters to reflect new

measurements provided by the user. We present computational evidence to argue

that this technique successfully learns the user’s true parameters, even in the presence

of noise.

Lastly, we discuss a comprehensive nutritional database that we have constructed.

This includes over 600 recipes, nutritional information for each ingredient and each

recipe, and other attributes of the recipes such as the glycemic index. We also discuss

the nutritional guidelines we use to ensure that we recommend nutritious meal plans.

The database and nutritional guidelines were constructed with the assistance of a

registered dietician and nutritionist.

1.4 An Optimization Approach to Personalized

Diabetes and Diet Management

In Chapter 4, we use the preferences generated using our methodology of Chapter

2, and the blood glucose models and the comprehensive food database described in

Chapter 3, to generate an overall meal and exercise plan for the user. We do this

using mixed-integer optimization.

We then present a robust optimization counterpart of the mixed-integer optimiza-

tion problem for finding an eating and exercise plan. The robust optimization problem

is robust to the parameters defining the blood glucose models, to add protection

against high blood glucose values. With the robust approach, we are able to find

a meal plan that is almost as appealing to the user, but keeps the blood glucose

values even lower than in the nominal problem. We introduce a parameter to control

the tradeoff between robustness and optimality. We first present the optimization
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formulations, and then give empirical evidence for the strength of both models.

To the best of our knowledge, work of this kind has not been done before. There

has, however, been a significant amount of work in the area of diet optimization

where the goal is to find a solution that minimizes cost, what is commonly referred

to as the “diet problem”. Researchers studied the diet problem in the 1940s, when

the Army wanted to meet the nutritional requirements of soldiers while reducing the

cost. The basic statement of the problem is to decide how much of different foods to

eat on a daily basis so that nutritional intakes are at least equal to the recommended

dietary allowances and so that the cost of the diet is minimal [73]. They were not

concerned with the appeal or appropriateness of the solution, just with the cost and

nutritional requirements. This problem was not very useful for many human diet

problems for which cost was not critical, but it led to a wide variety of successful

applications of linear optimization to deal with cattle and chicken feed, fertilizer, and

general ingredient mixing problems. To make the meals more appealing in terms of

preferences and variety, many others have developed extensions of the basic problem

[11, 39]. However, this problem minimizes cost as the objective function, while we

are interested in minimizing blood glucose levels and maximizing preferences.

The importance of incorporating uncertainty into the diet problem is discussed by

Mulvey, Vanderbei and Zenios [59]. They consider nutritional content uncertainty,

the importance of which is also mentioned by Stigler and Dantzig [27, 73]. Stochastic

programming and artificial intelligence techniques have also been proposed to deal

with the uncertainty in optimization models of diet problems [52, 66, 54]. We instead

use the robust optimization approach proposed by Bertsimas and Sim [16] to model

uncertainty in the blood glucose models.

There have also been some medical studies in optimizing blood glucose control with

insulin therapy for type I diabetics [32, 12], or measuring blood glucose deviations

after consuming different foods for type II diabetics [36, 40, 65, 75, 67]. The only

work that we have found that addresses the use of a personalized diet and data

to reduce blood glucose levels is an individual’s efforts and tests to prove that this

method worked for him personally [64]. In this chapter, we aim to extend his personal
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observations into a tool that uses optimization to find the best meal and exercise

program for any individual. Our main contribution in this chapter is a method for

generating a meal and exercise plan that is feasible and appealing in practice, and

accounts for the preferences and blood glucose behavior of individuals.
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Chapter 2

Learning Preferences Under Noise

and Loss Aversion

In this chapter, we present an algorithmic approach to learning preferences. This

work was motivated by the specific problem of diabetes and diet management, since

people who are struggling with diabetes or obesity are particularly prone to regimen

adherence problems [29]. It is believed that more appealing meal plans in terms of

preferences could improve adherence rates [26].

However, this work is more general, and can be applied to many other areas in

addition to food preferences. It could be used to learn user preferences for cars,

vacations, or other items that can be described by a set of attributes. For this reason,

we present our approach in general terms in this chapter, and then provide empirical

evidence for the specific problem of food preferences at the end of the chapter.

This chapter is structured as follows. In Section 2.1, we discuss the topics that

motivated this work and give an introduction to our overall approach. In Section 2.2,

we introduce the adaptive questionnaire used to inform the feasible set of utilities and

the mixed integer optimization model to address human inconsistencies and response

error. In Section 2.3, we present a robust optimization approach to address loss

aversion and a new CV aR approach to provide less conservative robust solutions. In

Section 2.4, we describe the online system we have implemented to learn preferences

for our diabetes and diet application. Lastly, in Section 2.5, we give some empirical
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evidence to support the use of our strategy in practice.

2.1 Motivation and Overview

To learn preferences, we wanted our system to have the following characteristics: (a)

it should be efficient and quick for the user to complete; (b) it should be natural

and enjoyable for the user to answer the questions; and (c) it should account for

observations that have been made about human behavior. In this section, we discuss

the areas of research that motivated this work, and give an overview of our approach.

2.1.1 Behavioral Economics and Prospect Theory

Learning preferences or utilities for items has been a topic of interest for hundreds of

years. Some of the earliest work in preference learning was in the field of economics,

in which the emphasis was placed on learning how people behave when faced with a

choice between different options.

This work started in the 18th century, when Bernoulli initiated expected utility

theory by positing that rational behavior can be described as maximizing the

expectation of a function u(·) defined on possible outcomes [13]. Two hundred years

later, Von Neumann and Morgenstern [82] proposed four axioms of rationality under

which expected utility theory holds:

• Completeness. When presented with two items A and B, either item A is

preferred, item B is preferred, or there is no preference between the two items.

This axiom assumes that an individual has well-defined preferences.

• Transitivity. If item A is preferred to item B, and item B is preferred to item

C, then it must be true that item A is preferred to item C. This axiom assumes

that preferences are consistent across any three options.

• Continuity. If item A is preferred to item B which is preferred to item C,

then the user’s preference for item B can be described as a weighted sum of
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the preferences of items A and C. This axiom assumes that there is a “tipping

point” between being better than and worse than a given middle option.

• Independence. If the user prefers item A to item B, this preference order

still holds regardless of any third item C that could be introduced. This

axiom assumes that preferences hold independently of the possibility of another

outcome.

Since expected utility theory was proposed, there have been several influential

works disputing the axioms of expected utility theory, and instead claiming that users

behave in what could be considered “irrational” ways [5, 49, 79]. Evidence given in

these works shows that when describing their preferences, users are often inconsistent,

loss averse, influenced by the framing of the questions, and define outcomes with

respect to a reference point.

Specifically, Kahneman and Tversky observed that several of the axioms defined

by Von Neumann and Morgenstern are inconsistent with human behavior, and

proposed prospect theory as a psychologically more accurate description of preferences

compared to expected utility theory [49]. They also extended prospect theory to

riskless choice, for situations in which there is no uncertainty in the choices that have

to be made [79]. They made the following observations:

• Reference dependence. Gains and losses are determined relative to a

reference point. This differs from expected utility theory, in which a rational

agent is indifferent to the reference point.

• Loss aversion. Losses hurt more than gains feel good. This is the strongest

observation that Kahneman and Tversky made, and they observed that all of

the empirical evidence they found supports the existence of loss aversion. They

describe loss aversion as “a bias that favors retention of the status quo over other

options,” and as a reaction to change that is “expected to be more intense when

the changes are unfavorable (losses) than when they are for the better.”

25



• Diminishing sensitivity. The gain or loss of an extra unit results in a lesser

impact as the amount of the overall gain or loss gets larger.

• Framing effects. The rational theory of choice assumes that equivalent

formulations of a choice problem should give rise to the same preference order.

Contrary to this assumption, the framing of questions to determine preferences

matters. This relates to loss aversion in that the same difference between two

options will be given greater weight if it is viewed as a difference between two

disadvantages than if it is viewed as a difference between two advantages.

• Human inconsistency. Due to these behavioral observations, people are often

inconsistent in their preferences.

The value function v(·) proposed by Kahneman and Tversky is depicted in Figure

2-1. It has three key characteristics: (1) it passes through the reference point; (2) it

is asymmetric, representing loss aversion; and (3) it is s-shaped, showing diminishing

sensitivity.

Prospect theory made a seminal contribution to behavioral economics and

enlightened our understanding of preferences. While Kahneman and Tversky and

others [19] have proposed methods to calculate utilities, we feel that there is a need

for a systematic and comprehensive methodology to algorithmically derive preferences

according to these observations about human behavior. We aspire to develop and

implement this methodology to learn preferences and make decisions.

2.1.2 Conjoint Analysis

Preference learning is also very popular in marketing, in which preferences are

typically learned through questionnaires [23, 42, 43, 78]. The understanding of

consumer preferences is a central problem in marketing, and the most widely used

method for doing so is by using conjoint analysis, or choice questionnaires.
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Figure 2-1: The value function in prospect theory.

It has been argued that choice questionnaires, ones in which the user is asked to

pick between different options, are more natural than asking the user to rank items

[44]. This inspired us to ask comparison questions to make our approach more natural

and enjoyable for the users.

Additionally, the idea of using an adaptive questionnaire, or one in which the

next question changes depending on the user’s responses to previous questions, was

recently introduced in the marketing literature [77, 78]. Adaptive questionnaires

are increasingly being used, due to their ability to collect more information in a

shorter amount of time, which is appealing to both the user (who has to spend less

time on the questionnaire), and to the researcher (who gets more responses since the

questionnaire is easier to complete). We will use adaptive choice-based questionnaires

in our approach, and by doing so, extend this work.

2.1.3 Our Approach

We have developed a systematic and comprehensive methodology to algorithmically

derive preferences and ultimately make suggestions to users that adhere to human

behavior. In previous work, only one utility function or preference order is typically
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assumed as a result of the preference learning process, but there are often several

that are consistent with the known data. We propose a methodology to robustly

collect preference data from individuals, as well as ultimately make decisions using

robust optimization. Since the selection of a single utility function or ranking order

is often arbitrary, robust optimization improves on this approach by using all of the

known information to make a decision. Our approach is based on robust and integer

optimization, conjoint analysis and risk measures.

Our overall approach is as follows. We assume that any item or possible outcome x

can be defined by attributes x1, . . . , xn. We make the common assumption of a linear

utility function u(x) = u′x, for which we are trying to learn the weights u. Prior to

asking any questions, the weights u belong in an initial uncertainty set U0 = [−1, 1]n.

Thus, we consider a family of possible utilities

u(x) = u′x, u ∈ U0.

We present the user with two items in the first question, x1 and y1, and ask the

user to compare them, i.e., to tell us if he prefers item x1, prefers item y1, or has

no preference (is indifferent). Based on his answer, we update the uncertainty set

and use mixed-integer linear optimization to adaptively generate two new items to

ask about in question two, x2 and y2. After a number k of such adaptively chosen

questions, we have “decreased” the uncertainty set from U0 to Uk ⊆ U0. At this

point, we have a family of utilities

u(x) = u′x, u ∈ Uk.

Note that we address two separate types of potential noise in the data: human

inconsistency and response error. Inconsistency refers to contradictory responses even

though all of the responses are accurate. Response error refers to incorrect responses,

which may not cause inconsistencies, but will increase the difficulty of capturing the

user’s true utilities. For these reasons, we also ask the user to indicate if they “feel

strongly” about their response to a question to more accurately capture the incorrect

28



answers.

In order to model loss aversion, we propose to solve the following robust

optimization problem:

max
x∈X

min
u∈Uk

u′x,

where X is the feasible space of outcomes, and k is the number of questions that have

been asked. Note that we are taking the perspective that the adaptive process has

reduced uncertainty to the set Uk, and, as we are loss averse, we are optimizing the

worst utility within the uncertainty set Uk.

Additionally, we propose a robust optimization method to control the tradeoff

between robustness and optimality. In this method, we maximize the Conditional

Value at Risk (CV aRα) of the utility function, which is defined to be the expected

value of the worst α% of the utilities [15, 50, 63, 68]. Since the feasible set Uk is a

projection of a mixed integer set and therefore CV aRα of the set is defined by an

integral, we use random sampling of Uk to approximate CV aRα. Specifically, we use

the “Hit-and-run” method of randomly sampling points from a convex body in Rn,

introduced by Smith [71]. This method has been shown to perform well in practice,

and allows us to efficiently optimize CV aRα [81].

CV aRα is known as a second-order quantile risk measure, a concept that has been

introduced in many ways by many different authors [9, 34, 62, 68]. We use CV aRα

and not standard deviation or Value at Risk (V aRα) since we want to capture the

amount of losses incurred. Standard deviation measures variation in both losses and

gains, and V aRα, or the α-quantile of the utilities, only captures the number of times

you lose, not the severity of the losses. Additionally, neither standard deviation or

V aRα are coherent risk measures, meaning that they violate basic properties that

capture the idea of risk. By adjusting the value of α, we are able to select how

conservative we would like our robust solution to be.

Overall, we model human behavior in three main ways. First, we model

inconsistent behavior and account for the importance of question framing in the way

in which we learn individual preferences. Second, we incorporate loss aversion when
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making decisions for the individual. Lastly, we account for reference dependence in

the overall design of the system. A quick and easy questionnaire to learn preferences

means that we can ask the questionnaire repeatedly over time as the user’s reference

point changes.

In summary, our method uses integer optimization, robust optimization, CV aRα,

adaptive conjoint analysis, and linear optimization. In our empirical study at the

end of this chapter, we use CV aRα to compute the loss aversion of each method

quantitatively. We feel this work makes the following methodological contributions:

(a) to the robust optimization literature by proposing to derive uncertainty sets from

adaptive questionnaires, (b) to the marketing literature by using the analytic center

of discrete sets (as opposed to polyhedra) to capture inconsistencies and errors, and

(c) to the risk modeling literature by using efficient methods from computer science

for sampling to optimize CV aRα.

2.2 Building Self-Correcting Utilities using Adap-

tive Questionnaires

In this section, we will address how we adaptively ask the user questions to learn

a small set of possible utilities, while using integer optimization to account for the

inconsistent behavior and response errors of people.

We will denote items by vectors of attributes with superscripts indicating the

question. Thus, xi = (xi1, x
i
2, . . . , x

i
n) is the vector of attributes for one item (item x)

that is asked about in question i. The goal of the optimization problem is to suggest

the best item for the user, given the utilities u = (u1, u2, . . . , un) for the attributes of

the items. For example, the items could be different recipes, for which the attributes

are the ingredients in the recipes, or the items could be different cars, for which the

attributes are different features that can be selected (leather seats, navigation system,

etc.). We will assume that there is a finite set of possible attributes, and that the

user’s utility function is linear in the attributes, u(x) = u′x. Suppose we ask the
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user about two items in question i, xi and yi. If the user indicates that they prefer

xi (or yi), then we say that xi > yi (or yi > xi). If the user indicates that they are

indifferent between the two items, we say that xi = yi. Note that this is the result

of the user’s response; since the user could make errors in their responses, this is the

indicated preference of the user, not necessarily the true preference of the user.

We address the inconsistency and response errors of users through a self-correcting

mechanism. This accounts for the fact that while transitivity (if x > y and y > w

then x > w) is rational and ideal, people are often inconsistent. Additionally, people

may incorrectly answer questions, resulting in response errors that add noise to the

data. Another possible reason is that the user actually has conflicting preferences.

For example, the user might indicate that she likes item x more than item y (x > y),

item y more than item w (y > w), but item w more than item x (w > x). In this

case, it is impossible to find utilities that are consistent with all three responses.

In the adaptive questionnaire, we start with no information about the user’s

utilities, and we would like to adaptively learn his or her utilities with a series of

comparison questions. Furthermore, we would like to select the comparison questions

to ask the user so that the space of different possible utility vectors is reduced as

quickly as possible. Since the response to each of the questions is unknown, we would

like to ask questions that give us the most information possible regardless of the

response.

The method that we will describe here builds on the method described in [78, 77],

but we use integer optimization to account for inconsistencies and response error in

the process of selecting the next question. Additionally, we make some changes to

the basic algorithm: we select the next question that minimizes the distance to the

analytic center1 of the remaining feasible space, we add an indifferent option, and

instead of selecting a particular utility vector at the end of the algorithm, we keep

the entire feasible space when we optimize over the utilities. We will discuss the

reasons for these changes at the end of this section.

1The analytic center of a set of linear inequalities a′ix ≤ bi, i = 1, . . .m, is defined to be the
solution of the following unconstrained optimization problem: min−

∑m
i=1 log(bi − a′ix).
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2.2.1 Modeling Questionnaire Responses with Inequalities

Suppose that we have already asked the user k comparison questions and received

responses of the form xi > yi, yi > xi, or xi = yi. Consider the case where the user

indicates that they prefer xi to yi (xi > yi) in question i. We would like the total

utility of item xi to be larger than the total utility of item yi, or u′(xi − yi) > 0.

We model the strict inequality here by using a small number ε > 0, so we have the

constraint u′(xi − yi) ≥ ε. However, we would like to account for the possibility of

inconsistencies or response error. We do this by introducing a binary variable φi for

question i. Instead of using the constraint above, we use the constraints

u′(xi − yi) + (n+ ε)φi ≥ ε,

u′(xi − yi) + (n− ε)φi ≤ n,

for question i if the user indicates that xi > yi, where n is the total number of possible

attributes. Similarly, we use the constraints

u′(xi − yi)− (n+ ε)φi ≤ −ε,

u′(xi − yi)− (n− ε)φi ≥ −n,

for question i if the user indicates that yi > xi. In both sets of constraints, if φi = 0,

then the utility vector is consistent with the user’s response to question i (the first

constraint enforces the correct response and the second constraint is redundant). If

φi = 1, then we “flip” the constraint and assume that the user either introduced an

inconsistency or made a response error (the first constraint becomes redundant and

the second constraint forces the inequality to flip).

If the user indicates that they are indifferent to question i (xi = yi), then we add

the constraints

− ε ≤ u′(xi − yi) ≤ ε.
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In this case, we do not allow the inequalities to flip, since we assume that an indifferent

response is more likely to be truthful. Even if the user actually prefers one item over

the other, the difference in utilities is probably small, which is captured here. If an

indifferent response is given for question i, we set φi = 0. We will set ε = 0.1 for the

empirical evidence given in Section 4, but our model is robust to the value of ε.

Since we expect the user to respond incorrectly to only a small fraction of the

questions, we also use the constraint

k∑
i=1

φi ≤ γk,

where γ is a parameter that indicates the maximum fraction of responses that we

allow to be incorrect. For example, if γ = 0.1, we allow at most 10% of the user’s

responses to be flipped. In this work, we only give an upper bound on the sum of the

φi variables. This is due to the desire to be robust to a certain number of response

errors and inconsistencies that could occur. An alternative would be to add a term

to the objective that penalizes “flipping.” However, this would minimize the number

of response errors we assume happen, instead of the number of response errors that

actually happen. We would like to be robust to a certain number of response errors

potentially occurring in practice.

These constraints provide a description of the feasible space of utilities. Through-

out the remainder of this paper, we will also restrict the vector of utilities u to be in

[−1, 1]n, without loss of generality.

2.2.2 Selecting the Next Question

We would now like to select the next question to ask using this feasible space of

utilities. We do this by finding the analytic center of the feasible set for u, which

is the projection of a mixed integer set. To find the analytic center of this set, we

solve the optimization problem (2.1), where we use the notation zi = xi − yi for the
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difference between the attribute vectors of the items asked about in question i:

maximize
k∑
i=1
xi 6=yi

log(si)+
k∑
i=1
xi=yi

[log(s1
i )+log(s2

i )]+
2n∑
j=1

log(tj) (2.1)

s.t. −u′zi − (n+ ε)φi + s1
i = −ε, ∀i ∈ {1, . . . , k} s.t. xi > yi, (2.1.1)

u′zi + (n− ε)φi + s2
i = n, ∀i ∈ {1, . . . , k} s.t. xi > yi, (2.1.2)

u′zi − (n+ ε)φi + s1
i = −ε, ∀i ∈ {1, . . . , k} s.t. yi > xi, (2.1.3)

−u′zi + (n− ε)φi + s2
i = n, ∀i ∈ {1, . . . , k} s.t. yi > xi, (2.1.4)

u′zi + s1
i = ε, ∀i ∈ {1, . . . , k} s.t. xi = yi, (2.1.5)

−u′zi + s2
i = ε, ∀i ∈ {1, . . . , k} s.t. xi = yi, (2.1.6)

φi = 0, ∀i ∈ {1, . . . , k} s.t. xi = yi, (2.1.7)

−Mφi ≤ si − s1
i ≤Mφi, i = 1, . . . , k s.t. xi 6= yi, (2.1.8)

−M(1− φi) ≤ si − s2
i ≤M(1− φi), i = 1, . . . , k s.t. xi 6= yi, (2.1.9)

−uj + tj = 1, j = 1, . . . , n,

uj + tn+j = 1, j = 1, . . . , n,

k∑
i=1

φi ≤ γk,

φi ∈ {0, 1}, i = 1, . . . , k,

si ≥ 0, i = 1, . . . k,

tj ≥ 0, j = 1, . . . 2n.

The objective of (2.1) is to maximize the log of the slack variables, as defined by

the analytic center [20]. Constraints (2.1.1)-(2.1.7) represent the question constraints

defined previously in this section, but with slack variables added in. Note that the

slack variables are slightly more complicated than those in a typical optimization

problem for the questions for which the user makes a choice (is not indifferent).
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In our formulation, each question defines two constraints, but only one of them is

nontrivial, depending on the value of φi. If φi = 0, then the first question constraint,

(2.1.1) or (2.1.3), defines the feasible utilities for that question, so we would only like

to consider the slack variable for the first constraint (s1
i ), when maximizing the sum of

the log of the slacks. If φi = 1, then the second question constraint, (2.1.2) or (2.1.4),

defines the feasible utilities for that question, so we would only like to consider the

slack variable for the second constraint (s2
i ), when maximizing the sum of the log of

the slacks. Constraints (2.1.8)-(2.1.9) use the “big-M” approach to set si = s1
i or

si = s2
i , depending on the value of φi, where si is the slack variable that contributes

to the objective. The remaining constraints define the feasible region as described

previously.

In practice, we solve this problem by first finding a strictly interior feasible point

and then using Newton’s method (or a suitable approximation of Newton’s method) to

iteratively compute the analytic center (for a more detailed explanation, see [77, 78]).

Note, however, that unlike [77, 78], we compute the analytic center of a set that

involves continuous and discrete variables.

Denote the optimal solution for u, or the analytic center, by c∗. To try and cut

the feasible region as much as possible, we select as the next question the one whose

hyperplane is as close to c∗ as possible. This is the solution to the following problem:

i∗ = arg min
i

|(c∗)′zi|
||zi||

,

where the minimization is over all possible questions zi = xi − yi that can be asked

between two items xi and yi. Then question k + 1 is defined by zi
∗
. Note that

while this problem requires an enumeration of all possible question pairs (O(n2)),

it is fast for reasonably sized practical problems (hundreds of items and attributes).

After asking question k + 1 and receiving the response, we add two new question

constraints and a variable φi to (2.1) and repeat the procedure described here to find

question k + 2.

At any point, we may want to stop asking questions, or the remaining feasible
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region might be so small that it is impractical or unproductive to continue asking

questions. A common strategy is to compute the analytic center one last time, and

use this as an estimate for the utilities. We propose a new approach that uses robust

optimization over the entire feasible set, which we describe in Section 2.3.

In addition to the methodological change of finding the analytic center of a mixed

continuous and discrete set, we made a few additional changes to the methodology

proposed in [77, 78]. The first is that we select the next question that minimizes the

distance to the analytic center of the remaining feasible space, instead of selecting a

hyperplane that goes through the analytic center and is parallel to the shortest axis

of the bounding ellipse as proposed by [77, 78]. The reason for this change is that we

assume that we have a fixed set of items that we can ask about. We do not have the

freedom to construct the best possible item to ask about, but instead have to pick

from one of the fixed options. This means that we are not able to ask a question that

necessarily goes through the analytic center of the polyhedron and is parallel to the

shortest axis of a bounding ellipse. By selecting the question that has a hyperplane

closest to the analytic center, we are using a variation of the idea proposed by [77, 78],

with the same goal of reducing the feasible space by as much as possible with each

question, regardless of the response given by the user.

We also add the option for a user to answer that they are “indifferent” between

the two items, instead of forcing the user the pick between the two items. This adds

an extra level of complexity to the problem, but also makes the questionnaire more

user-friendly.

Additionally, instead of selecting a particular utility vector at the end of the

algorithm, we keep the entire feasible space when we optimize over the utilities. The

reason for this change is that we would like our approach to be more robust to error.

We discuss this further in Section 2.3.

2.2.3 Adding a “Feel Strongly” Option

In the optimization problem (2.1), we assume that all questions are equally likely to

contain response errors (unless the user selected the indifferent option) and thus any
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question constraints can be flipped. However, it is more likely that the user “feels

strongly” about some responses, and is more ambivalent about others. We add an

additional option for the user to indicate that they “feel strongly” about a response,

in which case we do not include constraints (2.1.2) or (2.1.4) of (2.1). By doing this,

if φi = 1, the only constraint for question i becomes trivial, and thus we are not

considering that question when computing the utilities. We don’t want to force the

inequality to flip, since the user felt strongly about their response, but we may need

to relax the constraint due to inconsistencies in the responses.

Thus, when faced with two items, xi or yi, the user can indicate that (a) he prefers

xi over yi, (b) he prefers yi over xi, (c) he strongly prefers xi over yi, (d) he strongly

prefers yi over xi, or (e) he is indifferent. We will denote a strong preference for item

xi over item yi by xi >> yi.

With this additional option, we solve (2.1) with constraints (2.1.1)-(2.1.4) replaced

by the following constraints:

−u′zi − (n+ ε)φi + s1
i = −ε, ∀i ∈ {1, . . . , k} s.t. xi > yi or xi >> yi, (2.2)

u′zi + (n− ε)φi + s2
i = n, ∀i ∈ {1, . . . , k} s.t. xi > yi,

u′zi − (n+ ε)φi + s1
i = −ε, ∀i ∈ {1, . . . , k} s.t. yi > xi or yi >> xi,

−u′zi + (n− ε)φi + s2
i = n, ∀i ∈ {1, . . . , k} s.t. yi > xi,

s2
i = 0, ∀i ∈ {1, . . . , k} s.t. xi >> yi or yi >> xi.

Note that we set s2
i = 0 if the user feels strongly about the response to question

i, since we don’t have a second constraint. By using the new constraints (2.2), we

are able to correct for inconsistencies or errors in the responses, while decreasing the

chance of violating the inequalities that we know the user feels strongly about, and

are therefore most likely to be correct.
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2.3 Loss Averse Solutions with Robust Optimiza-

tion

Up to this point, we have been concerned with estimating utilities. However, our main

concern is with selecting the appropriate item in order to maximize a user’s utility

subject to a set of constraints on the items. This is a common problem in many

applications; a decision needs to be made among a set of items, and a natural goal

is to maximize utility. This problem can be modeled by the following optimization

problem:

maximize u′x

s.t. x ∈ X,

where X is our feasible set, u is our utility vector, and each possible choice is modeled

by a vector of attributes denoted by x ∈ X. Note that we have not made any

assumptions regarding the feasible set X.

This optimization problem assumes that the utility vector u is fixed, but in many

situations the utility vector is unknown. In the previous section, we proposed a

strategy for learning u which, after a number k of questions, gives us a feasible region

that is continuous in u and discrete in φ. Denote by Uk the feasible set of u for

all possible values of φ after k questions (note that we will not use the feel strongly

option throughout this section, but the formulations can easily be extended to include

it):

Uk = {u ∈ Rn | u′zi + (n+ ε)φi ≥ ε, ∀i ∈ {1, . . . , k} s.t. xi > yi,

u′zi + (n− ε)φi ≤ n, ∀i ∈ {1, . . . , k} s.t. xi > yi,

u′zi − (n+ ε)φi ≤ −ε, ∀i ∈ {1, . . . , k} s.t. yi > xi,

u′zi − (n− ε)φi ≥ −n, ∀i ∈ {1, . . . , k} s.t. yi > xi,

− ε ≤ u′zi ≤ ε, ∀i ∈ {1, . . . , k} s.t. xi = yi,
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φi = 0, ∀i ∈ {1, . . . , k} s.t. xi = yi,

−1 ≤ ui ≤ 1, i = 1, . . . , n,

k∑
i=1

φk ≤ γk,

φi ∈ {0, 1}, i = 1, . . . , k }.

2.3.1 A Robust Optimization Approach

In previous work, the standard approach was to select a particular estimate for u

out of all possible choices in Uk, where the most typical choice has been to select

the analytic center of Uk. Here, we instead solve a robust optimization problem that

considers the entire set Uk:

max
x∈X

[
min
u∈Uk

u′x

]
. (2.3)

For a fixed x ∈ X, the inner optimization problem selects the worst possible utility

vector that is in the set Uk. Since the set Uk came from the adaptive questionnaire,

it is possible that any vector in Uk is the user’s true utility vector, and so we are

looking at the worst case outcome. The outer optimization problem then tries to find

the best item x ∈ X given this worst case approach. This problem is thus robust in

the sense that we are trying to maximize the worst case scenario, and so we aim to

be robust to error. This approach is typically referred to as Wald’s maximin model

[83], and is one of the most important models in robust optimization. Note that for

a given x ∈ X, the objective of (2.3) is a concave function, which captures the risk

adverse utilities often exhibited by individuals.

Typically, this problem is solved by taking the dual of the inner problem, resulting

in an optimization problem that is no more difficult than the original optimization

problem [16]. However, in our case, the inner problem is a mixed-integer optimization

problem, since the φi variables are binary. Since in many applications, the set X only

specifies that one item should be selected, we will solve this problem by enumeration
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when we report empirical results in Section 2.5. Thus, for each possible x̄ ∈ X, we

solve

min
u∈Uk

u′x̄,

and then select the x for which the objective function value is the largest. This

problem can be solved with mixed integer optimization techniques.

2.3.2 A CVaR Approach

While the robust optimization approach provides a loss averse method, it tends

to produce solutions that may be too conservative. In this section, we present a

method to model loss averse behavior with robust optimization using the concept of

Conditional Value at Risk (CV aR), or expected shortfall [9]. CV aR is a risk measure

often used in finance to evaluate the market risk of a portfolio. The “CV aR at the

α% level” or CV aRα is the average value of the worst α% of the cases. It is an

alternative to value at risk (V aRα), the α-quantile, but it is more sensitive to losses

[9]. Mathematically, CV aR can be defined as follows:

CV aRα =
1

α

∫ α

0

V aRγdγ.

The motivation for this approach is similar to the trade-off proposed by [16], in

that we would like to adjust the conservatism of the robust approach. The analytic

center approach often yields better objective function values than the robust approach

on average, but it also tends to have greater losses in the domain of losses than the

robust version (it is not very loss-averse). By using CV aR, we are able to maintain

the best features of both approaches. This will be shown in the empirical evidence in

Section 2.5.

We would like to maximize the CV aR of the possible utility vectors in the space of

feasible utilities Uk. Since this region includes discrete values for φi, we first fix these

values to the values at the analytic center, which is found after the final question

is asked using the procedure described in Section 2.2. We assume that these values
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Figure 2-2: An example of the Hit and Run algorithm.

capture good values for φi, but in practice they could be varied between all possible

values.

Since precisely modeling CV aR would require an integral in the objective, we use

random sampling to approximate the problem. Our feasible region Uk becomes a

polytope when we fix the values of φi. There are several different ways to randomly

sample from a polytope [81]. We use the “Hit-and-run” algorithm, starting from the

analytic center c∗ (which has been computed in the computation of Uk) to find N

different utility vectors u1, . . . , uN ∈ Uk. The Hit-and-run algorithm was introduced

by Smith [71], and is defined as follows:

• Pick a uniformly distributed random line ` through the current point.

• Move to a uniform random point p along the chord ` ∩ Uk.

These two steps are repeated until the random point can be assumed to come from

the stationary distribution of the algorithm. Figure 2-2 gives an example of the first

three steps of the algorithm in two dimensions. Starting from the analytic center c∗, a

uniformly distributed line `1 through c∗ is selected, and then we move to the random

point p1. Then from p1, we select the uniformly distributed line `2 through p1, and

move to the random point p2, and so forth.
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Smith [71] proved that the stationary distribution of the hit-and-run walk is the

uniform distribution over Uk. Lovász and Vempala [55] showed that the hit-and-

run walk mixes (becomes stationary) in O(n4ln3(n
d
)) steps starting from a point at

distance d from the boundary, and is thus a polynomial time algorithm. Other random

walks, including the well-known “ball walk”, can potentially take exponentially many

steps from some starting points. In addition to hit-and-run being a polynomial time

algorithm, it is also known to perform very well in practice.

Given the random sample of utility vectors {u1, . . . , uN}, we then maximize the

CV aR of this representative sample of utility vectors by using the robust optimization

problem (2.4).

max
x∈X

min
y

1

αN

N∑
j=1

(u′jx)yj (2.4)

N∑
j=1

yj = αN,

0 ≤ yj ≤ 1, j = 1, . . . , N,

where α controls how conservative, or loss averse, we would like to be. If we set

α = 1
N

for N →∞, this is equivalent to the robust approach.

We can represent this problem as a linear optimization problem by taking the dual

of the inner minimization problem [14]. We define dual variables θ and w. Then, the

problem can be reformulated as the linear optimization problem (2.5).

max
x,θ,w

θ +
1

αN

N∑
j=1

wj (2.5)

θ + wj ≤ u′jx, j = 1, . . . , N,

wj ≤ 0, j = 1, . . . , N,

x ∈ X.

Although our approach requires random sampling of the feasible region, it successfully

provides loss averse solutions without being overly conservative. We will show the
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benefits of this formulation in Section 2.5.

2.4 An Online System to Learn Preferences

We have implemented an online software that uses the proposed approach to select

preferred recipes for the user of a personalized dieting application. A snapshot of the

online software is shown in Figure 2-3. Users are asked to answer comparison questions

as described in Section 2.2 given the title of the recipes, pictures, descriptions of the

recipes, and the ingredients. They are also given the option to indicate that they

strongly prefer one recipe over the other, by selecting the “double thumbs-up” button

(at any time, users can click on a “Help” button to read the instructions or a “Stop”

button to terminate the survey). We would like to learn the user’s utilities for the

ingredients (or other attributes) of the recipes, and then ultimately suggest a meal

plan that is appealing to them.

Figure 2-3: A snapshot of the adaptive questionnaire implemented in an online
software.

To illustrate the system, we will give an example of the questions, responses, and

learned preferences for a particular user. The system asks comparison questions for

breakfast, lunch, and dinner separately, since the recipes served at each of these meals
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can vary significantly. Here, we will focus on the lunch survey. The example here uses

38 different recipes for lunch. For illustration purposes, assume that the user has a

strong preference for vegetarian recipes, and prefers seafood over other meat dishes.

The first ten questions that the user is asked and the user’s responses are shown in

Table 2.1. The first column gives the question number, the second column gives a

picture and the name of the first recipe that is asked about in the question, and the

third column gives a picture and the name of the second recipe that is asked about

in the question. The user’s response is indicated by either a single thumbs-up sign or

a double thumbs-up sign in one of the two recipe columns.

Question Recipe 1 Recipe 2

1
Acorn Squash with Apples Black Bean Wrap

2
Grilled Salmon on Sourdough Bread Zesty Tomato Soup

3
Grilled Chicken Salad with Oranges Tuna Pita Pockets

4
Pineapple Chicken Salad Rice and Beans Salad

5
Chili Chicken and Coleslaw Wrap

6
Quesadillas Spinach Frittata
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7
Chicken Salad with Thai Flavors Salad Greens with Pears and Walnuts

8
Pasta Salad with Mixed Vegetables Shrimp-Apple Salad

9
Portobello and Blue Cheese Salad Grilled Flank Steak Salad

10
Turkey Club Sandwich Crab Salad

Table 2.1: The first ten questions and responses of a sample

user of the system.

Since the survey is adaptive, the questions are dependent on the answers to

the previous questions. For example, if the user instead selected Recipe 2 for

question 9 (Grilled Flank Steak Salad), question 10 would instead have been between

“Caesar Salad with Grilled Chicken” and “Hot Ham and Cheese Sandwiches with

Mushrooms.”

After these ten questions, the system computes the user’s preferences using our

methodology. Table 2.2 gives a list of the recipes ranked the highest in terms of these

preferences. After only ten questions, the system has captured the user’s preferences

very well. Recall that there are 38 lunch dishes total, of which 13 are vegetarian, 7

contain seafood, 12 contain chicken, and 6 contain red meat. Only 3 non-vegetarian
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dishes appear in the top ten list, one of which is a seafood dish. The two chicken

dishes have a high preference due to the salad ingredients involved in them, but they

are both near the bottom of the list. We have successfully learned that the user has

a high utility for vegetarian dishes, including salads. In the next section, we present

empirical evidence supporting our methodology using this online software.

Rank Recipe

1 Salad Greens with Pears and Walnuts
2 Zesty Tomato Soup
3 Rice and Beans Salad
4 Acorn Squash with Apples
5 Spinach Frittata
6 Crab Salad
7 Grilled Pear and Watercress Salad
8 Chicken Caesar Pita
9 Portobello and Blue Cheese Salad
10 Chicken Coleslaw Wrap

Table 2.2: The top ten recipes according to the user’s preferences computed after the
first ten questions.

2.5 Empirical Evidence

In this section, we present evidence that a self-correcting and robust approach is

feasible, realistic, and appealing in practice. We present empirical evidence comparing

the analytic center approach, the robust approach, and the CV aR approach.

2.5.1 The Experiment

To compare the validity of the different approaches, we performed the following

experiment. We first generated a “true” utility vector u∗ that a user could have, by

randomly sampling a feasible utility vector from the initial feasible space of utilities

U0 = [−1, 1]n. Using this true utility vector, we generated the appropriate answers

for a fixed number of comparison questions, where the questions were selected using

the adaptive questionnaire described in Section 2.2. For each question, we inserted
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some normally distributed noise ζ with mean zero and standard deviation σ, into the

response to that question. The reason for this is that we assume people make errors in

their responses, either due to inaccurate responses, or ambiguous preferences. Thus,

for ζ ∼ N(0, σ), if

(u∗)′zi + ζ ≥ ε̂,

we record the user’s response to question i as xi > yi. If

(u∗)′zi + ζ ≤ −ε̂

we record the user’s response to question i as yi > xi. Lastly, if

−ε̂ ≤ (u∗)′zi + ζ ≤ ε̂

we record the user’s response to question i as xi = yi.

In the empirical evidence presented in this section, we let ε̂ = 0.02. This causes

zero to four indifferent responses for every ten questions, depending on the true utility

vector of the user. We assume here that while some indifferent responses might be

made, the user will select between the two options most of the time. We have two

reasons for this. The first is that the methodology proposed here is designed to

ask comparison questions. If the user is answering indifferent for the majority of

the questions, a comparison questionnaire is probably not appropriate for the specific

application. The second reason is that our methodology is designed to handle response

errors and inconsistencies, partly because we are forcing the user to pick between the

two options.

Note that it is the self-correcting property of our approach that insures the

feasibility of the algorithm regardless of how much noise is inserted into the responses.

Even if inconsistencies are created, with γ large enough, the feasible space Uk will

remain non-empty. However, recall that the adaptive questionnaire is designed so

that inconsistencies will be avoided as much as possible, so we expect a small number

of inconsistencies, if any. Since the next question is selected as one that cuts the
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current feasible space as close as possible to the analytic center, it will always leave

a remaining feasible space unless the closest cut to the analytic center does not go

through the current feasible space at all (leaving an empty feasible space with one

response to the question, and the same feasible space as before with the other response

to the question). While unlikely, if this does happen and the new feasible space turns

out to be empty, the questionnaire will stop and the most recent non-empty feasible

space will be the final feasible space. Throughout the empirical studies performed

here, this situation has never occurred.

Using these responses, the ultimate optimization problem (that of finding an

appealing meal plan for the user of a personalized dieting system) was then solved

using the different methods discussed in this paper: the traditional analytic center

approach with “slack” variables to account for inconsistencies, but without the

self-correcting mechanism [78, 77], the new analytic center approach with the self

correcting mechanism presented in (2.1), the robust approach given by (2.3), and the

CV aR approach given by (2.4). We will denote these methods by AC, ACSC, Robust,

and CVaR, respectively. Note that there are two different analytic center approaches

here - the traditional approach without accounting for inconsistencies and responses

errors (AC), and the new approach with the self-correcting mechanism (ACSC).

We report the results of these methods as follows. We first rank all of the items

(recipes) according to the “true” utilities, u∗. Thus, the item with the highest true

utility gets rank 1, and the item with the lowest utility gets rank 102 (the total

number of recipes in the dataset). We then find the top five items according to the

different optimization methods. The reason for this is that in this application and

in many others, we will often suggest several items to the user that we think they

will like. In the case of recipes, we will often want to make several suggestions since

the user may like many different types of recipes, and we would like to make sure

we suggest one that they are interested in on any particular day. Therefore, after

solving the optimization problem corresponding to each of the methods, we eliminate

the optimal solution, and solve again to get the next best solution. We repeat this

three more times to get the top five solutions. We can then compare the selected
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solutions with the true rank of the items. We report the average true rank of the top

five solutions found. Therefore, smaller values are preferred.

Throughout the rest of this section, we report results for ten different true utility

vectors (or ten different “users”), and 200 runs per user for each value of σ > 0 to

account for the noise in the responses. Our dataset consisted of 102 recipes for the

main dish at dinner (so that the recipes were comparable), and were described by 186

attributes (the ingredients of the recipes).

2.5.2 Results

Figures 2-4(a), 2-4(b), and 2-4(c) show the results for 10 questions, and Figures 2-

5(a), 2-5(b), and 2-5(c) show the results for 20 questions. For both sets of results,

γ = 0.1, meaning that at most 10% of the responses are assumed to be inaccurate or

inconsistent. Tables 2.3, 2.4 and 2.5 show the full numerical results. The bold entries

in the tables highlight some of the best results and some of the interesting trends in

the data.

In Figures 2-4 and 2-5, each line corresponds to a different optimization approach:

the traditional analytic center approach (AC); the self-correcting analytic center

approach (ACSC); the robust approach (Robust); and the CVaR approach (CVaR).

The x-axis gives the value of σ, the standard deviation of the noise added to the

responses. For σ = 0, there is no random noise added to the responses, so only one

value is computed per user and CVaR(5%) and CVaR(20%) are not computed due

to the small amount of data. For σ > 0, 200 runs are computed for each method,

combination of parameters, and for each user.

Figures 2-4(a) and 2-5(a) give the average rank of the top five solutions for AC,

ACSC, CVaR (with α = 0.05), and Robust. Recall that there are 102 total recipes,

so the average rank can range from 3 to 100, where smaller values are preferred. As

can be seen from Figures 2-4(a) and 2-5(a), the AC, ACSC and CVaR methods are

competitive on average, with the AC method better than the other two for small σ.

The ACSC and CVaR methods are also most robust to noise than the AC method,

meaning that they are flatter than the AC curve. Since these methods better account

49



20.0 

25.0 

30.0 

35.0 

40.0 

45.0 

50.0 

55.0 

60.0 

0 0.1 0.2 0.3 0.4 0.5 

M
ea

n 
of

 th
e 

tr
ue

 r
an

k 

Standard Deviation of  the Response Error (σ) 

Average Mean Value of  10 Users 

AC 

ACSC 

Robust 

CVaR, α=0.05 

(a) Average rank.

50.0 

55.0 

60.0 

65.0 

70.0 

75.0 

0.1 0.2 0.3 0.4 0.5 

C
Va

R
(5

%
) 

of
 th

e 
tr

ue
 r

an
k 

Standard Deviation of  the Response Error (σ) 

Average CVaR(5%) Value of  10 Users 

AC 

ACSC 

Robust 

CVaR, α=0.05 

(b) CVaR at α = 5%.

40.0 

45.0 

50.0 

55.0 

60.0 

65.0 

0.1 0.2 0.3 0.4 0.5 

C
Va

R
(2

0%
) 

of
 th

e 
tr

ue
 r

an
k 

Standard Deviation of  the Response Error (σ) 

Average CVaR(20%) Value of  10 Users 

AC 

ACSC 

Robust 

CVaR, α=0.05 

(c) CVaR at α = 20%.

Figure 2-4: Results for 10 questions.
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Figure 2-5: Results for 20 questions.
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for response error and inconsistencies, they logically perform better with σ > 0.

The Robust method is strictly dominated by the other methods, but it is very

consistent regardless of the amount of noise. Additionally, Table 2.3 gives the

standard deviation of the methods. The CVaR method has a consistently lower

standard deviation than the traditional AC method, and the Robust method has a

significantly lower standard deviation than all other methods. This provides evidence

that the new methods are more risk averse than the traditional analytic center

approach.

The largest different between asking ten questions (Figure 2-4(a)) and asking

twenty questions (Figure 2-5(a)) is for the Robust method, which performs signifi-

cantly better with twenty questions. Since the Robust is a worst case approach, it

makes sense that it would perform much better with a smaller feasible space.

Method
Questions σ AC ACSC CVaR, α = 0.05 Robust

10 0.0 24.4 30.0 34.4 56.1
10 0.1 31.8± 9.2 33.7± 10.5 36.0± 8.6 54.0± 5.5
10 0.2 35.7± 10.7 36.2± 11.3 37.5± 9.0 54.1± 5.7
10 0.3 39.1± 12.0 38.6± 12.6 39.4± 9.4 54.1± 5.8
10 0.4 41.7± 12.9 41.9± 13.4 41.3± 9.4 54.2± 5.7
10 0.5 43.5± 13.6 43.5± 13.7 41.9± 9.7 54.4± 5.8

20 0.0 22.0 27.1 24.4 46.7
20 0.1 28.5± 10.7 29.3± 11.8 30.2± 11.2 45.3± 6.3
20 0.2 31.7± 12.3 32.8± 12.6 32.3± 11.7 45.1± 6.4
20 0.3 35.4± 13.2 34.6± 13.3 35.9± 12.9 45.2± 5.9
20 0.4 38.5± 14.1 37.6± 14.5 37.6± 13.1 45.0± 6.0
20 0.5 39.7± 14.6 40.2± 14.6 39.2± 13.6 45.1± 5.3

Table 2.3: Average true rank of the solution to the optimization problem and the
standard deviation of the values for different values of σ. For all methods, γ = 0.1.
Results are averaged with respect to 10 different users, and 200 runs of the adaptive
questionnaire per user when σ > 0.

Figures 2-4(b) and 2-5(b) give the conditional value at risk (CV aRα) for α = 5%

for 10 questions and 20 questions, respectively. Figures 2-4(c) and 2-5(c) give the

conditional value at risk (CV aRα) for α = 20% and for 10 questions and 20 questions,

respectively. Tables 2.4 and 2.5 give the full numerical results. We use CV aRα as
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a risk measure to compare how loss averse each of the methods are. The lower the

CV aRα value (meaning that the worst case solutions have better ranks), the more

loss averse a method is considered to be.

Figures 2-4(b) and 2-5(b) show that for almost all levels of response error, the

CVaR or Robust methods strictly dominate the other methods for the worst 5% of

cases. The CVaR method is better with fewer questions, and the Robust method

is better with more questions. The AC method is slightly better for small response

error. Figures 2-4(c) and 2-5(c) show similar behavior. This shows us that the CVaR

and Robust methods are significantly more loss averse, as designed.

Method
Questions σ AC ACSC CVaR, α = 0.05 Robust

10 0.1 52.6 58.5 55.9 63.3
10 0.2 59.3 61.7 57.6 63.7
10 0.3 65.9 67.5 60.4 63.5
10 0.4 70.1 70.1 61.9 63.0
10 0.5 73.9 73.1 63.3 64.1

20 0.1 51.9 56.4 55.5 57.4
20 0.2 58.9 60.8 58.0 57.8
20 0.3 64.9 64.3 63.8 56.7
20 0.4 69.7 69.2 66.3 57.0
20 0.5 70.5 71.5 68.7 55.5

Table 2.4: CV aRα at α = 5% of the true rank of the solution to the optimization
problem for different values of σ. For all methods, γ = 0.1. Results are computed
with respect to 10 different true utility vectors, and 200 different runs of the adaptive
questionnaire per user when σ > 0.

When considering all plots together, we would argue that for small response error

(0 < σ ≤ 0.2), the AC approach is the best on average, as expected. But the CVaR

and Robust approaches start looking better as the response error increases in this

interval. For moderate to high response error (0.2 < σ ≤ 0.5), the CVaR or Robust

method would be the best choice, depending on the number of questions. If only a

few questions are asked (around 10), then the CVaR approach is probably better. If

there is time for more questions, then Robust approach is better. While asking fewer

questions is more appealing for the user, the Robust approach uses less computational
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Method
Questions σ AC ACSC CVaR, α = 0.05 Robust

10 0.1 45.6 49.0 48.4 60.0
10 0.2 51.7 53.1 50.6 60.1
10 0.3 56.8 57.5 52.9 59.8
10 0.4 60.4 61.5 54.9 59.8
10 0.5 63.5 63.1 55.7 60.2

20 0.1 44.1 46.8 46.8 53.9
20 0.2 49.7 51.2 49.5 53.7
20 0.3 54.8 54.4 54.6 52.9
20 0.4 59.4 59.1 56.8 52.8
20 0.5 61.1 61.4 58.9 51.9

Table 2.5: CV aRα at α = 20% of the true rank of the solution to the optimization
problem for different values of σ. For all methods, γ = 0.1. Results are computed
with respect to 10 different true utility vectors, and 200 different runs of the adaptive
questionnaire per user when σ > 0.

power since random sampling is not required. These two approaches have the best

performance when considering both the average value and CVaR. Overall, given that

we expect some response error from the users, we would argue that the CVaR and

Robust approaches show the best numerical results, in terms of losses and average

performance.

2.6 Summary

We have developed an optimization-based approach for preference learning that

incorporates techniques and observations from many different fields. Our approach

addresses some of the key observations of preference learning in behavioral economics:

people are loss averse, are inconsistent, and evaluate outcomes with respect to

deviations from a reference point. We have shown how mixed binary optimization

can be used to correct for inconsistent behavior, choice-based conjoint analysis can

be used in an adaptive questionnaire to dynamically select pairwise questions, and

robust linear optimization and CV aR can model loss averse behavior.

Furthermore, we gave empirical evidence from an online software we developed
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that strives to model human preferences in a realistic situation. We have shown that

the CV aR and Robust approaches perform very well, and are more robust to noise in

the responses and are more loss averse than the traditional analytic center approach.

In Chapter 4, we will use the approach introduced here to find a meal and exercise

plan than maximizes the user’s food preferences.
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Chapter 3

Blood Glucose Modeling and

Nutritional Data

Our approach to personalized diabetes management requires several inputs. The first

necessary input, user preferences, was the focus of Chapter 2. In this chapter, we

discuss the other inputs necessary for our approach.

In Section 3.1, we introduce some basic terminology and concepts about diabetes.

In Section 3.2, we describe a data-driven approach to estimate how a person’s

blood glucose levels will change after eating and exercising. In Section 3.3, we use

optimization to update our knowledge of the individual’s blood glucose behavior using

data from the user. In Section 3.4, we describe the nutritional information we use,

including a comprehensive recipe database and nutritional guidelines.

3.1 Diabetes Basics

Diabetes is a chronic disease characterized by excessive glucose in the bloodstream.

The body breaks down sugars and starches into glucose, a form of sugar. This

glucose then enters the bloodstream, causing blood glucose levels to rise. In a

non-diabetic individual, the hormone insulin is produced to remove this glucose

from the bloodstream, and convert it into energy to be used by the cells. In a

diabetic individual, no insulin or not enough insulin is produced, so the blood glucose
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levels remain high. High blood glucose levels can lead to very serious complications,

including glaucoma, cataracts, amputation, kidney disease, nerve damage, and heart

disease [2].

There are several different types of diabetes. Type I diabetes is characterized by no

insulin production. Insulin must be injected to absorb glucose from the bloodstream.

Type I diabetes accounts for about 5% of all cases of diabetes, and is usually diagnosed

in childhood. Type I diabetes is not associated with obesity, and while diet and

exercise can definitely help, medication is required.

Type II diabetes is characterized by either not enough insulin production, or

insulin that does not work the way it should. Type II diabetes accounts for about

90% − 95% of the diabetes cases worldwide, and is the type accountable for the

alarming increase in diabetes rates. While type II diabetes tends to occur in adults,

a growing number of children and adolescents are developing type II diabetes, most

likely due to the increase in childhood obesity. Type II diabetes can be managed

with diet and exercise alone in many individuals. For some, medication is needed,

especially as the disease progresses or goes untreated. If a person with type II diabetes

can successfully lower their blood glucose levels through diet and exercise, they not

only lower their risk for diabetes complications, but they can avoid the side-effects

of the various diabetic medications. For these reasons, the focus of our effort is on

developing a personalized approach to use diet and exercise for diabetes management,

specifically for type II diabetes.

The remaining cases of diabetes are either gestational diabetes, or rare manifesta-

tions of diabetes. Gestational diabetes is a form of type II diabetes and occurs during

pregnancy. The risk factors for gestational diabetes are similar to those for type II

diabetes, including being overweight before or during pregnancy. About 2% to 10% of

pregnant women are diagnosed with gestational diabetes. A healthy meal and exercise

plan can help treat gestational diabetes, and blood glucose levels typically return to

normal after the baby is born. However, someone who has gestational diabetes is at

higher risk for developing type II diabetes; women who have had gestational diabetes

have a 35% to 60% chance of developing type II diabetes in the next ten to twenty
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years. In most cases, diabetes can be prevented in these individuals by maintaining

a healthy weight, eating a healthy diet, and exercising regularly. This makes our

system also very suitable for women who have or have had gestational diabetes.

Prediabetes is a condition that is also very relevant for our approach. Prediabetes

refers to people who have higher than normal blood glucose levels, but not high

enough to be diagnosed with diabetes. People with prediabetes are at very high risk

for developing type II diabetes – 15%− 30% of people with prediabetes will develop

type II diabetes within five years. Over a third of U.S. adults and over half of adults

older than 65 have prediabetes. Lifestyle changes (diet and exercise) are particularly

useful for treating prediabetes, and are the recommended treatment method. Our

approach is also very applicable for people with prediabetes.

Normal, prediabetic, and diabetic ranges for blood glucose levels are described

in Table 3.1. Fasting blood glucose is the blood glucose level of an individual when

waking up in the morning or before meals, and is measured in miligrams per deciliter

(mg/dL). Postprandial blood glucose is the blood glucose level of an individual up to

two hours after eating, and is also measured in mg/dL. A hemoglobin A1C (HbA1C)

test shows an average of blood glucose levels over the past three months, and is used

as a measure of overall control. The American Diabetes Association recommends

that someone with diabetes tries to keep their fasting blood glucose level below 130

mg/dL, postprandial levels below 180 mg/dL, and A1C below 7%.

Measurement Normal Prediabetes Diabetes

Fasting Blood Glucose < 100 mg/dL 100 - 125 mg/dL > 125 mg/dL
Postprandial Blood Glucose < 140 mg/dL 140 - 200 mg/dL > 200 mg/dL
A1C < 5.7% 5.7%− 6.4% > 6.4%

Table 3.1: Ranges for blood glucose levels.

Blood glucose levels can be measured at home by using a blood glucose meter. This

requires a finger prick to collect a small amount of blood, and then a hand-held device

reads the blood sample and shows the blood glucose result. It is recommended that
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individuals monitor their blood glucose levels to see how food, exercise, or medications

affect them.

3.2 Blood Glucose Modeling

Due to the importance of blood glucose monitoring in diabetic individuals, a critical

component of our approach is the modeling and data for blood glucose dynamics. It

has been observed that an individual’s blood glucose levels follow a trajectory like

those shown in Figure 3-1 [36, 40, 65, 67, 75, 25, 64]. We will refer to this curve as a

person’s blood glucose (BG) curve.

Depending on an individual’s metabolism and diabetic state, the base level,

height of the peaks, and duration of the peaks could be different. Figure 3-1(a)

is representative of what a non-diabetic individual’s BG curve might look like. It

has a low fasting level (the blood glucose level of an individual when they wake up

in the morning, or the base level of the curve), and low peaks that do not last very

long. Figure 3-1(b) is representative of what a pre-diabetic individual’s BG curve

might look like. It has a slightly higher fasting level than that of Figure 3-1(a), and

the peaks are higher, but still less than 180 mg/dL. Figures 3-1(c) and 3-1(d) are

representative of what a diabetic individual’s BG curve might look like. They both

have a fasting level in the diabetic range (greater than 125 mg/dL), and the peaks

are higher and last longer. Figure 3-1(d) shows the impact of two snacks in addition

to the three meals. Because the consumption of food can be spread out more with

snacks, this curve has lower peaks than those of Figure 3-1(c). We will exploit this

fact by including snacks when we plan meals, if the user of the system is willing to

eat snacks. Additionally, some of the peaks may have been lowered by exercise.

In addition to general trends seen in diabetic versus non-diabetic individuals, each

individual’s blood glucose reactions can be different. After eating the same food, two

different individuals can have drastically different blood glucose responses, even if

they are both in the same diabetic state. This can depend on body composition,

activity levels, or genetics.
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By analyzing the BG curve, we can model the blood glucose levels of an individual

as a function of the food consumed and the exercise performed at certain times

throughout the day. This is a key observation for our approach. Diabetic drugs

and insulin can also affect an individual’s blood glucose curve, but in this work, we

will assume that the individual is not taking medication. By modeling the effect of

medications on the fasting and postprandial peaks, the work here can be extended to

include medications, which is an area of future work.
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(a) An example BG curve of a non-diabetic.
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(b) An example BG curve of a pre-diabetic.
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(c) An example BG curve of a diabetic, with
no snacks.
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(d) An example BG curve of a diabetic, with
two snacks.

Figure 3-1: Potential trajectories of the blood glucose levels of individuals.

3.2.1 The Glycemic Index

We construct a function to model blood glucose dynamics using the glycemic index

data and our knowledge of the body’s reaction to foods with various glycemic index

values. The glycemic index (GI) measures the effects of carbohydrates on blood

glucose levels. Since sugars and starches are the foods that raise blood glucose levels,
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carbohydrates are responsible for most of the changes in blood glucose levels. This

concept was developed to find out which foods were best for people with diabetes

[47]. The glycemic index of a food is defined as:

GI =
Area under the 2 hour BG curve after eating 50g of carbs of food

Area under the 2 hour BG curve after eating 50g of carbs of pure glucose
× 100,

and can range from 0 to 100. The blood glucose (BG) curve is like the ones shown in

Figure 3-1, and to compute the GI of a food, researchers measured this curve for 10

different test subjects and then used the average to compute the GI value.

As an example, consider Figure 3-2. This shows the BG curves for one individual

and one test food. Suppose at 8am on day 1, the person ate 50 grams of carbohydrates

of pure glucose, and his blood glucose followed the trajectory given by the gray area.

Then at 8am on day 2, he ate 50 grams of carbohydrates of a test food we are

interested in measuring the glycemic index of, and his blood glucose followed the

trajectory given by the black area. We can then compute that:

GI =
Area(Test Food)

Area(Pure Glucose)
× 100 = 60

100
× 100 = 60.

Thus for this individual, we compute the glycemic index of the test food to be

60. We can then repeat this for nine other individuals, and the average of all ten GI

values would be reported as the glycemic index of the test food.

We use glycemic index values from a published glycemic index database [10]. All

foods containing carbohydrates are given a glycemic index value, and then can be

classified as high glycemic index, medium glycemic index, or low glycemic index.

Foods without carbohydrates do not have a glycemic index since they do not raise

blood glucose levels. Foods with carbohydrates that break down quickly and thus

release glucose into the bloodstream quicker tend to have a high glycemic index, such

as white bread or potatoes. Foods that break down more slowly, releasing glucose into

the bloodstream gradually tend to have a low glycemic index, such as strawberries or

yogurt. Table 3.2 gives a summary of the glycemic index categories and some example

foods in each group.
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Figure 3-2: An example of the glycemic index computation.

Group GI range Example Foods

No GI 0 meat, fish, eggs, cheese, oil

Low GI 1 - 55 milk, yogurt, apples, berries, broccoli, beans, nuts

Medium GI 56 - 69 mango, raisins, whole-wheat bread, brown rice

High GI 70 - 100 potatoes, watermelon, white bread, rice cereal

Table 3.2: Categories of the Glycemic Index.

We use the glycemic index to aggregate foods into groups, and estimate the effect

each group has on an individual’s blood glucose levels. We know that consuming high

glycemic index foods increases an individual’s blood glucose levels the most, and that

consuming foods without a glycemic index should not increase an individual’s blood

glucose levels at all.
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3.2.2 The Models

We have developed the following equation to predict how the blood glucose levels of

an individual will change after eating food and exercising:

BGt = f +
∑
i∈F

[
αicixit−1 + βicixit−2

]
− αezt−1 − βezt−2

where BGt is the individual’s blood glucose level at time t, f is the fasting level of

the individual (the blood glucose level in the morning before consuming any food),

F is the set of all foods that the user can consume, ci is the amount of carbohydrates

(in grams) in one serving of food i, xit is the number of servings of food i consumed

at time t, and zt is the amount of exercise (in minutes) at time t.

Each of the constant multipliers αi, βi, αe, and βe model how each action changes

the blood glucose levels: αi is the blood glucose increase one hour after eating one

gram of carbohydrates of food i, βi is the blood glucose increase two hours after eating

one gram of carbohydrates of food i, αe is the blood glucose decrease one hour after

exercising one minute, and βe is the blood glucose decrease two hours after exercising

one minute. Based on empirical evidence and the glycemic index, we estimate these

values which then serve as starting points for a new user, but we believe that they

are unique for each individual [36, 40, 65, 64, 67, 75]. We discuss how we can update

these values with individual user data in Section 3.3.

This equation can be extended to include a longer time horizon (i.e. 3 hours) or

shorter time intervals (i.e. every half hour). However, we have observed empirically

that by three hours, the blood glucose levels of most individuals are back to fasting

levels. Additionally, it is difficult to collect measurements more frequently than in one

hour measurements, since each measurement requires a new finger prick. However,

our models can easily be extended to include this additional information if available.

As an example, suppose the user ate breakfast at time t and consumed two foods:

an apple (17 grams of carbohydrates) and a piece of whole-wheat toast (20 grams of

carbohydrates). The apple has a low glycemic index, for which we estimate αi = 1.33

and βi = 0.33. The toast has a medium glycemic index, for which we estimate
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αi = 2.0 and βi = 0.67. Suppose the user’s fasting level is 120 mg/dL. Then we can

calculate the user’s blood glucose level at time (t+ 1) to be:

BGt+1 = 120 + (1.33 ∗ 17) + (2.0 ∗ 20) = 182.6,

and their blood glucose level at time (t+ 2) to be:

BGt+2 = 120 + (0.33 ∗ 17) + (0.67 ∗ 20) = 139.0.

Note that it is important to know both the glycemic index and the carbohydrate

content of all foods consumed. Eating a large amount of a low glycemic index food

can have the same effect on blood glucose levels as eating a small amount of a high

glycemic index food. This concept is frequently referred to as glycemic load.

3.3 Personalization of the Blood Glucose Parame-

ters

For each user, we store a set of blood glucose parameters: f , αi, βi, αe, and βe. These

were defined in Section 3.2. While we can initialize these parameters to default values,

we would ideally like them to match the user’s personal blood glucose measurements.

In this section, we describe a method for adjusting the parameters to reflect new

measurements provided by the user.

As mentioned in Section 3.2, we will assume that each food falls into one of four

categories, according to the glycemic index: high glycemic index, medium glycemic

index, low glycemic index, or no glycemic index. We can extend this approach to

assuming that the parameters for each food are different, but we make this assumption

for simplicity and feasibility in practice. With this assumption, we have reduced

the set of blood glucose parameters to the following nine parameters: f , αH , αM ,

αL, βH , βM , βL, αe, and βe, where H denotes high glycemic index, M denotes

medium glycemic index, and L denotes low glycemic index. Note that we do not
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need parameters for the no glycemic index foods, since we assume they do not raise

blood glucose levels.

We assume that each day, we will potentially receive new measurements from the

user. These measurements are either of the fasting level, or of postprandial blood

glucose levels (blood glucose levels one or two hours after a meal). In practice, blood

glucose measurements are often up to 20% inaccurate for many reasons: the blood

glucose meter used, the environment of the user, the adherence of the user to the

protocol of the measurement device, and the adherence of the user to the eating and

exercise plan [41]. Due to these sources of inaccuracy, we have to assume that any

measurements we receive are noisy, and we should not completely replace our current

knowledge with any new data. We will first discuss how we update the user’s fasting

level, and then discuss how we update the hourly blood glucose parameters.

3.3.1 Updating the Fasting Level

Most individuals with diabetes regularly check their fasting level when waking up

in the morning. This is seen as a measurement of overall diabetes control, and is

also frequently used to test for diabetes or prediabetes. Due to the potential for

measurement error and noise in the user’s fasting level, we don’t want to completely

replace our current fasting level f with any single new measurement. To account for

this, we use the following procedure:

1. Retrieve any measurements from the user in the last 30 days. Call this set of

measurements S.

2. If |S| > 10, replace S with only the 10 most recent measurements.

3. If |S| ≥ 6, let f = median(S).

4. Else, remove values that are less than 0.8f or greater than 1.2f , and let f =

average(S).

Steps 1 and 2 collect the measurements that the user has entered, and are meant to

collect enough measurements, but not so many that we lose changes in the individual’s
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fasting level over time. Step 3 computes the new fasting level to be the median, if

there are enough measurements. The reasoning for this is that the median is more

robust to outliers, but is only appropriate if there are enough measurements. Step

4 computes the new fasting level to be the mean after deleting outliers, if there are

fewer measurements.

The reasoning for this procedure is that we want to capture increases or decreases

over time, but we do not want to be too sensitive to any individual measurement.

We will assume here that we perform this update each time we receive a new fasting

measurement.

As an example, suppose that we currently believe a user’s fasting level to be 120

mg/dL. Furthermore, suppose that we have received the following set of measurements

from the user in the last 30 days, listed in the order received:

S = {121, 118, 125, 132, 120, 122, 119, 127, 118, 117, 123, 120}.

Since this set contains 12 measurements, we remove the two earliest measurements.

Our new set of measurements is:

S = {125, 132, 120, 122, 119, 127, 118, 117, 123, 120}.

Since we have at least six measurements, we compute the new fasting level to be the

median of this set, which is 121.

3.3.2 Updating the Food and Exercise Parameters

Our equation for the blood glucose level at time t is given by

BGt = f +
∑
i∈F

(αicixit−1 + βicixit−2)− αezt−1 − βezt−2.

We can simplify this equation since we aggregated all foods into high, medium or low

glycemic index (the no glycemic index foods are not considered since their terms are
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zero in this equation). Denote the total number of carbohydrates consumed of high,

medium, and low glycemic index foods at time t by CH
t , CM

t , and CL
t respectively.

Then we can simplify this equation to:

BGt = f+αHCH
t−1 +αMCM

t−1 +αLCL
t−1 +βHCH

t−2 +βMCM
t−2 +βLCL

t−2−αezt−1−βezt−2.

Suppose we have received k postprandial blood glucose measurements, given by

the setM = {M1,M2, . . . ,Mk}. Additionally, denote the carbohydrates of each type

(high, medium or low glycemic index) consumed one hour before measurement Mj

by CH,1
j , CM,1

j and CL,1
j . Similarly, denote the carbohydrates of each type consumed

two hours before measurement Mj by CH,2
j , CM,2

j and CL,2
j . Lastly, denote the fasting

level at the time of each measurement Mj by fj. We then solve the optimization

problem (3.1) to update the blood glucose parameters.

min Θ
k∑
j=1

|Mj − B̂Gj |+ (1−Θ)δ (3.1)

s.t. B̂Gj = fj + α̂HCH,1j + α̂MCM,1
j + α̂LCL,1j + β̂HCH,2j

+ β̂MCM,2
j + β̂LCL,2j − α̂ezjt−1 − β̂

ezjt−2, j = 1, . . . , k, (3.1.1)

|αk − α̂k| ≤ δ, ∀k ∈ {H,M,L, e}, (3.1.2)

|βk − β̂k| ≤ δ, ∀k ∈ {H,M,L, e}, (3.1.3)

0 ≤ α̂L ≤ α̂M ≤ α̂H , (3.1.4)

0 ≤ β̂L ≤ β̂M ≤ β̂H , (3.1.5)

where αk and βk are data denoting the current blood glucose parameter values, and

α̂k and β̂k are variables representing the new blood glucose parameter values. The

constant θ controls how much emphasis we place on matching the new measurements,

versus keeping the parameters similar to their old values. The variable δ represents the

maximum difference between a new parameter value and a current parameter value,

and is defined by constraints (3.1.2) and (3.1.3). Constraint (3.1.1) computes the

blood glucose prediction corresponding to measurement Mj using the new parameters.

Constraints (3.1.4) and (3.1.5) maintain the ordering of the parameters, in terms of
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glycemic index.

The optimization problem (3.1) is intended to personalize the blood glucose

values, while accounting for noisy measurements. The objective tries to balance how

different the new blood glucose predictions are from the actual measurements, and

how different the new parameter values are from the current values.

Using common techniques, we can rewrite problem (3.1) as a linear optimization

problem without the absolute values [18], which is given by (3.2):

min Θ
k∑
j=1

zj + (1−Θ)δ (3.2)

s.t. B̂Gj = fj + α̂HCH,1j + α̂MCM,1
j + α̂LCL,1j + β̂HCH,2j

+ β̂MCM,2
j + β̂LCL,2j − α̂ezjt−1 − β̂

ezjt−2, j = 1, . . . , k,

zj ≥Mj − B̂Gj , j = 1, . . . , k,

zj ≥ −Mj + B̂Gj , j = 1, . . . , k,

αk − α̂k ≤ δ, ∀k ∈ {H,M,L, e},

−αk + α̂k ≤ δ, ∀k ∈ {H,M,L, e},

βk − β̂k ≤ δ, ∀k ∈ {H,M,L, e},

−βk + β̂k ≤ δ, ∀k ∈ {H,M,L, e},

0 ≤ α̂L ≤ α̂M ≤ α̂H ,

0 ≤ β̂L ≤ β̂M ≤ β̂H .

At the optimal solution, the variable zj will be equal to |Mj − B̂Gj|, and the

variable δ will be equal to the largest difference between the new parameters and old

parameters. This is due to the fact that we are minimizing these variables. This

problem can now easily be solved with general linear optimization solvers.
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3.3.3 Empirical Evidence

We will now present empirical evidence for the blood glucose personalization method.

To show the ability of the method to learn new blood glucose parameters, we perform

the following experiment. We first define “true” blood glucose parameters, which are

the values we are trying to learn. We will present results here using five different

“true” parameter values extracted from papers measuring postprandial (after meal)

blood glucose values [36, 40, 65, 64, 75]. We then compute what the true blood

glucose measurements would be using different amounts and types of carbohydrates.

The carbohydrate content one hour and two hours before each measurement are

randomly selected to have an amount of low, medium, and/or high carbohydrates

from the set {0, 5, 10, 15, 20}, where at least one value is nonzero. This allows for

different types of “meals”. We then add uniformly distributed noise that is ±σ%

of the true measurement, where we vary σ from 0 to 20%. By adding uniformly

distributed noise, we create a set of noisy measurements to represent what we might

receive in practice.

Figure 3-3 presents results for which we use 10 measurements per iteration

(instance of (3.1)) and 10 iterations. We selected 10 measurements here as a

reasonable number of measurements that we could collect before updating the

parameters. The results are averaged across five different true parameter values. Each

subplot is for a different amount of noise, and the lines show how our learning of the

true preferences changes with different values of θ, the constant in the objective that

balances new measurements with current knowledge. The x-axis gives the iteration

(the number of times we have solved (3.1), where each iteration is given 10 new

measurements), and the y-axis gives the distance between the true parameter vector

and the learned parameter vector.

When there is no noise in the measurements, a larger θ is better (more emphasis on

matching the measurements) and we learn quickly. However, with noise, θ = 0.015

becomes more appealing, which means that it is advantageous to balance learning

from the measurements with keeping some of our current knowledge of the parameters.
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Figure 3-3: The distance between the learned parameter values and the true
parameter values as a function of the number of iterations performed of the blood
glucose update optimization problem (3.1).

Even with a large amount of noise, we are still learning over time and are closer to

the true parameters than if we kept the initial parameters (which is shown by the

solid black line in each plot).

3.4 Recipes and Nutritional Guidelines

Another critical input for our approach is recipe and nutritional information. This

includes a database of recipes and foods, as well as a set of nutritional guidelines for

each individual.

3.4.1 The Recipe Database

One of the goals of our system is to create healthy and appealing meal plans for real

users. To do this, we have included recipes designed for diabetics from many different
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sources and selected with the assistance of a registered dietician [38, 7, 72, 86, 51,

45, 61, 6, 87, 56, 30, 74]. We have also included some prepared foods to reduce the

preparation time for the users [60, 53], as well as some individual foods to serve as

snacks or sides (fruit, nuts, yogurt, etc.). In total, our database of foods includes 678

recipes or individual foods for breakfast, lunch, dinner, and snacks. We construct

each individual user’s meal plans using a subset of these foods, depending on their

food restrictions and preferences.

Each recipe has several features, described in Table 3.3. We computed the

nutritional facts for each recipe by linking the ingredients to the United States

Department of Agriculture (USDA) Nutrient Database, which is the standard

reference for nutrient databases in the US [80]. The food group content information

was added to insure that the user is not only meeting their daily nutritional

requirements, but also their daily food group requirements [3, 48]. The food groups

we consider are fruit, dairy, meat or meat substitutes, non-starchy vegetables, and

starch.

Data Description

Servings The number of servings the recipe makes, and
what constitutes a serving.

Ingredients A list of ingredients in the recipe, giving the
amount and description of each ingredient.

Allergens Common allergens in the recipe, such as
peanuts and shellfish.

Category The type of recipe, such as main dish or side
dish.

Nutrients All nutritional information, computed from
the ingredients.

Food Groups All food group information, computed from
the ingredients.

Table 3.3: Data stored for each recipe.

3.4.2 Nutritional Guidelines

We calculate the nutritional requirements for each individual using the Mifflin-St Jeor

equation [58] to calculate the Basal Metabolic Rate (BMR) for an individual, and the
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number of calories they need using their activity level (the more active a person is, the

more calories they need to consume). The BMR equation depends on an individual’s

weight, height, age and gender, and is given by the following:

BMR = (10 × weight) + (6.25 × height)− (5 × age) + 5, if male,

BMR = (10 × weight) + (6.25 × height)− (5 × age)− 161, if female,

where weight is in kilograms and height is in centimeters. The necessary calories are

then calculated based on the person’s activity level as follows:

Total Daily Calories =



1.2× BMR, if sedentary,

1.375× BMR, if lightly active,

1.55× BMR, if moderately active,

1.7525× BMR, if very active,

1.9× BMR, if extra active.

We then calculate the amount of carbohydrates, fat, protein and other nutrients

that each user should consume using the nutritional requirements described in Table

3.4. These guidelines were selected with the help of an experienced nutritionist and the

American Diabetes Association. The first column lists the nutrient, the second column

lists the units for each nutrient, and the third column lists the daily requirements for

each nutrient. The units for the food groups are in servings, where the serving sizes

are determined by the American Diabetes Association.

As an example, suppose the user is female, 40 years old, weighs 70 kilograms (154

pounds), is 170 centimeters tall (67 inches), and is lightly active. Then her BMR is:

BMR = (10 × 70) + (6.25 × 170)− (5 × 40)− 161 = 1401.5,

and she should consume 1.375*1401.5 = 1,927 calories each day. Furthermore, we

can use Table 3.4 to compute her other nutritional requirements. For carbohydrates,
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Nutrient Units Requirements

Carbohydrates grams (g) 35% − 45% of the total calories consumed,
where each gram of carbohydrates contains 4
calories. If the user is vegetarian, the upper
bound is increased to 60%.

Fiber grams (g) At least 14g per 1,000 calories consumed.

Total Fat grams (g) 25% − 35% of the total calories consumed,
where each gram of fat contains 9 calories.

Saturated
Fat

grams (g) Less than 7% of the total calories consumed.

Protein grams (g) 25% − 35% of the total calories consumed,
where each gram of protein contains 4 . If
vegetarian, the lower bound is decreased to
10%.

Sodium milligrams
(mg)

Less than 1500mg.

Cholesterol milligrams
(mg)

Less than 300mg.

Fruit ADA servings 2− 4 servings.

Dairy ADA servings 2− 4 servings.

Meat & Meat
Substitutes

ADA servings 5− 10 servings. If vegetarian, 4− 8 servings.

Nonstarchy
vegetables

ADA servings 4− 10 servings.

Starch ADA servings 5− 9 servings. If vegetarian, 5− 12 servings.

Table 3.4: Nutritional Guidelines used to determine bounds and constraints for the
optimization problem.

she should consume at least (0.35∗1,927)
4

= 168.6 grams, and at most (0.45∗1,927)
4

=

216.8 grams. For fiber, should should consume at least 14 ∗ 1,927
1,000

= 27 grams. Her

requirements for total fat, saturated fat, and protein can be computed similarly.

3.5 Summary

In this chapter, we have presented models for blood glucose dynamics, a methodology

for updating these models using data, and a description of the nutritional database

we use. We showed that the blood glucose updates successfully learn individual

parameter values, even in the presence of noise. Together with the preferences

described in Chapter 2, these are the inputs needed for our optimization approach,
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which is the focus of the next chapter.
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Chapter 4

Using Optimization to Generate

Personalized and Robust Plans

Given the inputs discussed in Chapters 2 and 3, we can construct a mixed-integer

optimization problem to find a personalized eating and exercise plan. In this chapter,

we present the optimization problem, and then discuss how robust optimization can

be used to lower the maximum blood glucose levels.

In Section 4.1, we generate a daily meal and exercise plan using mixed-integer

optimization that minimizes blood glucose levels, maximizes personal preferences

and accounts for nutritional constraints. In Section 4.2, we incorporate robust

optimization into the plan generation to account for uncertainty in how blood glucose

changes. Lastly, in Section 4.3, we present empirical evidence to show the strength

of both the nominal and robust optimization problems.

4.1 The Nominal Problem

In this section, we present the mixed-integer optimization problem for finding a

personalized meal and exercise plan. We will first give the notation for the data

and the variables, and then describe the objective and constraints.
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4.1.1 The Data and Variables

We consider a time horizon of one day, discretized into the set of hours T = {1, . . . , T}

where T = 24. We will assume that time t = 1 corresponds to 6am. We have a set of

foods or recipes described in Section 3.4, which we denote by the set F = {1, . . . , F}.

We categorize each food as a main dish, drink, extra item (fruits, nuts, yogurt, etc.),

or side dish (salad, soup, vegetables, etc.). The main dishes are denoted by the set

M, the drinks are denoted by the set D, the extra items are denoted by the set E , and

the side dishes are denoted by the set S. Each food belongs to exactly one category.

Additionally, each food i has several nutritional attributes, including calories cali,

carbohydrates ci, and other nutrients which we will denote by {ni1, ni2, . . . , niN}. These

include all of the nutrients and food groups discussed in Section 3.4. Table 4.1 gives

a few examples of the nutritional data.

Nutrient Apple Walnuts Chili Smoothie Egg Sandwich

Calories cali 65 196 148 207 271

Carbohydrates ci 17 4 10 34 30

Fiber ni1 3 2 3 3 5

Total Fat ni2 0 19 4 1 8

Saturated Fat ni3 0 2 1 0 3

Protein ni4 0 4.5 19 17 21

Sodium ni5 1 0 435 216 395

Cholesterol ni6 0 0 49 6 218

Fruit ni7 1 0 0 1 0

Dairy ni8 0 0 0 1.5 0

Meat ni9 0 0.7 2.5 0 2

Non-starchy Vegetables ni10 0 0 1 0 0

Starch ni11 0 0 0 0 2

Table 4.1: Examples of the nutritional data for the optimization problem.

We also have preference data computed as described in Chapter 2. First, we

will assume that we take the analytic center of the feasible utility space as the user’s

preferences, and then we will extend the formulation to include the robust approaches

in Section 4.1.3. Denote the preferences computed using the analytic center by pit for

each time t and for each food i. To compute the preferences for different times, assume

that five questionnaires are asked, for breakfast, lunch, afternoon snacks, dinner, and
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evening snacks. Each time falls into one of these categories, so there are five different

preference values for each food. Differentiating between different times is important

for preferences, since many users prefer different foods at different times (for example,

someone might enjoy scrambled eggs at breakfast, but would not like scrambled eggs

at dinner). The preferences take values in the range [−1, 1], with −1 corresponding to

the lowest possible preference, and 1 corresponding to the highest possible preference.

The following is a complete list of the data used:

T = {1, . . . , T} = the set of time intervals (hours) in the time horizon,

where t = 1 corresponds to 6am;

F = {1, . . . , F} = the set of foods or recipes considered;

M = the set of foods or recipes that are main dishes;

D = the set of foods or recipes that are drinks;

E = the set of foods or recipes that are extra items (fruit,

yogurt, nuts, etc.);

S = the set of foods or recipes that are side dishes (salad,

soup, vegetables, etc.);

cali = the amount of calories (in kcal) in one serving of food

i;

ci = the amount of carbohydrates (in grams) in one serving

of food i;

N i = {ni1, . . . , niN} = the amount of each nutrient or food group in one

serving of food i;

pit = the preference of the user to eat food i at time t;

f = the fasting blood glucose level of the user;

λ = a parameter to represent the emphasis placed on

minimizing blood glucose values in the objective;

αi = the amount of increase in the blood glucose level of the

user (in mg/dL) one hour after eating 1g of carbohydrates

of food i;
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βi = the amount of increase in the blood glucose level

of the user (in mg/dL) two hours after eating 1g of

carbohydrates of food i;

αe = the amount of decrease in the blood glucose level of the

user (in mg/dL) one hour after exercising one minute;

βe = the amount of decrease in the blood glucose level of the

user (in mg/dL) two hours after exercising one minute;

ui = the maximum number of servings that can be assigned

of food i;

`i = the minimum number of servings that can be assigned

of food i;

us = the maximum number of snacks that the user is willing

to eat;

uexer = the maximum number of minutes that the user is

willing to exercise;

uBG = the maximum allowable blood glucose level, in mg/dL.

Some of this data (e.g. the time period and nutrients) is the same for all users, and

some of it (e.g. the set of foods allowed, the preferences, and the fasting level) is

specific to each user.

The variables define which foods to eat, when, and how much to eat, as well as

when to exercise and how much to exercise. The following is a list of the variables:

xit =


the amount in servings to eat of food i ∈ F at time t ∈ T ,

if food i is consumed at time t,

0, otherwise;

yit =

 1, if food i is consumed at time t,

0, otherwise;
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mt =

 1, if a meal is consumed at time t,

0, otherwise;

st =

 1, if a snack is consumed at time t,

0, otherwise;

zt =


the amount in minutes to exercise at time t ∈ T ,

if exercise is scheduled at time t,

0, otherwise;

wt =

 1, if exercise is scheduled at time t,

0, otherwise;

BGt = the blood glucose level of the user at time t;

BG = the maximum blood glucose level of the user throughout the time horizon T .

4.1.2 The Objective and Constraints

The nominal optimization problem is given by (4.1). For this problem, our objective

has two components: minimizing blood glucose levels, and maximizing preferences.

For the blood glucose component, instead of minimizing the sum of blood glucose

levels throughout the day or the average blood glucose levels, we decided to minimize

the maximum blood glucose level minus 140, which is the bound for tight blood

glucose control [2]. This is due to our desire to create a plan without highly variable

blood glucose levels, since highs and lows are very dangerous for diabetics [2]. The

parameter λ controls how much emphasis we place on this piece of the objective
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function. With larger λ, the maximum blood glucose levels are typically lower, but the

user does not prefer the plan as much. We will show another method for controlling

this when we present the robust model.

For the preferences component, we maximize the sum of the learned preferences

for the foods that the user consumes throughout the time period. This captures

the user’s preference for eating or not eating each food, and then the serving size is

selected based on the nutritional and food group requirements, as well as the serving

size bounds for each food, ui and `i.

minimize λ(BG− 140)−
∑
t∈T

∑
i∈F

pity
i
t (4.1)

s.t. 70 ≤ BGt ≤ BG, ∀t ∈ T , (4.1.1)

BGt ≤ uBG, ∀t ∈ T , (4.1.2)

BG1 = f, (4.1.3)

BG2 = f +
∑
i∈F

(αicixi1)− αez1, (4.1.4)

BGt = f +
∑
i∈F

(αicixit−1 + βicixit−2)

− αezt−1 − βezt−2, ∀t ∈ {3, . . . , T}, (4.1.5)

`iyit ≤ xit ≤ uiyit, ∀t ∈ T , i ∈ F , (4.1.6)∑
t∈T

yit ≤ 1, ∀i ∈M, (4.1.7)

∑
t∈T

yit ≤ 2, ∀i /∈M, (4.1.8)

5∑
t=1

mt = 1, (4.1.9)

9∑
t=6

mt = 1, (4.1.10)

17∑
t=12

mt = 1, (4.1.11)

∑
t∈T

st ≤ us, (4.1.12)
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mt + st ≤ 1, ∀t ∈ T , (4.1.13)∑
i∈M

yit = mt, ∀t ∈ T , (4.1.14)

∑
i∈D

yit ≤ mt + st, ∀t ∈ T , (4.1.15)

∑
i∈E

yit ≤ 2mt + 2st, ∀t ∈ T , (4.1.16)

∑
i∈S

yit ≤ 2mt, ∀t ∈ T , (4.1.17)

Calories =
∑
i∈F

∑
t∈T

calixit −
∑
t∈T

µ ∗ zt, (4.1.18)

`cal ≤ Calories ≤ ucal, (4.1.19)

`c ∗ Calories ≤
∑
i∈F

∑
t∈T

cixit ≤ uc ∗ Calories, (4.1.20)

`nj ∗ Calories ≤
∑
i∈F

∑
t∈T

nijx
i
t ≤ unj ∗ Calories, ∀j ∈ {1, . . . , N}, (4.1.21)

T∑
t=0

zt ≤ uexer, (4.1.22)

10wt ≤ zt ≤ uexerwt, ∀t ∈ T , (4.1.23)

wt ≤
∑
i∈F

(yit + yit−1), ∀t ∈ T , (4.1.24)

xit ∈ Z, yit ∈ {0, 1}, ∀i ∈ F , t ∈ T , (4.1.25)

wt ∈ {0, 1}, zt ∈ Z,mt ∈ {0, 1}, st ∈ {0, 1}, ∀t ∈ T . (4.1.26)

The constraints (4.1.1)-(4.1.2) define the maximum blood glucose variable, and

bound the blood glucose level BGt at each time t. In practice, we define the upper

bound uBG as the maximum of 180 and (f + 50), where f is the fasting level of

the user. These bounds were selected using the advice of the American Diabetes

Association [8]. The constraints (4.1.3)-(4.1.5) capture the blood glucose dynamics

discussed in Section 3.2.

Constraints (4.1.6)-(4.1.8) restrict the amount of each food that the user can

consume. Constraint (4.1.6) limits the number of servings of each food to be between

the lower bound `i and the upper bound ui. Constraints (4.1.7) and (4.1.8) limit the
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number of times the user eats each food throughout the day to at most once for the

set of main dishes (denoted byM), and at most twice for the set of non-main dishes.

This prevents the same foods from being eaten too often. We refer to constraints of

this type as “appeal” constraints, since they are added with the intention of making

the plan more appealing to the user.

Constraints (4.1.9)-(4.1.17) define the meal and snack timing and composition.

Constraints (4.1.9)-(4.1.11) force breakfast to be between 6am and 10am, lunch to

be between 11am and 2pm, and dinner to be between 5pm and 10pm. Constraint

(4.1.12) limits the number of snacks to be less than an upper bound number of snacks,

which is user defined. This number is typically between zero and three. Constraint

(4.1.13) prevents meals and snacks from occurring at the same time. Constraints

(4.1.14)-(4.1.17) restrict the composition of each meal or snack. Breakfast, lunch,

and dinner are constrained to have one main dish, at most one drink, and at most

two optional extra items, such as fruits, yogurt or nuts. Dinner is also allowed to

have up to two side dishes, which include vegetables or grains. Snacks are limited to

only contain extra items. These constraints are necessary to create appealing menus

for the users. The specific main dishes, drinks, extras, or side dishes that are allowed

at each meal or snack are determined by the preferences, or can be further restricted

to only allow dishes that are appropriate at each time.

Constraints (4.1.18)-(4.1.21) define the nutritional and food group requirements.

Constraint (4.1.18) defines the total calories as the total calories consumed minus the

total calories burned, where µ is a constant defining how many calories one minute of

exercise burns. We compute this constant using research on Metabolic Equivalent of

Task (MET), which defines the number of calories burned for different types of exercise

[4]. Constraint (4.1.19) bounds the total calories, by upper and lower bounds that are

determined by the Mifflin-St Jeor equation, as discussed in Section 3.4.2. Constraint

(4.1.20) defines the carbohydrate constraint, which restricts the total carbohydrates

to be between `c and uc times the total calories. Constraints (4.1.21) are similar

constraints for each of the other nutrients and food groups, where the upper and

lower bounds often depend on the total calories or the attributes of the user (age,
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weight, or gender). For some nutrients, such as sodium, the lower bound is zero since

there is no minimum requirement.

Constraints (4.1.22)-(4.1.24) restrict the amount and timing of exercise. Con-

straint (4.1.22) gives an upper bound on the total amount of exercise that is done in

the time period. Constraint (4.1.23) limits the exercise at each time t to be between

10 minutes and uexer minutes long. This prevents unreasonably short or unreasonably

long exercise periods. In practice, the default value for uexer is typically 30 minutes.

Constraint (4.1.24) limits the exercise to only occur at times the user is eating food

or ate food in the last hour. This constraint is necessary because of the sensitivity of

diabetics to blood glucose changes. We use exercise to decrease blood glucose levels,

but exercising without eating can decrease blood glucose levels to dangerous ranges

[2].

Lastly, constraints (4.1.25) and (4.1.26) define the variables to be either binary or

integer. In the remainder of this Chapter, we will denote constraints (4.1.6)-(4.1.26)

by the feasible set X.

In practice, we often want to produce solutions for multiple days, with variety

between the days. We can do this in multiple ways, including solving for multiple

days at once (increase the time horizon), or iteratively solving a day at a time while

encouraging variety.

4.1.3 Incorporating the Robust Preference Models

In the previous section, we presented the optimization formulation assuming that we

take the analytic center of the feasible preference space to be the user’s preferences.

However, we showed in Chapter 2 that the robust approaches, particularly the CVaR

approach, produce more appealing solutions in terms of preferences. In this section,

we show how (4.1) can be extended to include these approaches.

Suppose that the feasible set of utilities for time t is given by Ut. The optimization

problem with the robust approach to preferences is given by (4.2).

85



min
x,y,w,z,m,s

[
max
pt∈Ut

λ(BG− 140)−
∑
t∈T

p′tyt

]
(4.2)

s.t. 70 ≤ BGt ≤ BG, ∀t ∈ T ,

BGt ≤ uBG, ∀t ∈ T ,

BG1 = f,

BG2 = f +
∑
i∈F

(αicixi1)− αez1,

BGt = f +
∑
i∈F

(αicixit−1 + βicixit−2)− αezt−1 − βezt−2, ∀t ∈ {3, . . . , T},

(x,y, z,w,m, s) ∈ X.

Similarly, the optimization problem with the CVaR approach to preferences is

given by (4.3). The vectors {p1
t , . . . ,p

N
t } ∈ Ut are the sampled utility vectors for time

t. The variables {v1
t , . . . , v

N
t } represent the sampled points that are selected to be the

worst α% of utility vectors in the feasible space.

min
x,y,w,z,m,s

 max
v1,...,vT

λ(BG− 140)−
∑
t∈T

N∑
j=1

1

αN
((pjt )

′yt)v
j
t

 (4.3)

s.t.

N∑
j=1

vjt = αN, ∀t ∈ T ,

0 ≤ vjt ≤ 1, ∀t ∈ T , j = 1, . . . , N,

70 ≤ BGt ≤ BG, ∀t ∈ T ,

BGt ≤ uBG, ∀t ∈ T ,

BG1 = f,

BG2 = f +
∑
i∈F

(αicixi1)− αez1,

BGt = f +
∑
i∈F

(αicixit−1 + βicixit−2)− αezt−1 − βezt−2, ∀t ∈ {3, . . . , T},

(x,y, z,w,m, s) ∈ X.
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As was done in Chapter 2, we can take the dual of the inner optimization problem,

and reformulate this as a mixed-integer problem. In the next Section, we will again

assume that the preferences are represented as the analytic center of the feasible

utility space, but by using formulations (4.2) or (4.3), we can include the Robust or

CVaR approaches if desired.

4.2 The Robust Optimization Problem

In this section, we present the robust counterpart of formulation (4.1) that is

robust to the blood glucose parameters. As mentioned in Chapter 3, blood glucose

measurements are often up to 20% inaccurate for many reasons: the device itself, the

environment of the user, the adherence of the user to the protocol of the measurement

device, and the adherence of the user to the eating and exercise plan [41]. We also may

not have learned enough about the user’s personal measurements that the parameters

match their personal blood glucose behavior exactly. For all of these reasons, we use

robust optimization to guarantee that our blood glucose upper bound is still satisfied

even with uncertain parameters.

The robust optimization problem is given by (4.4). The objective and constraints

(4.4.1)-(4.4.4) and (4.4.7) are the same as their counterparts in (4.1). We altered

constraints (4.4.5) and (4.4.6) to be robust to the blood glucose parameters in the

uncertainty set A. This technique is presented by Bertsimas and Sim [16].

minimize λ(BG− 140)−
∑
t∈T

∑
i∈F

pity
i
t (4.4)

s.t. 70 ≤ BGt ≤ BG, ∀t ∈ T ,

(4.4.1)

BG1 = f, (4.4.2)

BG2 = f +
∑
i∈F

(αicixi1)− αez1, (4.4.3)
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BGt = f +
∑
i∈F

(αicixit−1 + βicixit−2)− αezt−1 − βezt−2, 3 ≤ t ≤ T,

(4.4.4)

max
α̃i,α̃e∈A

[
f +

∑
i∈F

(α̃icixi1)− α̃ez1

]
≤ uBG, (4.4.5)

max
α̃i,α̃e∈A
β̃i,β̃e∈A

[
f +

∑
i∈F

(α̃icixit−1 + β̃icixit−2)− α̃ezt−1 − β̃ezt−2

]
≤ uBG, 3 ≤ t ≤ T,

(4.4.6)

(x,y, z,w,m, s) ∈ X, (4.4.7)

where

A = {α̃, β̃ | α̃i ∈ [αi − α̂i, αi + α̂i], α̃e ∈ [αe − α̂e, αe + α̂e],

β̃i ∈ [βi − β̂i, βi + β̂i], β̃e ∈ [βe − β̂e, βe + β̂e],∣∣∣∣ α̃e − αeα̂e

∣∣∣∣+

∣∣∣∣∣ β̃e − βeβ̂e

∣∣∣∣∣+
∑
i∈F

∣∣∣∣ α̃i − αiα̂i

∣∣∣∣+
∑
i∈F

∣∣∣∣∣ β̃i − βiβ̂i

∣∣∣∣∣ ≤ Γ}.

The nominal values of the parameters are given by αi, βi, αe and βe; the robust

values of the parameters are given by α̃i, β̃i, α̃e and β̃e; and the allowable deviations

from the nominal values (the uncertainty set ranges) are given by α̂i, β̂i, α̂e and β̂e.

The parameter Γ controls the degree of conservatism of the model. While we still have

a parameter λ here that controls the tradeoff between blood glucose and preferences,

we will show in Section 4.3 that Γ serves the same purpose and eliminates the need

for λ.

Following the procedure outlined by Bertsimas and Thiele [17], we can define the

scaled deviations as qi = α̃i−αi

α̂i , qe = α̃e−αe

α̂e , ri = β̃i−βi

β̂i
, and re = β̃e−βe

β̂e
. Then we can

reformulate (4.4) and the uncertainty set A as the optimization problem (4.5) and

uncertainty set Ω.
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minimize λ(BG− 140)−
∑
t∈T

∑
i∈F

pity
i
t (4.5)

s.t. 70 ≤ BGt ≤ BG, ∀t ∈ T ,

BG1 = f,

BG2 = f +
∑
i∈F

(αicixi1)− αez1,

BGt = f +
∑
i∈F

(αicixit−1 + βicixit−2)− αezt−1 − βezt−2, 3 ≤ t ≤ T,

BG2 + max
qi,qe∈Ω

[∑
i∈F

(α̂icixi1q
i)− α̂ez1q

e

]
≤ uBG,

BGt + max
qi,qe∈Ω
ri,re∈Ω

[∑
i∈F

(α̂icixit−1q
i + β̂icixit−2r

i)− α̂ezt−1q
e − β̂ezt−2r

e

]
≤ uBG, 3 ≤ t ≤ T,

(x,y, z,w,m, s) ∈ X,

where

Ω = {q, r | |qi| ≤ 1, |qe| ≤ 1, |ri| ≤ 1, |re| ≤ 1,

|qe|+ |re|+
∑
i∈F

|qi|+ |ri| ≤ Γ}.

Then by applying strong duality arguments to the maximization problems in the

constraints, we can reformulate the robust optimization problem as (4.6), which is

also a mixed-integer optimization problem.

minimize λ(BG− 140)−
∑
t∈T

∑
i∈F

pity
i
t (4.6)

s.t. 70 ≤ BGt ≤ BG, ∀t ∈ T ,

BG1 = f,

BG2 = f +
∑
i∈F

(αicixi1)− αez1,

89



BGt = f +
∑
i∈F

(αicixit−1 + βicixit−2)− αezt−1 − βezt−2, 3 ≤ t ≤ T,

BG2 + Γρ2 +
∑
i

δi2 − δe2 ≤ uBG,

BGt + Γρt +
∑
i

(δit + γit)− δet − γet ≤ uBG, 3 ≤ t ≤ T,

δit + ρt ≥ cixit−1α̂
i, ∀i ∈ F , 2 ≤ t ≤ T,

γit + ρt ≥ cixit−2β̂
i, ∀i ∈ F , 3 ≤ t ≤ T,

−δet + ρt ≥ zt−1α̂
e, 2 ≤ t ≤ T,

−γet + ρt ≥ zt−2β̂
e, 3 ≤ t ≤ T,

δit ≥ 0, ∀i ∈ F , 2 ≤ t ≤ T,

γit ≥ 0, ∀i ∈ F , 3 ≤ t ≤ T,

δet ≤ 0, 2 ≤ t ≤ T,

γet ≤ 0, 3 ≤ t ≤ T,

ρt ≥ 0, 2 ≤ t ≤ T,

(x,y, z,w,m, s) ∈ X,

where ρ, δ, and γ are the dual variables for the inner maximization problems.

4.3 Empirical Evidence

We have implemented our approach as an online software, and in this section we

present empirical evidence for the different optimization methodologies presented.

All of the optimization problems were solved using Gurobi 5.0.

4.3.1 The Nominal Problem

We will first present results for the nominal problem. Although the basic formulations

and some of the more universal data does not change for each individual user, the

personal data does change, which alters the solution time and quality for each user.

For this reason, we will report results for 10 different users. We generated input data

90



for 10 real users of the system, who entered their personal information and completed

the food survey. They had a wide range of personal attributes and preferences,

which are summarized in Table 4.3. The BMI column gives the Body Mass Index

of each user, which is a measure of the user’s body shape, using their height and

weight. Normal BMI range is below 25.0, a user with a BMI between 25.0 and 30.0 is

considered overweight, and a user with a BMI greater than 30.0 is considered obese.

As can be seen in Table 4.3, most of the users of our system are either overweight

or obese. NumTimes gives the number of times the user allowed for eating meals.

A value of three means that they specified their desired breakfast, lunch, and dinner

times exactly. A value greater than three means they allowed more flexibility for their

meal times. NumFoods is the number of recipes or foods that were available for the

user after defining their preferences and food restrictions. Calories gives the number

of daily calories the user should consume, accounting for any weight loss goals the

user might have. To account for weight loss goals, for every pound that the user

wants to lose per week, we subtract 500 calories from the total number of calories the

user should consume, within reason (a person can lose up to two pounds per week,

as long as the calories stay above 1500 for men, and 1200 for women).

User Age Gender BMI NumTimes NumFoods Calories

1 40 Female 33.2 3 358 1437

2 38 Female 29.6 7 511 1838

3 49 Male 29.4 3 482 1912

4 28 Male 35.5 4 342 2228

5 36 Male 28.0 5 373 1989

6 27 Female 33.5 3 480 1777

7 26 Female 22.9 3 388 1760

8 47 Female 33.7 8 482 1922

9 40 Male 28.0 3 354 1500

10 37 Female 22.0 5 181 1452

Table 4.3: Attributes of 10 different users of the system.

Figure 4-1 gives the LP Bound Gap and the Optimality Gap as a function of time,
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averaged across the 10 users, where the gaps are defined as:

LP Bound Gap =
|Best Integer− LP Bound|

|LP Bound|

Optimality Gap =
|Best Integer−Optimal|

|Optimal|

Best Integer denotes the objective function value of the best feasible integer solution

that has been found, and Optimal denotes the objective function value of the optimal

solution. The problem instances after presolve in Gurobi 5.0 had on average 6,225

rows and 4,633 columns.

The Optimality Gap quickly decreases, and by 200 seconds, we have found the

optimal solution for almost all of the users. By 120 seconds, we are within 10% of

the optimal solution on average. The LP Bound Gap takes longer to decrease, and

it takes a significant amount of time for most users to close the gap, even though

we have found either the optimal solution, or a solution very close to the optimal

solution. This indicates that finding good solutions is easy, but proving optimality

can be hard.
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Figure 4-1: Plot of the LP Bound Gap and the Optimality Gap, averaged across 10
users.
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Table 4.4 gives more information about the solution times (in seconds) for all users.

While the time to a provable optimal solution can be long, the optimal solution is

often found much earlier. Furthermore, the time to a “good” feasible solution (defined

as one within 10% of the optimal solution) is often much shorter. Additionally, for

several users, the optimal solution is found quickly. The longer solution times are

highly correlated with the number of feasible eating times allowed by the user. The

users who specify the exact times they would like to eat breakfast, lunch, and dinner

(users 1, 3, 7, and 9) have much faster solution times, while the users who allow many

times for meals (users 2 and 8) have much slower solution times. We can improve

this by restricting the user to select fewer feasible times.

User Time Optimal Time Optimal Time to 10%
Proven (sec) Found (sec) Opt Gap (sec)

1 25 25 5

2 5825 970 30

3 47 40 5

4 1962 130 130

5 3041 473 10

6 343 342 240

7 31 31 5

8 7605 2302 60

9 71 65 5

10 86 66 15

AVG 1904 444 51

Table 4.4: Nominal solution times for all users, in seconds.

Table 4.5 gives the optimal solution for User 9, and a description of the key

nutrients, preferences and blood glucose predictions for each meal or snack. The

timing of the meals and the number of snacks were selected by the user. The calories,

carbs, protein, and fat give the total amount of each nutrient in each meal or snack.

The Pref column gives the average preference of the user for the foods in each meal or

snack, on a scale from -1 to 1 (-1 is the least preferred, and 1 is the most preferred).

The BG column gives the predicted blood glucose level of the user after eating each

meal or snack, in mg/dL.

Table 4.6 gives a “greedy” solution for the same user, where the most preferred
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main dishes were forced when solving the optimization problem. This allows us to

increase the preferences slightly for the meals, but at a significant cost in terms of

blood glucose levels. This shows the ability of our approach to balance the two

objectives.

Classification
(Time)

Food or Exercise Cal Carbs Prot Fat Pref BG

Breakfast Egg and Cheese Sandwich
371 37 39 8 0.55 157

(6am) Plain Greek Yogurt
Pasta Salad with Mixed
Vegetables

438 52 15 23 0.38 151Lunch Brazil Nuts
(12pm) Celery

Exercise (30 min)
Snack Orange

137 28 7 0 0.04 147
(3pm) Soymilk

Spinach Stuffed Sole

463 35 34 24 0.51 155
Dinner

Broccoli Rabe with
Toasted Garlic

(7pm) Quinoa
Hazelnuts
Apricot

Snack Orange
169 25 19 0 0.02 143

(10pm) Plain Greek Yogurt

Table 4.5: The Optimal Meal and Exercise Plan for User 9 (∼ 1600 calories)

4.3.2 The Robust Optimization Problem

We solved the robust optimization problem (4.6) for all 10 users, with varying values

of Γ. We selected the uncertainty sets so that the parameters can be up to 25% larger

than the nominal values, which is a little more than the uncertainty seen in practice

[41].

The results for some values of Γ are presented in Table 4.7. The first column for

each value of Γ gives the total preference of the generated plan, divided by the total

preference of the nominal plan. This is the piece of the objective that we expect to

get worse (smaller) with larger Γ, since we expect the user to prefer the nominal plan
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Classification
(Time)

Food or Exercise Cal Carbs Prot Fat Pref BG

All Bran with Nonfat Milk

435 64 32 10 0.56 179
Breakfast Plain Greek Yogurt

(6am) Hazelnuts
Exercise (10 min)

Lunch Philly Steak Sandwich
462 35 50 14 0.52 171(12pm) Plain Greek Yogurt

Cucumber
Snack Raspberries

153 30 4 3 0.04 170
(3pm) Graham Crackers

Spinach Stuffed Sole

406 42 29 15 0.51 180
Dinner Black-Eyed Peas
(7pm) Sauteed Zucchini Coins

Carrot Spice Quickbread
Plum

Snack Raspberries
72 17 2 1 0.02 132

(10pm) Cucumber

Table 4.6: A Greedy Meal and Exercise Plan for User 9 (∼ 1600 calories)

to a plan that has lower blood glucose values. The second column for each value

of Γ is the maximum blood glucose value of the robust solution, and what we hope

to decrease with larger Γ. The bold rows are those for which the maximum blood

glucose level in the nominal problem is close to the upper bound of 180.

User Γ = 0 Γ = 1 Γ = 2 Γ = 3

Pref MaxBG Pref MaxBG Pref MaxBG Pref MaxBG

1 1.00 148 1.00 148 1.00 148 1.00 148

2 1.00 144 1.00 144 0.99 143 0.98 143

3 1.00 166 0.99 160 0.99 156 0.98 152

4 1.00 179 0.96 171 0.95 167 0.90 162

5 1.00 155 1.00 155 0.99 154 0.92 154

6 1.00 180 0.94 169 0.84 167 0.90 163

7 1.00 150 1.00 150 1.00 150 0.99 150

8 1.00 168 0.98 161 0.91 154 0.91 154

9 1.00 158 0.99 148 0.99 148 0.99 148

10 1.00 175 0.98 164 0.91 163 0.92 154

AVG 1.00 162 0.99 157 0.96 155 0.96 153

Table 4.7: The preferences and maximum blood glucose values for the robust problem
with various values of Γ.
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For most users, the maximum blood glucose value either stays the same (if it was

low in the nominal problem) or decreases with increasing Γ. For the users with high

blood glucose values in the nominal problem, the robust approach serves to decrease

the maximum blood glucose value, at only a minor cost to the overall preferences.

The average results for a wide range of Γ are shown in Figure 4-2. To visualize the

change in preferences and the change in maximum blood glucose in the same plot,

we normalized both values by dividing by the nominal value. The x-axis gives the

value of Γ, and the y-axis gives the normalized outcome, either preferences or blood

glucose. A value of 1.0 means that the preferences or maximum blood glucose values

are the same as those in the nominal solution. As expected, both curves decrease

with larger Γ. In general, the maximum blood glucose value decreases more as Γ

increases, which is a nice property of this approach. For large Γ, the blood glucose

curve flattens out since it becomes infeasible to reduce the blood glucose values further

without violating nutritional constraints. The preferences curve becomes more noisy

with large Γ. Looking at this curve, we would recommend a value of Γ less than or

equal to three, since this is when the blood glucose curve flattens out and very little

is gained from increasing Γ.
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Figure 4-2: Plot of the normalized preferences and maximum blood glucose values as
functions of Γ.
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The specific value of Γ used in practice should be selected by a medical decision

maker, and should depend on the individual in question. One strategy would be to

slowly decrease Γ over time. When the user first starts using the generated plan, they

will have higher blood glucose values, but will prefer the plan more. As they continue

to use the plan and Γ is increased, they will gain better blood glucose control at a

slight cost in terms of preferences.

4.4 Summary

In this chapter, we presented a mixed-integer robust optimization approach to finding

a meal and exercise plan for a diabetic individual. This optimization approach relied

on the inputs presented in Chapters 2 and 3. We also provided empirical evidence

that the approach produces high quality solutions in a reasonable amount of time, and

that the robust approach successfully controlled the trade-off between blood glucose

levels and preferences.

The use of the optimization approach presented here can help create individualized

treatment plans for each patient, catered to their preferences, nutritional require-

ments, and blood glucose measurements. This can be very challenging for healthcare

providers, since each patient generates a significant amount of data. We believe that

this approach has the ability to more efficiently provide lifestyle treatment regimens

for diabetic individuals.
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Chapter 5

Conclusion

In this chapter, we conclude by showing the overall system we have developed, and

then we provide some concluding remarks.

5.1 The Overall System

We have implemented our approach as an online application for diabetes and diet

management. In this section, we give an overview of the online system and how each

of the individual pieces described in this thesis come together to make a comprehensive

system.

Our online application is called LiA, which stands for “Lifestyle Analytics”. Figure

5-1 shows the homepage, or menu. This is the first page a user sees when they register

for LiA. Each of the icons takes the user to another webpage to fill out information

or to perform an activity.

The first step for a new user is to visit the preferences page, shown in Figure

5-2. This is where the user enters their personal statistics (age, height, weight, and

gender), which are used when computing nutritional needs. They also have the ability

to select the number of snacks they are willing to eat, and specify their preferred meal

times. Lastly, they enter their goals, either managing blood glucose levels, managing

weight, or both. Based on their goals, we ask for additional information about their

blood glucose levels and their weight goals.

99



After entering their preferences, the user visits the food restrictions page, shown

in Figure 5-3. This asks the user about common food restrictions, whether or not

they want to use a specific brand of prepared foods (My Fit Foods), and whether or

not they would like alcoholic beverages in their plans. Any information provided on

this page influences the foods and recipes shown throughout the rest of the system.

Figure 5-1: The menu webpage for the online application LiA.

The next step is the food questionnaire, which was the topic of Chapter 2. Figure

5-4 gives a snapshot of one of the questions that could be asked in the breakfast

component. We ask the user 10 questions for breakfast, 15 questions for lunch, and

20 questions for dinner. The survey is fast, and enjoyable for most users. This is the

last step of the initial data collection, which only needs to be completed when the

user first starts using the system.

After completing the survey, the user can go to the plans page to generate and look

at their weekly meal and exercise plans. Figure 5-5 shows the weekly plan summary,

and part of a daily plan. All plans are generated using the optimization methods

presented in Chapter 4. Each meal or snack is listed, and there are places for the user
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Figure 5-2: The preferences webpage for the online application LiA.

to enter blood glucose measurements and/or weight measurements. There are also

many other features on the plans pages, including the ability to eliminate foods or

recipes, print the weekly plan, and regenerate plans given any adjustments that have

been made. The user also has the ability to switch to a different week, and generate

plans for the future.

Figure 5-6 gives a snapshot of output displayed at the end of each daily plan.

We give the user a nutritional summary, as well as a projected blood glucose curve

given the meal and exercise plan. These were generated using the models and data

discussed in Chapter 3.

The user can also see the entire library of recipes and foods, check their blood

glucose and weight progress, and send messages to the administrative team.
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Figure 5-3: The food restrictions webpage for the online application LiA.

5.2 Concluding Remarks

The number of people with diabetes and obesity has risen to alarming rates. In

this thesis, we have designed and implemented a system that uses optimization and

analytics for personalized diabetes management. Through this work, we aspire to

improve the lives of millions of people.

In each chapter, we described a different component of the system, each

with its own contribution. In Chapter 2, we presented an algorithmic approach

to learning preferences. Our approach made an important connection between

observations of human behavior and general preference learning, as well as made

several methodological contributions. In Chapter 3, we described models for blood

glucose dynamics and an optimization approach to personalizing these models. This

allows us to quantitatively minimize blood glucose levels, regardless of what food

the user eats. In Chapter 4, we described optimization formulations for finding a
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Figure 5-4: An example survey question for the online application LiA.

personalized meal and exercise plan for a diabetic patient. These formulations have

the ability to turn general nutritional and lifestyle advice for diabetic patients into

personalized tools for each individual patient.

The main contribution of this work is putting all of these pieces together into a

personalized system that can be used by patients and healthcare providers. Given

the importance of preventing and treating diabetes and obesity, we feel that this

system has the potential to greatly improve diabetes management by making it more

personal and dynamic.
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Figure 5-5: The meal planning page for the online application LiA.

Figure 5-6: The nutritional and blood glucose information displayed in the online
application LiA.
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