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Abstract

A high aspect ratio (10.56) composite wing was designed and fabricated in order to verify
a new analysis code developed to predict dynamic behavior of high-aspect-ratio wings. The
chosen wing design was manufactured and tested (both bench-top and wind tunnel testing),
and its dynamic behavior was characterized. Strain gauges and accelerometers were embed-
ded within the wing at various distances along the span to record wing natural frequency
information during bench-top 'tap' testing, and frequency changes as a function of wind
speed and root angle of attack during wind tunnel testing. Bench-top natural frequencies
and mode shapes for the 1St and 2nd Bending, 1 st Chordwise Bending, and 1 st Torsion modes
are in good agreement with the analytical model. Mode shapes with frequencies exceeding
100 Hz were not considered. Within the tunnel, the wing was studies at 10, 20, and 50 root
angles of attack. The 2' root angle of attack configuration was flown to the flutter point by
observing of the wing behavior. This was within 99% of the predicted flutter speed.

Thesis Supervisor: Carlos E. S. Cesnik
Title: Visiting Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Many industries consider using High Altitude Long Endurance (HALE) aircraft to perform

autonomous sensing (environmental, urban, and reconnaissance), or to assist in civilian or

military communication as a relay [1]. The wings of these vehicles are typically of high

aspect ratio. Long slender wings result in large deflections during flight, especially when

flown at high angles of attack. These large deflections cannot be ignored when analyzing the

wing's flight characteristics. The change in the wing's stiffness, due to nonlinear geometric

behavior, requires new methods of modeling [2]. This change in stiffness results in changes to

the wing's dynamic behavior. There has been considerable research in this area by numerous

groups, resulting in new modeling techniques and codes which need to be validated through

experimentation. One such computational modeling tool is being developed by Cesnik and

Brown [3]. This research is a follow-on of work performed by Cesnik and Ortega-Morales [4].

The ground work for this was set forth by Patil, Hodges, and Cesnik [1], [5], and [6].

1.2 Objective

The primary objective of this research is to design and test an experimental wind tunnel

model wing. This test wing should present nonlinear aeroelastic behavior. The collected
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data will then support the validation of the MATLAB computer code being developed by

Cesnik and Brown [3]. Originally this would encompass all portions of the code, including

the ability to model active materials embedded within the layers of the composite wing.

However, due to reasons beyond the control of the author, no active structural tests are

included in this study.

1.3 Background

As mentioned above, there has been substantial effort towards developing analytical models

which accurately depict the behavior of high aspect ratio wings undergoing large deflections.

This work is summarized in the next two sections.

1.3.1 Previous Work

In the late 1980s, Minguet and Dugundji studied the effects of deflection on dynamic behavior

of thin composite strips [7]. In their study, it was shown that deflection has significant effect

on the torsion and chordwise bending frequencies. Their beam analysis obtained a set of

linearized equations about a deflected position. The experiments for this research utilized

flat composite beams of various composite orientations and thicknesses. This study showed

that deflections of as little as 3% of the total length affected the torsional and chordwise

bending modes, while the normal bending modes remained relatively uneffected. They also

showed that tip bending deflections between 5% and 10% of the total beam length resulted

in a mix between the 1st torsion and 1 "t chordwise bending modes.

Patil, Hodges and Cesnik [8] have worked to improve modeling capabilities for high

aspect ratio wings, which include geometrical non-linearities for structural and aerodynamic

analyses. Their research has shown that accurate modeling of geometric non-linearities is

necessary to fully understand the torsion/bending coupling observed during flutter of wings

with large deflections [8]. Their modeling of nonlinear aeroelasticity is based on a mixed

variational formulation for the dynamics of beams in moving reference frames and finite-

state airloads to accommodate deformable airfoil effects [1].
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Tang and Dowell have studied various ways of modeling high aspect ratio wing aeroelastic

behavior and correlated their work with wind tunnel tests. In the late 1990's, they built a

45-cm wing with an aspect ratio of 8.89 [9). The wing was flown into the flutter domain to

study limit cycle oscillation behavior. They also used this wing to study the modeling of

gust response [10].

Ortega-Morales and Cesnik created a framework for implementing active aeroelastic tai-

loring of high aspect ratio wings, as well as gust mitigation [4]. The active tailoring was im-

plemented through embedded piezoelectric actuators within the composite skin of the wing.

This work implemented many of the analysis techniques studied in [1], [8], [2], [5], and [6], and

consisted of an asymptotically correct active cross-section formulation, geometrically-exact

mixed formulation for dynamics of moving beams, and finite-state unsteady aerodynamics.

1.3.2 Present Work

Cesnik and Brown are continuing the work done in [4]. This work formulated the MATLAB

code used within this thesis, which employs a strain-based finite element representation of

a nonlinear, large deflection beam model experiencing finite-state unsteady airloads [11].

This program has the capability to model active materials embedded within the composite

lay-up of the wing and to take into account effects from the fuselage and tail [3]. The basic

formulation behind this modeling effort is summarized in Appendix A.

Two different wing designs were generated using the code from [11] and are presented

in Chapter 2 of this thesis. These designs were chosen for their torsional flexibility and

interesting flutter characteristics. Chapter 3 discusses the manufacture and instrumentation

of the wing. The benchtop and wind tunnel experiments, as well as the experimental results

are discussed in Chapter 4. Along with these results is a modified numerical model which

replicates the results of the tests. Finally, conclusions and suggestions for further work

are presented in Chapter 5. This thesis contains three Appendices. Appendix A provides

a summary of the mathematical formulation for the code, Appendix B contains relevant

material properties, and Appendix C provides the preliminary studies for a future active

wing build-up.
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Chapter 2

Design and Analysis of High Aspect

Ratio Wing

This chapter describes the design and analysis of the static flexible wing that was built to

validate the model of [3] for subsonic speeds. Some of the design parameters were set by the

wind tunnel limitations and others by ease of fabrication.

2.1 Design Criteria

Since this study targets large deflection aeroelastic response, a high aspect ratio flexible wing

was needed. To reduce the risk of damage to the wind tunnel during the dynamic portion

of testing, the design flutter speed for this wing should be in the range of 40 m/s. This

relatively low flutter speed reduces the amount of momentum the wing would have in case

it becomes unstable and brakes away from the mounting fixture. As a result, a very flexible

wing design, soft in torsion, is expected. Although the wing needed to be as long as possible

to increase the aspect ratio, the span of the wing was also limited by the wind tunnel test

section dimension. The minimum chord of the wing also has limitations. It could not be

too small, as that would significantly increase the complexity of manufacturing. With these

constraints in mind, the length of the wing was set to 1.13 meters (44.5 inches) and the

chord length was set to 0.107 meters (4.22 inches). This yielded an aspect ratio of 10.56.
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The airfoil shape chosen is the NACA 0012. Safety to the wing tunnel was a major concern,

so the wing needed to possess margins of safety for strain within the E-glass/epoxy of at least

1. For added safety this requirement needed to be met when the wing was analyzed at 10%

above the predicted flutter speed. Also, the wing needed to exhibit limit cycle oscillation at

speeds up to 10% above the predicted flutter values.

After several preliminary layup considerations, two basics ones were selected for detailed

studies: a so-called "two-layer" design and a "three-layer" design. They represent flexible

designs, with flutter speeds within the appropriate range. They also demonstrate interesting

flutter characteristics.

2.2 Two-Layer Design

2.2.1 Basic Characteristics

The two-layer design is composed of two-layers of E-glass/epoxy fabric oriented at 0' around

an inner foam core. A table of the material properties is provided in Appendix B. There

is no spar in this design. This design provides a very flexible wing while still maintaining

closed cell properties. A cross-sectional representation is given in Figure 2-1.

[021

foam

Figure 2-1: Cross section of two-layer wing (NACA 0012)

The cross-sectional properties for the two-layer design are provided below. The stiffness

matrix terms for this cross-section are given in Table 2.1. Detailed definition of the elements

of this matrix are provided in Appendix A. The inertia matrix for this cross-section is

provided in Table 2.2. The center of gravity for the cross-section is located 0.0182 m aft of

the reference line (located at 30% chord). This places the center of gravity at 47% of the

chord.
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Table 2.1: Non-zero stiffness matrix terms for two-layer design: 1 = Extension, 2 = Torsion,
3 = Flatwise Bending, 4 = Chordwise Bending

Kn1  9.55 * 105 N
K 14= K4 1  -1.68 * 104 N*m

K2 2  14.24 N*m 2

K3 3  22.25 N*m 2

K4 4 1.18 * 103 N*m 2

Table 2.2: Non-zero inertial matrix terms for two-layer design

I, 0.10 * 10-3 m4

I22 0.22 * 10-5 m4

133 0.98 * 10-4 m4

The dynamic properties of the wing are important to its aeroelastic response. The first

six natural frequencies of the wing are summarized in Table 2.3. The corresponding mode

shapes are provided in Figure 2-2.

Table 2.3: Natural frequencies of the two-layer design in vacuum

Mode Frequency Mode Shape
1 8 Hz 1 st Bending
2 50 Hz 1 st Chordwise Bending
3 52 Hz 2"d Bending
4 95 Hz 1" Torsion
5 153 Hz 3 rd Bending
6 292 Hz 2nd Torsion
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Figure 2-2: First six normal modes for two-layer wing (in vacuum)
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2.2.2 Wing Non-linear Characteristics

Different root angles of attack of the wing result in different wing tip deflections once the

wing is exposed to airloads. The change in tip deflection is graphed in Figure 2-3 for the

range of angles of attack of interest: 0' to 5'. The tip deflection increases with increased

angle of attack. This is to be expected, since the aerodynamic load is directly proportional

to the angle of attack.

0.6

0.5

0.4

0.3

0.2

0*0

-0.11
0 5 10 15 20 25 30 35 40 45 50

Speed (m/s)

Figure 2-3: Static tip deflection for increasing speed at different root angles of attack

The wing tip twist also changes with increased root angle of attack. This data is provided

in Figure 2-4. To better illustrate this effect, the initial root angle of attack has been

subtracted from the total tip twist, yielding only the elastic angle change due to gravitational
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and aero-loading.
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Figure 2-4: Elastic tip twist for increasing speed at different root angles of attack

The changes in tip deflection and twist result in a change in the dynamic behavior of

the wing, and ultimately a change in the wing stability. This is illustrated by the change in

the mode shapes and their corresponding frequencies for the wing at different root angles of

attack at 30 in/s. Table 2.4 gives the frequencies of the first six modes for 00, 1 , 2~ and 50.

Figure 2-5 contains the first four modes graphically.

It is interesting to note that as the wing is bent upwards due to the force of air pressure,

the natural frequencies of the second mode decrease and the fourth mode increase. This

effect will cause some different behaviors in the wing as the different modes interact.
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Figure 2-5: Frequency change due to root angle of attack change at U = 30 m/s
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Table 2.4: Dynamic properties at U = 30 m/s

Angle of Attack 00 10 20 50
Tip Deflection -0.005 m 0.03 n 0.06 m 0.16 n
1" Bending 8 8 8 8
1" Chordwise Bending 50 49 48 40

Mode 2" Bending 52 52 52 52
Shapes 1st Torsional 95 96 98 107

3 rd Bending 153 153 153 153
2 "d Torsional 292 293 295 303

A similar behavior is also seen when the speed increases for a set angle of attack. This

behavior is illustrated in Table 2.5 and Table 2.6. The first four modes for each of these

examples is presented graphically in Figure 2-6 and Figure 2-7, respectively.

Table 2.5: Dynamic properties at angle of attack = 20

Speed 30 m/s 35 m/s 40 m/s 45 m/s
Tip Deflection 0.06 rn 0.09 m 0.12 rn 0.16 rn

1" Bending 8 8 8 8

1st Chordwise Bending 48 46 43 40
Mode 2 " Bending 52 52 52 52
Shapes 1' Torsional 98 100 103 107

3 rd Bending 153 153 153 153
2nd Torsional 295 297 300 303

This change in the dynamic behavior of the wing results in changes in its flutter speed.

This is shown in Figures 2-9, 2-11, 2-18 and 2-24, which present the root locus plots for the

wing at root angles of attack of 0', 10, 20 and 5'. The flutter speeds as function of root angle

of attack determined from these plots are summarized in Figure 2-8.
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Figure 2-6: Frequency change due to change in speed for 2' root angle of attack

30

120

z

U
C
0)

0.
U-

40

20

0

1T

2B

1CB

1 B

80

60



32 34 36 38 40 42 44 46 48 50
Speed (m/s)

Figure 2-7: Frequency change due to change in speed for 50 root angle of attack
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Table 2.6: Dynamic properties at angle of attack = 50

Speed 30 m/s 35 m/s 40 m/s 45 m/s
Tip Deflection 0.16 m 0.22 m 0.30 m 0.38 m
1" Bending 8 8 8 8
1st Chordwise Bending 40 35 30 25

Mode 2 " Bending 52 52 51 51
Shapes 1 " Torsional 107 114 119 122

3rd Bending 153 153 152 151
_ 2" Torsional 303 300 293 284

1 2 3 4 5 6 7
Root Angle of Attack (deg)

Figure 2-8: Flutter speeds for two-layer design
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Zero-Degree Root Angle of Attack

The flutter speed for zero degree root angle of attack is determined to be 55.8 m/s from

the root locus plot, given in Figure 2-9. The unstable mode is the fourth mode, which is

primarily the first torsion mode. There is some chordwise bending present as well. The

mode shapes for the wing at this speed are given in Figure 2-10.
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Figure 2-9: Root locus plot for 00 root angle of attack
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Speed = 55.80 m/s @ Freq = 7.97 Hz
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Figure 2-10: Mode shapes for two-layer design at 0' root angle of attack and its corresponding
flutter speed of 55.8 m/s
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One-Degree Root Angle of Attack

The flutter speed for one-degree root angle of attack is determined to be 50.2 m/s, shown

in Figure 2-11. The mode of instability is the second mode. A magnification of this mode

is provided in Figure 2-12. This mode is primarily the first chordwise bending. However,

the forces due to air pressure on the tilted wing result in some torsion being present as well.

The first six mode shapes at this speed are given in Figure 2-13.
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Figure 2-11: Root locus plot for 10 root angle of attack
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Root locus for Root AOA = 1
55
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Figure 2-12: Magnification of root locus plot for 10 root angle of attack
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Figure 2-13: Mode shapes for two-layer design at 1' root angle of attack and its corresponding
flutter speed of 50.2 m/s

37

-0.1
-0.05

0

1

11



When the wing is flown at 10% above the flutter speed for a 10 root angle of attack, the

wing enters into a Limit Cycle Oscillation (LCO). The tip deflections and the tip twist are

plotted for this case up to 1 second. These plots are given in Figure 2-14 thru Figure 2-16.
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Figure 2-14: Nonlinear time simulation of the wing vertical tip displacement at 10% above
its flutter speed (10 root angle of attack) for the two-layer design
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Figure 2-15: Nonlinear time simulation of the wing tip twist at 10% above its flutter speed
(10 root angle of attack) for the two-layer design

Speed = 55.20 m/s with a Time step = 0.0005 s

-0.01 -0.005 0 0.005 0.01 0.015
Y Displacement (m)

Figure 2-16: Nonlinear time simulation of the wing tip displacement motion at 10% above

its flutter speed (10 root angle of attack) for the two-layer design
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A strain analysis was performed on the wing when it was at its maximum deflection.

This occurs during the initial rise shown in Figure 2-14. The maximum tensile strain is

2660 pm/m and the maximum shear strain is -769 pm/m. Both occur at the bottom of

the root of the wing in the outer ply. These results are summarized in Figure 2-17. From

Appendix B, the maximum allowable strain for E-glass/epoxy is 10000 pm/m in tension and

15000 pum/m in shear. This results in a margin of safety (Equation 2.1) of 2.76 for tension

and 18.5 for shear.

Allowable
MS(%) = Actual - 1 (2.1)

Actual

eps1 (longitudinal fiber strain), ply 3
eglass 120: MAX = 0.0026595

eps2 (transverse fiber strain), ply 3
eglass 120: MAX = -0.00039362

eps3 (in plane shear strain), ply 3
eglass 120: MAX = -0.00076936

Figure 2-17: Maximum ply strain reached at 10% above flutter speed of 10 root angle of
attack for the two-layer design
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Two-Degree Root Angle of Attack

The flutter speed for two-degree root angle of attack is determined to be 47.5 m/s from the

root locus plot shown in Figure 2-18. The instability mode is the same as for 10, except the

amount of torsion present has increased. Also, by the time the angle of attack is 2', the

effects of the large deflections on the wing cause the natural frequency of the fourth mode to

increase with increasing speed instead of decrease as it did in the 00 and 10 cases. The drop

in the second natural frequency due to the increased upward bend also causes the second

mode to turn over faster and amplifies the effects of flow over the wing. The first six modes

at flutter speed are provided in Figure 2-19.

Root locus for Root AOA = 2*

120 V- .- .

100 --- --- - -- -

80 -------

Figure 2-18: Root locus plot for 2' root angle of attack
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Speed = 47.50 m/s @ Freq = 7.98 Hz

Speed = 47.50 m/s @ Freq = 51.8 Hz

Speed = 47.50 m/s @ Freq = 153 Hz

1
Speed = 47.50 m/s @ Freq = 109 Hz

Speed = 47.50 m/s @ Freq = 302 Hz

0.2

0.8
1

0.6
0.4

0.8
0.6

0.4
0.2

Figure 2-19: Mode shapes for two-layer design at 2' root angle of attack and at its corre-
sponding flutter speed of 47.5 m/s
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For 2' angle of attack, the wing also enters a LCO when flown at 10% above its flutter

speed. The tip deflections and the tip twist are plotted for this case up to 1 second. These

plots are given in Figure 2-20 thru Figure 2-22. Notice from Figure 2-22 that the LCO now

has more than one frequency (no single ellipse on the plot), indicating potentially chaotic

response.

E
a)
0
CO

0

0.3

0.25

0.2

0.15

0.1

0.05

Speed = 52.30 m/s with a Time step = 0.0005 s

0.2 0.4 0.6 0.8
Time (s)

1

Figure 2-20: Nonlinear time simulation of the wing vertical tip displacement at 10% above
its flutter speed (20 root angle of attack) for the two-layer design
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Speed = 52.30 m/s with a Time step = 0.0005 s

0.2 0.4 0.6 0.8
Time (s)

1

Figure 2-21: Nonlinear time simulation of the wing tip twist at 10% above its flutter speed
(20 root angle of attack) for the two-layer design

Speed = 52.30 m/s with a Time step = 0.0005 s

-0.03 -0.02 -0.01 0 0.01
Y Displacement (m)

0.02 0.03 0.04

Figure 2-22: Nonlinear time simulation of the wing tip motion at 10% above its flutter speed
(20 root angle of attack) for the two-layer design
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A strain analysis was performed on the wing when it was at its maximum deflection.

This occurs during the transient rise shown in Figure 2-20. The maximum tensile strain is

4484 pm/m and the maximum shear strain is -2726 pm/m. Both occur at the bottom of

the root of the wing in the outer ply. These details are summarized in Figure 2-23. These

strains result in a margin of safety of 1.23 and 4.5, respectively.

eps1 (longitudinal fiber strain), ply 3
eglass 120: MAX = 0.0044837

eps2 (transverse fiber strain), ply 3
eglass 120: MAX = -0.00066361

eps3 (in plane shear strain), ply 3
eglass 120: MAX = -0.0027264

Figure 2-23: Maximum ply strain reached at 10% above flutter speed of 2' root angle of

attack for the two-layer design

Five-Degree Root Angle of Attack

The flutter speed for five-degree root angle of attack is determined to be 38.8 m/s from the

root locus plot provided in Figure 2-24. As with the 1 and 2' cases, the mode of instability

is the second mode, which is the 1" chordwise bending with some torsional effects. As was

seen in the 20 case, the changes in the dynamic behavior due to the increased upward bend

result in the second mode rolling over faster to the positive dampening axis and the fourth
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mode to further curve upward. Although with the fourth mode, we see an interaction with

the fifth mode (3rd bending) starting to cause the fourth mode to turn towards the instability

line as well. The first six mode shapes for this case are provided in Figure 2-25.

Root locus for Root AOA = 5 *
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Figure 2-24: Root locus plot for 50 root angle of attack
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Speed = 38.80 m/s @ Freq = 7.99 Hz

Speed = 38.80 m/s @ Freq = 51.5 Hz

Speed = 38.80 m/s @ Freq = 152 Hz

Speed = 38.80 m/s @ Freq = 118 Hz

Speed = 38.80 m/s @ Freq = 294 Hz

Figure 2-25: Mode shapes for two-layer design at 5'
sponding flutter speed of 38.8 m/s
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For 5' root angle of attack, the wing also enters a LCO when flown at 10% above the

flutter speed. The tip deflections and the tip twist are plotted for this case up to 1 second.

These plots are given in Figure 2-26 thru Figure 2-28.

Speed = 42.70 m/s with a Time step = 0.0005 s

E

0
CO

CO,

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05 L
0 0.2 0.4 0.6 0.8 1

Time (s)

Figure 2-26: Nonlinear time simulation of the wing vertical tip displacement at 10% above
its flutter speed (50 root angle of attack) for the two-layer design

A strain analysis was performed on the wing when it was at its maximum deflection.

This occurs during the initial rise shown in Figure 2-26. The maximum tensile strain is

7405 pm/m and the maximum shear strain is -5018 pm/m. Both occur at the bottom of

the root of the wing in the outer ply. These details are summarized in Figure 2-29. These

strains result in a margin of safety of 0.35 and 1.99, respectively.
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Figure 2-27: Nonlinear time simulation of the wing tip twist at 10% above its flutter speed
(50 root angle of attack) for the two-layer design

Speed = 42.70 m/s with a Time step = 0.0005 s

-0.04 -0.03 -0.02 -0.01
Y Displacement (m)

0 0.01 0.02

Figure 2-28: Nonlinear time simulation of the wing tip motion at 10% above its flutter speed
(50 root angle of attack) for the two-layer design
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eps1 (longitudinal fiber strain), ply 3
eglass 120: MAX = 0.0074051

eps2 (transverse fiber strain), ply 3
eglass 120: MAX = -0.001096

eps3 (in plane shear strain), ply 3
eglass 120: MAX = -0.0050181

. . . .. . .

Figure 2-29: Maximum ply strain at reached at 10% above flutter speed of 5' root angle of
attack for the two-layer design
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2.3 Three-Layer Design

2.3.1 Basic Characteristics

The three-layer design resembles the previous one with the exception of an added layer of

E-glass/epoxy fabric, also oriented at 00 (Figure 2-30.

[03]

Figure 2-30: Cross section of three-layer wing (NACA 0012)

The cross sectional stiffness properties for this design are provided in Table 2.7. A detailed

definition of the terms for this matrix are provided in Appendix A. The inertia matrix for

Table 2.7: Non-zero stiffness matrix terms for three-layer design: 1 = Extension, 2 = Torsion,
3 = Flatwise Bending, 4 = Chordwise Bending

Ku1  1.39 *106 N
K14= K41 -2.35 * 104 N*m

K2 2  19.66 N*m 2

K33 33.19 N*m 2

K4 4 1.63 * 103 N*m 2

this cross-section is provided in Table 2.8. The center of gravity for the cross-section is

Table 2.8: Non-zero inertial matrix terms for two-layer design

Ill 0.13 * 10-3 m 4

I22 0.32 * 10- 5 m 4

133 0.13 * 10-3 m 4
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located 0.0173 m aft of the reference line (located at 30% chord). This places the center of

gravity at 46% of the chord.

The first six normal modes (in vacuum) and their corresponding frequencies are provided

in Table 2.9. It is interesting that the values for the normal modes have changed very little

from the two layer case. This can be explained by the fact that the increase in stiffness

is comparable to the increase in inertia. The corresponding mode shapes are provided in

Figure 2-31.

Table 2.9: Natural frequencies of the three-layer design in vacuum

Mode Frequency Mode Shape
1 8 Hz 1" Bending
2 51 Hz 1 st Chordwise Bending
3 54 Hz 2 "d Bending
4 97 Hz 1 st Torsion
5 161 Hz 3 rd Bending
6 299 Hz 2 nd Torsion

2.3.2 Wing Nonlinear Characteristics

The effects from changes in root angle of attack are similar to those seen in the two-layer

design. The tip deflection again increases with increase root angle of attack. This is plotted

in Figure 2-32. The tip twist also increases with increased root angle of attack, as shown

in Figure 2-33. As with the two-layer data, the root angle of attack was subtracted from

the tip angle to better illustrate the effects to do gravity and aero-loading only. It should

also be noted that although the trends are the same, the values of deflection and twist are

smaller. This is expected as the stiffness of the wing is increased with the additional layer

of E-glass/epoxy.

Deflection and twist changes versus angle of attack also result in changes in the dynamic

behavior of the wing. The wing's mode shapes and natural frequencies were computed for

a wind speed of 30 m/s. The results are summarized in Table 2.10. This data is presented
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Speed = 0.00 m/s @ Freq = 8.37 Hz

0.8

Speed = 0.00 m/s @ Freq = 54.1 Hz
Speed = 0.00 m/s @ Freq = 97.1 Hz

1

Speed = 0.00 m/s @ Freq = 161 Hz

0.4

0.8
0.6

0.2
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Speed = 0.00 m/s @ Freq = 299 Hz
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0.8
0.6

0.2
0.4

Figure 2-31: First six modes shapes for the three-layer wing (in vacuum)
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Figure 2-32: Static tip deflection for increasing speed at different root angles of attack
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Figure 2-33: Elastic tip twist for increasing speed at different root angles of attack
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graphically for the first four modes in Figure 2-34.

Table 2.10: Dynamic properties at U = 30 m/s

Angle of Attack 00 10 20 50
Tip Deflection -0.005 m 0.02 m 0.04 m 0.10 m

1 "t Bending 8 8 8 8
1" Chordwise Bending 51 51 50 45

Mode 2 "d Bending 54 54 54 54
Shapes 1 " Torsional 97 97 98 104

3rd Bending 161 161 161 161
_ 2 " Torsional 299 299 300 305

The three-layer design also shows a change in the chordwise bending and torsional modes

for changes in root angle of attack. As the root angle of attack is increased the frequencies

for the 1I" chordwise bending mode decrease and the frequencies for the 1" torsional mode

increase. The bending modes remain unchanged.

A similar behavior is seen when the speed is varied for a constant root angle of attack.

This is illustrated in Table 2.11 and Table 2.12. This data is also provided graphically for

the first four modes in Figure 2-35 and Figure 2-36.

Table 2.11: Dynamic properties at root angle of attack = 20

Speed 30m/s 35m/s 40m/s 45m/s
Tip Deflection 0.04 m 0.06 m 0.08 m 0.10 m
1" Bending 8 8 8 8
1" Chordwise Bending 50 49 48 46

Mode 2 " Bending 54 54 54 54
Shapes 1 " Torsional 98 99 101 103

3 rd Bending 161 161 161 161
2nd Torsional 300 301 302 305

The flutter speeds for varying angles of attack are given in Figure 2-37. As expected, the

addition of the third layer of E-glass resulted in an increase in the flutter speed.
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Figure 2-34: Frequency change due to root angle of attack change at U = 30 m/s
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Figure 2-35: Frequency change due to change in speed for 2' root angle of attack
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Figure 2-36: Frequency change due to change in speed for 5' root angle of attack
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Table 2.12: Dynamic properties at root angle of attack = 5'

Speed 30m/s 35m/s 40m/s 45m/s
Tip Deflection 0.10 m 0.15 m 0.20 m 0.25 m

1" Bending 8 8 8 8

1st Chordwise Bending 45 42 38 33
Mode 2" Bending 54 54 54 54
Shapes 1" Torsional 104 108 114 119

3 rd Bending 161 161 161 160
2" Torsional 305 308 308 303

20-

10-

01
0 1 2 3 4 5 6 7

Root Angle of Attack (deg)

Figure 2-37: Flutter speeds for three-layer design
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Zero-Degree Root Angle of Attack

The flutter speed for 0' root angle of attack is determined to be 64.6 m/s from the root locus

plot provided in Figure 2-38. The unstable mode is the fourth mode, which cooresponds to

the 1"t torsional mode. This is the same as was seen in the two-layer case. The first six

mode shapes at flutter speed for this wing are shown in Figure 2-39.
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Figure 2-38: Root locus plot for 0' root angle of attack
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Speed = 64.60 m/s @ Freq = 8.37 Hz

0

Speed = 64.60 m/s @ Freq = 54.1 Hz
Speed = 64.60 m/s @ Freq = 97 Hz
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Figure 2-39: Mode shapes for three-layer design at 0' root angle of attack and at its corre-
sponding flutter speed 64.6 m/s
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One-Degree Root Angle of Attack

The flutter speed for the 10 root angle of attack is 62.1 m/s. This can be seen on the root

locus plot provided in Figure 2-40. The mode of instability is the second mode. This mode

is primarily the first chordwise bending. However, the forces due to air pressure on the tilted

wing result in some torsion being present as well. The first six mode shapes for this case are

provided in Figure 2-41.
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Figure 2-40: Root locus plot for 1 root angle of attack
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Speed = 62.10 m/s @ Freq = 8.38 Hz
Speed = 62.10 m/s @ Freq = 45.1 Hz
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Figure 2-41: Mode shapes for three-layer design at 1 root angle of attack and at its corre-
sponding flutter speed of 62.1 m/s
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When this wing is flown at 10% above the predicted flutter speed, the wing enters into

a LCO. The tip deflections and the tip twist are plotted for this case up to 1 second. These

plots are provided in Figure 2-42 thru Figure 2-44.
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Figure 2-42: Nonlinear time simulation of the wing vertical
its flutter speed (10 root angle of attack) for the three-layer

tip displacement at 10% above
design

A strain analysis was performed on the wing when it was at its maximum deflection.

This occurs during the initial rise shown in Figure 2-42. The maximum tensile strain is

2697 pm/m and the maximum shear strain is -1765 pm/m. Both occur at the outer ply

of the bottom part of the airfoil at the root of the wing. These results are summarized in

Figure 2-45. These strains result in a margin of safety of 2.71 for tension and 7.50 for torsion.
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Speed = 68.20 m/s with a Time step = 0.0005 s

0.2 0.4 0.6 0.8 1
Time (s)

Figure 2-43: Nonlinear time simulation of the wing tip twist at 10% above its flutter speed
(10 root angle of attack) for the three-layer design

Speed = 68.20 m/s with a Time step = 0.0005 s
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Figure 2-44: Nonlinear time simulation of the wing tip motion at 10% above its flutter speed

(10 root angle of attack) for the three-layer design
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eps1 (longitudinal fiber strain), ply 4
eglass 120: MAX = 0.0026968

eps2 (transverse fiber strain), ply 4
eglass 120: MAX = -0.00039914

eps3 (in plane shear strain), ply 4
eglass 120: MAX = -0.0017653

. . . . . . .

Figure 2-45: Maximum ply strain reached at 10% above flutter speed of 10 root angle of

attack for the three-layer design
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Two-Degree Root Angle of Attack

The flutter speed for the 2' root angle of attack is 56.9 m/s. This can be seen on the root

locus plot provided in Figure 2-46. The second mode is again the mode which crosses the

stability axes. The larger tip deflections and tip twists observed for the high angles of attack

cause this mode to turn over and go unstable faster. The first six mode shapes for this case

are provided in Figure 2-47.
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Figure 2-46: Root locus plot for 2' root angle of attack
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Speed = 56.90 m/s @ Freq = 8.38 Hz

Speed = 56.90 m/s @ Freq = 54.4 Hz

Speed = 56.90 m/s @ Freq = 161 Hz
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Figure 2-47: Mode shapes for three-layer design at 2' root angle of attack and at its corre-
sponding flutter speed of 56.9 m/s
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When this wing is flown at 10% above the predicted flutter speed, the wing enters into

a LCO. The tip deflections and the tip twist are plotted for this case up to 1 second. These

plots are provided in Figure 2-48 thru Figure 2-50.
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Figure 2-48: Nonlinear time simulation of the wing vertical tip displacement at 10% above
its flutter speed (20 root angle of attack) for the three-layer design

A strain analysis was performed on the wing when it was at its maximum deflection.

This occurs during the initial rise shown in Figure 2-48. The maximum tensile strain is

4421 ptm/m and the maximum shear strain is -4079 pm/m. Both occur at the outer ply

of the bottom part of the airfoil at the root of the wing. These results are summarized in

Figure 2-51. These strains result in a margin of safety of 1.26 and 2.68, respectively.
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Figure 2-49: Nonlinear time simulation of the wing tip twist at 10% above its flutter speed
(20 root angle of attack) for the three-layer design
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Figure 2-50: Nonlinear time simulation of the wing tip motion at 10% above its flutter speed
(2' root angle of attack) for the three-layer design
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eps1 (longitudinal fiber strain), ply 4
eglass 120: MAX = 0.0044209

eps2 (transverse fiber strain), ply 4
eglass 120: MAX = -0.00065431

eps3 (in plane shear strain), ply 4
eglass 120: MAX = -0.0040786

Figure 2-51: Maximum ply strain reached at 10% above flutter speed of 20 root angle of
attack for the three-layer design
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Five-Degree Root Angle of Attack

The flutter speed for the 50 root angle of attack is 46.4 m/s. This can be seen on the root

locus plot provided in Figure 2-52. This plot shows the mode of instability is again the 1"

chordwise bending mode (mode 2). Again the increase in angle of attack results in the wing

becoming unstable at lower speeds. The 1 st torsion (mode 4) and 3rd bending (mode 5) are

also starting to interact with each other, causing the torsion mode to head to the instability

axes. The first six mode shapes for this case are provided in Figure 2-53.
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Figure 2-52: Root locus plot for 50 root angle of attack
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Speed = 46.40 m/s @ Freq = 8.39 Hz

Speed = 46.40 m/s @ Freq = 54.1 Hz Speed = 46.40 m/s @ Freq = 120 Hz
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Figure 2-53: Mode shapes for three-layer design at 5' root angle of attack and at its corre-
sponding flutter speed of 46.4 m/s
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When this wing is flown at 10% above the predicted flutter speed, the wing enters into

a LCO. The tip deflections and the tip twist are plotted for this case up to 1 second. These

plots are provided in Figure 2-54 thru Figure 2-56.
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Figure 2-54: Nonlinear time simulation of the wing vertical
its flutter speed (5' root angle of attack) for the three-layer

tip displacement at 10% above
design

A strain analysis was performed on the wing when it was at its maximum deflection.

This occurs during the initial rise shown in Figure 2-54. The maximum tensile strain is

7374 tm/m and the maximum shear strain is -6799 pm/m. Both occur at the outer ply

of the bottom part of the airfoil at the root of the wing. These details are summarized in

Figure 2-57. These strains result in a margin of safety of 0.36 and 1.21, respectively.
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Figure 2-55: Nonlinear time simulation of the wing tip twist at 10% above its flutter speed
(50 root angle of attack) for the three-layer design
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Figure 2-56: Nonlinear time simulation of the wing tip motion at 10% above its flutter speed

(50 root angle of attack) for the three-layer design
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eps1 (longitudinal fiber strain), ply 4
eglass 120: MAX = 0.0073741

/

eps2 (transverse fiber strain), ply 4
eglass 120: MAX = -0.0010914

eps3 (in plane shear strain), ply 4
eglass 120: MAX = -0.0067985

Figure 2-57: Maximum ply strain reached at 10% above flutter speed of 50 root angle of
attack

77



The following is a table to summarize the strain analysis for the different cases.

Table 2.13: Summary of Strain Analysis Results

Angle of Attack Two-Layer Results Three-Layer Results
1 tension 2660 p m/m 2697 p m/m

torsion -769 p m/m -1765 y m/m
2' tension 4484 p m/m 4421 y m/m

torsion -2726 p m/m -4079 p m/m
50 tension 7405 y m/m 7374 p m/m

torsion -5018 p m/m -6799 p m/m

2.4 Nastran Comparison

To ensure that the wing would survive the loadings in the tunnel, a stress analysis was

performed using MSC.Nastran finite element code. Since the MATLAB code from [3] was

not yet validated experimentally, this would provide added assurance that the stress and

strain data predicted by the MATLAB code is correct. Figure 2-58 provides a close-up of

the finite element model mesh. The wing was discretized using 5550 elements. The foam

was modeled as 4-noded solid elements and the composite skin was modeled as 4-noded shell

elements.

The worse stress case scenerio for the three-layer design is the 5' root angle of attack case.

The MATLAB code was used to provide static deflection values for the wing at 51.15 m/s,

which is 10% above the predicted flutter speed. The x,y,z displacements and pitch rotation

for the wing were matched for two different cases: maximum vertical (z) displacement and

maximum pitch rotation. This was achieved by applying varing forces distributed along the

span of the wing at 25% of the chord and then forces to the leading and trailing edges to

establish the desired rotation.
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Figure 2-58: Finite element mesh of the three-layer design used in Nastran (5550 elements,
13617 degrees of freedom)
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2.4.1 Case 1 - Maximum Vertical Displacement

This case matched the maximum vertical displacement predicted by the MATLAB code

during the limit cycle oscillation. The original predicted values and the values determined

in Nastran are provided in Table 2.14.

Table 2.14: Nastran Case 1: Displacements and Rotations

MATLAB Prediction Nastran Result
chordwise deflection 0.0034 m 0.0199 m
spanwise deflection 0.0603 m 0.0539 m
vertical deflection 0.3159 m 0.3126 m

pitch rotation -8.850 -9.110

The MATLAB and Nastran displacement results match within 11%, except in the chord-

wise direction. The overall magnitude of the displacements are equivalent and the major

contributors, vertical displacement and pitch rotation, are within 1% and 3%, respectively.

Since the results show such high margins of safety (Equation 2.1), the analysis was consid-

ered adequate. The results from this case are summarized in Table 2.15 and fringe plots of

the stress profiles are provided in Figure 2-59 through Figure 2-61.

Table 2.15: Nastran case 1: summary of results

Maximum Strain Margin of Safety
chordwise 2570 pm/m 6.4
spanwise 5430 pm/m 2.5
chord-span shear -5740 pm/m 8.0

2.4.2 Case 2 - Maximum Pitch Rotation

This case matched the maximum pitch rotation predicted by the MATLAB code during the

limit cycle oscillation. The original predicted values and the values determined in Nastran

are provided in Table 2.16.
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MSC.Patran 2001 r3 13-Oct-02 20:38:45

Fringe: lift. PW Linear: 100. % of Load_2: Nonlinear Strains, Strain Tensor-(NON-LAYERED)

Deform: lift, PW Linear: 100. % of Load_2: Displacements. Translational

4

2.57-00

2.08-00

1.60-003

1.12

aximum value (2570 rn/rn) at the wing root
on the top-side of the wing.

6.40-00

1.58-00

-3.23-00

-8.05-00

-1.29-00

-1.77-00

-2.25-00

-2.73-00

-3.21-00

-3.69-00

-4.18-00

-4.66-00
defaultFringe:

Max 2.57-003 @Nd 865
Min -4.66-003 @Nd 461
defaultDeformation:

Max 1.25+001 @Nd 1836

xY

Figure 2-59: Nastran normal (chordwise) strain for 5' root angle of attack

Table 2.16: Nastran case 2: displacements and rotations

MATLAB Prediction Nastran Result
chordwise deflection 0.0502 m 0.0176 m

spanwise deflection 0.0370 m 0.0348 m
vertical deflection 0.2391 m 0.2520 m

pitch rotation 9.930 10.50
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MSC.Patran 2001 r3 13-Oct-02 20:38:27

Fringe: lift PW Linear:100. % of Load_2: Nonlinear Strains. Strain Tensor-(NON-LAYERED) (ZZ)

Deform: lift PW Linear: 100. % of Load_2: Displacements. Translational

Maximum value (5430 pim/m) at the wing root,
on the underside of the wingY

.Z X

2.54-003

1.82-00

1.10-003

3.72-004

-3.51-00

-1.07-003

-1.80-00

-2.52-00

-3.24-00

-3.97-00

-4.69-00

-5.41-00
default_- Fringe :

Max 5.43-003 @Nd 461
Min -5.41-003 @Nd 865
defaultDeformation :

Max 1.25+001 @Nd 1836

Figure 2-60: Nastran normal (spanwise) strain for 5' root angle of attack
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MSC.Patran 2001 r3 13-Oct-02 20:38:55

Fringe: lift, PW Linear: 100. % of Load_2: Nonlinear Strains. Strain Tensor-(NON-LAYERED) (Z>

Deform: lift PW Linear: 100. % of Load-2: Displacements, Translational

Maximum value (2060 gm/m) at the wing root
at the trailing edge

Y

2.06-00

1.54-003

1.02-003

5.04-004

-1.58-005

-5.36-00

-1.06-00

-1.58-00

-2.10-00

-2.62-00

-3.14-003

-3.66-003

-4.18-00

-4.70-003

-5.22-003

-5.74-003
defaultFringe:

Max 2.06-003 @Nd 2
Min -5.74-003 @Nd 1685
defaultDeformation:

Max 1.25+001 @Nd 1836

Figure 2-61: Nastran in-plane shear strain for 50 root angle of attack
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Similar to the previous case, the MATLAB and Nastran displacements match within

6%. The overall magnitude of displacement is equivalent and the main contributors, vertical

displacement and pitch rotation, are over-predicted. Again, although the Nastran displace-

ments do not match the MATLAB exactly, the margins of safety are high enough to consider

the values sufficient. The results from this case are summarized in Table 2.17 and fringe plots

of the stress profiles are provided in Figure 2-62 through Figure 2-64.

Table 2.17: Nastran case 2: summary of results

Maximum Strain Margin of Safety
chordwise 2390 pum/m 6.9
spanwise 4960 pm/m 2.8
chord-span shear 7950 pm/m 5.5

2.5 Design Selection

The three-layer design was chosen for the wind tunnel model. This decision was based on

the resulting predicted flutter speeds and on the resulting strains. The flutter speeds for

the two-layer case were on average 16% lower than the three-layer design. However, the

deflections experienced by the two-layer design ranged from 41% to 61% higher than the

three-layer design. This resulted in an increase in the strain levels for the two-layer wing.

To be safe, the increase in deflection and strain was considered more detrimental than an

increase in the flutter speed. Therefore, the three layer design was chosen.
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MSC Patran 2001 r3 13-Oct-02 19:37:40

Fringe: lift PW Linear: 100. % of Load: Nonlinear Strains, Strain Tensor-(NON-LAYERED)M

Deform: lift, PW Linear: 100. % of Load: Displacements. Translational

Maximum value (2390 pm/m) at the wing root
on the top-side of the wing

Y

2.39-00

1.99-00

1.59-00

1.19-00

7.86-00

3.85-004

-1.51-00

-4.16-00

-8.16-00

-1.22-00

-1.62-003

-2.02-00

-2.42-00

-2.82-003

-3.22-00

-3.62-003
defaultFringe:

Max 2.39-003 @Nd 865
Min -3.62-003 @Nd 206
defaultDeformation:

Max 1.08+001 @Nd 1225

Figure 2-62: Nastran normal (chordwise) strain for 5' root angle of attack
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MSC.Patran 2001 r3 13-Oct-02 19:38:44

Fringe: lift PW Linear: 100. % of Load: Nonlinear Strains, Strain Tensor-(NON-LAYERED) (ZZ)

Deform: lift PW Linear: 100. % of Load: Displacements, Translational

Maximum value (4960 pm/m) at the wing root
on the under-side of the wing

y

4.96-00

4.30-003

3.63-00

2.97-00

2.31-00

1.65-00

9.82-00

3.19-004

-3.44-00

-1.01-003

-1.67-00

-2.33-003

-3.00-00

-3.66-00

-4.32-003

-4.98-0031
defaultFringe:

Max 4.96-003 @Nd 206
Min -4.98-003 @Nd 865
defaultDeformation:

Max 1.08+001 @Nd 1225

Figure 2-63: Nastran normal (spanwise) strain for 5* root angle of attack
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MSC.Patran 2001 r3 13-Oct-02 19:38:36 7.95-00

Fringe: lift. PW Linear: 100. % of Load: Nonlinear Strains. Strain Tensor-(NON-LAYERED) (Z7.21-00
Deform: lift PW Linear: 100. % of Load: Displacements. Translational

6.47-003

5.73-003

4.98-003

Maximum value (7950 gm/m) at the wing root 4.24-003
at the trailing edge

3.50-00

2.76-00

2.01-003

1.27-00

5.28-004

-2.14-004

-9.57-00

-1.70-003

-2.44-003

Y -3.18-003
defaultFringe:

Max 7.95-003 @Nd 1786
Min -3.18-003 @Nd 1071
default Deformation:

Max 1.08+001 @Nd 1225

Figure 2-64: Nastran in-plane shear strain for 50 root angle of attack
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Chapter 3

Experimental Procedure

This chapter describes the experimental work that took place as part of this project. The

manufacturing methods are presented, as are details for instrumentation location and wiring.

The chapter also contains the description of the experimental tests: bench top and wind

tunnel.

3.1 Wing Manufacture

In this section, different components that make the instrumented wind tunnel model are

discussed. The foam cores were machined in the Aeronautics and Astronautics machine

shop on the TRAK K3 mill machine with the help of Ricky Watkins and Donald Weiner.

The wing lay-up and cure were performed within the TELAC facilities with the support of

John Kane. The root clamps for holding the wing during the bench top and wind tunnel

characterization were machined at MIT Lincoln Laboratory. The wing mold was provided

by NASA Langley.

3.1.1 Foam Core

The foam core of the wing was manufactured out of Rohacell 31. This material was selected

to ensure survival of the foam at the elevated temperatures of the wing cure process. The

foam for each wing was machined in four seperate pieces, consisting of the top and bottom
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of the wing from the root to 0.5715 m and the top and bottom of the wing from 0.5715

m to the tip at 1.13 m. The core is slightly oversized by 0.254 mm (10 mil) to ensure

adequate backpressure within the mold during the cure process. After the accelerometers

are embedded within the foam at the tip of the wing, the individual pieces are glued together

with five minute epoxy. The foam pieced together in the mold is shown in Figure 3-1.

Figure 3-1: Four sections of the foam core pieced together in mold

3.1.2 Instrumentation

Seven full strain gauge bridges and two accelerometers were added on the foam core. The

locations of the sensors are provided in Figure 3-2. An additional torsional bridge at the root

was attached after the wing was cured and thus is located on the outer surface of the wing.

The accelerometers were placed at the tip of the wing where maximum deflection happens.

Since the root of the wing experiences the highest strain, one of each of the strain gauge

bridge types was placed there. The locations of the other strain gauges along the span of

the wing correspond to points of high strain for the higher normal modes, i.e., 2 "d and 3rd

bending and 2"d torsion.
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Figure 3-2: Location of sensors: bending gauges are represented by squares, forward/aft
gauges by diamonds, torsion gauge by a star, and accelerometers by circles

Strain Gauges

The strain gauges used to make-up the Wheatstone bridges were from the Micro Measure-

ments Division of Measurements Group, Inc. The gauges for the bending bridges were model

EA-06-125AD-120 and the gauges for the torsional and forward/aft bending bridges were

model CEA-06-125UT-120. Both models consisted of gauges with 120 Q resistance. The

gauges were wired to record spanwise bending and torsion. The four spanwise bending

bridges consisted of a pair of gauges oriented in the 00 direction on the top and bottom

of the wing. The four torsional bridges consisted of a pair, one in the +45' direction and

one in the -45' direction on the top and bottom of the wing [12]. A general Wheatstone

bridge wiring diagram is provided in Figure 3-3. The wire diagrams for the specific types

of bridges use the same numbering convention. A map of the proper wiring scheme for a

spanwise bending bridge is presented in Figure 3-4 and Figure 3-5 details the wiring for the

torsional bridges. After some discussion with Professor John Dugundji, MIT, it is believed

that the torsional wiring presented in [12] actually refers to a forward and aft motion, as

opposed to the twisting motion originally thought. A twist bridge was wired to the outer

skin of the wing at the root to measure the twist motion of the wing. The wiring for this

bridge is provided in Figure 3-6.
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Figure 3-3: General wiring diagram for Wheatstone bridges
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Figure 3-4: Wiring diagram for Wheatstone bridges in bending

Leading
Edge

Figure 3-5: Wiring diagram for Wheatstone bridges in forward/aft bending

o'

&6
Leading
Edge

Figure 3-6: Wiring diagram for Wheatstone bridges in twist
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The internal strain gauges where attached to a single square layer (25 mm by 25 mm)

of pre-cured E-glass/epoxy oriented at 00/900. A photo of the internal strain gauges on the

wing is provided in Figure 3-7. The squares were glued down with five minute epoxy to the

foam. The strain gauges were then also afixed with five minute epoxy. Magnet wire was

used to make all of the required electrical connections. The two bridges at the root, with

the wiring of both types of bridges, is shown in Figure 3-8.

Figure 3-7: Strain gauge at mid-span

Figure 3-8: Strain gauges wired at the root
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Accelerometers

The accelerometers used for this experiment were the Endevco Model 22 piezoelectric ac-

celerometers. These sensors were embedded within the foam core at the wing tip, 14.3 mm

from the leading edge and 39.7 mm from the leading edge. The specifications for the ac-

celerometers are provided in Table 3.1. The wires were run parallel to the leading edge in

channels between the two halves of foam. The pair of accelerometers is used in combination

to calculate the twist and bending frequencies at the wing tip. When the output of one

is subtracted from the other, the tip twist response is obtained. The average of the two

accelerometers produces the bending response.

Table 3.1: Accelerometers used in the wing model

Gauge Location Charge Sensitivity
CW18-22 14.3 mm from LE 0.374 pC/g
CW13-22 39.7 mm from LE

II
0.385 pC/g

3.1.3 Lay-Up

In preparation to lay-up the composite on the instrumented foam core, the foam core was

put in the oven at 266'F for 24 hours to remove any residual moisture. Moisture has a

plasticizer effect on the foam, which causes a decrease in its compressibility strength [13]. If

this step is not performed, the foam will collapse under the high temperature and pressure

of the curing process.

The required three layers of E-glass/epoxy were cut to 0.305 m by 1.143 m and stacked

flat on the table. They were then gathered up and placed into the bottom half of the mold

as one piece of cloth. The long edge was placed slightly behind the trailing position and the

short end was aligned with the root. At this point, the additional layers of E-glass/epoxy

around the root section where wrapped around the foam core. These consisted of a 76-mm

strip, a 64-mm strip, a 51-mm strip, and a 38-mm strip, each being two plies thick. These

additional plies were added to the root area to provide additional strength where the bolts
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from the clamp would be passing through the wing. Once this was done, the foam core was

inserted. The rest of the lay-up was then wrapped around the leading edge of the foam

and pulled tightly toward the trailing edge. Once the lay-up was smooth on both sides of

the wing, a straight edge was placed at the wing trailing edge and the excess was trimmed

off. Care was taken to ensure the wires passing out of the root would not interfere with

the root clamp. The top of the mold was lifted into position and then the two pieces were

clamped together. A thermocouple was attached between the two halves of the mold, as

the temperature of the mold is the one which needs to follow the cure profile. With the

mold assembly completed, the wing was placed into the autoclave and cured at 250'F for 90

minutes. It was then allowed to cool slowly over 48 hours.

3.1.4 Post Cure

The wing was removed from the mold after slowly cooling and only minor cosmetic touch-ups

were required. Some resin had been pulled between the two mold pieces at the leading edge.

This resin was scrapped off and then the leading edge was sanded for a smooth finish. This

resin was also pulled at the trailing edge, but this is desirable as it creates a smooth taper

to the trailing edge, so no modifications were made to the trailing edge. A band saw was

used to remove about 6-mm from the wing tip to provide a smooth edge to that side of the

wing as well. Finally three holes were drilled into the root of the wing, 28.5-mm behind the

leading edge, to accomadate the three bolts from the clamp.

3.1.5 Clamp

The root clamp was made from Aluminum 6061 and was NC machined at MIT Lincoln Lab-

oratory. It consists of two seperate pieces which bolt together through the wing. Drawings

of the top and bottom are provided in Figure 3-9 and Figure 3-10. The clamp is designed

such that a gap between the two pieces exists at the leading and trailing edge. This allows

for some shape mismatch between the final wing and the clamp.
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Units: Inches

Figure 3-9: Top of root clamp
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Figure 3-10: Bottom of root clamp

NACA 0012 Airfoil

Units: Inches
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3.2 Data Acquisition Equipment

The strain gauge and accelerometer signals need to be processed through conditioners before

they can be sent to a computer to store. Since all of the bridges were full bridges they needed

to be connected to the conditioner with the pin readout provided in Figure 3-11. The little

letters represent the connections to the strain gauges and the capital letters refer to the pins

on the connector. The conditioner box converts the signal to an amplified voltage which is

B
F C

a+ -c

b+ -d
A
D

F

Figure 3-11: Pin diagram for full bridges

sent to the computer via a BNC cable. The accelerometer signal was also processed through

a conditioner before the signal voltage was transmitted to the computer. A photo of both

conditioners is provided in Figure 3-12. These are the conditioners used for the bench top

tests. The wind tunnel tests used similar strain gauge conditioners, but in a different box.

3.3 Wind Tunnel Load Cell

The wind tunnel tests required the use of a load cell. The load cell is the interface between

the wing root clamp and the fixed stand in the tunnel. It provides three axis of load data,

as well as the yaw moment. For this wing, a 75-lb Multi-Axes Load Cell from JR3, Inc. was

used. The load settings and ratings are provided in Table 3.2.

To determine the loads, the voltage channel coming from the load cell must be multiplied

by a calibration matrix. The equation for this load cell is:
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A ccelerometer conditioners

Strain Gauge conditioners

Figure 3-12: Photo of accelerometer and strain gauge conditioners

Table 3.2: Load cell used for the wing tunnel tests

Load Cell Channel Maximum Load Measurement Sensor Load Rating
F 75 lb 75 lb
Fv 75 lb 75 lb
Fz 150 lb 150 lb
MX 0 in-lb 225 in-lb

MV 0 in-lb 225 in-lb
M2 225 in-lb 225 in-lb

Drag (ib)

Axial (ib)

Lift (ib)

Yaw (in-lb)

9.2758

0.2977

-0.1770 -0.0589 -0.1796

9.1166 0.0861 0.0407

0.2176 -0.1894 18.2251 0.6773

-0.1918 0.0131 -0.0766 27.7896
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Chapter 4

Experimental Studies

This chapter discusses the bench top and the wind tunnel test results. There is also a section

on adjustments made to the model to cause the natural frequencies to match those seen in

the bench top tests.

4.1 Bench-top Tests

A series of bench top tests were conducted to determine the characteristics of the manufac-

tured wing and to ensure operation of all the sensors. It was discovered that the forward/aft

strain gauge bridge at the root was electrically shorted during manufacture. It was not possi-

ble to be repaired, so it was not monitored during the tests. Aside from simple functionality

tests, only the gauges at the root for bending and torsion were monitored during bench-

top tests. These tests were performed in TELAC. A picture of the experimental set-up is

provided in Figure 4-1 and a picture of the monitoring equipment is provided in Figure 4-2.

4.1.1 Strain Gauge Calibration

A static calibration of the strain gauges was performed to determine the deflection-voltage

relationship. This was performed with the strain gauge conditioners within TELAC. So these

results do not correspond with voltages from the wind tunnel tests. This calibration was

performed to establish a process to be used later with the tunnel instrumentation. The wing
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Figure 4-1: Experimental set-up for bench-top tests

Figure 4-2: Experimental instrumentation for bench-top tests
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was displaced in the vertical direction by various pre-established tip displacement values

in both directions. This was done by holding the wing tip by hand and aligning it with

pre-drawn tick marks on a reference scale. The wing was then held to these locations for

a few seconds. This provided data on bending deflections versus voltage. A time trace of

this calibration for the root bending strain gauge bridge is provided in Figure 4-3. When

8

7.5 -

6 = 23
7

6.5 8=18

5-5

6 -M

3.5

0
0

5

4.5

4-

3.5
0 20 40 60 80 100

Time (s)
120 140 160 180 200

Figure 4-3: Time trace of data from bench-top bending calibration

this data is plotted with the known deflections, a curve of voltage versus tip deflection is

generated. This is shown in Figure 4-4.

The wing was also twisted to various amounts at the tip, which provided a calibration for

tip twist. For this, the leading edge of the wing was again deflected by hand to pre-drawn

tick marks, with the trailing edge held at the original position. A time trace of the data

from the root torsion strain gauge bridge is provided in Figure 4-5. This data was plotted
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Figure 4-4: Calibration of strain gauge voltage output for bending
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Figure 4-5: Time trace of data from bench-top twist calibration
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against the known twist values to provide a curve for the voltage output generated through

tip twist. This curve is given in Figure 4-6.

4.5'-
-4 -3 -2 -1 0 1 2 3

Wing Tip Twist (deg)

residuals

0.15

0.1

0.05

0

-0.05

-0.1

-0.15 F
I I I

-4 -3 -2

I

Linear: norm of residuals = 0.28536

I I I 1

-1 0 1 2 3 4

Figure 4-6: Calibration of strain gauge voltage output for tip twist

4.1.2 Tap Tests for Dynamic Properties

Various places on the wing were tapped to excite the different normal modes, so that its

natural frequencies could be identified. This data was collected via the strain gauges. The

data from various tap tests is given below in Figure 4-7 through Figure 4-9. The top graph

of each figure is a time trace of the voltage output from the strain gauges and the bottom

is a Fast-Fourier Transform (FFT) of the output. The first tap was to excite the bending

modes. The tap was applied to the tip of the wing around 30% chord line. The frequencies
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excited were at 6 Hz and at 38 Hz (1st and 2nd bending). The second tap was at the

tip but off the elastic axis, at the trailing edge of the wing tip, thus the torsional modes

were excited. This plot shows dynamics at 70 Hz (1st torsion), as well as the 6-Hz and

38-Hz bending frequencies. The final tap was on the leading edge of the wing tip in the

forward/aft direction. This excited the chordwise bending mode. This plot shows the 1"

chordwise bending frequency at 45 Hz. The 6-Hz 1" bending was also excited.

Volts
5.40-

5.25-

0.00 0 05 0,10 0.15 0.20 0.25 0.30 0.35 0.40 0,45 0.50
dBVrns Peak Power 28.14 Vrms^"'2 Peak Frequency: 0.00 Hz

14.5-

0.0-

-20.0-

-40.0-uA

60.0-Hz

0,0 20.0 40.0 60.0 80.0 100.0 120.0

Figure 4-7: Tap test for bending frequencies-root bending gauge

It can be seen through these graphs that tap tests are not perfect, as exciting purely

one type of mode is extremely difficult. However, the first four modes of vibration can be

determined along with their mode shape. This data is summarized in Table 4.1.
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0.05 0.10 0.15 0.20 0.25
Peak Power :12.09 Vrms^2

0.30 0.35 0.40

Peak Frequency :

20.0 40.0 60.0 80.0

5,

0.45 0.50
0.00 Hz

Hz

100.0

Figure 4-8: Tap test for torsion frequencies-root torsion gauge

Table 4.1: Natural Frequencies From Bench-top Tap Tests

Mode Frequency Mode Shape
1 6.4 Hz 1 " Bending
2 38 Hz 2"d Bending
3 45.0 Hz 1 " Chordwise Bending
4 70.0 Hz 1st Torsional
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Volts
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6 50 -iv 
- 1 1 1/ 1 V 1 v 1

6.48 - - -i -- 1 I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

dBVrms Peak Power 42.31 Vrms^,2 Peak Frequency: 0.00 Hz
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Figure 4-9: Tap test for chordwise bending frequencies-forward/aft gauge
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4.1.3 Shaker Tests for Dynamic Properties

Finally, a mini shaker type 4810 from Briiel & Kjaer was applied to different spots on the

wing to validate the tap tests and to fully understand the dynamics of the wing. The shaker

was first applied to 30% of the chord at about 0.125-m out from the root clamp. The

shaker was excited with sine waves of frequencies varing from 1 Hz to 110 Hz. This test

was followed by the shaker exciting the leading edge of the wing, as shown in Figure 4-10.

Again the shaker was excited with frequencies varing from 1 Hz to 110 Hz. With the shaker

Figure 4-10: Shaker at the wing leading edge for the natural frequency bench test

at the leading edge, the first torsion mode could be excited. The shaker test confirmed the

frequencies and mode shapes determined through the tap test, as the node line for the wing

could be observed and felt through a light touch. These results support the use of the tap

test in the tunnel, where a shaker test would be difficult.
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4.2 Re-work of Analytical Model

During the bench top tests the wing was weighed to determine the true cross sectional

weight and the final length of the wing. The wing cross-sectional weight is 0.2176 kg/m.

The length of the wing outside the clamp is 1.038 m. With these adjusted within the model,

the originally calculated natural frequncies for the wing (Table 2.9) changed and the 1 st

bending mode matches that from the bench-top tests. The first six natural frequencies are

given in Table 4.2. A diagram of all the mode shapes is provided in Figure 4-11. The %-error

value is calculated with Equation 4.1.

Calculated - Measured
%error = - 100% (4.1)

Measured

Table 4.2: Natural frequencies with adjusted weight and length

Mode Calculated Frequency Measured Frequency % Error Mode Shape
1 6.44 Hz 6.4 Hz 0% 1st Bending
2 39.1 Hz 45 Hz 13% 1st Chordwise Bending
3 41.7 Hz 38 Hz 9.7% 2"d Bending
4 78.4 Hz 70 Hz 12% 1st Torsional
5 124 Hz -_- 3rd Bending
6 241 Hz -_- 2"d Torsional

Some adjustment of material properties was made to further modify the wing characterists

to match the bench-top results. The shear stiffness, Q66 (defined in Appendix B), of the

E-glass/epoxy was modified from 4.1 GPa to 3.25 GPa. This changed the first torsional

frequency of the modeled wing to 70 Hz without changing the other frequencies. The Young's

Modulus of the foam in the chordwise direction was also adjusted from 36.0 MPa to 558

MPa. This changed the first chordwise bending mode to 45 Hz. The discrepancy between

the true second bending and the predicted second bending is believed due to the non-uniform

distribution of mass along the span of the wing. The cross sectional wing weight takes the

weight of the accelerometers, strain gauges, and epoxy which was used to attach the separate
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Figure 4-11: Fundamental mode shapes with adjusted weight and length
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foam pieces and spreads them evenly across the entire wing. This un-even distribution of

mass will cause slight deviations in the second bending, causing the 6.25 times the first

bending frequency rule, value for isotropic homogeneous cantilever beams, to not apply.

With these modifications to the wing properties, the model predictions for the wing are

close to the measured frequencies. The natural frequencies are given in Table 4.3 and the

mode shapes are provided in Figure 4-12.

Table 4.3: Intermediate predicted natural frequencies based on added stiffness corrections

Mode Calculated Frequency Measured Frequency % Error Mode Shape
1 6.44 Hz 6.4 Hz 0% 1"t Bending
2 41.5 Hz 38 Hz 9.2% 2nd Bending
3 45.0 Hz 45 Hz 0% 1"t Chordwise Bending
4 70.0 Hz 70 Hz 0% 1 " Torsional
5 123 Hz - - 3rd Bending
6 216 Hz - - 2 "d Torsional

These new changes in the model were used to calculate new flutter speeds. The flutter

speeds are given in Table 4.4 along with their corresponding root locus plots in Figure 4-13

through Figure 4-17. A portion of the root locus was magnified for 10 and 20. This data is

provided in Figures 4-14 and 4-16.

Table 4.4: Intermediate predicted flutter speeds based on corrected structural properties

Angle of Attack Flutter Speed
10 33.0 m/s
20 52.7 m/s
50 42.75 m/s

A more indepth study of flutter speed versus angle of attack has provided a graph de-

picting some strange behavior of the wing between 1 and 20 angle of attack (Figure 4-18).

Similar behavior of flutter speed versus angle of attack was discussed in [1]. There, a dis-

continous jump in the flutter speed was seen between 00 and 1 angle of attack. For this
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Figure 4-12: Predicted fundamental mode shapes based on added stiffness corrections
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Figure 4-13: Root locus plot for 10 root angle of attack based on modified wing stiffness
properties
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Root locus for Root AOA = 1 *
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Figure 4-14: Magnified root locus plot for 1' root angle of attack based on modified wing
stiffness properties
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Root locus plot for 2' root angle of attack based on modified wing stiffness
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Root locus for Root AOA =
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Figure 4-16: Magnified root locus plot for
stiffness properties

2' root angle of attack based on modified wing
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Root locus for Root AOA = 5*
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Figure 4-17: Root locus plot for 50 root angle of attack based on modified wing stiffness
properties
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current wing, however, the behavior of the wing at 10 is not believed to be accurate, as is

proved during the wind tunnel tests. As will be discussed in more detail later, the wing was

flown in the tunnel up to 82 m/s at 1' angle of attack, which is 250% above this predicted

flutter speed.

For this reason the analytical model was again adjusted. A point mass was placed at

42% of the span to simulate the line of epoxy which joined the foam. The size of the point

mass was adjusted until the second bending frequency matched the measured 38 Hz. The

density of the foam was adjusted so that the first bending frequency returned to 6.44 Hz

after the addition of this new mass. Table 4.5 provides a summary of the final values for the

adjusted parameters.

Table 4.5: Final values of adjusted parameters

Parameter Original Value Adjusted Value
wing span 1 m 1.038 m

p foam 30 kg/m 3  94.5 kg/m 3

Q66 E-glass/epoxy 4.10 GPa 3.265 GPa
Et foam 36 MPa 558 MPa

Point mass @ 46% span 0 kg 0.0286 kg

With this last adjustment, the first four predicted frequencies match those measured.

Table 4.6 shows the frequencies values while Figure 4-19 shows the corresponding mode

shapes.

These new dynamic characteristics resulted in a change in the aeroelastic behaviour of

the wing. The new stability characteristics are shown in the root locus plots provided in

Figure 4-20, Figure 4-24, Figure 4-28, and Figure 4-32. A magnified portion of these graphs

for 0', 1 0, and 2' root angles of attack is provided in Figures 4-21, 4-25, and 4-29. The

data is also presented in V-g plot format, which is provided in Figure 4-22, Figure 4-23,

Figure 4-26, Figure 4-27, Figure 4-30, Figure 4-31, Figure 4-33, and Figure 4-34.
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Table 4.6: Final natural frequencies from wing analysis

Mode Calculated Frequency Measured Frequency % Error Mode Shape
1 6.44 Hz 6.4 Hz 0% 1st Bending
2 38.0 Hz 38 Hz 0% 2"3 Bending
3 45.0 Hz 45 Hz 0% 1" Chordwise Bending
4 70.0 Hz 70 Hz 0% 1st Torsional
5 123 Hz - - 3rd Bending
6 216 Hz - - 2 ,d Torsional
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Figure 4-19: Predicted mode shapes after final modifications of different wing properties
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Figure 4-20: Root locus plot for 0' root
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Root locus for Root AOA = 0 *
45.7

45.6

45.5

45.4

45.3

45.1

45 ---------

44.9 F-

44.8 F-------------

44.7
0. 0 0.5 1 1.5

Real Part of Root

Figure 4-21: Magnified root locus plot for 00 root angle of
of different wing properties

2

attack based on final modifications

122

LL

------ -- -
1T

-- - -
\0

1CB

I I I I

5



120

100

80

0 Degree Angle of Attack

60 H

401

20 -

0
0 10 20 30

Speed (m/s)
40 50 60 70

Figure 4-22: V-g (frequency part) for 00 root angle of attack based on final modifications of
different wing properties
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Figure 4-23: V-g (damping part) for 00 root angle of attack based on final modifications of
different wing properties
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Root locus for Root AOA =
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Figure 4-25: Magnified root locus plot for 10 root angle of
of different wing properties

attack based on final modifications
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Figure 4-27: V-g (damping part) for 10 root angle of attack based on final modifications of
different wing properties

128

*
*

**

*
*

*
*

*
*

*

* * * *



140

30 20 10 0
Real Part of Root

Figure 4-28: Root locus plot for 20 root angle of attack based on final modifications of
different wing properties
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Root locus for Root AOA =
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Figure 4-29: Magnified root locus plot for 2' root angle of
of different wing properties

attack based on final modifications
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Figure 4-30: V-g plot (frequency part) for 2' root angle of attack based on final modifications
of different wing properties
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Figure 4-31: V-g plot (damping part) for 2' root angle of Attack based on final modifications
of different wing properties
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Root locus for Root AOA =
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Figure 4-32: Root locus plot for 5' root angle of attack based on final modifications of
different wing properties
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Figure 4-33: V-g (frequency part) for 50 root angle of attack based on final modifications of
different wing properties
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Figure 4-34: V-g (damping part) for
different wing properties

50 root angle of attack based on final modifications of

The strange behaviour observed at 10 root angle of attack in the stiffness adjustments

has shifted and is now occuring at 2'. By plotting the data in V-g plots, it was determined

that the wing is experiencing hump flutter at the lower speed. The mode would not be seen

experimentally, as a very small structural damping within the system would have negated

the weak flutter seen at the first crossing of the instability axis. The second crossing, at

51.8 m/s for 20 angle of attack, is a much stronger flutter and would manifest itself during

experimentation. The predicted flutter speeds for this wing are provided in Table 4.7.
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Table 4.7: Predicted flutter speeds with final model adjustments

Angle of Attack Flutter Speed
10 42.5 m/s
20 51.8 m/s
50 42.7 m/s

The curve for flutter speed versus root angle of attack is provided in Figure 4-35. The

solid line represents the final predicted flutter speed. The dotted line shows the speed of

the first crossing of the instability axis, or the hump mode speed, and is ignored for reasons

mentioned above. The three individual points represent the maximum wind tunnel tested

speeds.

4.3 Wind Tunnel Tests

The experimental portion of this thesis culminated with the wind tunnel tests. A photo of

the wing in the tunnel is provided in Figure 4-36. Once the set-up was completed, calibration

tests were performed before starting the actual tunnel tests. During the wind tunnel tests,

four strain gauges were monitored-root bending, root torsion, forward/aft (located at 45%

of span) and another bending (located at 35% of span).

4.3.1 Wing Calibration in the Wind Tunnel

As with the bench-top tests, a calibration of the strain gauges with the wing in the tunnel was

performed to determine the deflection-to-voltage ratio of the bridges as different conditioners

were being used. The deflection was produced in a slightly different manner for the tunnel

tests. Weights were suspended from the wing at various locations along the chord at 2/3 the

span of the wing (Figure 4-37).

Three different tests were performed with these weights, which were suspended from the

wing via a hanger (17 gm). The first test used 217 gm (2.13 N) from the wing at points

along the wing chord. This test was to locate the elastic axis. The location of the elastic axis

136



60 1 1 1
-0- predicted flutter speeds
-e- predicted flutter speeds (disregarding hump instability)
* highest wind tunnel tested speed

55-

50-

45
E

U)

40-

'0
35-

'0.*

o 0

30'
0 1 2 3 4 5 6 7

Root Angle of Attack (deg)

Figure 4-35: Predicted flutter speed for various root angles of attack
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Figure 4-36: Wing set-up in the Wright Brothers wind tunnel
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Figure 4-37: Set-up for hanging weights to calibrate strain gauges
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was determined to be at 73% of the chord from the leading edge. This result contradicts the

analytical expectation of 30% of the chord. This is due to the location of the strain gauge

used to calculate this result. The root torsion gauge was used and is located about 10 mm

from the clamp. The area near the clamp is subjected to end effects and does not behave

according to St. Venant's principle. If the gauge was located at least a chord-length away

from the clamp, the results would more accurately reflect the analytical value. A plot of the

resulting strain gauge output is provided in Figure 4-38.
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Figure 4-38: Time trace for elastic axis determination

700

The second test was to hang weights- 117 gm (1.147 N), 217 gm (2.128 N), and 317 gm

(3.109 N)- at 50% of the chord to calibrate the strain gauge output due to bending. The

locations of the leading and trailing edges at the wing tip were recorded for each weight as

well. This was accomplished by first measuring the height of the unloaded wing tip (leading
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and trailing edge) and then the height for all subsequent loadings. A time trace of the strain

gauge data is provided in Figure 4-39.
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Figure 4-39: Time trace for wing loaded at 50% chord in wind tunnel

Finally this second test was repeated, except the weights were hung from 90% of the

chord. This provided a second calibration for the gauges. A time trace of this data is shown

in Figure 4-40.

A calibration curve for the root bending gauge as a function of voltage-to-bending moment

at the root is provided in Figure 4-41. A curve for the root torsion gauge depicting the

voltage-to-pitch moment at the root relation is given in Figure 4-42. To get the data from

both loading cases to agree, the moment was found about an axis at 63.81% chord line.

A curve for the other bending gauge provides the voltage-to-bending moment at 35% span

(gauge location) and is shown in Figure 4-43.
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Root Bending Gauge: Weight at 50% and 90% Chord
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Figure 4-41: Calibration of root bending gauge from both 50% and 90% chord load cases
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Root Torsion: Weight at 50% and 90% Chord
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Figure 4-42: Calibration of root torsion gauge from both 50% and 90% chord load cases

144

-0.015

0)

Cz

C

0

0

0

-0.016-

-0.017-

-0.018-

-0.019-

-0.02-

-0.021 -

-0.022-

-0.023-

y = -0.138 x + -0.022918

I I I I I I I I I-0.024'
-0.0 5 0



Another Bending Gauge: Weight at 50% and 90% Chord
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Figure 4-43: Calibration of
90% chord load cases

other bending gauge (located at 35% span) from both 50% and
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In addition to these static tests, the tap tests were also repeated. From these tap tests,

the frequencies of the wing were confirmed with the new mounting set-up to be the same as

in the bench, with the addition of three unexpected frequencies detected. A 15-Hz chorwise

bending mode was introduced, due to flexibility of the load cell mounting. A mode at 20

Hz is present in most of the tunnel data, this is also believed to be associated with the

flexibility of the load cell mounting. Another possibility is that some larger motors produce

a 20-Hz dynamic disturbance. The 60-Hz mode is often found in dynamic data and is due to

electricity noise. Data from the undisturbed system is provided in Figure 4-44. The 100 Hz

dynamics is also believed to be either noise from the tunnel environment, as its magnitude

is quite large, even in the undisturbed wing data. The graphs for the bending, torsion, and

forward/aft taps are provided in Figure 4-45 through Figure 4-47.

The data from the root bending gauge shows the expected 6-Hz 1" bending mode and

the 38-Hz 2 nd bending mode. It also shows significant dynamics at 15 Hz and 20 Hz.

The data from the root torsion gauge shows the 6-Hz lst bending mode and the 38-Hz

2nd bending mode again, but also shows the 70-Hz 1" torsion mode. Again, an unexpected

dynamics at 15 Hz, 20 Hz, and 100 Hz can be seen from the data.

The data from the forward/aft strain gauge shows the first two bending modes as well,

and also shows the 45 Hz 1 " chordwise bending mode. The dynamics at 15 Hz was again

detected.

4.3.2 Wind Tunnel Tests

With the natural frequencies of the wing confirmed, the wind tunnel tests were conducted.

The first wind tunnel test was to determine the lift curve for the wing. The wing was then

flown at three different root angles of attack (10, 2', and 50). The starting speed for each

of these root angles of attack tests was 20.1 m/s (45 mph) with the upper limits varing

according to the behavior of the wing.
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Figure 4-44: Other bending gauge readings from undisturbed wing mounted in tunnel
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Figure 4-45: Root bending gauge readings from tap test-wing mounted in tunnel
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Figure 4-46: Root torsion gauge readings from tap test-wing mounted in tunnel
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Figure 4-47: Forward/Aft bending gauge readings from tap test-wing mounted in tunnel
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Wing Lift Curve

The lift curve was generated by flying the wing at 20 m/s (33.6 mph) and incrementing

the angle of attack from 00 to 12'. The lift generated was monitored through the load cell.

Both the theoretical and experimental lift curves are provided in Figure 4-48. The symbols

represent the experimental data and the solid line is the theoretical curve generated from

[3]. In addition to the calibration matrix coefficient, the load cell data was multiplied by

a constant factor of 10. The exact reason for this multiplier is unknown to the author. A

further calibration of the load cell is necessary to properly identify the correct calibration

term.
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Figure 4-48: Lift curve for wing

151



1' Root Angle of Attack Tests

The 1' test were conducted from 20.1 m/s (45 mph) to 36.7 m/s (82 mph). Since this was

the first round of tests, the flight speed was not driven up near flutter to ensure that data

would be collected for all three angles of attack.

The data from the sensors at 20.1 m/s (45 mph) show many of the natural frequencies

and is provided in Figure 4-49 through Figure 4-52. This data was processed through a

Welsh averaging scheme with a 125 data point window and an overlap of 63 data points. At

a minimum, all flight data was processed through this scheme.
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Figure 4-49: Frequency plot from root bending gauge at 20.1 m/s for 10 root angle of attack
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Figure 4-50: Frequency plot from root torsion gauge at 20.1 m/s for 1' root angle of attack
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Figure 4-51: Frequency plot from forward/aft gauge at 20.1 m/s for 1 root angle of attack
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Figure 4-52: Frequency plot from the other bending gauge at 20.1 m/s for 1 root angle of
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The data from the sensors at 36.7 m/s (82 mph) is noisier and the natural frequencies

are harder to detect. These results are shown in Figure 4-53 through Figure 4-56.
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Figure 4-53: Frequency plot from root bending gauge at 36.7 m/s for 1 root angle of attack
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Figure 4-54: Frequency plot from root torsion gauge at 36.7 m/s for 10 root angle of attack
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Figure 4-55: Frequency plot from forward/aft gauge at 36.7 m/s for 1 root angle of attack
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Figure 4-56: Frequency plot from the other bending gauge at 36.7 m/s for 10 root angle of
attack

20 Root Angle of Attack Tests

The 2' tests were conducted from 20.1 m/s (45 mph) to 36.7 m/s (82 mph) and then from

20.1 m/s (45 mph) to 52.3 m/s (117 mph) after the 5' case was completed.

The natural frequencies at 20.1 m/s were fairly straight forward to determine. The added

turbulence from the wind tunnel did not interfere with this 10 s data collect, so this data did

not require extensive processing or filtering. The time trace from the root bending gauge is

provided in Figure 4-57 to show how clean the data looks.
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Figure 4-57: Time trace of data from root bending gauge at 20.1 m/s for 2' root angle of
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The data from the four strain gauges with the aforementioned averaging technique are

provided in Figure 4-58 through Figure 4-61.
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Figure 4-58: Frequency plot from root bending gauge at 20.1 m/s for 2' root angle of attack
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Figure 4-59: Frequency plot from root torsion gauge at 20.1 m/s for 2' root angle of attack
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Figure 4-60: Frequency plot from forward/aft gauge at 20.1 m/s for 2' root angle of attack
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Figure 4-61: Frequency plot from the other bending gauge at 20.1 m/s for 20 root angle of
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All four bridges detected a 20-Hz disturbance as well as one at 37-Hz. The additional

bending gauge only slightly detected the 37 Hz signal. A summary of which gauge detected

which frequencies is provided in Table 4.8.

Table 4.8: Frequencies detected from strain gauges at 20.1 m/s for 2' root angle of attack

Gauge 6 Hz 20 Hz 37 Hz 70 Hz 100 Hz
Root Bending X X X
Root Torsion X X X X

Chordwise Bending X X
Additional Bending X X X

A data set of importance from the 2' root angle of attack tests is at 52.3 m/s. Through

visual observation of the wing behavior, it is believed that the wing was operating just below

the flutter speed. Two root torsion gauge time traces of the wing operating at this speed are

provided in Figure 4-62 and Figure 4-63. The data from the sensors is provided in Figure 4-64

through Figure 4-66.
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Figure 4-62: Time trace of data from root torsion gauge at 52.3 rn/s for 2' root angle of
attack
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Figure 4-63: Time trace of data from root torsion gauge at 52.3 m/s for 2' root angle of
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Figure 4-64: Frequency plot from root torsion gauge at 52.3 m/s for 2' root angle of attack
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Figure 4-65: Frequency plot from forward/aft gauge at 52.3 m/s for 2' root angle of attack
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Figure 4-66: Frequency plot from the other bending gauge at 52.3 m/s for 2' root angle of
attack

50 Root Angle of Attack Tests

The 50 tests were conducted from 20.1 m/s (45 mph) to 33.5 m/s (75 mph). The wing at

this root angle of attack produced very large tip deflections. Therefore, the wing was not

flown up to 36.7 m/s (82 mph) as originally desired because of fear that the wing would

break and damage the tunnel.

The data from a 20.1-m/s case is provided in Figure 4-67 through Figure 4-69. The data

from the root bending gauge is not provided as the signal exceeded the recording limits.
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Figure 4-67: Frequency plot from root torsion gauge at 20.1 m/s for 50 root angle of attack
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Figure 4-68: Frequency plot from forward/aft gauge at 20.1 m/s for 50 root angle of attack
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Figure 4-69: Frequency plot from the other bending gauge at 20.1 m/s for 50 root angle of
attack

The data from the 33.5-m/s (75-mph) case shows some interesting frequency results.

This data is provided in Figure 4-70 through Figure 4-72. There are three dynamics present

in the root torsion gauge that were not targeted as noise from the tunnel environment: 34

Hz, 42 Hz, and 46 Hz. The forward/aft gauge and the bending gauge at 35% chord have

dynamics at 34 Hz, 38 Hz, and 40 Hz. This range of frequencies is where the root locus plot

(Figure 4-32) predicts both the 2nd bending and the 1 st chordwise bending to be interacting.
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Figure 4-70: Frequency plot from root torsion gauge at 33.5 m/s for 5' root angle of attack
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Figure 4-71: Frequency plot from forward/aft gauge at 33.5 m/s for 50 root angle of attack
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Figure 4-72: Frequency plot from the other bending gauge at 33.5 m/s for 5' root angle of
attack

Post-Tunnel Tap Tests

After the tests in the tunnel were completed, a follow-up tap test was conducted to determine

if anything changed during flight. The results from a bending excitation tap are provided in

Figure 4-73. This tap test captured the 6-Hz 1 " bending mode, the 38-Hz 2nd bending mode,

the 45-Hz 1 " chordwise bending mode, and the 70-Hz 1 " torsion mode. The torsion mode

was excited through a twisting tap. The data from the torsion strain gage is provided in

Figure 4-74. This graph shows the 60-Hz 18' bending mode and the 70-Hz 1 " torsion mode.

A mode at 100 Hz is also being excited. The forward/aft tap test is not provided as the tap
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Figure 4-73: Root bending gauge readings from tap test-wing mounted in tunnel
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was not recorded at the correct time. However, the chordwise bending mode was seen in the

bending tap. The chordwise bending mode was excited through a tap on the leading edge.
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Figure 4-74: Root torsion gauge readings from tap test-wing mounted in tunnel

The data from the forward/aft gauge is shown in Figure 4-75. This data yields the 45 Hz 11'

chordwise bending mode. This dynamic is masked quite a bit by the noise from the tunnel,

especially the 15-Hz and 60-Hz signal.
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Figure 4-75: Average tip accelerometer readings from tap test-wing mounted in tunnel
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Chapter 5

Concluding Remarks

This chapter presents a summary of the findings from the analytical and experimental por-

tions of this thesis. Along with the summary are sections on the conclusions drawn from the

research as well as recommendations for future work. The recommendations section suggests

improvements to the manufacture of the wing and the test set-up.

5.1 Summary

The aeroelastic behavior of high-aspect ratio wings was studied via a new numerical formu-

lation [11] which encompasses a non-linear, large deflection beam model with strain-based

finite element representation and finite-state unsteady airloads. Using this formulation, a

wing was designed, built, and its structural behavior evaluated under a variety of conditions.

Bench-top tests were performed to understand the structural dynamic behavior of the wing.

The first four natural frequencies at zero wind speed measured during bench-top 'tap' testing

were in good agreement with the analytical model. The wing was then tested within the

Wright Brothers Wind Tunnel to further understand the changes in dynamic behavior due

to flight speed and root angle of attack. The wing was flown at speeds ranging from 20 m/s

to 51.8 m/s and at 1*, 2 , and 50 root angles of attack. The tip deflections and natural

frequencies were recorded for these cases.
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5.2 Conclusions

The results presented herein validate the analytical model of the wing's aeroelastic behavior

under a variety of angle of attacks and wind speeds. Few parameter changes were introduced

to the model to reproduce the actual dynamic behavior. The need for these changes can be

associated with complexities resulting from the manufacturing process. With these changes

implemented, the predicted flutter speed is within 99% of the estimated flutter speed from

observations in the wind tunnel. Experimental validation of the analytical model provides

confidence in the ability of the code to predict the behavior of other systems under similar

conditions. This capability would be useful for predicting the theoretical performance of

high aspect ratio wings currently under consideration for upcoming remote sensing and

reconnaissance vehicle programs.

5.3 Recommendations for Future Work

The manufacture and test of the active wing presented in Appendix C would further vali-

date the capabilities of the analysis code. This would also demonstrate the capabilities of

embedded piezoelectric actuators (in the composite wing skin) to increase the flight envelope

of HALE vehicles. Note that a stress analysis, similar to the one conducted for the passive

wing, will still have to be performed for the active wing design.

Several areas of improvement in the wing manufacturing and the test set-up have been

identified that would facilitate future evaluations. First, although it would be more difficult,

the foam core should be manufactured as a single piece, rather than four seperate ones.

This would provide for more uniform cross-sectional properties. Second, the use of tip

accelerometers was of limited value and could have been eliminated without a large impact

on the results. The omission of the accelerometers would aleviate one of the reasons for

using four seperate pieces of foam for the core-there would no longer be a need to run wires

through the center of the wing. Omitting the accelerometers also helps with the homogeneity

of the cross section. Finally, the load cell added unwanted noise into the data and had little

practical value in the experiment. If a lift curve is desired it could be attained via a separate
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set-up. During the dynamic tests of the wing, where mode shapes and frequencies are

important, the flexibility of the load cell mounting fixture added undesirable dynamics to

the system.
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Appendix A

Mathematical Formulation

A.1 Introduction

This appendix provides a summary of the mathematical modeling used in this research.

A brief description of the geometrical, structural, and aerodynamic issues is presented. A

detailed description of the mathematical formulation can be found in [3] and [11].

The main features of this code are:

" nonlinear, large deflection beam model ,

" strain-based finite element representation , and

" finite-state unsteady airloads .

A.2 Geometrical Lay-out

There are three reference frames governing the wing and its interactions with the environ-

ment. The first being the global coordinate system through which the wind speed and gravity

affect the wing. The undeformed reference frame of the wing is measured with respect to the

cross section area centroid along the 30% chord line of the wing. Finally the deformed refer-

ence frame follows the deformation of the beam reference line. A diagram of these coordinate

frames with respect to the wing is provided in Figure A-1.
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UY(s)

p(s)

x

Figure A-1: Coordinate systems for the wing

A.3 Structural Formulation

The structural analysis of the wing is based on the principles of virtual work. These principles

yield the following general equation:

6W = fy(f(x, y, z)6u(x, y, z))dV

where 6W is the virtual work done by a force, f(x, y, z), to move an object a virtual distance,

6u(x, y, z). Separating this equation into individual forces yields the general equation:

6W = F1uou + F2,6u + -- -+ Funu

For an object to be in equilibrium, the above equation must be zero, that is, 6W = 0.

Within the program, the wing is allowed to move through three-dimensional bending and

twisting deformations, while extension and shear deformations are assumed negligible and

thus ignored. With this assumption, the virtual work equation becomes [3]:

6W = =o(6pTF + 6)M 6kTMintjdu

In this equation, opT is the change in the position of the reference line, p(s), see Figure A-1.

The term 66f represents the virtual rotation about the reference line, and JT denotes the

virtual curvature of the wing. The variable F stands for the external forces on the wing, M
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represents the external moments, and M"' represents the internal moments acting on the

wing.

When the vector q is defined to be the curvatures,rs in (x,y,z) and the variable R is defined

as all the generalized loads, the equation becomes [3]:

SW = 6qT (-Mqa - Cqe - Kqq + Rq)

In this equation, Mq denotes the mass matrix, Cq symbolizes the damping matrix, and Kq

is the stiffness matrix. Setting this system into equilibrium, yields:

Mqi + Cqj + Kqq = R

The stiffness matrix, Kq, is defined as:

Ku1 K 1 2 K 1 3 K 1 4

K, = K 12 K 22 K 2 3 K 24

K 13 K 23 K 3 3 K 3 4

K 14 K 24 K 34 K 4 4

where K11 is the extension stiffness, K 22 is the torsional stiffness, K 33 is the bending stiffness

about y, and K 44 is the bending stiffness about z (or the chordwise bending stiffness). The

off-diagonal terms are the cross-coupling terms, e.g., K 14 is the extension-chordwise-bending

stiffness term.

A.4 Aerodynamic Formulation

The aerodynamic model used in this aeroelastic formulation comes from the theory derived

in [14] and [15]. A full discussion on this is provided in [11] and [3]. The theory accounts

for thin deformable airfoil cross section undergoing large deformations at subsonic speeds.

It also includes small deformations about this large deflected state.

The lift, L, moment, M, and drag, D, are defined by the following equations:
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L = 2rpb(p[({b - d)d - Ao] - lb2 - 'bd&)

M 2rpb(Q[-(d + lb)i - (d + !b)AO - d2d] - lbdz - {b(d 2 + 1b2)d,)

D = -27rpb(z2 + d2&2 + A2 + 2dds + 2AOs + 2ddAo)

Within these equations, b is the semichord, d is the distance between the reference axis and

the mid-chord, and Ao represents the inflow term due to free vorticity [3]. The term, p

denotes the air density. The variables which represent the motion: y, y, z, i, z, a, d, and &

are defined in Figure A-2.

z)z

-c,-a

Figure A-2: Variables defining airfoil motion [3]

These equations are linearized with respect to time, ta, by the following equations [3]:

Y = (Wa + AW'

6- (a A61\)

o = (Ao,a + AAo)

Applying these perturbations to the equation of virtual work yields:

JW = f O(Loz + D6y + M6a)ds

A.5 Aeroelastic Formulation

The structural and aerodynamic formulations combine to produce the aeroelastic equations

[3].

M4+Cq+Kq+DA=F

A = F14+ F24+ F3 A
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In this equation, the mass, M, and damping, C, matrices are functions of the strains. The

structural stiffness, K, matrix is constant for a given geometry and material distribution.

The force vector, F, contain the inertial and aerodynamic forces and is a function of initial

values of t, q, and A. It also contains the effects of the active material layers in the wing

construction. See [11] for further details.
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Appendix B

Material Properties

The material file associated with the MATLAB code needs material properties to be con-

verted from engineering moduli (El, Et, vu, Gut) in the local ply coordinate system to the

plane-stress stiffness constants, Q [16]. Equations B.1 through B.5 show the relations. The

subscripts '1' and 't' represent longitudinal and transverse directions, respectively. The two

Poisson's ratios are related via Equation B.6. The material properties for the foam core are

provided in the standard nomenclature.

Q11 = El (B.1)
1 - Vit uti

Qi2 = vEt (B.2)
1- vuura

Q22 = (B.3)
1- vuti

Q16 = Q26 = 0 (B.4)

Q66 = Gu (B.5)

vU = - (B.6)
Eivut
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Table B.1: Properties of the materials used in this study

E-glass/epoxy Piezocomposite

Q11 19.7 GPa 33.6 GPa
Q12 2.92 GPa 7.54 GPa
Q22 19.7 GPa 16.6 GPa
Q66 4.10 GPa 5.13 GPa
di, n/a 309 pm/V

d12 n/a -129 pm/V

telectrode n/a 0.0011 m
thickness 0.1143 mm 0.127 mm

p 1716 kg/m 3  4060 kg/m 3

Ei, e22 10000 pm/m 4000 pm/m
eY2 15000 pm/m 5500 pm/m

Rohacell 31
E 36 MPa
G 14 kPa

p 30 kg/m 3

Ci 122 27000 pm/m
e12 30000 pm/m
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Appendix C

Active Wing Design

This appendix describes the design and analysis of the active flexible wing that is proposed

as a follow-on to the passive wing built for this thesis. Stress analysis will still have to be

conducted for this design.

C.1 Active Design

The active wing design is composed of three layers of E-glass/epoxy fabric oriented at 0'

around an inner foam core, with two active layers embedded within the E-glass. There is

no spar in this design. The goal is to have a flexible wing with low flutter speeds, for the

reasons mentioned during the passive design. This design provides a flexible wing while still

maintaining closed cell properties. A drawing of the wing lay-up is provided in Figure C-1.

[0 /+ 4 5 MFC/ 0 /- 4 5MFC/ 0]

foam

Figure C-1: Cross section of active wing
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C.1.1 Basic Static and Dynamic Properties

The cross-sectional properties for the active design are provided below. The stiffness matrix

terms for this cross section are given in Table C.1. Detailed definitions of the elements of the

matrix are provided in Appendix A. The inertia matrix for this cross-section is provided in

Table C.2. The center of gravity for the cross-section is located 0.0214 m aft of the reference

line (located at 30% chord). This places the center of gravity at 49.9% of the chord.

Table C.1: Non-zero stiffness matrix terms for the active wing design: 1 = Extension, 2 =

Torsion, 3 = Flatwise Bending, 4 = Chordwise Bending

Ku1  2.27 * 106 N
K14= K4 1 -4.78 * 104 N*m

K2 2  57.72 N*m 2

K3 3  57.00 N*m 2

K4 4 2.69 * 10 3 N*m 2

Table C.2: Non-zero inertial matrix terms for active wing design

Ill 0.244 * 10-3 m4

'22 0.998 * 10~ m4

133 0.234 * 10-3 m4

The dynamic properties of the wing are important to its aeroelastic response. The first

six natural frequencies of the wing are summarized in Table C.3. The corresponding mode

shapes are provided in Figure C-2.
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Table C.3: Natural frequencies of the active wing design in vacuum

Mode Frequency Mode Shape
1 6.8 Hz 1 " Bending
2 36.8 Hz 1 " Chordwise Bending
3 44.1 Hz 2 nd Bending
4 121. Hz 1 " Torsional

5 133. Hz 3 rd Bending
6 232. Hz 2"d Torsional

Speed = 0.00 m/s @ Freq = 6.8 Hz

-0.6

-0.4

Speed = 0.00 m/s @ Freq = 44.1 Hz

-:1
0.6

0.8

Speed = 0.00 m/s @ Freq = 133 Hz

0.6
0.4

0.2

Speed = 0.00 m/s @ Freq = 232 Hz

-0.1

0.8
1

Figure C-2: First six normal modes for active wing design (in vacuum)
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C.1.2 Wing Non-linear Characteristics

As seen in the passive wing designs, different root angles of attack of the wing result in

different wing tip deflections once the wing is exposed to airloads. The change in tip deflection

is graphed in Figure C-3 for the range of root angles of attack of interest: 1' to 5'. The tip

deflection increases with increased angle of attack.

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04-

0.02-

0-

-0.02 -
0 5 10 15 20 25 30 35 40 45 50

Speed (m/s)

Figure C-3: Static tip deflection for increasing speed at different root angles of attack

The wing tip twist also changes with increased root angle of attack. This data is provided

in Figure C-4. To better illustrate this effect, the initial root angle of attack has been

subtracted from the total tip twist, yielding only the elastic angle change due to gravitational

and aero-loading.
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0.08 - - . - -
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Figure C-4: Elastic tip twist for increasing speed at different root angles of attack
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The changes in tip deflection and twist result in a change in the dynamic behavior of the

wing, and ultimately a change in the wing's flutter speed. This is shown in the root locus

plots for the wing at root angles of attack of 10, 2' and 5'. The flutter speeds as a function

of root angle of attack determined from these plots are provided in Figure C-5.

1 2 3 4
Root Angle of Attack (deg)

5 6

Figure C-5: Flutter speeds for active wing design
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One-Degree Root Angle of Attack

The flutter speed for one-degree root angle of attack is determined to be 79.3 m/sec, shown

in Figure C-6. The mode of instability is the second mode. A magnified plot of this mode's

behavior is provided in Figure C-7. This mode is primarily the first chordwise bending.

However, the forces due to air pressure on the tilted wing result in some torsion being

present as well. The first six mode shapes at this speed are given in Figure C-8.
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Figure C-6: Root locus plot for 10 root angle of attack
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Root locus for Root AOA = 1 *

0. 1 0 0.1 0.2
Real Part of Root

0.3 0.4 0.5

Figure C-7: Magnification of root locus plot for 1 root angle of attack
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Speed = 79.30 m/s @ Freq = 6.81 Hz

Speed = 79.30 m/s @ Freq = 44.1 Hz
Speed = 79.30 m/s @ Freq = 124 Hz

0.2
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Figure C-8: Mode Shapes for active wing
sponding flutter speed of 79.3 m/s

design at 1 root angle of attack and its corre-
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When the wing is flown at 10% above the flutter speed for a 10 angle of attack, the wing

enters into a Limit Cycle Oscillation (LCO). The tip deflections and the tip twist are plotted

for this case up to 1 second. These plots are given in Figure C-9 thru Figure C-11.

Speed = 87.23 m/s with a Time step = 0.0005 s
0.12

0.118

.-I.11
E

_) 0.114
E

U

0.112

0.108'
0 0.2 0.4 0.6 0.8 1

Time (s)

Figure C-9: Nonlinear time simulation of the wing vertical tip displacement at 10% above
its flutter speed (10 root angle of attack) for the active wing design

Two-Degree Root Angle of Attack

The flutter speed for two degrees angle of attack is determined to be 77.3 m/s from the root

locus plot shown in Figure C-12. The instability mode is the same as for 10, except the

amount of torsion present is increased. The drop in the second natural frequency due to the

increased upward bend, also causes the second mode to turn over faster and amplifies the

effects of flow over the wing. The first six modes at flutter speed are provided in Figure C-14.
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Figure C-10: Nonlinear time simulation of the wing tip twist at 10% above its flutter speed
(10 root angle of attack) for the active wing design
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Figure C-11: Nonlinear time simulation of the wing tip displacement motion at 10% above
its flutter speed (10 root angle of attack) for the active wing design
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Root locus for Root AOA = 2*
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Figure C-12: Root locus plot for 20 root angle of attack
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Root locus for Root AOA = 2*
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Figure C-13: Magnification of root locus plot for 20 root angle of attack
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Speed = 77.30 m/s @ Freq = 6.81 Hz

Speed = 77.30 m/s @ Freq = 44.1 Hz

Speed = 77.30 m/s @ Freq = 132 Hz

Speed = 77.30 m/s @ Freq = 129 Hz

Speed = 77.30 m/s @ Freq = 232 Hz

0
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Figure C-14: Mode shapes for active wing design at 20 root angle of attack and its corre-
sponding flutter speed of 77.3 m/s
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For 20 angle of attack, the wing also enters a LCO when flown at 10% above the flutter

speed. The tip deflections and the tip twist are plotted for this case up to 3 seconds. These

plots are given in Figure C-15 thru Figure C-17.
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Figure C-15: Nonlinear time simulation of the wing vertical tip displacement at 10% above
its flutter speed (20 root angle of attack) for the active wing design

Five-Degree Root Angle of Attack

The flutter speed for five degrees angle of attack is shown to be 68 m/s in the root locus plot

provided in Figure C-18. As with the 1 and 2' cases, the mode of instability is the second

mode, which is the 1"t chordwise bending with some torsional effects. The changes in the

dynamic behavior due to the increased upward bend result in the second mode rolling over

faster to the positive dampening axis. The fourth mode (1st torsion) has curved upward and

now interacts with the fifth mode (3rd bending mode). This interaction between the fourth

and fifth mode has caused the fifth mode to turn towards the instability line as well. The

first six mode shapes for this case are provided in Figure C-19.

206



Speed = 85.03 m/s with a Time step = 0.0005 s
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Figure C-16: Nonlinear time simulation of the wing tip twist at 10% above its flutter speed
(20 root angle of attack) for the active wing design
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Figure C-17: Nonlinear time simulation of the wing tip displacement motion at 10% above
its flutter speed (20 root angle of attack) for the active wing design
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Root locus for Root AOA = 5
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Figure C-18: Root locus plot for 50 root angle of attack
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Speed = 68.00 m/s @ Freq = 6.83 Hz

0.6

0.4

0.2

0

-. 00040.30.201

Speed = 68.00 m/s @ Freq 43.8 Hz

Speed = 68.00 m/s @ Freq = 26.7 Hz

Speed = 68.00 m/s @ Freq = 129 Hz

0.8

Speed = 68.00 m/s @ Freq = 139 Hz

0.3
0.21 -mm
0.1

0 -- - -- 0.2-O N -- - -

Speed = 68.00 m/s @ Freq = 233 Hz

-n i --U.
0.8

Figure C-19: Mode shapes for active wing design at 5' root angle of attack and its corre-
sponding flutter speed of 68 m/s
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For 50 angle ofattack, the wing also enters a LCO when flown at 10% above the flutter

speed. The tip delections and the tip twist are plotted for this case up to 1 second. These

plots are given inPigure C-20 thru Figure C-22.
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Figure C-20: Nonlinear time simulation of the wing vertical tip displacement at 10% above
its flutter speed (50 root angle of attack) for the active wing design
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Figure C-21: Nonlinear time simulation of the wing tip twist at 10% above its flutter speed
(5' root angle of attack) for the active wing design
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Figure C-22: Nonlinear time simulation of the wing tip displacement motion at 10% above
its flutter speed (50 root angle of attack) for the active wing design

211


