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Abstract

There is much interest in improving quantum control techniques for the purposes of

quantum information processing. High fidelity control is necessary for the future of

quantum computing. Optimal control theory has been used successfully to numeri-

cally optimize control sequences for spin-based systems. Previous control pulse find-

ing efforts have primarily optimized pulses to a desired unitary control. Non-unitary
dynamics are unavoidable in quantum systems, and, to improve current control tech-

niques, interactions with the environment and stochastic noise processes must be
incorporated into pulse design. We present here a method of pulse optimization that
includes decoherence.

This thesis discusses a particular example of engineering control for an open quan-
tum system: selecting transfer pathways in dynamic nuclear polarization. Dynamic
nuclear polarization (DNP) is a method of increasing the nuclear spin magnetization
in a nuclear magnetic resonance experiment. DNP works by transferring polarization
from a coupled electron spin. In solid state systems, however, there are multiple

pathways through which polarization can be transferred. Excitation of more than
one pathway can prevent the nuclear spin from achieving the maximum possible po-

larization. It is demonstrated in this thesis that optimal control theory (OCT) can

be used to design pulses which will select one pathway and suppress the others. The

pulses were found considering the open quantum system dynamics.
This work includes an algorithm for generating noise realizations from a spectral

density function. Future efforts to engineer high-fidelity control could use this method
to incorporate stochastic noise in the pulse finding process.

Thesis Supervisor: David G. Cory
Title: Professor
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Chapter 1

Introduction

Spin based systems are one candidate for a quantum computing architecture [88, 87,

48]. Coupled electron-nuclear solid state systems are particularly appealing as quan-

tum processors. Nuclear spins may serve as a quantum memory due to their long

coherence times and weak interactions with their environment[42, 84], while electron

spins allow faster initialization and gate operations. Magnetic resonance systems and

methods have permitted the experimental examination of quantum information algor-

thims [20, 41, 51], error correction[22], quantum metrology[15], and control techniques

[30, 79, 36].

Nuclear magnetic resonance has long served as a testbed for QIP [23, 1]. In mag-

netic resonance spectroscopy, an ensemble of spins are aligned with a large external

magnetic field and controlled by a RF (for NMR) or microwave (for electron spin

resonance) field. We cannot perform projective measurements in NMR or ESR as

the coupling between the spin system and the detection circuit is too weak. We must

use averages over many spins instead and rely on expectation value measurements.

Thus we have a highly mixed state with some small deviation from identity, and that

deviation, or polarization, is the actual observable. It is desirable to increase this

purity of this state. This improves sensitivity and reduces the entropy in the system,

concepts which can extend beyond NMR to other qubit systems.

This thesis will discuss one method of enhancing the nuclear spin polarization:

dynamic nuclear polarization. DNP effectively transfers the electron magnetization
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to the nucleus in a coupled electron-nuclear system. This results in an enhancement

of the nuclear spin signal as the electron magnetic moment is more than two orders of

magnitude greater than the largest nuclear magnetic moment. The transfer of polar-

ization in DNP can occur through several pathways in the electron-nucleus system.

Relaxation plays an important role in this process, and thus the description of DNP

requires an open quantum system treatment.

While DNP is well-used and well-studied in NMR, it is an interesting problem in

a wider context. We can consider the different pathways of DNP to be various infor-

mation pathways in a more general open quantum framework. Often one may want

to select a particular pathway without exciting other unwanted transitions. For DNP,

as we will show in later chapters, this can provide a greater nuclear enhancement.

When the spin transitions are close or there is an overlap between the desired exci-

tation frequencies and other, unwanted transitions in the system, more sophisticated

control techniques are required. In this work we use optimal control theory to find

control sequences that generate the desired open quantum dynamics and select one

DNP pathway.

OCT and DNP are both valuable resources in magnetic resonance spectroscopy,

outside of the scope of QIP. The use of nuclear spins to store information is highly

relevant for medical imaging. Nuclear spins are of course used already for traditional

MRI, and one avenue of improvement in this field is to develop highly polarized tracers

with long coherence times that can be injected and imaged in vivo [6]. Sensitivity and

control still limit the usefulness of these techniques. DNP with OCT could provide

greater enhancements in these settings as well.

This thesis discusses open quantum system dynamics and describes the methods

of dynamic nuclear polarization and optimal control theory in the first few chapters.

We then show in Chapter 5 how we developed microwave pulses and simulated these

control sequences for performing DNP in a specific electron-nuclear system, malonic

acid. Chapter 6 outlines the experimental setup and presents the results of perform-

ing DNP with OCT pulses. The final chapter is a self-contained discussion of an

algorithm we propose for generating noise realizations of Gaussian processes with a

14



given spectral density. We begin by presenting the complete Hamiltonian for the

electron-nuclear system and describe the physical sample used in the experiments

presented later.

1.1 The electron-nuclear system

The system of interest here is that of an electron spin coupled to nuclear spins. It

has been shown that universal control in a hyperfine coupled electron-nuclear sys-

tem is achievable with only control on the electron spin provided that the hyperfine

interaction is not diagonal in the electron Zeeman basis [36].

We focus mainly on systems of one electron coupled to one spin-1/2 nucleus. The

Hamiltonian is the sum of the Zeeman terms for the electron and the nucleus and the

hyperfine coupling between the two spins,

H = Hi + H + HHF-S

The Zeeman Hamiltonian describes the interaction of the magnetic moment of the

spin with the external field,

Hz = -j Bo (1.2)

As in classical electromagnetism, it is energetically favorable for the magnetic dipole

to be aligned or anti-aligned with the external field, Bo. In terms of the spin operators,

the Zeeman Hamiltonians are,

H> = #BBOeS

H = #NBOgI (1-3)

where /B is the Bohr magneton, and #N the nuclear magneton. The g-tensors, ge

and 9, contain any anisotropy of the spin interaction with So such as the spin-orbit

coupling for electrons or the chemical shift for nuclei. Here we neglect any off-diagonal

15



components of the g-tenors, and we can write the Zeeman terms as

Hz = heBo -S hwsSz

H" = hynBo - I= hwiiz (1.4)

where the gyromagnetic ratio is defined -ye =ge/Bh and the Larmor frequency

w, = yBO . The gyromagnetic ratio of an isolated electron is 28GHz/T, and Y", for a

proton is 42MHz/T. From these numbers we see that the electron Zeeman interaction

is dominant with a strength -e/yn = 660 times that of the proton Zeeman energy.

This ratio is even greater for larger nuclei. The electron and nuclear spins are coupled

through the hyperfine interaction,

HHF = SAI (1.5)

A is the tensor operator for the hyperfine coupling. The Hyperfine coupling is the

sum of two contributions: the Fermi contact and dipole-dipole interactions.

HHF = HFC + HDD (1.6)

HFC 37I (1.7)

H D D3 ( - i ) -( . 8
HDD 477 ,-5 r3

The Fermi contact interaction arises from the overlap of the electron wavefunction,

To (r), at the nucleus ('= 0). The dipole-dipole interaction is the potential between

two magnetic dipoles, which depends on the orientation of the spins relative to the

external field and falls off as the cube of the distance between the spins [77, 53, 28].

The Fermi contact term is isotropic, while the dipole-dipole Hamiltonian contains

both isotropic and anisotropic components. The hyperfine interaction is independent

of the external field and can have a magnitude up to the order of 100MHz depending

on the system.

16



The dipole-dipole interaction is often expanded into the dipolar alphabet [82]:

HDD_ 10 YS7I [A + B + C + D + E + F] (1.9)
47 r

with A = I2Sz (1 - 3 cos 2 O)
1

B = (I+S- + IS+) (1 - 3 cos2 0)4
__3

C =- 3 (I+Sz + IS+) sin 0 cos Ge-'
2
3

D = ( S, + IS_) sin 0 cos e-
2
3

E = -I3+ sin 2 Oe-2io
4

F = -- IS_ sin 2O O-2i4
4

Here, r is the distance between the two spins, and 0 and # are the angles that the

vector r makes with the external field. A and B are the zero quantum terms, with

B driving spin-spin flip-flop interaction. C and D, the single quantum terms, are

interactions which flip one spin depending on the state of the other, and the double

quantum terms E and F induce mutual flip-flips.

The electron spin operator, S, is quantized along the direction of Bo; because of

the magnitude of the electron Zeeman energy, this defines the quantization axis for

this system. In the absence of any other interaction, the nuclear spin would also

be quantized along the external field. The hyperfine interaction, however, mixes the

nuclear Zeeman states.

At high field, for example at 1T, the electron Zeeman interaction is 28 GHz, while

the proton Zeeman interaction is 42 MHz and the hyperfine interaction is typically

within the range of kiloHertz to hundreds of megaHertz (although it can be up to

a gigaHertz for certain semiconductor systems). Clearly the electron Zeeman term

dominates, while the nuclear Zeeman and hyperfine interactions are perturbations.

The electron spin is therefore a good quantum number, and the nuclear spin is not.

The state of the electron spin does not depend on the state of the nuclear spin, but

a flip of the electron spin will affect the nuclear spin state through the hyperfine

coupling. Thus we can make the secular approximation, where we keep only terms

17



Considering just the isotropic hyperfine interaction, the

term that commutes with 5, is

Hiso= AzzIzSz (1.10)

The dipole-dipole Hamiltonian contains additional terms that remain in the secular

approximation, such as I.S. and IySz.

Haniso = AzxISz + Azy IySz (1.11)

where the Azi are the elements of the hyperfine tensor written in the basis of the

principal axis system. We can simplify the anisotropic interaction to a single term by

performing a frame transformation on the hyperfine Hamiltonian using the rotation

operator,

U =- ioi (1.12)

The hyperfine interaction in this frame is

UtHHFU = eiIz [AzzIzSz + AzxIxSz + AzyyISz] eZ'Oz (1.13)

AzzIzSz + Azx [cos $IxSz - sin $ISz]+ Azy [cos $IySz + sin $IxSz|

(1.14)

When $ arctan (Y the hyperfine Hamiltonian is

HHF = AIzSz + BIxSz (1.15)

where A Azz and B = Azx ±Ay.

The complete Hamiltonian for one electron and one nucleus under the secular

approximation is

H = wsSz + w1Iz + AIzSz + BIxSz (1.16)

with Ws = yeBo and w, = ynB o .

18
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1.2 N-N interactions and Spin Diffusion

As will be discussed later, in a typical DNP experiment the nuclear spins coupled

directly to electron spins are polarized, and the polarization is then transferred to

the nuclear spins far from the electron through nuclear-nuclear interactions. Our

model system must include a nuclear spin bath which is connected via dipole-dipole

interactions. The dipole-dipole interaction between like nuclear spins has the same

form as Eq. (1.9). This interaction is typically on the order of tens of kiloHertz. The

nuclear Zeeman energy is megaHertz, so when we take the secular approximation

in the system of many nuclei, we retain the terms which do not perturb the energy

levels. Only A and B in the dipolar alphabet are energy conserving when the spins

are the same. Thus the dipole-dipole Hamiltonian for a system of many nuclei is

H"b=Nb 2I I - (III + i'I) (1.17)

Df bi 21z~ - 3 2g.
i<J

by 2 h -3 os 2 O, (1.18)
2 r 3

This Hamiltonian drives the process known as spin diffusion. Consider the simpli-

fied case when dipole-dipole interaction occur only between nearest neighbors. The

rate, W, of the flip-flop transition is proportional to the matrix element (t |H| I).

In a chain of spins each separated by a distance a, under a classical model of diffusion,

the change of polarization for a single spin at position x0 is described by the following

rate equation [2, 8],

dp(xo) A 2d - =W [p(xo + a) + p(xo - a) - 2p(xo)] =Wa 2 p2 (1.19)

From the second equality we see that this is a diffusion equation with diffusion coeffi-

cient Wa2 . In full generality, considering three dimensions and interactions between

all pairs of spins, the diffusion equation is

dp C
t = DV 2 p + -(p - po) (1.20)

di
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(a) 2 (b) 3 4

1 2

(C) 2 (d) 3 4

1 1 2

Figure 1-1: Figure from [12]. (a) Zeeman order diffuses when neighboring spins can
exchange states. (b) Dipolar order states can diffuse in two directions. (c) Zeeman
order cannot propagate when neighboring spins are in the same state, but (d) dipolar
order still has another direction available for diffusion.

where D is the diffusion coefficient and C/r' describes the relaxation rate for each

nuclear spins, i, at a distance ri from the electron. Determining D theoretically is a

difficult multibody problem. Studies on this subject have used Redfield's method of

moments and linear response theory to calculate diffusion coefficients and correlation

functions in dipolar coupled spin systems[32, 33].

Note also that in the dipolar coupled nuclear spin system, the spin magnetization

is not the only conserved quantity. The dipolar energy is also conserved, and diffusion

of the dipolar order also occurs under the Hamiltonian in Eq. (1.17). The diffusion

rate of the dipolar ordered two-spin state can actually be faster than that of the

Zeeman ordered single spin state. This can be seen simply by considering the paths

of diffusion for each quantity (see Fig. (1-1). Zeeman order diffusion requires mutual

spin flip-flops; if two neighboring spins are in the same state there cannot be any

evolution. The four spin interaction required for dipolar order to diffuse can occur

through flip flops in a perpendicular direction if two neighboring spins are aligned

[12]. There is an additional degree of freedom for dipolar order to diffuse.

Spin diffusion is essential in DNP experiments. In a sample where the electron

spins are dilute, there will be some nuclei directly coupled to the electron spin and

many more nuclei far from the electron with small hyperfine couplings. As the dipolar

20



Spin :arer t

t t

Figure 1-2: Spin diffusion across a spin barrier with nuclei inside the barrier coupled
to a central electron and dipolar coupled to nuclei in the bulk.

coupling falls of as r-3 these couplings become small quickly with the distance from

the nuclear spin. These distant nuclei can still be polarized, however, through spin

diffusion.

The nuclear spins close to the electron defect will have an energy mismatch with

the bulk nuclei though due to the large hyperfine coupling. This gives rise to what is

known as the spin-diffusion barrier, a region of polarized nuclei close to the electron

spin which cannot transfer their polarization outside the region to the weakly coupled

nuclei [75]. When observing the bulk nuclei, spin diffusion will likely be the rate

determining step in the polarization build up time.

1.3 Experimental System

The system chosen for this experiment is irradiated malonic acid (see Fig. 1-3). After

X-ray irradiation the central carbon has one unpaired electron which is hyperfine

coupled to the neighboring hydrogen nucleus. Malonic acid is a well characterized

sample widely used in ESR [26, 80]. Malonic acid has a triclinic crystal structure

with two molecules per unit cell. The nearest methyl-group protons have a dipolar

coupling on the order of 60 kHz [31].
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0 0

C C
/ \ /OOH C OH
OHN

Figure 1-3: Malonic acid with one unpaired electron.

The Hamiltonian for this system under the secular approximation is

H = ws Sz - w1Jz + AIzSz + BIxSz (1.21)

In an external field of 3406 G, the electron Larmor frequency, WS, is 9.59 GHz, the

nuclear resonance, w is 14.57 MHz. The terms A and B depend on the orientation

of the crystal in the field. The anisotropic hyperfine term is maximized when the

&- plane of the crystal is at 450 to the external Bs field. In this orientation the

isotropic and anisotropic parts of the hyperfine coupling are -42.7 MHz and 14.2 MHz

respectively.

The malonic acid sample used in the experiments here was a single crystal ir-

radiated for 5 hours with 8 keV X-rays and subsequently annealed at 45'C for 15

hours. We mapped the orientation hyperfine coupling by rotating the sample in a

CW-ESR spectrometer (Fig. 1-4) and measuring the splitting of the two hyperfine

peaks as a function of the rotation angle (Fig. 1-5). The anisotropic hyperfine term

is maximized when the sample is oriented so that the splitting in the CW spectrum

is 15 G. From the amplitude of the CW spectrum we estimate that the defects in the

sample are separated by approximately 100 nm. T of the electron for this sample

was measured to be 16 ps.
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Figure 1-4: Continuous wave spectra of irradiated malonic acid at different orienta-
tions with respect to the external field. The two main dispersive peaks indicate elec-
trons which are hyperfine coupled to nuclear spins in either the up or down states.
The value of the splitting indicates the strength of the hyperfine coupling, which
varies with the orientation of the crystal. The spectra are plotted successively for
sample orientations rotated 15' from the previous plot. The magnitude of this signal
indicates the sample has on the order of 1015 electron spins.
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Figure 1-5: Hyperfine splitting as a function of the rotation angle.
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Chapter 2

Open Quantum Systems and

Superoperator Representations

We now discuss the evolution of the electron-nuclear hyperfine coupled system. We

are interested in dynamics including the effects of the environment. We will need to

account for relaxation processes in order to find control sequences and to simulate

DNP in our model system. One can derive evolution in an open quantum system using

several different superoperator representations, which we describe in this chapter.

Closed system dynamics are driven by a unitary operator which is determined

by the system Hamiltonian. To include the interactions with environment, we must

find Liouville space operators which act on the density matrix, p, that contains all

information about the state of the system. Unlike closed quantum systems, open

quantum dynamics are non-unitary and must be described by a completely positive,

trace-preserving (CPTP) map, A, which takes p(t = 0) to p(t),

p(t) = At(p(to)) (2.1)

We will also refer to A as a superoperator, which is typically defined as a linear

operator acting on a space of linear operators. The CPTP property of A is necessary

to preserve the linearity and normalization of p [50, 4].

Consider the Hilbert space 7 s 0 WE, the space of the combined system and
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environment - in the context of NMR this would be the system of a spin which

decoheres due to fluctuating fields in the local environment. The evolution of the

combined system is unitary

PSE(t) = U(t)pSE(0)Ut(t) (2.2)

If we want to find the evolution of only the system, we must trace out the environment.

Assuming the initial state has no correlations with the environment, the density

matrix can be written:

ps(t) A(ps(O)) = TTE [U(t)ps(O) (|@)E( ME Ut(t)]

= Akps()At (2.3)
k

Here, the operator Ak = (kl U(t) 10) acts only on the system Hilbert space.

As we are interested in magnetic resonance systems, we mention that the density

matrix, p, mathematically defines the total state of the spin system with the diagonal

terms indicating the state populations and the off-diagonal terms representing the

coherences between states. Decay of the diagonal terms corresponds physically to T

relaxation, which returns the populations to their thermal equilibrium values. In the

general open quantum system formalism, this type of relaxation is described by an

amplitude damping channel. Similarly, loss of coherence affects the off-diagonal terms.

Physically this looks like dephasing, or T2 relaxation, and is achieved operationally

through a phase damping channel.

2.0.1 Kraus Operators

There are several superoperator representations we can use to describe open quantum

dynamics in an NMR setting. One choice is the Kraus operator or operator sum

representation [65, 47]. The set Ak in Eq.(2.3) are called Kraus operators, and the
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map A as defined in Eq. 2.3 is a valid superoperator as long as the constraint,

(2.4)SAtA = I
k

is satisfied. This requirement ensures the trace preserving property of the quantum

dynamical semigroup.

Kraus operators are not a unique representation of a given map of open quantum

dynamics, but, according to the Kraus Representation theorem, if a superoperator

can be written as a Kraus decomposition then it is a completely positive map [46].

Amplitude Damping

For a single spin-1/2

[65, 71],

If the initial state of

the amplitude damping channel is given by two Kraus operators

1 0
Ao = ,

ti 0 tw 1 -lee s

this two level system is

and the map A(p) defined

after n iterations the state

by

is

Poo Po1

P10 P11

the operators in Eq.

(2.6)

(2.5) is applied repeatedly, then

P' =
1 - (1 -)p

( 1 - .y)"pio

1 Y)npoi

(1 - 7)np J

We set Y Fit, to connect these abstract operators to a physical system. F1

rate of longitudinal relaxation and is equal to the inverse of T1 . Then as n -+

have

P/' (
- e-r P11

e-rt/2 P1 0

-r1t/2 P1

C-ritP1 )
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This map drives p to a pure state in which the spin is fully polarized in the ground

state. The diagonal terms decay simultaneously, as is expected for T relaxation. A

similar set of Kraus operators that drive the system towards a mixed state or the

thermal equilibrium state is

1 0A1 =~3 4)

A 3 = /1 -P
0

1) A 4 = -p

Where e = exp(-t/T) and p = exp(-hl/kbT). The thermal equilibrium polarization

is defined by the temperature, T, and the Larmor frequency of the spin in the external

field, w.

Phase Damping

As we did for amplitude damping, we can also write out Kraus operators for the phase

damping channel and connect them to T2 relaxation. The Kraus operators for phase

damping are

1 0 0 0
Ao = , A1 = ()(2.11)

If we set A= F2ttn with F2 = 1/T 2 and apply the Kraus operators repeatedly, this

map takes p to

, (1 -pn e2t001
p1= (2.12)

e--2 p1o P11

where F2 = 1/T 2 is the transverse relaxation rate. These operators reduce the ampli-

tude of the off diagonal terms, indicating a loss of coherence.
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Choi Matrix

As the Kraus operators are not unique, in order to increase the speed of simulations

it is helpful to find the smallest set of Kraus operators possible. Simulations of

systems with several processes occurring simultaneously in a system require multiple

sets of Kraus operators, and one often wishes to simplify the numerics by finding the

minimum number of operators needed to describe these complex dynamics.

One procedure for constructing this set begins with the Choi matrix, which is

defined as

Ac = (g iA)ZE 2 1 o Ezjg Ei (9 A(Eij) (2.13)
ii ii

where Eij = i) (jl and the vectors {|i), Ij)} form a basis of the Hilbert space. We

can derive the Kraus operators from the columns of the Choi matrix [49, 34, 19].

From Eq.(2.13) the next step is to rewrite Ac in terms of its normalized eigenvec-

tors, lak),
A c = lak) (aj| (2.14)

k

The columns of Ac now form a set of columnized Kraus operators {Ak} satisfying

Eqs. (2.3) and (2.4) with d2 operators in the set, where d is the dimension of the

Hilbert space.

2.0.2 Lindblad Form

Another useful form of the superoperator is the Lindbladian. If we consider the

case when the state of the system does not depend on its history, i.e. Markovian

dynamics, we can evolve the system by applying a generator, L[50, 34], similar to the

Hamiltonian in closed system dynamics,

dp(t)= p(t) (2.15)
dt
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We can separate L into a unitary operator and a dissipator,

Lp = -i [H, p] + D(p) (2.16)

The dissipator, D, leads to decoherence dynamics such as dephasing or return to

thermal equilibrium. D is given by

d
2 -1

D = - ( ( Lk, pLt + [Lkp,Ltk) (2.17)
k=0

The Lk are the Lindblad jump operators. These operators can be derived from the

Kraus operators. Consider, for example, the amplitude damping channel defined by

the Kraus operators in Eq. (2.5). In order to find the corresponding Lindblad form, we

must take the Kraus operators in the continuous time limit: as the time step At -+ 0,

we can make the approximation,

1 - 7= 1 - + O(At2) (2.18)
2

and using the raising and lowering operators u± = (o± iuy)/2 rewrite the Kraus

operators,

A o ~ - 0-0-+
2

A1 = io+ (2.19)

In the continuous time limit L satisfies

£P(t) = dp(t) - lim p(t + At) - p(t) (2.20)
dt At-o At
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After applying the Kraus operators to find p(t + At),

.p) Aop(t)Ao + Aip(t)At - p(t)
At- 0 At
= -li - +p(t) - 2p(t)o o-+ + -1o-nO-+p(t)o-_O+ + 7-Y+p(t) (2.21)

At-O At

Making the substitution ry it/2 and taking the limit gives,

F 1
Lp(t) -- yr+p 2 + riaupu (2.22)

Thus the Lindblad form for amplitude damping has one Lindblad operator, Li

An essential difference between the Kraus sum and Lindblad forms is that the

Lindblad is only valid for describing Markovian dynamics. The advantage of the

Lindblad superoperator, however, is that the operators are continuous while the

Kraus operators are applied in discrete time steps. When the Kraus operators do

not commute with the drift Hamiltonian they must be calculated for short enough

times t relative to all interactions such that the discrete evolution is an accurate

representation of the system dynamics.

2.0.3 Matrix Form of the Superoperator

It is often useful in simulations to columnize the density matrix and apply the su-

peroperator as an d2 x d2 matrix in Liouville space, where d is the dimension of the

corresponding Hilbert space. This form is useful as it requires only the multiplication

of a vector by a matrix. In this representation the equation of motion is

col(p(t)) = S(t)col(p) (2.23)

If another form of the superoperator is known, one can find the matrix form. From
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the Kraus operators {Ak}, the matrix S is [34]

S(t) =3 Ak(t)* 9 Ak(t) (2.24)
k

It is possible to convert between all of the superoperator representations. While

all forms should produce the same evolution, the choice of superoperator will depend

on the difficulty of the numerics, knowledge of the system, and time scales of the

problem.
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Chapter 3

Dynamic Nuclear Polarization

This chapter describes the mechanisms of dynamic nuclear polarization (DNP) in an

electron-nuclear system. Several pathways that lead to a polarized nuclear state can

be allowed in a DNP experiment, and we will discuss in the following chapters how

to excite only one and suppress others.

DNP has a long history in NMR as a tool for increasing the polarization of the

nuclear spin. Recently research in DNP has focused on high field experiments [55],
biomolecular DNP [73, 89], solid state DNP with magic-angle spinning [90, 24], and

dissolution DNP [52, 21]. Increase in nuclear polarization can be beneficial for many

NMR experiments, especially when sensitivity is an issue.

The potential uses of DNP in quantum information include the transfer and stor-

age of information. DNP also provides a means of purifying states that are mixed

at thermal equilibrium.. In solid state electron-nuclear systems DNP can be used to

initialize ensembles of nuclei, effectively removing entropy from the nuclear ensemble.

3.1 Hyperpolarization of Nuclear Spins

Consider a spin ensemble at thermal equilibrium in an external magnetic field. Among

the spins in the ensemble, slightly more will occupy the lower energy state. This differ-

ence between populations of the ground and excited states is given by the Boltzmann
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distribution. For a spin 1/2,

N _ _ yB
e kBT e kBT (3.1)

with kB the Boltzmann constant, T the temperature, B the applied field, and -y the

gyromagnetic ratio of the spin. The polarization is given by

h-yB
N - N+ e kBT1 h-yB

P = = e4 - (3.2)N_ + N+ e kT + 1 2kBT

NMR signals are proportional to the nuclear polarization. Thus increasing polariza-

tion will increase the strength of the NMR signal. Spins can be polarized via the

'brute force' method, i.e. increasing the field or decreasing the temperature. Proton

spins in 2.35 T field at room temperature have a polarization of 8 x 10-6, which can

be brought up to 2.3 x 10-3 in 9.4 T and at liquid helium temperature. There are,

however, experimental limits to how high Bo, and how low T, can be made. Addi-

tionally many properties of a sample vary with changing field or temperature. At

high fields mixing of hyperfine coupled nuclear states will be smaller, for example,

because the Zeeman energy increases with field while the hyperfine coupling is con-

stant. At low temperature relaxation times may become long and cause experiments

to be impractically long.

There are several methods of hyperpolarizing nuclear spins. Chemically-induced

dynamic nuclear polarization (CIDNP) is used to enhance NMR signals of proteins

and to characterize reaction mechanisms. CIDNP relies on a nuclear spin selective

recombination of radical pairs through an intersystem crossing. This method is re-

stricted to those chemicals that can create radical pairs that lead to a polarized

nuclear state [60].

Para-hydrogen induced DNP is similarly limited to only those samples which can

be polarized through certain chemical reactions, in this case with para-hydrogen as

a polarizing agent. At low temperatures the singlet state of two hydrogen nuclei

(para-H2) is energetically favorable over the triplet state (ortho-H 2), such that over
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99% of H2 is in the singlet state at 20K. The polarization can be transferred from the

hydrogen state to molecules to be studied [61].

Optical pumping has also been used with success to polarize noble gases, He-3

and Xe-129 in particular [86, 35]. Magnetic resonance imaging of lungs with polarized

noble gases is now a well established technique that provides dynamic information on

lung function that is unavailable through other imaging techniques [91].

All of these methods are restricted in their application to whatever chemical

species will react with the polarizing agent or, in the case of optical pumping, to noble

gases. Dynamic nuclear polarization using microwave irradiation is more broadly ap-

plicable to any sample that has unpaired electrons spins hyperfine-coupled to nuclear

spins. Such samples can be organic radicals or doped semiconductors, and DNP can

be used in liquid or solid state NMR at a wide range of fields.

The study of DNP began when Overhauser first proposed a method of polariz-

ing nuclei in metals using microwave irradiation in 1953 [66]. He showed that the

polarization of the electrons could be transferred to the nuclei, resulting in a nu-

clear polarization enhancement equal to the ratio e/yn (= 660 for hydrogen nuclei).

Carver and Slichter demonstrated this polarization enhancement experimentally in

1956 in liquid samples of metallic ions [16]. The original DNP experiments polarized

the nuclear spins through what is now known as the Overhauser Effect (OE) and was

thought to be only possible in metallic and liquid samples. Abragam later described

a method of polarization enhancement in solids, now called the solid effect (SE)[3].

All methods of DNP require that the nuclear Zeeman states not be eigenstates

of the system. Otherwise the necessary transitions for transferring polarization are

forbidden. Mixing of the nuclear Zeeman states occurs via the anisotropic hyperfine

Hamiltonian discussed in Chapter 1. In particular, there must be a strong electron-

nuclear dipolar interaction,

HDD -10 ISS-YI 5 .(3( ) (3.3)

The Overhauser effect and solid effects are single electron processes, in which the
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electron spin state is disturbed from equilibrium. The Overhauser effect is dominant

in liquid state DNP and at low fields where there is strong mixing of the nuclear Zee-

man states. The solid effect is stronger in solid state systems at low temperatures. In

systems with large electron concentrations, additional DNP mechanisms are possible,

such as the cross effect and thermal mixing. In the following sections we will look at

the mechanisms that drive each of these processes.

3.2 Overhauser Effect

We consider first the case when the microwave irradiation saturates the two electron

resonances. If the nuclear states are mixed the system will try to establish thermal

equilibrium through electron-nuclear flip-flops (or flip-flips if there is a double quan-

tum relaxation process), or, in other words, through cross relaxation between the

electron and nuclear spins. The process is the Overhauser effect and is depicted in

Fig 3-1.

As the electron spin is saturated, polarization builds up on the nuclear spin. The

final nuclear polarization depends on several factors, such as the efficiency of the

saturation and the relevant relaxation rates. The theoretical limit of the nuclear

polarization enhancement can be determined using a set of rate equations.

3.2.1 Rate Equations

We can use a fully quantum approach (as will be seen later) or we can follow the

original analysis using rate equations to analyze the polarization transfer and calculate

the final nuclear enhancement [83]. In order to set up the rate equations, we need to

consider all possible transitions in the four level system. The microwave saturation

flips the electron spin, and the cross relaxation drives the flip-flop transition. For

complete transfer of polarization from the electron to the nucleus there must also be

a reset of the electron spin as it is being saturated; this resetting is achieved through

T1 relaxation of the electron. These transitions for a general two spin-1/2 system are

shown in Fig. 3-2. Here W2 is the rate of double quantum transitions driven by a
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Figure 3-1: Overhauser Effect

flip-flip type relaxation, which could also be present.

El

Figure 3-2:

LI

All transitions for the Overhauser effect.

For the system in Fig. 3-2 we can write a set of equations for the populations,

Ni, for each energy level li) including transitions between every pair of levels. We

include the electron and nuclear T relaxation through the rates We and W". The

zero quantum and double quantum cross relaxation rates are Wo and W2. Lastly W

is the rate of the transitions induced by the microwave field, in this case on resonance

with the electron resonance.
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dd N1= - (W + We +W 2 +Wn)(Ni - N?)dt

+ 2 W(N - Ne+ WO (N - N )+( W)Nd
d- A=- (W +We +Wo+Wn)(N -Na )

dt2

W (N - N) + W+(N3 - NO) + (W + We)(N - NO)

d

dN3  (W +We+WO +Wn)(N 3 -NO)dt3

(W + We) (Ni - N10) + WO (N2 - NO) ± Wn (N4 - NO)

N 4  (W +We +W 2 +Wn)(N 4 - N)dt4

+W 2 (N1 - NS) + (W + We)(N 2 - NO) + Wn(Ne - Neo) (3.4)

where N? is the population of li) at thermal equilibrium. Wn will be negligible

compared to the other rates as the nuclear T is a much longer process than the

same for the electron. We can rewrite Eq. (3.4) in terms of the electron and nuclear

polarizations,

N1 + N2 - N3 - N4
Pe = EjNi

N1 - N2 + N3 - N4
Pn = Ej(3.5)

ZNi

and also define, for simplicity, the following,

p - W 2 +Wo + 2W 1

p = W 2 +Wo + 2Wn

U = W 2 -VWO

After combining Eqs. 3.4 and 3.5, the rate equations reduce to:

-Pe= -p'(Pe - Pe) - u(Pn - P")
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d
-Pn -(Pn - - (Pe - P(3.6)
dt

We now solve for P, in the steady-state,

d
dt

>Pn =P (Pe Pe) (3.7)

P + a(Pe - P) (3.8)
p

and find the nuclear polarization enhancement

Pn - Pno
Pn

0 Pe - PO Peo

P Peo Pn

- (Se (3.9)

where we have used the fact that the ratio of the initial polarizations is equal to

ye/7}n and defined the coupling factor, = a/p, and the saturation factor, S =

(Pe - P2)/P. The coupling factor quantifies the amount of polarization transferred

through the zero quantum pathway versus the double quantum. The saturation factor

is a measure of how well the microwave field equilibrates the electron Zeeman states.

When the electron resonances are fully saturated, Pe goes to zero, and S is equal

to one. The enhancement is largest when these factors are equal to one, and the

nuclear polarization is enhanced by a factor of 'Ye/7n. The coupling factor, , is close

to one when the nuclear relaxation time is small compared to the cross relaxation

and when either one of the flip-flip or flip-flop process is much larger than the other.

Typically WO > W2 , and a is negative. When ye and 7n have opposite sign, the

nuclear enhancement is positive.
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3.2.2 Transition Rates

Here we are interested in the rate of transitions between the zero quantum states

due to a cross relaxation mechanism. The cross relaxation between the electron and

nucleus is necessary for the Overhauser effect. The fast relaxing electron creates a

local fluctuating field at the site of the nucleus, which induces a nuclear spin flip.

The transition rates for this process can be calculated according to relaxation

theory [2]. The transition probabilities between pairs of states due to a Hamiltonian,

H'(t') are given by perturbation theory,

W J (j\ H'(t') k) (k| H'(t')|j)e-iwk(t'--)dt' + c.c. (3.10)

The perturbing Hamiltonian that causes cross relaxation is the dipolar component of

the hyperfine coupling. The largest contributions come from the C and D terms,

H'(t) = Ao YS7I [C + D] (3.11)
47 r 3

3
C - (I+Sz + IzS+) sin 0 cos Oe-io

2
3

D = (I IS, + Iz S_) sin 0 cos Oe
2

(3.12)

Here the time dependence of H'(t) comes from the time dependence of the spin

operator Sz (t) which varies as the electron spin relaxes [3]. In general, one can write

the perturbation as a product of the spin operator and the fluctuating field [2], so for

the C component of the dipolar interaction with the fluctuating field determined by

Sz(t) we have

H'(t ) = Sz(t) 0'

with C' = -3 gYs7 r-3 sin 0 cos 6e-ioI+. Eq. (3.10) reduces to
22 [70

Wik = (j| C' k) ] Sz(t)Sz(t + T)e-'wI7dr (3.13)
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where Sz(t)Sz(t + T) is the thermal average [3].

We can define the spectral density, J(w),

J(w) j S2(t)S2(t + T)ei' dT (3.14)

According to BPP relaxation theory, we assume that the correlation function, S2(t)S2(t + r),

for T1 relaxation of the electron can be represented by a single exponential [9]. Thus

J(w), the Fourier transform of S2(t)S2(t + r), is a Lorentzian, and the correlation

time T is T

J(w)=
1 + 1 f

Evaluating Eq. (3.13) using C' and J(w) gives the result for the transition rate [3]:

W -T-1 = 9 PO (1+3 cos 2T (3.15)X 2 47 r6 1 + W Te 2

An alternative approach for determining the cross relaxation rate is to consider the

eigenstates of the system. The large anisotropic hyperfine interaction (due to C and

D of the dipolar alphabet as mentioned previously) mixes the nuclear Zeeman states,

so that the eigenstates include the hyperfine perturbation. Thus when the electron

flips under T1 relaxation, there is some probability that the transition will preserve

the nuclear spin state and a non-zero probability that the Tf will populate a state

with opposite nuclear spin alignment. This method is equivalent to the description

of Tx discussed above and leads to the same expression for Tx [3]. We will continue

to discuss the mixing of the nuclear Zeeman states in the next section in the context

of another method of DNP.

3.3 Solid Effect

Here we consider a mechanism of DNP that directly polarizes the nuclear spin through

excitations of transitions that require mutual flips of the electron and nuclear spins.

This form of DNP is known as the solid effect. Irradiation of either one of the

41



cross transitions (zero quantum or double quantum transition) as shown in Fig 3-

3 will drive the system to a highly polarized nuclear spin state. These transitions

tIFt
t[tmIm

(a) Microwave Saturation (b) Final Nuclear Polarization

Figure 3-3: Solid Effect

are forbidden, however, unless there is an a term in the Hamiltonian that mixes the

nuclear states, a condition that is satisfied when the anisotropic component of the

hyperfine coupling is on the order of the nuclear Zeeman energy. Even at modest

fields the electron Zeeman energy may be much larger than the hyperfine coupling

and the nuclear Zeeman term. In this case we can take the secular approximation of

the dipolar Hamiltonian discussed in Chapter 1 [3, 95]. The anisotropic components

come from the C and D terms of the dipolar alphabet,

Hy" - - 3 h sin cos Oe-i (I+S2 + I-SZ) (3.16)

The eigenstates of the electron-nuclear system with this perturbation to the Zeeman

states are

4a) =p t) + q* )

4 a') =p It) q 1(4)

T #) = pItt) -q*t)

IT /3') = pItt) + q Iti) (3.17)
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with

3 yeinh2

2 T3 in0CosOe o

p =(1- qq*)1/ 2  1 (3.18)

This mixing allows excitation of the forbidden transitions by the microwave field,

H' = yeB1S, in the rotating frame. From Fermi's golden rule we find that the

probability of the ZQ or DQ transitions during microwave excitation is determined

by the mixing factor, q,

Woo (T al H' l0 ')

= 4|ql2 e B1  (3.19)

Irradiation of the ZQ or DQ transitions will produce polarization of opposite signs. If

the two transitions are unresolved, both can be excited simultaneously and partially

cancel the effect.

3.3.1 Rate Equations

We can analyze the equations of motion for the solid effect as we did for the Over-

hauser effect. Assume that the ESR line is narrow and that microwaves are applied

at the frequency corresponding to the ZQ transition (Fig.3-4). Assume we excite only

the zero quantum transition with the microwave field, so W now is on resonance with

the flip-flop resonance. Then the populations as a function of time are

d
N1 = - (We +W 2 +Wn)(Ni - N)

dt

+Wn(N 2 - NO) + We(N - NO) + W 2 (N 4 - NO)

dd N2 =-(W +We+WO+Wn)(N 2 - N)dt N

+ Wn (N1 - NO) +(Wo+ W) (N3 - N30)+ (We) (N4 - N40)
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Figure 3-4: All transitions for the solid effect.

(W +We + Wo + Wn)(N 3 - NO)

+We(Ni - N1) + (W + W0 )(N 2 - N2) + Wn(N 4 - NO)
d

N 4  (W +We +W 2 +Wn)(N 4  N)dt

+ W2(N1 - N1) + (We)(N 2 - N2) + Wn(Ne - Neo) (3.20)

In terms of the polarizations this is

d
dte =W(n -Pe) (W oW 2 2We )(Fe-Pe )±+(Wo-W 2 )

d
-P =W (Pn - Pe) - (W 2 - Wo + 2Wn)( P - Pn2) + (Wo - W 2 )(Pe - Pe) (3.21)

In the steady state we can assume that Pe ~ P2 due to the weak irradiation of the

electron resonance. Thus, solving for P, we find the steady state nuclear enhancement

is

Pn - Pn
Pno

W 0Wen Po 1
W - Wo + W2 + 2Wn P

W (e
W + E Wn (Y

(3.22)
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Here E W represents all relaxation processes involving the nuclear spin, i.e. the

nuclear T1 and the cross relaxation. E will be approximately '}e/7yn when the mi-

crowave irradiation strongly saturates the zero quantum line and W >> W". The

enhancement will be negative when le and ya have opposite signs.

3.4 Cross Effect and Thermal Mixing

Suppose the electron concentration is high, so that electron-electron interactions are

large and nuclear spins may have large couplings to more than one electron spin. Now

there are additional pathways of polarization transfer. The cross effect applies to the

situation where there are two electrons coupled to a single nucleus, and the nuclear

Zeeman energy is equal to the electron-electron dipole coupling,

3 (S1 - f) (- - )2 - .

H = 7 _ i;(5) (3.23)

The three spin system has addition mixing of states due to the perturbation Hee.

When states with opposite nuclear spin are degenerate, mutual electron flip-flops can

lead to polarization transfer. The requirement for cross effect DNP is

|W - oi =n (3.24)

Recent work in CE-DNP has been to engineer organic biradicals that satisfy this

condition. ([38])

Thermal mixing describes polarization transfer in a system with many electrons

and few nuclei. The dynamics are more complicated in such a system, and polarization

enhancement can be described using thermodynamic arguments. We can assign a spin

temperature related to the thermal equilibrium populations of each spin system using

the Boltzmann distribution,

H
p = e-H/kbT 1 kbT(3.25)
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In the rotating frame this becomes

= 'kbT 1 - /eEe - f'E' (3.26)

where Oc is the effective temperature of the electron spin bath, and 0' is the tempera-

ture of the remaining terms in the Hamiltonian including nuclear Zeeman, hyperfine

and dipolar couplings. The electron Zeeman, nuclear Zeeman, and remaining cou-

pling terms in the Hamiltonian each form a spin bath. When microwave irradiation

is applied, the electron spins are depolarized and the electron spin temperature in-

creases. Because the electron spin bath is thermodynamically coupled to the nuclear

spin bath, the increase in electron temperature corresponds to a decrease in nuclear

spin temperature (and a decrease in the temperature of the remaining bath). The

result is a polarized nuclear state [3].
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Chapter 4

Optimal Control Theory

4.1 Introduction

This chapter presents the basics of optimal control theory for pulse design in NMR.

We need a means of finding control fields that will excite only one DNP pathway in

the electron-nuclear system. This is a challenge in the electron-nuclear system dis-

cussed here as the hyperfine interaction is on the same order as the nuclear Zeeman

interaction resulting in an overlap of the zero quantum and double quantum tran-

sitions with the two electron resonances. It is difficult to irradiate the two electron

resonances without exciting either of the other transitions. The problem of selective

excitation is an old one in magnetic resonance, and so we begin with an introduction

to control techniques in NMR.

Consider a molecule with several like nuclei at different positions. All of the nu-

clei will have slightly different chemical environments and therefore slightly different

Larmor frequencies. If the frequencies are hundreds of megaHertz and differ by kilo-

Hertz, it will be hard to perform a rotation on just one spin. Another obstacle to high

fidelity control is the presence of unwanted interactions, such as incoherent evolution

due to field inhomogeneities.

Several solutions to these problems have been developed. Adiabatic pulses have

been used for inversion pulses to improve the accuracy of the flip angle and reduce

the effects of spatial inhomogeneities [17, 82]. Such pulses are performed by sweeping
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the rf field through resonance, adiabatically changing the direction of the effective

field. This method allows one to rotate spins at all frequencies within the bandwidth

of the probe regardless of variations in the transverse B1 field.

Shaped pulses have been developed and analyzed to provide greater frequency

selectivity [17]. The Fourier transform of the pulse in the time domain gives the

strength and range of the frequencies excited by that pulse. The frequency profile

of a hard square pulse is a sinc function. If the pulse is made longer, the frequency

profile will narrow, but there will still be weaker excitations in the sidebands of the

sinc function. A shaped pulse can eliminate the unwanted excitations. A Gaussian

pulse, for example, will have a Gaussian power spectrum, and the selectivity can be

increased by increasing the width of the pulse.

Optimal control theory offers another method of designing control pulses. Gener-

ally, an OCT pulse is a numerically optimized pulse found by setting the pulse to be a

certain number of time steps, and the amplitude and phase of the control field at each

time step are variables in the optimization. OCT was used in liquid state NMR in

2002 to implement precise unitaries while refocusing unwanted evolution [30]. OCT

provides a means of correcting pulse errors, accounting for equipment performance,

and improving coherent control. OCT pulses are capable of selectively inverting cou-

pled spins and have been used to demonstrate quantum algorithms in liquid state

NMR [62, 93], to control few qubit systems in solid state NMR [7], and for refocusing

sequences in pulsed ESR [11].

There are several algorithms for finding optimal control pulses. These include

strongly modulated pulses, which are designed to drive the system with periods of free

evolution alternating with periods of strong control. Pulses designed using GRadient

Ascent Pulse Engineering (GRAPE) algorithm are often used in NMR to efficiently

find optimal control parameters [79]. Sequential update algorithms based on Krotov

methods may offer speed ups over graident ascent methods for large dimensional

systems as they do not require the computation of gradients [54, 92]. The Chopped

RAndomized Basis (CRAB) algorithm which optimizes a random basis of control

functions to perform a desired control operation. The CRAB algorithm has been
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shown to be useful for control in quantum many body problems [27]. There are

also many variations on these methods to include open quantum system dynamics or

experimental limitations on the control [92, 56, 10]. In this chapter we will discuss

two of these methods: strongly modulated pulses and pulse finding using the GRAPE

algorithm.

4.2 Strongly Modulated Pulses

The basic idea of coherent quantum control with OCT is to numerically optimize

a sequence of many short pulses to produce a composite pulse which performs the

desired evolution with high fidelity. In NMR (or ESR) the control Hamiltonian is an

applied RF (microwave) field. The total Hamiltonian for these spins systems is the

sum of the internal Hamiltonian and the external control,

H Hint + Hext (4.1)

Hint j ( BogeSz + ( BogjIz + HHF + Hd + HDD -

He C~(j"+)S Z iW't0t~ (4.3)

H Se i(wJRFt+0k)tI3 (+wIei(WRFt+)tI1 4.4

The goal of the pulse finder is to find the unitaries for each step defined by Het and the

control parameters which produce a total unitary close to the desired evolution. One

common choice for the optimization algorithm (and the choice used in later chapters

here) is the Nelder-Mead simplex method. This method is a nonlinear search used to

optimize many parameters simultaneously when they have inter-dependencies.

The metric for the optimization is the overlap of the unitary operator that the

composite pulse performs with the desired unitary. One choice for this metric is the

Hilbert-Schmidt fidelity [30],

2
(D = tr(UtUpse) /N 2 (4.5)
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which measures how close the pulse rotation is to the desired evolution. The pulse is

composed of many short, square pulses. The pulse unitary will be the composition of

the unitaries for each time step,

Upuse = Utl Ut2 -.. Utn (4.6)

Strongly modulated (SM) pulses have been used to selectively excite spins distin-

guished only by a chemical shift term in the internal Hamiltonian [30, 70]. We use

SM pulses in this work to transfer polarization through only one pathway without

exciting transitions that lead to polarization transfer in the opposite direction. SM

pulses achieve the desired control by allowing periods of free evolution and periods

of controlled evolution with the microwave field is on. The control Hamiltonian must

be strong enough to prevent errors and suppress unwanted evolution. In other words,

the microwave amplitude must be larger than the interactions that are suppressed.

In addition to unitary errors, OCT pulses found with this method are also robust

against incoherent errors. Such errors can occur due to field inhomogeneities in the

external B0 field or the small B1 rf field. These nonuniformities in the field induce

variations in the Larmor frequencies of the spins in the sample. SM pulses can refocus

errors due to these variations while performing the intended rotation.

SM pulses have been used in liquid state NMR systems with up to 12 qubits. The

ability to selectively excite spins at frequencies only tens of Hertz apart is essential for

quantum processing with a large number of qubits in NMR. OCT pulses were used

to generate 12-spin coherence and a 12-spin pseudo-pure state [62].

4.2.1 Open Systems

A pulse finder for SM pulses finds the unitary for each time step and calculates the

overall evolution of the pulses, it is straightforward to adapt this to a superoperator

picture for an open system optimization. In the case when nonunitary evolution is

a significant source of error, we have to consider open system dynamics. Thus we
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modify the optimization metric by using the gate fidelity defined as [30, 64],

F = C(pgoaippuise) (4.7)

where Pgoal is the ideal final state if only unitary evolution were present, Ppulse is the

state resulting from the pulse implemented and including both unitary evolution and

decoherence. C(., -) is the attenuated correlation function of the two states, Pgoal and

Ppulsep

C(pgoaippuise) t(Pgoappulse) (4.8)

tr( pg oa)tr(pujse)

and the average, C, is the average over a complete set of initial states.

The map for taking the initial state p to Pgoal is fully determined by Ugoai while

the map for Ppulse can be represented by a Kraus decomposition [64, 30]:

Pgoal Ugoa1PUgoa, pulse = :: AkpA (4.9)
k

Plugging this into Eq. 4.7, the gate fidelity reduces to

F =3 Tr(UtoalAk)|N (4.10)
k

4.3 Gradient Ascent Algorithms

One class of algorithms that has been used extensively in OCT pulse design is gradient

ascent algorithms [44, 45, 79]. Although the experiments presented later in this work

did not use such an algorithm, pulse finding using these algorithms can produce high

fidelity control and is more efficient for composite pulses consisting of many time

steps.

As mentioned previously, the total Hamiltonian is the sum of the internal and

control Hamiltonians. In the gradient ascent pulse engineering (GRAPE) algorithm,

the pulse is discretized into a number of time steps. Then the unitary operator for
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each time step, j, is

Us=[exp iAt Hint + ui(j)Hj

with At, the length

of the Uj. Plugging

of the time step. The unitary for the total pulse is the product

this into the performance function, 1 from Eq (4.5) gives

- tr (UgoalUM .- U1) 2 /N2

tr ( (U+ ... Ug Uj U1 /N 2

(4.12)

(4.13)

Eq. (4.13) is a useful form for calculating the derivatives of 1. Uj ... U1 is the unitary

evolution due to the control pulse up to the jth time step. The term U+ ... UU

is the goal unitary backwards propagated to the time step using the control pulses

found for the j + 1 to M steps. We will also need to find the derivative of Uj with

respect to the control fields ui(j) for each step,

6 Uj ~-ittHiU-
6uo(j)

(4.14)

under the condition

fidelity given in Eq.

6Uj) N2

AtH < 1. The next step is to calculate the derivative of the

4.5,

tr U + 1 . . . U)t Ugoa) .U 1 -- . U1 + c.c.1 (4.15)

1 is improved if the control parameters are updated using these derivatives,

ui(j) - uj(j) + e
6Lui(j)

(4.16)

The GRAPE algorithm provides a more efficient means of finding control parameters

than other numerical optimizations as the gradient indicates in which direction the

control parameters should be changed. The basic algorithm as first presented in [45]

is as follows,
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1. Guess initial parameters.

2. Calculate the state for each time step by applying Uj given ui(j) from (1)

3. Calculate the goal operator backwards propagated to each step, Ut ... Ut Ugoa

4. Evaluate the gradient of the fidelity and update the control parameters.

5. Return to (2)

As with other methods of pulse optimization, it is possible for the GRAPE algo-

rithm to find pulses which are a local minimum instead of a global minimum, but this

algorithm does provide significant improvement in pulse design over other methods.

Calculating the gradients is more efficient than evolving the state through each time

step for one iteration of pulse optimization. Studies of the control landscapes for these

optimization problems have demonstrated that the solutions are often nearly optimal

[59, 67]. In particular, for the case of control with no constraints, any extrema in the

control landscape will correspond to either global optimal control or to no control

[74].

It is important that the internal and control Hamiltonians are well known in order

to successfully implement GRAPE pulses. If the system Hamiltonian is not well

known, GRAPE is not a good optimization procedure. Even when the system is well

described, an educated guess of the initial parameters can improve the performance

of the algorithm.

4.3.1 Open Systems

To include relaxation in pulse optimization one can use a Lindbladian (as described in

Chapter 2 to represent the superoperator. In the GRAPE algorithm the Lindbladian

simply replaces the unitary operators[45]. L is now the generator, where L is

L _ iH + F (4.17)
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where F is the dissipator that drives relaxation dynamics. Using the density operator

representation, we can write the performance function as

<D = tr (Ugoaip(T)) (4.18)

tr( Lti -.-.- LtMUgoalL1 - L po) (4.19)

with

(4.20)

and

p(T) = LN ... Lipo (4.21)
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Chapter 5

Pulse Finding and Simulation

The system of interest is one electron hyperfine coupled to one proton. In this two

spin case there are two mechanisms of dynamic nuclear polarization: the solid effect

and the Overhauser effect. The solid effect transfers polarization through direct

irradiation of the zero quantum transition, inducing an electron-nucleus flip flop[3].

The Overhauser effect indirectly causes this flip flop through a relaxation process

that occurs when the electron resonances are saturated[661. Both of these processes

depend on the zero quantum states being mixed through an anisotropic hyperfine

coupling. Without this mixing the zero quantum transition is a forbidden transition,

and there is no cross relaxation.

As mentioned in Chapter 3, the theoretical nuclear polarization enhancement is

limited by the ratio Ye/Yn [40]. For protons, the maximum achievable enhancement

is 660. In any physical system the enhancement will be less than the theoretical

limit due to a number of factors, such as asymmetric saturation of the electron res-

onances, leakage due to nuclear relaxation or double quantum transitions, and most

importantly the competition between various DNP processes. The solid effect and

Overhauser effect occur simultaneously when a microwave field is applied, but they

yield nuclear polarization enhancements of opposite sign. Consequently the net po-

larization enhancement is reduced. It is advantageous to find a control sequence that

allows one DNP process while the other is suppressed. A pulse sequence capable of

selecting one of these two opposing methods of DNP must account for decoherent
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controlt1 t2
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readout

Figure 5-1: Timing diagram of the experiment: the 7r/2 saturation is applied for a
variable length of time followed by the NMR readout pulse.

processes as well as unitary evolution.

In order to transfer polarization to the nuclear spins via the Overhauser effect,

the electron resonances must be saturated (as shown in Fig. 3-1). This can be

done with CW irradiation at the electron Larmor frequency, however for the purpose

of comparing strongly modulating pulses to hard pulses we accomplish the electron

saturation through a 7r/2 pulse train as shown in Figure 5-1. We will compare the

results of DNP using hard pulses versus OCT pulses in this saturation train.

The pulse optimization used the Nelder-Mead simplex algorithm to search for the

control parameters [63]. The pulses are restricted to on/off modulation; the total

pulse consists of several time steps during which the microwave control is either on

or off and the lengths of each step are left as parameters. The total pulse length is

on the order of 100-200 ns.

We found two sets of OCT pulses: one including the electron T and electron-

nuclear T relaxation processes, and one considering only unitary evolution. For the

open system dynamics required for DNP, these two relaxation processes are sufficient.

One could also include T 2 processes or relaxation of the nuclei, but T 2 relaxation will

not affect the polarization and nuclear T is long compared to T of the electron and

therefore not necessary for designing control sequences. We use a Kraus operator rep-

resentation of the superoperator to describe evolution under the control Hamiltonian

with dissipative processes[65].
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5.1 The System Hamiltonian

In order to design control sequences for malonic acid for DNP, we need to determine

the superoperator that describes the internal and external Hamiltonians as well as

the relaxation processes. The model system used for DNP is that described in the

previous section: an unpaired electron in malonic acid hyperfine coupled to a nearby

hydrogen nucleus on the center carbon. The Hamiltonian for this system is that given

in Eq. 1.21. The anisotropic hyperfine term BIS2 mixes the nuclear states. S2, the

projection of the electron spin along is still a good quantum number, but I2 is not.

The energy eigenstates are,

A±+ -w1 +2 A2 + B 2 - Aw1 + 0.25w
t a) -=+ BI) + IIT)

B(A+-w- A 2  B 2 -Aw + 0.25ww)

ta'A +4) B Ni')

(-A + -2w 1 - A2 + B 2 + Aw1 + 0.25wwI)
t 1) = ) (- j-V 2 ±B 2  w .5~ ..4J) (5.1)

The parameters for this Hamiltonian under the conditions to be used in the ex-

periment (3.4kG, orientated maximize B) are

ws = -9.6GHz

-1 = 14.6MHz

A = -42.7MHz

B = 14MHz

The control Hamiltonian describes a microwave field oscillating in the x-y plane.

in order to remove the time dependence from the control Hamiltonian, we transform

the internal Hamiltonian to the rotating frame of the electron spin. The microwave

57



pulse in this frame corresponds to

Httw = wiS & 1

This assumes that the microwave pulse is on resonance with the electron Larmor

frequency.

The relaxation processes can be represented in the Kraus operator formalism. The

dominant processes are the electron T and the zero quantum cross relaxation.

+ 
++

T1Tx T,

Figure 5-2: Energy levels and relaxation in the electron-nuclear hyperfine coupled
system of a malonic acid radical.

5.2 Kraus Operators

5.2.1 Electron T1

During T relaxation of the electron, the electron spin flips while the nuclear spin

remains in the same Zeeman state. Because I, is not a good quantum number, the

eigenstate of the nuclear spin changes, i.e. IT a) > |4 4#) and It aL) 4=:> 4. 3'). A set

of Kraus operators describing this type of relaxation must produce these transitions,

and essentially act as the operator Sx 0 11 in the energy eigenbasis, which is given

by the operator Sx 0 1,. Therefore the Kraus operators for T relaxation are

A 1 = /1 -pI 0 ] A2 = jpSx 0 i
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Here p = exp(-hws/2kbT). These operators will result in a final state that has a

polarization p. We actually require, however, Kraus operators that will return the

system to thermal equilibrium. One set of Kraus operators which perform this process

is the following:

1 0D
A1 = N/ 0 I

A3 = 1- r @I

V, P (0 1

A24= 1(

A4 = 1 -- _p

0

0

V1-E

0

0

1-c

) oh

0

0

(5.2)

Where E = exp(-t/Tf).

The other set of Kraus operators we need to include in the pulse finder is that

which describes the electron-nuclear flip-flop cross relaxation. This is essentially a

T1 process that acts only on the zero quantum subspace, a depolarizing channel that

leads to transitions |4 #) <-> It a). It is useful to define modified Pauli matrices that

act on the space formed by these two states.

0

1 1
IZQ = I I I - -Z & Z

2 2

0

1 1
XZQ = - X + - Y

2 2

1

0

1

0

0

0

1
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I 1
Yzo = -X 9Y - -Y 9 X

2 2

ZZQ = -Z &I -
2

21
I -=I @XI +

1
-I OZ
2

1
2

For cross relaxation the Kraus operators are

B 1 =y1- 3p(IzQ + IZ'Q)

B 3 = i(YZQ + IZ'Q)

B 2 = Vj(XZQ + IZQ)

B 4 = V(ZZQ + IZQ)

These operators will depolarize the zero quantum subspace, but as in the electron T

case we actually want to return to thermal equilibrium. The correct Kraus picture is

B 1 = V/0 .5pzq

1 0

0 1

0 0

0 0

0 0

0 0

z0 1

0 1

B2 = 4 0 .5 pzq

0 0 0 0

0 0 V/1 - ezq 0

0 0 0 0

0 0 0 0
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0

1

0 -i

i 0

0

1

-1

0

0

0

1

(5.4)
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1

0
B3  = 1 -- 0.5pg

0

0

0

V 6 zq

0

0

0 0 0 0

0 0 0 0
B 4 = f1 - 0.5pzq

1 0 0 0

0 1 0 0

with Pzq =exp(-h(ws - wI)/2kbT) and Ezq = exp(-t/TzQ), where TzQ is the zero

quantum cross relaxation. These Kraus operators satisfy the condition Ek BkBk =

1. The Kraus operators for return to equilibrium for the double quantum pathway

(electron-nuclear flip-flip relaxation) can be constructed similarly. These operators

are

1

0
C1 = O .5Pdq

0

0

0

1

0

0

C3 =V1 - O.5Pdq

0

0

1

0

0dq

0

0

0

0

0
C2 = 0 .5Pdq

0

6/dq

0 0 0

0C4 = V1 - 0.5Pdq
0 1 0

0 0 1

with Pdq = exp(-h(ws - wI)/2kbT) and edq = exp(-t/TDQ). TDQ is the double

quantum cross relaxation.

Although it is not necessary to include the nuclear relaxation for the pulse finding

discussed here, we give the Kraus operators for the nuclear return to equilibrium for
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0

V1 - Ezq

0

0

0

0

0

(5.5)

0

0

0

0

0

0

0

0

0

0

0

0

0

1 - Edq

0

0

0

0

0

1 - Edq

0

0

0

0

0

0

0

0

0

0

0

0
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completeness:

1 0 0 V/1- En
D1 = jp~n I D2 =fPn 11 @9

0 0f 0 0

D3 = 1-pn ff @9D4 = 1 -P pf I 3
0 1 V1 -En 0

(5.7)

Here pn = exp(-hw/2kbT) and En = exp(-t/Tl).

The superoperator contains both the unitary evolution under the internal and

control Hamiltonians as well as relaxation according to the Kraus operators which

describe T ({Ak}) and T, ({Bk}) processes as found above:

p'= An [( Bie-i(Hnt+Hext(t))t i(Hint+Hext(t))tB A (5.8)
k

5.3 The Desired Unitary

In the case of DNP where the final state after polarization is not necessarily known,

it is easier to find pulses which perform a desired unitary operator. The goal here

is to find optimal control pulses which perform the 7r/2 rotation in the saturation

train of Fig. 5-1 For this system we wish to find 7r/2 pulses which saturate the

electron resonances without exciting the zero quantum transition in order to select

the Overhauser effect (or vice versa to select the Solid effect). The Overhauser effect

is a stronger process, so it is possible to find pulses which saturate the electron

resonances only rather than to find pulses that drive the zero quantum transition

only.

The desired unitary for Overhauser DNP is given by

U = exp(-i7r/2Sx 9 1,) (5.9)
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where the operators are written in the eigenbasis of the system, and Si acts on the

electron spin and Ij on the nuclear spin.

For solid effect DNP the unitary should perform the rotation

U = exp(-i-r/2R) (5.10)

where R performs the following rotation on the zero quantum subspace,

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

5.4 The Fit Function

The fit function in the pulse finder should measure how close the OCT pulse is

to performing the desired unitary. For an open quantum system, one must find the

superoperator that describes the OCT pulse with the relaxation present in the system.

We can use the following measure of fidelity,

F = ZTr(UtMk) 2/2 D (5.11)
k

where U is the unitary we want to perform and {Mk} is the non-unique set of Kraus

operators that describe the pulse superoperator.

It may also be useful to add penalties to the fit function to suppress unwanted

transitions. For example, the solid effect is weaker than the Overhauser effect, so one

can find pulses which lead to direct zero quantum transitions with higher fidelity if

there is a penalty on exciting the electron resonances.
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5.5 Using the Choi Matrix

The smallest set of Kraus operators, {Mk}, in Eq. (5.11) can be found from the Choi

matrix of the superoperator given by the Kraus map, Eq. 5.8. In order to speed

up the calculations for the pulse finding algorithm, one can derive the smallest set

of Kraus operators from the Choi matrix given by the superoperator after each step.

Here we give an example of finding this set by following the procedure outlined in

Chapter 2.

We start by writing out Kraus operators for Tf and TZQ relaxation given the

parameters of our physical system, and follow this by finding the Choi matrix of this

map and determining the smallest set, {Mk}. In order to write the correct Kraus

operators for Te or TZQ processes, we need to know the Larmor frequencies and the

relaxation times. For the system we simulated these values are WS = 9.36 GHz and

of = 14.24 MHz, and Tf = 100ps and TZQ = 2T,. The time step is t = 10ps. We use

the Kraus operators as defined earlier in this chapter. The set, Ak, for T relaxation

at room temperature looks like:

0.7068 0 0 0

__ 1/2 1 0 0 0.70680 0 0
A, TkB0 Ve-,i/Tie 0 0 0.6724 0

0 0 0 0.6724

0 0 0.2180 0

_(iS_ 1/2  0 v/ 1 -e-tp/Te 0 0 0 0.2180
A2 = eskB

0 0 0 0 0 0

0 0 0 0

0.6729 0 0 0
_ hs 1/2 et/rf 0 0.6729 0 0

3 e0 1 0 0 0.7074 0

0 0 0 0.7074
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0 0 0 0

0 0 0 0 (.2~ J (5.12)
0.2182 0 0 0

0 0.2182 0 0

Similarly, for the zero quantum relaxation,

1

1 ( h(WS- w) 1/2 0

0

0

B 1 - (ws ) ) 1/2 0
B2 = -e 2TkB

2 0

0

B 3  1 2TkB )1/2
2

1_h(Ws-wI) 1/2
B4 = (1 -I-e 2TkB

2

0 0 0

1 0 01

0 e t/TZQ 01

0 0 1)

0 0

0 V/1 - -t/ToZQ

0

0

0

0

0.7068

0

0

0

0

01
01
0

1 0 0 0

0 Ve-t/TZQ 0 0

0 0 1 0

0 0 0 1

0

0

0

0

0

I0

0

0 0 0

0.7068 0 0

0 0.6894 0

0 0 0.7068

0

0

0 0

0 0

0.7074

0

0

0

0 0

0 0

0 0

0 0

0

0 0

0 /1 - e -t/TZ Q

0 0

0 0

0.1561 0

0 0

0 0J

0 0 0

0.6899 0 0

0 0.7074 0

0 0 0.7074

0 0 0

0 0 0

0.1562 0 0

0 0 0

(5.13)

We now construct the Choi matrix according to Eq. (2.13) by applying the map,

An Bn(-)BtAt
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to the Eij. The Choi matrix for the map created by these two sets of Kraus operators is

0 0 0 0 0.9406

0.0012 0 0 0 0

0 0.0465 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0.9291

0 0 0 0 0

0 0.0470 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0.9277

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0.9395

0 0

0 0

0 0.0470

0 0

0 0

0 0

0.0232 0

0 0.0476

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0

0

0

0.0475

0

0

0

0

0.0470

0

0

0 0.9395 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0.9277 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0.0232 0 0 0

0 0.9292 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0.9407 0 0

The last step is to construct a single set of Kraus operators from the normalized eigen-

values of the Choi matrix. For example, the eigenvector with the largest eigenvalue

(which is equal to 3.76) is

/ 0.1258 N

1a) =

0

0

0

0

0.1242

0

0

0

0

0.1242

0

0

0

0

0.1258 /

Finally we normalize this and reshape the vector into a 4 x 4 matrix to make one
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0

0

0

0

0.9395

0

0

0
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0

0

0

0
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(5.15)



Kraus operator:

0.1258 0 0 0 0.9756 0 0 0

0 0.1242 0 0 0 0.9635 0 0

0 0 0.1242 0 0 0 0.9636 0

0 0 0 0.1258 0 0 0 0.9756

We would repeat this process for all eigenvectors of the Choi matrix to obtain the full

set of 16 Kraus operators. The smallest set will always have d2 elements, with d the

dimension of the Hilbert space.

In this example of only two relaxation processes this procedure does not offer much

computation advantage since we could expand the sum in Eq. (5.14) into products of

the form AmBn. There are 16 of these products, so using the Choi matrix does not

produce a smaller set of operators. If we add a third process (such as the action of

the pulse), this procedure will reduce the number of Kraus operators from 64 to 16,

a significant improvement for shortening the computational time.

5.6 The Pulses

We used three sets of pulses in the experiment: hard pulses, strongly modulated OCT

pulses designed without relaxation, and SM pulses that include relaxation effects. The

hard pulses are 32 ns long for a Rabi frequency of 8 MHz. The hard pulse has a rather

poor fidelity as defined by Eq. (5.11) with the desired unitary of 0.01.

The pulses found with optimal control but without including relaxation consist of

two pulses with a delay between them:

(Ti) - (PI) - (T2) - (P2) - (T3) (5.16)
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ri = 15 ns

T2= 25 ns

73 =57 ns

pi = 20 ns

P2 26 ns

This composite pulse, which was found neglecting relaxation, has a fidelity with the

desired unitary of 0.56.

The final OCT pulse found accounts for the relaxation processes and consists of

three square pulses with delays as follows:

(T1) - (PI) - (72) - (P2) - (73) - (p4) - (74)

T1 = 15 ns

2= 20 ns

-r3= 12 ns

74= 26 ns

(5.17)

pi = 20 ns

P2 28 ns

Pa = 16 ns

The fidelity for this pulse is 0.74. It appears the additional square pulses in the OCT

sequences correct errors that the hard pulses allow. In the implementation of these

pulses the initial and final delays are included in the delay between effective r/2

pulses in the saturation train.

We can also analyze the superoperator for the complete saturation train (i.e. the

superoperator for n iterations of the 7r/2 pulse and delay) and compare the superop-

erator for each pulse to the ideal superoperator if the pulse performed goal unitary

in Eq. (5.9). For all of the pulses - OCT and non-OCT - the superoperator is essen-

tially a polarizing channel on the nuclear spin. This map takes the identity state to

a polarized state as follows,

A(1) = 1 + pZ (5.18)
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In the ideal case p is 7.1 x 10'. This corresponds to the final nuclear polarization

if the control pulse is the desired unitary. For the non-ideal pulses the polarizing

channel has p 5.9 x 10-5 for hard pulses, p = 3.3 x 10-4 for closed system OCT

pulses, and p 6.2 x 10- for open system OCT pulses. As we will discuss in the

follow simulation section, these values of p determine the final nuclear polarization

for each type of pulse.

Additionally the non-ideal unitary pulses lead to non-zero coherences, i.e. the

superoperator increases o. contributions to the density matrix. These components

for the super operator are small (less that 0.1% of p for the polarizing terms) but are

interesting to note because the ideal unitary does not create any coherence on the

nuclear spin.

We can also consider the effect of the saturation train on the electron spin. In all

cases, the superoperator is a weak depolarizing channel:

A(p) = pp + 1P
2

The ideal unitary pulse depolarizes the electron by a factor of 19.7, whereas the open

system OCT, closed system OCT, and hard pulses reduce the electronic polarization

by factors of 6.1, 1.8, and 1.0 for respectively. The depolarizing channel for the satu-

ration train for each of these pulses is due to the fact that the electron Ti relaxation

re-polarizes the electron spin during the delay times. The open system OCT pulses

most successfully saturate the electron spin, but do not perform as well as the ideal

unitary rotation. It appears that the microwave control with frequency equal to the

uncoupled electron resonance wS does not fully drive both electron transitions in the

hyperfine coupled system. However the superoperators do not indicate an asymmetric

excitation of the electron transitions.

Any terms in the superoperator that drive two spin processes (SjIs terms) are

negligible for all pulses. The superoperators are primarily polarizing channels on the

nuclear spin, and the final polarization is directly related to the parameter p in Eq.

(5.18).
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Figure 5-3: Simulation of the Overhauser effect versus the solid effect. The dashed

black line is the Overhauser effect only, solid red is the solid effect only, and the blue
dotted line is the result of saturation by OCT pulses.

5.7 Simulating the Pulses

After finding the optimal control pulse sequences using the methods outlined in the

previous section, we simulated the system dynamics after applying the 7r/2 pulse train

with both OCT and non-OCT pulses. For comparison, we also simulated the results

of DNP if only the Overhauser effect or only the solid effect were present. Figure

5-3 compares the nuclear enhancement if only one of the DNP processes were present

in the system. To simulate the Overhauser effect in the absence of the solid effect,

we applied the unitary in Eq. 5.9 and a relaxation superoperator allowing for cross

relation. For the case of the solid effect we applied the unitary found in Eq. 5.10 and

a relaxation superoperator that did not allow for cross relaxation.

Figure 5-4 shows the results of simulating the OCT and non-OCT pulses. It

should be noted that there is a significant difference between the simulated system

and the physical system. In the simulations we are looking only at the two spin system

described previously and find the DNP enhancement of the coupled proton. In the

experiment, however, we observe the bulk proton signal, as the number of protons

coupled to an electron is too small to detect directly. While the simulations do show
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Figure 5-4: Comparison of OCT pulses to hard pulses. Blue solid line is saturation

by open system OCT pulses, dashed red is closed system OCT pulses, and dashed

black is saturation with hard pulses.

the relative enhancements produced by the three sets of pulses, the actual nuclear

polarization depends on the couplings between the bulk protons and the hyperfine

coupled protons, and the buildup times are limited by spin diffusion[75].

There are three sets of simulated data which give the nuclear enhancement after

the DNP experiment using open system OCT pulse, closed system OCT pulses (no

relaxation included in the pulse finder), and hard pulses (non-OCT). The simulations

show tliat both sets of OCT pulses give a greater enhancement than hard 7r/2 pulses.

The open system OCT pulses yield a nuclear polarization 10.5 times the hard pulse

polarization and 1.9 times the closed system OCT pulses. The closed system OCT

pulses produce a nuclear polarization 5.5 times that of the hard pulses.

We simulated the performance of the open system OCT pulse with variations in

both Rabi frequency and the anisotropic hyperfine coupling (see Fig. 5-5). This

pulse was optimized for a Rabi frequency of 8 MHz, the frequency achievable experi-

mentally at a reasonable power. The simulations show, however, that the maximum

enhancement for the OCT pulse occurs when WRabi = 11 MHz. This indicates that the

higher frequency is better able to modulate the hyperfine coupling, which is set to 14

MHz. Simulations of the polarization enhancement varying the anisotropic hyperfine
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frequency confirm this - the optimum enhancement for WRabi = 8 MHz is closer to

10 MHz, while for the case WRabi = 11 MHz the maximum anisotropic hyperfine, 14

MHz, produces the best results.
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(b) Variations in anisotropic hyperfine coupling

Figure 5-5: Simulations of pulses with varying parameters.
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5.7.1 Leakage Pathways

So far these simulations have shown only the idealized case of one electron and one

nucleus with perfect alignment of the hyperfine coupling and perfect microwave ir-

radiation. There are several reasons why the enhancement could be less than these

predictions in the experiments. The first point to consider is that these simulations

have so far neglected the double quantum pathway. While relaxation through flip-

flip interactions will be a weaker process than the flip-flop that drives DNP, both

pathways are present. We have simulated DNP in a system with a double quantum

relaxation rate of 0.5 and 0.1 times the zero quantum rate. The results are shown

in Fig 5-6. Fig. 5-7 shows the DNP enhancement of OCT versus hard pulses when

the double quantum rate is half of the zero quantum transition rate. The ratios of

the polarization for OCT pulses to hard pulses remain the same, but the maximum

enhancement is reduced from over 500 to 170.

Another possible leakage pathway is the intrinsic nuclear T relaxation. Fig. 5-8

compares the nuclear polarization enhancement for several values of Tj. This process

does not affect the enhancement unless Tn is on the order of milliseconds or less. In

the experimental system discussed here, TP is minutes, and so we do not consider

nuclear T1 to be a significant source of leakage.

We also have to consider the spin diffusion process. The OCT pulses optimize the

transfer of polarization from the electron to the proton directly coupled to it. There

will be other nuclei near the defect which have some small dipolar coupling to the

electron. The nuclei even further away are polarized through spin diffusion only. This

spin diffusion depends on the dipole-dipole coupling between the protons.

5.8 Extension to General Case

This approach can be adapted to other open quantum systems, to include more spins

or additional relaxation processes. The computations may be limited numerically by

the fact that one must find operators in Liouville space as opposed to the smaller

Hilbert space problems of closed system dynamics.
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Blue solid line is saturation by open system OCT pulses, dashed red is closed system
OCT pulses, and dashed black is saturation with hard pulses.
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Figure 5-8: Leakage through nuclear T relaxation. The solid black curve gives the
enhancement when Tn is on the order of a minute. There is little deviation from this

until T is on the order of 10 ms (red dashed), and only significant change when T1'

is ims (blue dotted).

One can design control sequences that account for relaxation. The Kraus operator

formalism is useful in this approach. This superoperator representation allows us to

design a flexible pulse finder in which we can easily incorporate additional operators

depending on the relevant processes for the system. In principle another superop-

erator formalism, such as the Lindblad representation under the condition that the

system is Markovian, would work as well.

The inputs required are the number of steps, a starting length of the step and

amplitude of the applied microwave or rf field, the internal Hamiltonian, and the

relevant relaxation times. The code used above included only on/off control, but this

could be expanded to include amplitude and phase control according to experimental

capabilities.

Determining an appropriate fit function is necessary for finding good OCT pulses.

In the case above, the overlap of the superoperator with one that performs a rotation

on the electron spins is a good measure of the quality of the pulses. If one wanted

instead to find pulses to select the solid effect, a weaker process, and suppress the
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Overhauser effect, a fit function that measures the overlap with a rotation on the

zero quantum states might not be good enough. To find better pulses, one can add a

penalty function which minimizes the overlap with the unwanted operation, a rotation

on the electron spin manifold in this example.

Here we used a process fidelity in the fit function, but for optimizing pulses where

the desired final state is known one could use a state-to-state fidelity. In the DNP

example, there are two processes with which to compare the pulses. If one wanted

to perform a 2 spin gate such as a SWAP or CNOT on an open quantum system, a

state fidelity would be a more natural measure.
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Chapter 6

Experiment

6.1 Methods

We used a home-built DNP probe to apply microwaves to the irradiated malonic

acid sample described in Chapter 1 and detect the rf NMR signal. The pulsed ESR

spectrometer transmitted microwaves at wS = 9.57 GHz, and we detected the NMR

signal of the bulk at w, = 14.57 MHz. To measure the thermal signal without DNP, we

used an Ernst angle detection with 400,000 scans. Due to the large dipolar coupling

between protons in malonic acid, T2 of the proton signal was less than the deadtime

of the probe, and so we used a magic echo sequence to detect the NMR signal. The

proton linewidth was 40kHz.

We ran three sets of experiments, all using the basic pulse sequence given in Figure

5-1. One data set used hard -r/2 pulses in the ESR saturation train, while the other

two used the OCT pulses, one open system OCT pulses and one closed. The data

obtained using OCT pulses was summed over 64 scans, while the data using hard

pulses was averaged over 256 scans and rescaled.

6.2 DNP Probe Design

We built a dual frequency probe for pulsed ESR excitation and NMR detection. There

are various designs for electron-nuclear double resonance (ENDOR) and DNP probes
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at high and low fields. ENDOR and DNP experiments both require simultaneous

irradiation with microwave and RF fields. At high field, one typical design uses a

waveguide with a horn for transmitting microwave onto a sample held in an coil that

is part of the LC circuit tuned to RF frequencies [18]. Alternative high field probes use

a helix for NMR coil, which doubles as a microwave cavity for the ESR resonator[94].

At low fields corresponding to X-band ESR frequencies the most common ENDOR

or DNP probes use a bridged loop-gap resonator placed inside and concentric with

an NMR coil [81, 29]. We have developed a novel design for a pulsed dual frequency

probe for X-band DNP.

The schematic for the probe is shown in Fig 6-1. The ESR resonator is based on

the standard loop-gap resonator. Loop-gap resonators (LGR) are widely used for ESR

at X-band or lower frequencies. As such resonators can be made small compared to

microwave cavities and typically have lower Q, they are particularly useful for pulsed

ESR. LGRs have a high filling factor and consequently produce a large B1 with good

uniformity over the sample [69, 25].

In an LGR the loop acts as an inductor and the gap as a capacitor, and together

they form the resonance structure of an LC circuit. The electric and magnetic fields

are confined separately in space so that the E field is strongest in the gap, and the B

field in the loop. Bridged loop-gap resonators were initially developed to improve the

confinement of the field within the resonator by adding a shielding outer conductor

[78]. BLGRs are frequency tunable and have been used in ENDOR probes [29, 68].

We present an alternative to the BLGR based ENDOR probe with similar or

better performance, which, significantly, permits a simpler construction. BLGRs

require depositing thin layers of metal on quartz tubes [85], while our design can be

built easily with the tools standard in any lab. We use a strip of copper foil 2-3mm

wide and 100pm thick and shape it into a loop-gap configuration. This ESR resonator

is soldered onto the microwave coax at one end, while the other end is open (see top

view of Fig 6-1). A tuning screw on the opposite side of the shield allows tuning and

matching of the ESR resonance over a 1 GHz range around 10 GHz. The frequency

and Q-factor of the resonator depend on the diameter of the loop and the separation
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Figure 6-1: Probe Diagram: the figure on the left shows the side view of the probe,
and on the right is the top view. The ESR resonator in the shape of a loop-gap is
concentric to the NMR coil.

of the gap.

The ESR resonator is concentric with the NMR coil. In order to place the mi-

crowave coax and tuning screws from the side, we used a split coil design for the RF

detection. In principle the coax and tuning screw could be inside the NMR coil to

avoid using a split coil. In that case BF and B"a" would be perpendicular. This

would improve the sensitivity of the NMR circuit, but we found the performance of

the split coil to be adequate.

The NMR coil is wound on a KEL-F support (another polymer support could be

used if not detecting protons). One lead is grounded to the shield, and the other is

isolated from the shield and connected to the RF circuit outside the shield.

It is important to protect the microwave electronics from NMR pulses by using

RF filters outside the probe. As the overlap of the microwave field and the RF field

is small, there is little coupling between the two and we do not find any impact on

either the ESR or NMR signal due to the presence of the other.

6.2.1 Probe Performance

The Q-factor of the ESR resonator varies depending mostly on the size of the loop.

A loop with diameter 1.5mm has a Q of 100-400, while a larger loop with diameter
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Figure 6-2: ESR resonance: this resonator is tuned to 9.21 GHz with a Q of 1000.

3mm has a Q of up to 4000. The Q can be spoiled as well using the tuning screw.

Fig 6-2 plots the s1l parameter of the transfer curve for the larger resonator (loaded)

while placed inside the NMR coil.

Fig 6-3 shows the FID of a sample of DPPH. In this plot we see some leakage

from the pulse, but the ringdown is less than 100ns. The signal is comparable to that

of a standard loop-gap resonator tuned to the same frequency. We tested the probe

with the ESR resonator tuned to 10GHz and the NMR circuit tuned to 15MHz. The

presence of the NMR coil does not change the Q or tuning frequency of the ESR

resonator.

In order to confirm that the microwave field is confined to the loop and not an

effective cavity mode of the shield, we performed a Rabi experiment on irradiated

quartz. The results are given in Fig 6-4. We were able to achieve a Rabi frequency of

17MHz with 40W power using the smaller loop. The Rabi frequency decreases with

a larger diameter loop as the field is not spread over a larger area. These results are

the same with the NMR coil removed.

The Rabi experiment indicates that the field is fairly homogeneous within the

ESR loop. Simulations of the ESR resonator confirm that field is confined to the coil
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Figure 6-3: Pulsed ESR signal of DPPH with the DNP probe. We identify two main
features in this figure, first the leakage of the pulse through the receiver switch. 200
ns after the pulse, the receiver switch opens we detect the DPPH free induction decay.

and is uniform over the sample (Fig 6-5).

While we have used this design for DNP experiments and detected proton signal at

15MHz, the NMR circuit could be designed for another nuclear frequency. Although

the NMR coil has a low filling factor, for the DNP experiment presented here this

configuration provides enough sensitivity.

This NMR/ESR dual frequency probe design is not only versatile but straight-

forward and simple to construct. By changing the gap size, loop diameter, and the

distance of the tuning screw one can build a resonator functional at a wide range

of X-band frequencies. The quality factor can be varied over a wide range, which is

advantageous as many ENDOR experiments require a low Q (on the order of 100)

while other pulsed ESR application may benefit from a higher Q resonator [78]. The

ESR resonator itself can be used for pulsed ESR with a performance comparable to

other loop-gap resonators. This probe performs similarly to bridged loop-gap EN-

DOR probes but can be designed and built quickly in a lab without any intensive

fabrication techniques.
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6.3 Results

Figure 6-6 compares the NMR signals after two DNP experiments using OCT pulses:

one with is of polarization and another with 140s polarization. Figure 6-7 shows the

buildup curves for the three sets of pulses. It is clear that the OCT pulses found

with relaxation processes included in the pulse finder (open system pulses) produce

the highest nuclear polarization, 11.1 ± 2.2 times the enhancement produced by hard

pulses, and 2.2 i 0.4 times that produced by the OCT pulses found without relaxation

(closed system pulses). The closed system pulses yield a polarization 5.1 t 1.0 times

that of hard pulses. These ratios are consistent with those found in the simulations

of 5.

The maximum polarization enhancement achieved with the open OCT pulses was

a factor of 180 i 20. This is less than maximum simulated value. There are several

factors which could account for this difference, however. The simulations do not

include the transfer of polarization from the electron-coupled protons to the bulk

protons via spin diffusion. The polarization of the bulk nuclear spin is expected to

be less than the polarization of the spins coupled to protons and to depend on the

strength of the proton dipole-dipole couplings [75]. There are also leakage pathways,

such as the double quantum relaxation, which could reduce the overall enhancement.

In fact the simulations show that a double quantum relaxation rate of half the zero

quantum rate would produce results similar to those of the experiment.

From fits of the data in Figure 6-7 we find the buildup times for each curve. For

all three curves the rate determining process is spin diffusion, but the buildup times

will depend on how efficiently the electron coupled nuclear spins are polarized[37).

The hard -r/2 pulses have a buildup time of 12.7 + 1.8s , the closed OCT buildup is

14.9 i 1.7s, and 13.2 ± 1.5s for the open OCT pulses.

We also measured the effective T1 of the bulk nuclear spins after DNP. This result

is shown in Figure 6-8. A fit of this curve gives T = 10.5 ± 1.6 s. Like the DNP

process, the return to thermal equilibrium depends on spin diffusion. The fast electron

T1 process will depolarize nuclear spins in its vicinity, and that depolarization will
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Figure 6-6: NMR spectra after 3s of DNP (red dotted curve), 7s (blue dashed), and
140s of DNP (black solid)
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Figure 6-7: Results of the experimet with fits of the buildup curves. Blue triangles
are the data from saturation with open system OCT pulses, red circles are for closed
OCT pulses, and black squares are for hard pulses.

diffuse through the bulk. Thus we expect the effective T1 of the bulk nuclear spins to

be on the same order as the polarization buildup times, and in fact it is.

As mentioned in Chapter 3 saturating the electron spins cools not only the nuclear

Zeeman bath but also the nuclear dipolar bath. Because the dipolar coupling is on

the order of tens of kilohertz, the effective spin temperature after DNP can be pK.

We measured the dipolar ordered states after DNP to compare to the Zeeman ordered

states and to produce a more complete picture of the spin dynamics.

One standard method of measuring dipolar order is the Jeener-Broekaert echo.

In this pulse sequence Zeeman order is converted to dipolar order, evolves for some

time, and is then converted back to Zeeman order and read out as an echo. After

DNP there is already polarization in the dipolar order, so we only need to apply a

7r/4 pulse to convert dipolar to Zeeman order and record the echo as the state evolves

into an observable signal.

85



T--

XU

-o 2U

E

0 --

- . . I . . . . . I . . . . . I

1 10 100

Time (s)

Figure 6-8: Effective T1 measurement with fit.

The results of this measurement are shown in Fig 6-9. The final signal is 0.47

times that of the Zeeman ordered states. We expect that the dipolar order signal will

at the most be half the amplitude of the Zeeman order because the detection uses a

7r/4 pulse in the measurement instead of a r/2, so only half of the magnetization is

rotated into an observable.

The buildup time is 9.9 ± 1.8 s. While the enhancement of the dipolar signal

matches expectations, the buildup time does not. The diffusion rate of dipolar order

is typically an order of magnitude faster than Zeeman order diffusion for the reasons

discussed in Chapter 1. It is possible that the detected signal is longitudinal order

instead of dipolar; longitudinal order can be measured with the same scheme, but

typically the amplitude is much smaller. Further experiments are needed to explain

these results.
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Figure 6-9: Dipolar order measurement: the dipolar order polarization is represented
by the data with black squares, and is compared to Zeeman order polarization buildup
is (blue triangles).

6.4 Analysis and Conclusions

These results clearly show that optimal control theory can improve polarization trans-

fer in DNP experiments. Even with a relatively simple pulse sequence with few time

steps we can achieve an order of magnitude increase in polarization using OCT pulses

versus hard pulses. This is a significant signal enhancement, and a useful result within

the field of DNP.

While the OCT pulses do produce a nuclear polarization enhancement of 180, this

increase is less than the theoretical maximum enhancement of 660. The inability to

reach this level of enhancement could be due to the unaccounted for leakage pathways

or to asymmetric saturation of the electron resonances.

We imagine we can extend these results to find control sequences for larger spin

systems. In particular we have neglected any nuclei further from the electron defect

than the nearest proton. These nuclear spin may still have small hyperfine interactions
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with the electron spin, and we have not allowed any transfer pathways is the pulse

optimization which might polarize these spins directly. We could also include the

dipolar couplings between nuclear spins to simulate spin diffusion, the rate limiting

step in this experiment.

It may also be useful to design control pulses for samples other than single crys-

tals. In the case presented here the two spin system was assumed to be in the same

orientation throughout the sample. DNP in powder samples would require optimizing

pulses for a set of internal Hamiltonians. Such control is possible, but it is not know

what additional resources would be needed.

More generally, this experiment demonstrates that we can design control sequences

for open quantum systems that account for the interactions with the environment.

Including relaxation processes in the pulse finder produces pulses that select the

desired transitions more efficiently than using a superoperator that accounts only

for unitary processes. This method of pulse finding is useful for quantum control in

systems where relaxation plays a strong role in the dynamics. The Kraus operator

description is particularly convenient as one can write a modular pulse finding code

in which decoherent processes can be added to the superoperator successively.

Not only is it possible to create control operations in dissipative systems, but we

have shown that an open quantum system approach can provide significant improve-

ments over unitary control. We anticipate that superoperator optimized pulse design

will lead to superior control in spin based systems and other quantum devices.
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Chapter 7

Generating Noise Realizations

Often it is useful to simulate the results of a physical experiment, to predict the

possible outcomes of the experiment or to understand the results according to a certain

model. While there are many factors that can lead the experiment to deviate from the

simulation, one reality of experiments is that every system will have noise. It is useful

in many cases to characterize the noise itself. Simulating noisy processes, however, can

be computationally intensive. There are several methods of producing colored noise

functions [43], and in this chapter we present one method of generating realizations of

noise belonging to a special, but highly useful, class of processes: Gaussian processes.

7.1 Gaussian Processes

A Gaussian process is, by definition, a process for which the value at every point in

time is a random variable with a normal distribution. If one instance of the noise is

xi(t), then over the set of instances i, each x(tj) has a normal distribution,

1
prob(x) = exp(-(x - p)2/202) (7.1)

o-v2i

There are several properties which are characteristic of Gaussian processes [76]:

* Zero-mean: This first condition is not necessary for a Gaussian process, but we

include it because we can remove any deviation from zero mean and describe
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the dynamics due to this offset with a Hamiltonian. The remaining stochastic

process will be zero-mean, and by definition the ensemble average at each point

in time will go to zero,

1N

(x(t)) = lim - zi(t) = 0 (7.2)
N- oo N

" Stationarity: A process is stationary if the covariance between x(t) at any two

times depends only on the difference between the times. The covariance is given

by the ensemble average of x(ti) and x(t 2),

1 N
G(ti, t2 ) = (X(tI)X(t2 )) = lim zi(ti)Xi(t 2 ) (7.3)

N--oo N

If G(ti, t2) depends only onr = (ti - t2), then the process is stationary. Note

that a stationary Gaussian process will also be ergodic, meaning the time aver-

age of Xi(t)Xi(t + T) will converge to the ensemble average.

" Odd moments: All odd moments of a Gaussian process should go to zero [57] (for

example the third moment (X(t 1 )X(t 2 )X(t 3 )) = 0

" Even moments: The even moments should factor into products of the second

moment [39, 57], i.e. for even n,

(z(ti)X(t2) ... X(t4)) = 1 X (ti)zX(ty) (7.4)

* Spectral Density: The spectral density function contains all the information

about the noise process. This is not true in general, but it is valid for Gaussian

processes. This is due to the relationship between the power spectral density

and the autocorrelation function [14, 58, 5]. The power spectral density is

defined as,

S(W) = lim2 (X(W)1 2) (7.5)
T-+oo T

where X(w) is the Fourier transform of the noise function x(t). The autocorre-
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lation function for a stationary and ergodic process is,

pi(T) = x (t )xi(t + T)

#(T) and S(w) are a Fourier pair.

theorem,

f(t)g*(t)dt

-T/2

To show this, we begin with the Parseval

where F and G are the Fourier transforms of f and g. It follows that,

x(t)x(t + T)dt = IX(w) 2 eiT dw

We assume the noise function x(t) is real-valued. Taking the ensemble and time

averages of both sides of Eq. (7.8) we have

1
lim -

T-+0x T
(x(t)x(t + T)) dt = lim 1

T- ox 27r I 00

2( X(j) 12 )
T

(7.9)

Finally we have,

1 0

#(r =F27 0

S(w) =4j#

S(w) cos (wT)dw

(T) cos (wT)dT

For a Gaussian process, if it is stationary and ergodic the covariance is equal to

the autocorrelation function. Because the odd moments of such a process are

zero, and the even moments are products of the two point correlation functions,

if one knows the spectral density then one knows all the moments.

7.2 Algorithm

Here we present a method for generating noise realizations given a spectral density

function. This method is known as 'phase randomization' and was first presented by
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I f F(w)G*(w)dw

I 0

(7.7)

(7.8)

(7.10)
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Yamada [96].

One often has access to the power spectrum of the noise in a physical system

and can therefore characterize the noise with the power spectral density, S(w). We

assume that we have a known spectral density, S(w), which is a real-valued and even

function. Then we can generate instances of the noise function n(t) by assigning a

random phase to every point in S(w), so n(t) is

n(t) J S(W)e(w) eiwt dw (7.12)

#(w) is a random variable with a uniform distribution. We ensure that n(t) is also a

real-valued function with the condition,

#(-W) = -#(W) (7.13)

Note that this also forces the requirement #(0) - 0. Since S(w) is even, we can write

n(t) as the cosine transform,

n(t) = 2 j S(w) cos(wt + #(w))dw (7.14)

The definition of the spectral density for an infinite process also includes the limit

as the time T goes to infinity (Eq. 7.5). For finite processes, n(t) should be equal

to the Fourier transform in Eq. 7.12 multiplied by T. We will assume for simplicity

that this scaling factor is absorbed in the spectral density function for the following

analysis.

Now we will show that n(t) satisfies the conditions for a Gaussian process given

in the previous section.

* Zero-mean: We have to show that (n(t)) = 0.

(n(t)) = 2 j V5_(w) (cos(wt + #(w))) dw (7.15)

= jo 0 S(w) [cos(wt) (cos(o(w))) - sin(wt) (sinQ~$(w)))] dw (7.16)
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Given that #(w) is uniformly distributed on the interval [0, 27r], the averages

(cos(w)) and (sin(w)) are zero. Thus the ensemble average of n(t) is zero.

e Stationary: Now we show that the covariance, G(ti, t2), depends only on the

difference, (ti - t 2 ).

G(ti, t 2 ) = (n(ti)n(t2)) (7.17)

=4 V/S(wi)S(w 2 )

x (cos(witi + #(wi)) cos(w 2 t2 + #(w 2 ))) dwidW2 (7.18)

The cosine terms here can be expanded using trig identities to

(cos(witi + #(wi)) cos(w 2t 2 + #(w 2))) =

1
- (cos(witi + w2t2) cos(#5(w1) + #(w 2)) + cos(witi - W2t2) cos(#(w1) - #(W2))
2

- sin(witi + w2t 2 ) sin(#S(wi) + #(w 2 )) - sin(witi - W2 t2 ) sin(#(wi) - (W2)))

(7.19)

#(wi) and #(W2) are independent random variables, so the ensemble average is

essentially and ensemble average with respect to #(wi) and then with respect

to #(W2 ), ie

(cos(witi + #(w 1 )) cos(w2t 2 + #(w 2)))

((cos(witi + #(wi)) cos(w 2 t2 + #(w 2 ))) 1) 2 = 0 (7.20)

and similar for the sine terms. When wi $ w2 , the ensemble average in Eq.

(7.19) is zero. When w1 = W2 , however, we have (cos(witi ± #(wi)) cos(O2t 2 + #(w 2)))

1. Thus the ensemble average gives us a delta function in the integral in Eq.
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(7.18), and the only term from Eq. (7.19) is cos(witi - W2t2),

G(ti, t 2 ) = 2 j j S(wi)S(w2 )cos(wit 1 - W2t2)6(Wi - w 2 )dwidW2

-2 j S(wi) cos(wi(ti - t2))dwi (7.21)

G(ti, t 2 ) depends only on (ti - t 2 ), so n(t) is stationary.

* Odd Moments: Similarly we find that the odd moments are all zero. The

product of three cosine terms in the integral of (n(ti)n(t2)(t6)) can be expanded

to,

1
( cos(witi + w2t2 + w3t6) cos(#(wi) + #(w 2) + #(w 3 ))

4

± cos(witi - w2t2 - Wst3 ) cos(#(wi) - #(w2 ) - #(W3))

+ cos(witi + w2t 2 - w3t6) cos(#(wi) + #(w 2) - #(w 3))

± cos(witi - w2t2 + w3ta) cos(#(wi) - #(w 2) + #(w 3 ))

± (sine terms)) (7.22)

As in the lower order moments, the sine terms always average to zero, and the

cosine terms average to zero when the arguments do not equal to zero. While

it is possible for certain values of {w1 , w2, w3 } that one of the cosine terms, say

cos(#(wi) - #(w 2 ) - O(W 3)), equals one, this will not happen on average over

many realizations. There is no condition here to produce a delta function, and

the third moment is always zero. This will be true for all odd moments.

* Even Moments: The final requirement on the moments of n(t) is that the even

moments factor into products of the second moment. The ensemble average in

(n(t1)n(t 2 )n(t 3 )n(t 4 )) yields the following terms,

1
5 ( cos(witi + W2t2 + w3t6 + w4t4 ) cos(#(wi) + #(w 2) + 4(W3) + #(w 4 ))

+ cos(witi - w2t2 - w3t6 - w4t4) cos(#(wi) - #(w 2) - #(W3 ) - #(w 4 ))
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cos(witi - w2t 2

cos(witi + W2t 2

cos(witi + w2t 2

cos(witi - w2 t 2

cos(witi + W2 t 2

cos(witi - w2 t 2

(sine terms) )

+ w3t3

+ w3t3

- W3 ta

- W3t6

- Wst 3

+ ± 3 t3

+

+

w 4 t 4 )

W4 t 4 )

W4 t 4 )

w 4 t 4 )

w4 t 4 )

W4 t 4 )

cos(#(LWi)

COs(#( Wi)

COS(#(Wi)

cos(#( Wi)

cos(#?(wi)

cOsQ7(#wi)

- #(W2)

+ #(W 2)

+ #(W 2 )

- #(W 2)

+ #(W2)

- #(W2)

+ (W3)

- #(W3)

- #(W3)

- #(W3)

+ #(U)3)

-- #(W4)

- #(04))

- #(W4))

+ #(W4))

(7.23)

There are three terms in Eq. (7.23) which can produce non-zero contribu-

tions to the ensemble average with certain conditions on the w. For example,

cosO(#(1 ) - #(w 2 ) + #(W 3 ) - #(W4 ))= 1 when w1 = w2 andUos = W4 , or Li -- w 4

and W2 = w 3 . Eq. (7.23) yields three sets of delta functions:

cos(#(wi) - #(Co2) + #(W3) - #(W4)) 6(W1

cos(#(Wi) + #(W2) - #(W3) - #(Lc4)) = 6(WI

cos(#(wi) - #(W2) - #(W3) + #(w 4 )) => 6(c1

- W2 )6(w 3

- W3)6(O2

- W2)6(W3

- W4 ) + 6(wi - w4 )6(w 2 - w3 )

- 04 ) + 6(WI - w4 )6(w 2 - cc3 )

- W4 ) + 6(W1 - w3 )6(W 2 - W4 )

(7.24)

Integrating over these delta functions gives

(n(t1 )n(t 2 )n(t3 )n(t 4 )) = (7.25)

16 x 1 [j j S(W2 )S(W4 ) cos(w 2 (ti - t 2 ) cos(w4 (t 3 - t 4 ))dw2 dw4

+ j S(w4 )S(w3 ) cos(W4 (ti - t 4 ) cos(W3 (t 2 - t 3 ))d 3 dw4 + etc.

(n(ti)n(t2)) (n(t3 )n(t4 )) + (n(ti)n(t3 )) (n(t2 )n(t 4 )) + (n(t1)n(t 4 )) (n(t2 )n(ta))

(7.26)

For all the even moments, the only terms that will contribute will be those that

produce products of delta functions. The final integral will reduce to produces

of the second moment.
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e Spectral Density:

* S(w): There is one subtlety to complicate the above analysis - the case when

S(O) # 0. Because #(0) = 0 for every instance of n(t), there is a nonzero DC

contribution to the noise function, and the mean is nonzero:

(n(t)) = 2 j S(w)6(w)dw = 2 /S(0) (7.27)
0

Additionally, the higher order moments have extra terms, so the odd moments

are also nonzero and the even moments contain an extra constant. The simple

solution is to subtract the DC componenet off from n(t) in Eq. (7.14),

n(t) = 2 j VS(w) cos(wt + 4(w))dw - 2 S(0) (7.28)

Now n(t) is zero mean, and the higher order moments are likewise corrected.

This algorithm produces noise instances from a spectral density function that sat-

isfy the conditions for a stochastic Gaussian process. The method presented here is

not computationally intensive, as it depends mainly on taking the Fourier transform

in Eq. 7.14. After generating many noise functions, we can also compare the corre-

lation matrix of the ensemble average, C of these functions to the correlation matrix

determined by the spectral density, Cs. We propose the one norm,

||Cs -C1|1 i= M||1 = max Mg (7.29)

as a metric for assessing the quality of the generated noise.

7.3 An Example

We present a numerical demonstration of the algorithm. The spectral density of the

noise to be generated in this example is a Lorentzian with a correlation time rc (Fig.
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Figure 7-1: Lorentzian spectral density function (arbitrary units).

7-1),

I (W) 2(A 2/TC)

(P - WO)2 + (1/rF2)

We generate an instance of the noise, n points long, using the random phase assign-

ment, and repeat this process N times to create an ensemble of noise instances. Fig.

7-2 shows one instances of the noise generated.

We calculated the covariance matrix for the ensemble of noise functions and ideal

covariance matrix determined by the spectral density. The ideal covariance matrix is

constructed by first taking the Fourier transform of the spectral density S(w) to find

the covariance function G(T). The matrix elements of CS are defined as

CS (i, j)=G(i - j)

This matrix will have constant diagonals.

If n(t) represents the ensemble of noise functions, the covariance matrix of the

noise functions the elements C(i, j) are the covariances,

C (it, j) = (n (ti) n (td)

For the Lorentzian spectral density, Fig. 7-3 shows the decrease in the one-norm,
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Figure 7-2: One instances of the noise generated from the Lorentzian spectral density.

||Cs - C11, as we increase the number of generated noise functions. The smaller

this metric is, the closer the generated noise is to stochastic noise with the correct

spectral density. We see from this figure that the norm converges quickly to a value

of 2 x 104, and according to fits of this data, this convergence is faster than v'N

where N is the number of noise instances.

7.4 Conclusions

Overall this algorithm is a simple and direct means of producing instances of noise

using minimal computational effort. This method of generating instances of a process

with a given spectral density is also known as 'surrogate data' [72] or 'Fourier boot-

strapping' [13], but we believe this to be a novel application of the method for the

purpose of generating noise. The ability to quickly and reliably produce noise func-

tions will allow for accurate design and simulations of control sequences in systems

where the noise spectral density is known. As quantum control techniques become

more refined, it is becoming increasingly necessary to account for all system dynamics

including interactions with the environment and stochastic noise processes.
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Figure 7-3: Convergence of the one norm between the ideal and actual covariance
matrices as a function of the number of instances generated.
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