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Chapter 1

General Introduction

How we acquire and represent knowledge is one of the most basic concerns of cognitive
scientists. Certain lines of inquiry within the field have proven extremely useful to the
exploration of these issues. The study of numerical cognition is undoubtedly one of these areas,
as it has provided a richer understanding of domain specificity, biological determination of
knowledge domains, the nature of conceptual change, the kinds of knowledge that may be
present in beings without language, and the building blocks of that most remarkable of human
achievements, higher mathematics.

Until fairly recently, researchers and laypersons alike probably would have been reluctant
to attribute’ numerical abilities to infants or animals. The Clever Hans incident at the turn of the
century, in which prominent scientists of the day were convinced that a horse had learned
advanced mathematics, bred a strong resistance to the concept of numerical competence in
animals. The issue remains controversial now as well, but evidence continues to build that
preverbal human infants and nonverbal animals possess considerable, and sometimes quite
surprising, numerical abilities. Results from studies on nonsymbolic number processing in
human adults (forvexample, estimating the approximate number of elements in a large group)
have shown remarkable parallels to the comparative work on other species. Indeed, infant,
animal, and human adult numerical abilities share such similar characteristics that many
researchers have suppoéed that a domain-specific system of knowledge, present in many species,
is responsiblé for the sense of number and forms the basis for the complex symbolic
manipulation of number developed by humans alone (Gallistel and Gelman 1992; Dehaene
1997). Though recent progress in this area has been considerable, many unanswered questions

remain about the nature of number representation in humans and animals. This thesis addresses



three of these questions. To what extent is an approximate mental magnitude independent of the
form of the enumerated stimulus? Are these magnitudes constructed from different sorts of
stimuli through a unitary process, or does the specific enumeration process depend on the
sensory qualities of the stimulus set? And if more sophisticated symbolic mathematics is built
upon the number sense, can this sense in its basic, nonverbal form be used in simple
mathematical operations? The following sections will consider what is known about the number

sense, the representations that underlie it, and its use in arithmetic computations.

1.1 What does it mean to have an abstract “sense of number?”

An animal (or a human) can be said to possess a concept of number only if certain criteria
are met. The most basic requirement is that the animal must be shown to be able to base its
behavior on numerosity unconfounded from the continuous variables that tend to covary with
numerosity. For example, one might demonstrate that a rat can discriminate 4 dots from 8 dots,
but this would not necessarily mean that the rat represented the number of dots. If the dots were
all the same size, the rat might have made its discrimination based on the overall spatial extent of
the stimuli. If the stimuli were sequentially presented, temporal extent, rather than spatial, would
tend to covary with numerosity. Judgments based on these continuous variables provide evidence
of representation of quanti'ty, a continuous measure, but not of number, a discrete measure.

To demonstrate that numerosity can modulate behavior, however, does not provide
sufficient evidence of a true number concept. Number is a highly abstract property of a set. It is
independent of the identity of the set’s elements, the arrangement of the elements, or any other
features of the set. Once they have learned some counting techniques, human adults and children,
can recognize the similarity between a group of fourteen apples and a series of fourteen beeps,

though the sets may share no characteristics besides numerosity. This is because our system of



symbolic enumeration allows us to label each group with a numeral that captures this abstract
property of numerosity. Symbolic numerals may apply to any type of set; they are perfectly
abstract. Therefore if we as human adults want to represent “how many” apples we have, for
example, we do not need to retain a visual representation of a group of objects — we can simply
remember “14.” Similarly, if we want to represent a very different kind of set, such as a
temporally extended series of beeps, we do not have to retain a memory of the entire sequence —
we can again remember 14.” Imagine, though, how we might represent “how many” without the
help of a symbolic number system. One possible way to do this would be to form a visuospatial
representation when dealing with apples, and a different sort of representation based on time,
rather than space, when dealing with beeps. This particular method would rot allow its user to
recognize the numerical similarities between the sets of apples and beeps; it would not constitute
an abstract number sense. Clearly, it is possible to represent a quantity in this manner; therefore,
to demonstrate that animals or infants can respond based on a set’s numerosity does not
necessarily imply that they possess an abstract sense of number. The critical further requirement
is to show that their responses generalize across numerosity when other properties change. This
requirement also holds for human adults performing approximate number tasks that preclude the
use of Arabic symbols. For the representation of magnitude to be considered truly abstract, it
must not be limited to a particular sensory modality or presentation format.

Without a symbolic system to free its user from the constraints of set identity or sensory
modality, then, could abstract number be represented? A large body of experimentél work
suggests that nonlinguistic creatures do in fact represent number, and some of this work strongly

- suggests that this sensitivity is truly numerical and abstract.



Numerical capabilities in nonhuman animals

Many kinds of nonhuman animals, ranging from pigeons and rats to monkeys and
chimpanzees, have been found to make discriminations based on the numerosities of sets of
various sizes. This is true for sets presented simultaneously or sequentially, visually or auditorily
(Davis and Perusse 1988; Gallistel 1990; Gallistel and Gelman 1992; Dehaene 1997; Dehaene,
Dehaene-Lambertz, & Cohen 1998). In oné elegant study, rats were first trained to discriminate
between an 8-second sequence of 8 tones and a 2-second sequence of 2 tones. After the
discrimination was learned, the rats were able to respond with the “8” lever for the former
sequence and the “2” lever for the latter sequence. Then test trials were presented in which either
duration or number varied. For example, when duration varied, each sequence contained 4 tones,
but its duration could be anywhere from 2 to 8 seconds. When number varied, on the other hand,
each sequence was 4 seconds long, but it could contain anywhere from 2 to 8 tones. These test
sequences allowed the researchers to assess whether the original discrimination had been based
on duration or number. The results showed that the rats had kept track of both duration and
number; when duration was fixed, the rats responded based on number, but when number was
fixed, they responded based on duration (Meck and Church 1983). This study provides
conclusive evidence that number, not a covarying continuous quantity, dictated the rats’
behavior.

Animals have been found to generalize across stimuli on the basis of numerosity,
independent of stimulus shape, color, identity, or modality; these results provide strong evidence
for abstract numerical ability (Gallistel and Gelman 1992; Dehaene, Dehaene-Lambertz, &
Cohen 1998). One of the most striking examples of the use of modality-independent numerical
information comes from rats (Church and Meck 1984). The animals were trained to press one
lever when presented with two lights or white noise bursts, and another lever when presented

with four lights or white noise bursts. When two lights and two sounds were presented together,



the rats pressed the “four” lever, suggesting that they spontaneously combined the quantities of
light and sound and responded to their sum. This occurred even though the compound stimulus
was a combination of two other stimuli, each of which taken alone demanded a different

response. When a previously unseen stimulus was used (one sound and one light) the rats again

responded to the sum, pressing the “two” lever.

Numerical capabilities in human infants

In a typical habituation experiment, infants are exposed to particular numerosities until
their attention flags. Then they are presented with either that same numerosity or a novel one,
and if they dishabituate to the novel numerosity, but not the original, it is taken as evidence of
numerical discrimination. Such experiments have shown that infants of various ages can
discriminate between 1 and 2 and between 2 and 3, for stimuli that are objects of various sizes,
shapes and identities (Starkey and Cooper 1980; Antell and Keating 1983; Starkey, Spelke and
Gelman 1983), and also for pronounced syllables (Bijeljac-Babic, Bertoncini and Mehler 1991),
or for sequeritially presented events (Wynn 1996). Infants can also discriminate 8 from 16
sounds, or 8 from 16 dots, though they fail at 8 vs. 12 (Lipton and Spelke 2000; Xu and Spelke
12000). A different technique presents infants with pantomimed additions or subtractions of very
small numbers of objects. These simple arithmetic studies have demonstrated that infants are
aware of the number of objects that should be present after the addition or subtraction: they show
surprise when the resulting number is the incorrect one (Wynn 1992; Simon, Hespos, and Rochat
1995; Koechlin, Dehaene, and Mehler 1998; Uller, Carey, Huntley-Fenner, and Klatt 1999).
Some, though not all, of these studies incorporated controls for non-numerical stimulus
properties, ensuring that infants can respond to number and not some other covarying quantity.

Can infants relate the numerosities of sets presented to different sensory modalities?

Looking times in six- to eight-month-old infants have been found to depend on the

10



correspondence between the number of objects in a visual array and the number of drumbeats in
a sequence (Starkey, Spelke and Gelman 1983; Moore, Benenson, Reznick, and Peterson 1987;
Starkey, Spelke and Gelman 1990). However, it is possible that the infants simply matched
objects to drumbeats througil 1:1 correspondence, which does not require recognition of
numerosity. Also, a recent replication attempt found no preference in either direction (Mix,
Levine and Huttenlocher 1997). In addition, 3-year-old children do not pérform well on
crossmodal numerosity matching tests, in which they must choose the visual-spatial array that
corresponds in number to a sequence of sounds (Mix, Huttenlocher and Levine 1996). While it is
certainly possible that infants possess modality-independent numerical ability, to date evidence

of this ability is equivocal.

Numerical capabilities in human adults

Though the case for abstract, purely numerical representations in human infants and
nonhuman animals is still not entirely conclusive, there is a great deal of convincing evidence for
the existence of a true number concept in adults. The characteristic patterns of performance on
nonsymbolic number tasks with human adults closely follow the results of similar tests on
animals, a parallel which has led many investigators to believe that its source is a common
biologically determined system. One important shared feature of animal and human data is the
fact that numerical discrimination is subject to Weber’s Law, which states that the
discriminability of two magnitudes depends on their ratio. For example, when rats are trained to
press a lever a certain number of times before they can receive a reward, the number of presses
produced is more accurate when the standard number is smaller. The rats become less accurate
when they are comparing the produced number of presses to a larger standard (Mechner 1958;
Mechner and Guevrekian 1962; Platt and Johnson 1971). The same is true for human adults

whether they are producing lever presses, comparing numbers of dots, or even comparing Arabic

11



digits (Moyer and Landauer 1967; Dehaene, Dupoux and Mehler 1990; Allik and Tuulmets
1991; Dehaene 1997; Whalen, Gallistel, and Gelman 1999). This last finding, that symbolic
numerical comparisons are subject to Weber’s Law, suggests that preverbal numerical
representations come into play automatically, even when the task deals only with Arabic
numerals. This finding is encouraging to researchers who wish to study the nonlinguistic aspects
of quantity processing that humans share with other species. One might imagine that any human
adult »performing a numerical task might make use of his/her learned verbal knowledge of
numbers, which could produce difficulties for researchers attempting to isolate preverbal
numerical ability. This concerned is addressed to some extent by the fact that there is convincing
evidence for such approximate abilities in human adults that even comes, surprisingly, from
tasks that do ask for judgments based on Arabic numerals.

Brain imaging and lesion studies have shown that a localized area in the inferior parietal
cortex may be specialized for the processing of quantities. Patients with damage to this area may
lose the ability to perform very simple numerical comparisons or interval bisections (deciding
what number comes between 5 and 7, for example). Such damage can leave performance on
similar but non-numerical bisection tasks unaffected; for example, patients may be able to decide
which letter comes between E and G with no trouble (Dehaene and Cohen 1997). (Inferior
parietal lesions do not affect skills that involve numbers but depend on verbal rote learning, such
as multiplication of single-digit numbers (Cohen, Dehaene, Chochon, Lehericy, and Naccache
2000). Brain imaging evidence supports the idea of an inferior parietal area involved in quantity
manipulation. Tasks like numerical comparison, simple subtraction, interval bisection, and others
that involve the processing of quantities tend to activate this area differentially, though rote
number tasks, such as problems that call upon the memorized multiplication tables, do not
(Dehaene, Tzourio, Frak, Raynaud, Chen, Mehler, and Mazoyer 1996; Dehaene, Dehaene-
Lambertz, and Cohen 1998; Chochon, Cohen, van de Moortele, and Dehaene 1999). Both
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neuropsychology and imaging research have provided evidence that there is a functionally
localizable representation of quantity in human adults, though it remains unknown how
specifically this area is activated by number- and math-related tasks.

Infants and animals, at least under some circumstances, clearly are sensitive to the
numerosities of stimulus sets; their behavior is based on number and not the non-numerical
properties of the sets. It would be surprising if infants and animals possessed abstract
nonlinguistic numerical abilities and adult humans did not. However, adults’ patterns of
performance in approximate number studies have been examined more finely than have animals’
or infants’, and it seems that judgments of approximate numerosity in humans are consistently
found to be highly influenced by sensory properties of the stimulus, such as regularity in a visual
array, or frequency in an auditory sequence (Massaro 1976; Ginsburg and Nicholls 1988;
Ginsburg and Pringle 1988; Ginsburg 1991). Computational modeling of human numerosity
judgments has also cést doubt on numerosity perception as an abstract, amodal process. Proposed
models of visual numerosity estimation predict human performance quite accurately, though
these models perform their estimations based on stimulus properties such as area, which are
correlated with, but not equivalent to, stimulus numerosity (Allik ahd Tuulmets 1991; Allik,
Tuulmets and Vos 1991; Allik and Tuulmets 1993). Because of these perceptual influences,
“numerosity” perception has often been explained in terms of modality-specific pefceptual
processes (e.g. texture perception for visual arrays), or in terms of processes specific to stimuli in
certain formats (e.g. timing mechanisms for temporally distributed elements). These explanations
have been especially favored by the many researchers approaching the problem from the vantage
point of the perceptual scientist (perhaps because these scientists may not be particularly
interested in demonstrating the ability to abstract across modality).

If adults do have an abstract nonlinguistic sense of number, why should their numerical

judgments show such stimulus-dependence? There are several possibilities. It may be that adults
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tend not to use number while performing approximate tasks; they may use continuous quantities
such as size, area, duration, or density instead, depending on the type of stimulus in question.
This does not necessarily mean that they are not capable of using number (which seems unlikely
given the animal studies discussed earlier); it may simply mean that humans adopt strategies that
deviate from the instructions they’re given. Another alternative is that the subjects'do use
number to make their judgments, and there is an abstract number representation, but the
perceptual properties of stimuli to be enumerated are influencing whatever process builds that
representation. Until this issue of perceptual vs. numerical explanation is addressed and
reconciled with the comparative studies, there will be a pronounced gap in our description of

human numerical competence. This question will be addressed in the Chapter 2 of the thesis.

1.2 What is the nature of the representation that underlies this number concept?
Though each piece of experimentation regarding the abstract nature of numerical
representation is not necessarily conclusive on its own, there is certainly reason to think that such
a representation is likely to exist. How can abstract number be represented, then, without
recourse to symbolic notation? It is easy to imagine representing a number of objects through a
visuospatial representation, such as an area, or a number of sounds by remembering the length of
the time interval they filled. But for the representation to be abstract, it must span different
sensory modalities. Converging studies in many different i)opulations suggest that number is
represented spatially through analog magnitudes. These are described metaphorically as number
lines or vessels filled with liquid; the essence of the idea is that discrete number is represented
through a rough continuous quantity. These “mental magnitudes” are noisy: the representation is
less precise for larger numbers and more precise for smaller numbers. To understand the basic
properties of this representation through one useful analogy, picture a graduated cylinder filled

with liquid, up to the value “x.” The level of the liquid is not exactly known due to the noise in
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the representation, so it could be slightly more or less than four. Now, to represent “2x” instead
of “x” the amount of liquid would roughly double, but so would the variability in the magnitude
representation. This property can account for the fact that Weber’s Law governs operations that
use the magnitude representation. There is still active controversy about the true source of this
Weber susceptibility (Dehaene 1992; Gallistel and Gelman 1992; Dehaene 1997, Whalen,
Gallistel and Gelman 1999; Brannon, Wusthoff, Gallistel, and Gibbon 2001); indeed, there is
controversy about whether the question can even be determined experimentally (Dehaene 2001).
Howevér, it is generally agreed that analog magnitude representations, common to humans and
nonverbal animals, can account for a large body of experimental data on numerical competence.
These noisy magnitude representations, however, may not be able to account for all of the
relevant data, including some of the results discussed earlier. Some experiments suggest that the
nature of the number representation may depend on the range of numerosities in question. There
is evidence that separable systems govern numerical abilities with small and large numbers.
Because controversy remains regarding the existence of distinct cognitive systems that deal with
smaller vs. larger numerosities, bodies of research which may be probing very different
processes are sometimes discussed under the assumption that they form a unitary whole. The
source of the two-systems theory is as follows. Early research on number processing in humans
found that when judging numbers of dots, adult produced very typical patterns of performance.
With very small numbers like 2, 3, or 4, reaction times were very fast and error rates were very
low. Then at about 5 items, subjects’ reaction times appeared to increase with each additional
item, suggesting a counting process. Then for larger numbers of items, error rates increased a
great deal and reaction times did not suggest counting. This was explained in terms of three
separate processes: “estimation” for the largest numbers, “counting” for the middle range, and
“subitization” for the very small numerosities (Kaufman, Lord, Reese, and Volkmann 1949).

Subitization has been described as the “immediate perception” of a very small numerosity.

15



Subsequent studies have suggested that there is not actually a separate process that enumerates
very small quantities, but this remains undecided (Mandler and Shebo 1982; Gallistel 1990;
Balakrishnan and Ashby 1991; Balakrishnan and Ashby 1992; Dehaene 1992; Carey 2001).
Infant work, on the other hand, does seem to be decidedly inconsistent with the idea of a single
system that is subject to Weber’s Law. If infants’ numerical capabilities spring from analog
magnitudes, then discriminability should be dependent only on the ratio of the numerosities to be
discriminated. Yet infants can discriminate 2 from 3 dots but not 8 from 12 (Starkey and Cooper
1980; Xu and Spelke 2000). Also, they succeed at a “1 + 1 = 2” addition task but not a “5+ 5 =
10” addition task (Chiang and Wynn 2000), which has been presented as evidence that infants
may not represent larger numerosities'. It has been suggested that these tasks that involve very
small numbers of objects may be solved through infants’ use of an attentional system that tracks
a few objects at a time (Dehaene 1997; Carey 2001). This “object file” system may be
responsible for the results seen with animal small number tasks as well. Therefore, when
attempting to characterize the kinds of potentially biologically determined numerical
representations that are common to humans and animals, that are subject to Weber’s Law, and
that may underlie symbolic operations, it is wise to be aware that data from tests with small
numbers may not be tapping the desired processes. To ensure that analog magnitudes and not

object files are being recruited, larger numerosities are necessary.

! However, just as stimulus properties may affect early stages of the enumeration process in adults without
threatening the idea that they represent number, as discussed earlier, it is possible that a parallel argument applies to
these infant addition studies. The problem may lie in the stimuli used in the 5 + 5 task, which because of their
greater numerosities are very different from those in the 1 + 1 task, and may be more difficult for the infants to
individuate or enumerate in the first place.
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1.3  How to construct an analog magnitude

The proposed mechanisms for the construction of analog representations of magnitude
may be divided into tWo broad classes: those that operate iteratively (such as a preverbal
counting-like process (Gallistel and Gelman 1992; Whalen, Gallistel and Gelman 1999), and
those that are non-iterative (for example, sampling approximate density and area, distance
between elements, or rate and duration (Church and Broadbent 1990; Church and Broadbent
1991)). A long tradition of evidence from numerosity estimation tasks has led some researchers
to posit iterative enumeration mechanisms such as preverbal counting (Gallistel an& Gelman
1992), or protocounting (Davis and Perusse 1988). When adults are shown an array of dots, for
example, and asked to make a speeded judgment of how many there are (by producing a
number), response time reliably increases with the number of dots; this has been explained in
terms of serial enumeration mechanisms. However, as the number of dots increases, our rough
approximation of their numerosity becomes even rougher, and our fuzzy representation of the
number of dots maps onto a larger set of possible symbolic responses. This increase in the
number of response options could make response selection more difficult, accounting for the
observed increases in reaction time.

As discussed earlier, numerosity judgmenfs are extremely sensitive to perceptual
properties of the stimuli to be enumerated. It is certainly possible for an iterative counting-like
process to be affected by such properties. For example, any counting mechanism must
in&ividuate elements, and the effectiveness of this individuation process could certainly be
influenced by changes in the arrangement or size of the elements. However the stimulus-
dependence that has been observed in numerosity judgment can be more parsimoniously
attributed to the operation of a non-iterative enumeration process, which uses multiple stimulus
attributes in combination as cues to numerosity. Thus, information about a visual array such as

its density and area might be transformed into a representation of the array’s numerosity that is
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modality-independent. Under such conditions, any attribute of the stimulus that affects our
perception of these cues (e.g. density aftereffects or anchoring effects) will clearly alter our
representations of numerosity as well. The nature of this transformation from stimulus-specific
properties to numerosity representations remains unknown; the same mechanism may serve to
convert all spatially presented stimuli to abstract form, while another may perform the same task
for all temporal presentations. The latter sort of mechanism may be responsible for animals’
representation of the numerosity of a sequence of events; it has been proposed that animals keep
track of the average interval between events and the overall sequence duration, using these two
durations to compute the total number of events (Church and Broadbent 1990; Church and
Broadbent 1991).

A decisive piece of experimental support for one or the other of these models — iterative
or non-iterative — would be the first step in clarifying the nature of the processes that lead to the
construction of analog representations of number. This could lead to further investigation of the
generality of these processes: how are sequential sets enumerated compared to simultaneously
presented sets? Are sets presented to different sensory modalities enumerated differently? The
final experiment of Chapter 2 attempts to make the initial distinction between iterative and non-

iterative models of enumeration.

1.4 Do analog magnitudes enter into arithmetical computations?

Evidence certainly exists that animals, human infants, and human adults can alter their
behavior based on number, and that these representations of number may be truly abstract. Are
these representations functional in the sense that they are available to do conceptual work in
arithmetic operations? The depth of the preverbal number concept in humans and animals is

unknown. If it is true that the preverbal number sense is a biologically based stepping-stone
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supporting the symbolic numerical abilities developed by humans, we might expect to see the
beginnings of arithmetical manipulation of quantity even in other species.

Studies with various nonhuman animals demonstrate remarkable arithmetic skills even
though the subjects cannot make use of a symbolic number system (Church and Meck 1984).
Though most of these studies involve extensive training, untrained wild rhesus monkeys have
been found capable of the same simple addition and subtraction operations that Wynn
demonstrated in human infants, and more (Hauser, MacNeilage, and Ware 1996; Sulkowski and
Hauser 2001). While alternative perceptual explanations have not been entirely ruled out, it
seems that there is promising evidence for arithmetic capabilities in some primates. Human
infants also can perform simple arithmetic operations such as addition and subtraction at least on
small numbers of objects. When presented with displays in which 2 items are placed behind a
screen and then one is removed, infants expect exactly one item to remain. Similarly, when two
items are sequentially placed behind a screen, infants expect there to be exactly two (Wynn,

- 1992).

These particular infant and monkey studies, like many others, involved the manipulation
of exact very small numerical quantities. As discussed earlier, it is very possible that processing
of such quantities may be distinct from that of larger approximate numerosities (Dehaene 1997;
Carey 2001; but see Gallistel 1990). Therefore these studies may not deal with mechanisms
analogous to those that could allow human adults to perform approximate arithmetical operations
on large sets. While infants can discriminate between larger sets as well, given large enough
comparison ratios (Xu and Spelke 2000), it is not clear whether these ranges of numerosities may
also be used in arithmetic operations. Some recent data suggest that they cannot (Chiang and
Wynn 2000). However, there is extensive evidence that animals process representations of larger
numbers arithmetically. Research on foraging behavior has shown that foraging patterns seem to

depend on animals’ calculation of rate of return, which requires a complex combination of
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duration and number information (Leon and Gallistel 1998). A large body of research on
temporal processing, which is likely to ciepend upon representations very similar to
representations of numerical quantity, has demonstrated arithmetic processing of durations
(Meck, Church, and Gibbon 1985; Gibbon, Malapani, Dale, and Gallistel; 1997).

More direct assessments of arithmetic capabilities with larger quantities have also
produced convincing results, many of which suggest that certain arithmetic operations such as
summation may be automatic when two quantities are presented closely in space and/or time.
When rats see two lights and hear two sounds at once, they give the conditioned resi)onse that
means “4” (Church and Meck 1984). Spontaneous summation has also been demonstrated in
many other species; chimpanzees have been found to sum quantities presented both
nonsymbolically (without training) and symbolically (with training of the symbolic associations,
but no training of the summation process) (Rumbaugh, Savage-Rumbaugh, and Hegel 1987;
Rumbaugh, Savage-Rumbaugh, and Pate 1988; Boysen and Berntson 1989). Chimpanzees are
not the only animals capable of symbolic operations like addition. Spontaneous summation of
trained symbols has also been demonstrated by Olthof and colleagues in squirrel monkeys and in
pigeons; however, the data suggest that the quantities being summed were masses rather than
numerosities (Olthof, Iden, and Roberts 1997; Olthof and Roberts 2000).

Human adults tend to sum small animals do with nonsymbolic quantities (LeFevre,

- Bisanz, and Mrkonjic 1988; Stadler, Geary, and Hogan 2001). We do not know whether human
adults can perform arithmetical operations when they are prevented from using their learned
symbolic abilities. However, just as symbolic number comparisons draw upon analog magnitude
representations (Dehaene, Dupoux, and Mehler 1990), fMRI studies have shown that symbolic
arithmetic can recruit those same representations. When simple addition is performed on single
Arabic digits, the areas that show activation are associated with rote learning of number facts.

When the subject must choose an answer that is only approximately correct, however, so that the
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rote-learning method will not give successful responses, areas associated with analog magnitude
processing are activated (Dehaene, Spelke, Pinel, Stanescu, and Tsivkin 1999). The question of
nonsymbolic arithmetical capabilities in humans remains untouched, though it plays a key roie in
the larger issue of preverbal number’s importance to human mathematical development.

This thesis addresses some of the remaining questions about the preverbal number sense
in human adults regarding the degree to which number representations are truly abstract, the
possible means by which we construct these representations, and the roles they play in
calculation processes. Based on research on numerical cognition in nonhuman animals, human
infants, and human adults so far, it is plausible to suppose that the representational system
underlying basic numerical competence is common to many species. It is a system available to
nonverbal animals and prelinguistic infants, and it may well have provided humans with the
necessary foundation for the development of the intricate mathematical structures they have
constructed. This set of studies extends existing research, deepening our understanding of the
number concept in human adults, its relationship to the number sense of preverbal beings, and its

potential contributions to the development of symbolic arithmetic.
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Chapter 2

The Construction of Large Number Representations in Adults

Abstract

What is the nature of our mental representation of quantity? We find that human adults
show no performance cost of comparing numerosities across versus within visual and auditory
stimulus sets, or across versus within simultaneous and sequential sets. In addition, reaction time
and performance in such tasks are determined by the ratio of the numerosities to be compared;
absolute set size has no effect. These findings suggest that modality-specific stimulus properties
undergo a non-iterative transformation into representations of quantity that are independent of

the modality or format of the stimulus.
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2.0 Introduction

Substantial experimental evidence points to the idea that humans possess an abstract
sense of approximate quantity, or “number sense.” Converging evidence from studies of
numerical competence in normal adults, patients, infants, young children, and nonhuman animals
has led many investigators to conclude that a domain-specific system of knowledge, presént in
many species, is responsible for the sense of number and forms the basis for the complex
symbolic manipulation of number developed by humans (e.g. Dehaene, 1997, Gallistel &
Gelman, 1992). Many questions remain, however, regarding the nature of number representation
and the processes that construct it.

A truly abstract number sense would be capable of representing the numerosity of any set
of discrete elements, whether events or objects, homogeneous or heterogeneous, or simultaneous
or sequential. Nonhuman animals and human infants have been found to generalize across
stimuli on the basis of numerosity, independent of stimulus shape, color, or identity; these results
have been taken as evidence of abstract numerical ability (Gallistel and Gelman 1992; Dehaene,
Dehaene-Lambertz and Cohen, 1998). Human adults clearly have this ability when dealing with
exact quantities labeled with Arabic numerals. Yet judgments of approximate numerosity in
humans are consistently found to be highly influenced by sensory properties of the stimulus,
such as regularity in a visual array, or frequency in an auditory sequence (Massaro 1976;
Ginsburg and Nicholls 1988; Ginsburg and Pringle 1988; Ginsburg 1991). For example, the
density and grouping patterns of large visual arrays affect the numerosity judgments of human
adults (Durgin 1995). Because of these perceptual influences, “numerosity” perception is often
explained in terms of modality-specific perceptual processes (e.g. texture perception for visual
arrays), or in terms of processes specific to stimuli in certain formats (e.g. timing mechanisms for
temporally distributed elements). Cémputational modeling of human numerosity judgments has

also cast doubt on numerosity perception as an abstract, amodal process. Proposed models of
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visual numerosity estimation predict human performance quite accurately, though these models
perform their estimations based on stimulus properties such as area, which are correlated with,
but not equivalent to, stimulus numerosity (Allik and Tuulmets 1991; Allik, Tuulmets, and Vos
1991; Allik and Tuulmets 1993). A thorough explanation of human numerical competence must
account for this stimulus-dependence.

Research on numerical competence in human infants has produced its own
inconsistencies. The ability to relate numerosities of sets presented to different sensory
modalities is a requirement of any system that can be said to represent abstract numerosity.
Looking times in six- to eight-month-old infants have been found to depend on the
correspondence between the number of objects in a visual array and the number of drumbeats in
a sequence (Starkey, Spelke, and Gelman 1983; Moore, Benenson, Reznick, and Peterson 1987,
Starkey, Spelke, and Gelman 1990). However, a recent replication attempt found no preference
in either direction (Mix, Levine, and Huttenlocher 1997). In addition, 3-year-old children do not
perform well on crossmodal numerosity matching tests, in which they must choose the visual-
spatial array that corresponds in number to a sequence of sounds (Mix, Huttenlocher, and Levine
1996). While it is certainly possible that infants possess modality-independent numerical ability,
to date evidence of this ability is equivocal.

The animal literature provides far more robust evidence of the use of modality-
independent numerical information. An impressive example of crossmodal transfer has been
demonstrated in rats (Church and Meck 1984). The animals were trained to press one lever when
presented with two lights or white noise bursts, and another lever’ when presented with four lights
or white noise bursts. When two lights and two sounds were presented together, the rats pressed
the “four” lever, suggesting that they spontaneously combined the quantities of light and sound
and responded to their sum. This occurred even though the compound stimulus was a

combination of two other stimuli, each of which taken alone demanded a different response.



When a previously unseen stimulus was used (one sound and one light) the rats again responded
to the sum, pressing the “two” lever.

Thus, animal research shows that rats are capable of crossmodal numerosity combination;
infant research does not provide such a clear picture. In human adults, recent studies have shown
that a numerosity perceived through the presentation of an auditory stimulus influences the
perceived numerosity of a simultaneous visual stimulus, at least for very small numerosities
(Shams, Kamitani, and Shimojo 2000). Human adults, of course, are able to make crossmodal
comparisons of all sizes through the use of the symbolic number system. When adults are
prevented from using this symbolic system, how do they perform in crossmodal comparison
tasks? The answer to this question should depend upon the specific mechanisms used for each
numerosity judgment. The present study examined performance in crossmodal numerical
comparison tasks, in an effort to shed light on the nature of the processes and representations
involved in judgments of relative numerousness. Whether these comparison experiments can
speak to the processes and representations involved in judgments of absolute numerosity as well
is a matter of debate. It is possible that such judgments require very different forms of numerical
competence, and that animals can only deal with relative numerosities, unlike humans who may
represent absolute numerosities as well (Davis and Perusse 1988). Therefore the present study
may not generalize to the entire range of human estimation abilities, but it has the advantage of
being relevant to the type of numerical competence that is likely to apply across species.

The use of a crossmodal comparison task also allows us to confront an important question
regarding the usefulness of numerical comparison tasks in general. Researchers have used tasks
involving numerical comparisons repeatedly to draw conclusions about how we process number,
but serious confounds may be introduced by these tasks. Participants may in many cases be able
to complete the task without using numerosity as the actual basis for comparison. This problem

could exist even for studies in which non-numerical stimulus properties such as element density
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are carefully controlled. To understand hovx"‘ these tasks might be carried out, imagine an
observer faced with two briefly presented arrays of dots. In order to make a comparative
judgment, the observer could enumerate the dots in each array (by some iterative counting-like
process, or perhaps by combining information about the total area of the display and its average
density) and base his/her judgment on a truly numerical representatibn. Most numerical
comparison tasks depend on the assumption that this is indeed an accurate description of the
process in question. Alternatively, however, the task could instead be performed by the use of an
intermediate pierceptual representation that is neither numerical nor amodal. For example, the
comparison of two arrays could be based on perceptual representations of the arrays (including
their areas and/or densities), rather than on more abstract representations of the numerical-
quantities in each. Such a perceptual representation could be specific to visual processing, and it
would contain numerosity information only implicitly. This scenario is depicted in Figure 1a.
Both dot érrays are presented visually, and the assumption is that the observer will compare them
based on an amodal quantity representation (the graduated cylinders on the right). However, it is
possible that an intermediate modality-specific representation of quantity exists as well (depicted
by the question mark). If there is such a modality-specific representation, any task involving a
comparison of two visual arrays could be accomplished without calling upon an amodal
representatibn.

Here, we attempt to address these concerns experimentally. By using a crossmodal
numerical comparison task, we ensure that participants cannot succeed by comparing
intermediate perceptual representations as described above (see Fig. 1b). If numerosity
judgments are made on the basis of non-numerical information, then crossmodal judgments
should show performance deficits relative to intramodal judgments. However, if a truly abstract
representation of quantity exists, then we might find little or no cost for crossmodal comparisons

relative to unimodal comparisons. In the present studies, we use comparisons of large
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approximate numerosities to determine the relative difficulties of crossmodal and intramodal
numerosity judgments. This allows us both to explore adults’ ability to manipulate numerical
quantities presented in different modalities, and, in the process, to determine the usefulness of
comparison tasks to research on numerical competence. We use two different complementary
numerical comparison judgments to ensure that our results generalize across tasks. We then
extend this crossmodal comparison method further in order to distinguish between proposed

mechanisms for the construction of numerosity representations.

2.1  Chapter 2 Experiment 1

Experiment 1 investigated whether adults can compare numerosities crossmodally as
accurately as they can intramodally. Participants made numerosity judgments about stimulus
pairs that consisted of two sequences of flashes (“Visual”), two tone sequences (“Auditory”), or

a flash sequence and a tone sequence (“Crossmodal”).

Method

Participants. Five males and ten females between the ages of 18 and 35 participated in
the study. All had normal or corrected-to-normal hearing and vision and were paid $8 for their
participation. |

Apparatus. Participants sat in a small darkened room at a distance of approximately 60
cm from the presentation screen. Visual stimuli were presented on a Sony Multiscan monitor by
a Power Macintosh 8600 computer. Auditory stimuli were presented from the Macintosh’s built-

in speaker. The apparatus was the same for all of the experiments that follow.
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Design. All participants received the same stimulus conditions in counterbalanced order.
Auditory, Visual, and Crossmodal trials were blocked:; participants received two blocks of 24
trials of each condition, presented in ABCCBA order, for a total of 48 trials per condition.
Before the experimental blocks began, there were 10 practice trials in_ each condition. At the
beginning of each experimental block, participants were informed of the condition of the block
(Auditory, Visual, or Crossmodal). The stimulus pairs presented were 10-10, 20-20, 30-30, 10-

20, 10-30, and 20-30. “Same” and “Different” trials were equally frequent.

Stimuli. An “Auditory” sequence consisted of a series of 10, 20, or 30 tones. All tones in
a particular sequence had the saﬁe duration, but tone duration varied from sequence tcl)vsequence
between ~20 and ~60 ms, with the interval between tones remaining constant at ~50 ms. Tone
presentation rate ranged from 7 to 11 tones per second, varying randomly so that the duration of
the entire sequence was not a reliable cue to numerosity. The end of each tone sequence was
marked by a brief high-pitched beep. A “Visual” trial consisted of a sequence of 10, 20, or 30
small white circles (diameter ~1 cm) appearing at the location of the fixation cross. The timing
of the visual sequences was slightly slower than that of the auditory sequences: durations of the
circles’ flashes varied from ~30 ms to ~80 ms. Flash presentation rate ranged from 6 to 9 flashes
per second, also varying randomly so that the duration of the entire sequence was not a reliable
cue to numerosity..

Procedure. In a “Visual” trial, a small red fixation cross appeared for ~400 ms, followed
by a flash sequence, a pause of ~930 ms, and a second flash sequence. Responses were made
after the second flash sequence ended. Participants were instructed to press one button if the
number of flashes in the first sequence was the same as the number in the second sequence, and a
second button if the numbers were different. In an “Auditory” trial, a sequence of tones played,

followed by a pause of ~930 ms and a second tone sequence. In half of the “Crossmodal” trials,
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the visual sequence was presented first, and in the other half the auditory sequences came first;
these trial types were interleaved within the Crossmodal block.

Measures. We focus on subjects’ accuracy and not reaction time. All of these
experiments involve temporal sequences, which make RT data difficult to interpret. For example,
in many of the trials, the first sequence will be much less numerous than the second. The subject
may well decide upon an answer of “different” long before the second sequence ends and the
response interval begins. This issue applies to any conditions involving stimulus presentations
that are temporally extended.

If subjects showed perfect cross-modal transfer of numerical information across
modalities, then their performance on the cross-modal trials should be limited only by their
ability to detect numerosity in each of the individual modalities. Because individual subjects
might vary in their abilities to represent numerosity in visual vs. auditory temporal arrays, we
determined separately for each subject which of the two intramodal numerical comparison tasks
was more difficult for them (the “worse unimodal condition”) and compared performance across

subjects in this condition to performance in the cross-modal condition.

Results.

Figure 2 shows mean accuracy for each condition in the left panel. The “worse unimodal”
vs. Crossmodal comparison (see Measures) is shown in the right hand panel of Figure 2. The
“worse unimodal” and Crossmodal means were both 73%; these were clearly not significantly
different (t(14) = -0.03, p > 0.9). Figure 2a depicts the way accuracy varied as a function of the
size of the difference in the two sets to be discriminated. Only the "different” trials are shown in
this plot, because the “different” trials may be clearly categorized by ratio (10:30, 10:20, 20:30),
but the “same” trials may not (10:10, 20:20, 30:30). An ANOVA (Condition x Ratio) revealed a

significant effect of Ratio (p < .0005); there was no effect of Condition.
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Discussion.

We found no performance cost for the Crossmodal comparison task compared to the
Worse Unimodal comparison. In this experiment, the visual sequence comparisons were worse
than the auditory sequence comparisons for 11 of the 15 participants; this is not surprising
considering the well-known superiority of auditory processing over visual when presentation is
temporal® (Lechelt 1975). The remarkably similar performance patterns found in the Worse
Unimodal and Crossmodal conditions show that subjects have no trouble comparing
numerosities across modalities. Modality-specific numerosity representations could not have
been used to accomplish this task. Howei)er, the numefosities of items in a temporal sequence
may well be enumerated and/or represented differently from the numerosities of items in a
spatial and simultaneous array. The task used in Exp. 1 therefore could have allowed subjects to |
use a numerosity representation that was abstract in the sense that it was not modality-specific,
while failing to be abstract in terms of the temporal vs. spatial format of the stimulus.
Experiment 2 tested this possibility by requiring subjects to make similar comparisons within a

single modality but across stimulus presentation formats.

2.2  Chapter 2 Experiment 2

In Experiment 2, subjects compared numerosities across visual arrays that differed in

format rather than modality: temporal sequences of light flashes vs. simultaneous spatial arrays

? In the current studies, in each experiment involving auditory sequences, participants who were experienced
musicians outperformed nonmusicians. The single participant who performed perfectly for the Auditory trials in
Experiment 2 explained after her session that she was a tympani player, that the rate of tone presentation was within
the range of the speed of a drum roll, and that she was used to both hearing and producing such rapid sequences.
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of dots. Each subject therefore made numerical comparisons under three conditions: “Spatial,”

“Temporal,” and “Cross-format.”

Method

Participants. Eight males and six females between the ages of 18 and 35 participated in
the study. All had normal or corrected-to-normal hearing and vision. One additional male
participated in the study, but his data were excluded from further analysis due to self-reported
noncompliance with experimenters’ instructions.

Design. All participants received the following stimulus conditions in counterbalanced
order. Spatial, Temporal, and Cross-Format trials were blocked; participants received two blocks
of 48 trials of each condition, for a total of 96 trials per condition. Before the experimental
blocks began, there were 20 practice trials in each condition. At the beginning of each
experimental block, participants were informed of the condition of the block.

Stimuli. Experiment 2 used the visual sequence trials from Experiment 1 (now termed
“Temporal”). In the “Spatial” trials, participants were presented with pairs of visual arrays. A
visual array consisted of 10, 20, or 30 small black dots on a mid-gray background. The arrays of
dots were presented inside an imaginary square measuring ~13 by 13 ¢cm. The distribution of the
dots was pseudorandom, though they did not touch or overlap. All of the dots in a particular
array were the same size, but dot diameter varied from array to array between 0.2 and 0.6 cm.

Procedure. The procedure was the same as that of Experiment 1, except for the
replacement of the auditory sequences of Experiment 1 with visual arrays in Experiment 2.
Because of the brevity of the visual array compared to the visual sequence, a delay was
introduced in the Cross-Format trials between the two presentations in an attempt to equalize

memory demands for Temporal and Cross-Format conditions. The delay had a pseudorandomly
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selected duration ranging from that of the shortest visuat sequence (~400 ms) to that of the

longest (~2500 ms). The second presentation appeared after this delay period.

Results.

The left-hand plot in Figure 3 shows mean accuracy for each condition. As in Experiment
1, we determined the worse unimodal case for each participant individually (auditory or visual)
and compared the: “worse unimodal” mean to the Crossmodal mean: This is shown in the right
hand panel of Figure 2. The “worse unimodal” mean was 71% and the Crossmodal mean was
70%;, these were not significantly different (t(14) = 0.33, p > 0.7). Figure 3a depicts thé way
accuracy varied as a function of the size of the difference in the two sets to be discriminated. As
in the corresponding plot from the previous experiment, only the "different" trials are shown in
this plot, because the “different” trials may be clearly categorized by ratio (10:30, 10:20, 20:30)
but the “same” trials may not (10:10, 20:20, 30:30). An ANOVA (Condition x Ratio) revealed a

significant effect of Ratio (p < .0005); there was no effect of Condition.

Discussion.

The results of Experiment 2 demonstrate that the comparison task was not performed
using format-specific numerosity representations. Experiments 1 and 2 show that comparing
approximate numerosities across different modalities or formats is no more difficult than
comparing within modalities or formats; this strongly suggests that participants in these studies
have formed true abstract representations of approximate numerosity and used these
representations as the bases of their comparative judgments. If this is the case, participants
should be able to compare numerosity across both format and modality at once; this task was

performed in Experiment 3.
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2.3  Chapter 2 Experiment 3

In this experiment, participants were asked to compare numerosities of spatially
presented visual stimuli and temporally presented auditory stimuli. Participants made relative
numerosity judgments about stimulus pairs that consisted of two dot arrays (“Visual/Spatial”),
two tone sequences (“Auditory/Temporal”), or a dot array and a tone sequence

(“Crossmodal/Cross-Format,” shortened for ease to “Cross™).

Method.

Participants. Five males and nine females between the ages of 18 and 35 participated in
the study. All had normal or corrected-to-normal hearing and vision. One additional female was
excluded after falling asleep during the study.

Design. All participants received the following stimulus conditions in counterbalanced
order. Auditory/Temporal, Visual/Spatial, and Cross trials were blocked; participants received
two blocks of 48 trials of each condition, for a total of 96 trials per condition. Bcfore the
experimental blocks began, there were 20 practice trials in each condition. At the beginning of
each experimental block, participants were informed of the condition of the block.

Stimuli. Visual arrays were the same as those used in Experiment 2; auditory sequences
were the same as those used in Experiment 1.

Procedure. The procedure was again the same as that used in Experiment 2, except for the
replacement of Experiment 2’s visual sequences with visual arrays. A delay was introduced into

the Cross trials as in Experiment 2.
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Results.

Figure 4 shows mean accuracy for each condition. As in Experiments 1 and 2, we
determined the worse unimodal/uniformat (abbreviated to “Worse Uni”) case for each participant
individually (auditory/temporal or visual/spatial) and compared the Worse Uni mean to the Cross
mean. This is shown in the right hand panel of Figure 4. The Worse Uni mean was 77% and the
Cross mean was 70%; these were significantly different (t(13) = 2.44, p < 0.03). Figure 4a
depicts the way accuracy varied as a function of the size of the difference in the two sets to be
discriminated. As in the corresponding plots from Experiments 1 and 2, only the "different" trials
are shown in this plot. An ANOVA (Condition x Ratio) revealed a significant effect of Ratio (p <

-.0005); there was no effect of Condition. | B

In this experiment, large differences in reaction time patterns across subjects appeared to
reflect the adoption of very different strategies. Some subjects reported performing the
crossmodal task by the use of a 1:1 correspondence strategy; these people described matching the
tones to the dots as the auditory sequence played’. When the tone sequence came first, they often
reported “playing it back” and their response times reflected this strategy. Cross RTs for subjects
who used this strategy were typically about twice as long when the auditory sequence came first
than when the dot array came first. Participants who did not report using this strategy did not

show such differences between the “auditory sequence first” and “visual array first” conditions.

Discussion.
Experiment 3 demonstrates that adults are able to compare numerosities across stimulus

modality and format nearly as well as they can make comparisons within modality and format.

“This process was described by subjects as “imagining the tones painting the dots on a wall” or, notably, “imagining
shooting a bullet at a dot each time I heard a tone.” This last description led to the term “the bullethole strategy.”
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Because there is some difference between mean Worse Uni and Cross performance, there may be
some cost for comparing numerosities in the Experiment 3 Cross condition. This pattern of
results is somewhat different from those seen in Exps. 1 and 2. The crossmodal/cross-format cost
suggests that when the numerosities to be compared are presented in different formats and
modalities at the same time, comparison becomes more difficult. Why do participants have no
trouble comparing across modality or format alone, while comparing across these two factors in
combination causes errors? There are several possibilities. One is that this experiment
encouraged subjects to use a disadvantageous strategy. In fact, use of the “bullethole” strategy, in
which subjects attempted to use a 1:1 correspondence to complete the task, was reported much
more frequently in the present experiment than in Experiment 2, which also used spatial and
temporal stimuli. If this strategy is less effective than comparison based on abstract numerical
representations, this could contribute to the deficit seen in Experiment 3.

Another.possible explanation for the deficit lies within the nature of the task itself.
Participants had to judge the stimulus numerosities as “same” or “different”; it may be that
stimuli that are different in both modality and format are more likely to be judged “different”
than stimuli that differ along only one of these dimensions. The data do provide some evidence
for this hypothesis. If only the “different” trials are considered in this experiment, there is no
crossmodal/cross-format cost — the performance cost is found only in the “same” trials. This
suggests that participants could simply have been reluctant to judge an auditory sequential
presentation the “same” as a visual simultaneous presentation. Though there was no main effect
or interaction of Trial Type in our analysis, this conflict may contribute to the slight drop in

performance across modalities and formats.
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24  Chapter 2 Experiment 4

The first two experiments established that adults are able to compare numerosities
crossmodally as easily as they perform comparisons intramodally, and that they are also able to
compare easily across stimulus formats. When stimuli differ in both modality and format, as in
Experiment 3, comparison may become more difficult. Experiment 4 explores the nature of the
enumeration mechanism used in these comparison tasks. In addition, it tests one possible
explanation for the greater difficulty observed within the crossmodal/cross-format condition of
Experiment 3 and it deals with other objections that could be raised to the first three experiments.

The previous results suggest that abstract numerosity representations were the bases for
participants’ comparative judgments, raising the question of how these abstract representations
are derived. The enumeration mechanisms that have been proposed may be divided into two
broad classes: those that operate iteratively (such as a preverbal counting-like process (Gallistel
and Gelman 1992)), and those that are non-iterative (for example, sarr;pling approximate density
and area, distance between elements, or rate and duration (Church and Broadbent 1990)). The
present experiment was designed to distinguish between these classes of mechanisms. Like
Experiment 3, this study used visual arrays and auditory sequences. We employed 5 different
comparison ratios and 4 different absolute set sizes in ordér to assess the effects of set size and
ratio on reaction time. Any iterative process of numerosity estimation should require more time
for larger absolute set sizes. A non-iterative process, on the other hand, is less likely to require
additional time for the enumeration of larger sets, so in this case only comparison ratios, and not
set sizes, would determine reaction time.

The other changes in Exp. 4 were introduced to meet possible objections to aspects of
Exps. 1-3. First, The use of only three numerosities in the previous studies could in principle

make it possible for participants to perform the task by classifying each sequence or array as



small, medium, or large, and comparing on the basis of these categories. While this strategy
would indeed require a broad quantity-based judgment, it would be useful to observe
performance on a more difficult task, which.discourages classification strategies by employing-
more stimulus numerosities. Second, the comparison of the cross task to the worse uni task
introduced the possibility that the costs of crossmodal or cross-format comparisons were
artificially masked by regression effects, yielding an overestimate of the difficulty of the
unimodal conditions. In Exp. 4, we addressed this possibility by assessing the worse uni
condition in one session and then comparing performance in that condition to performance on the
cross condition in subsequent, independent sessions. Third, the task in this experiment was
changed to a “more/fewer” judgment in order to avoid the potential complications of the
“same/different” task. Similar results in this experiment, despite the use of a different task,
would provide some evidence for the generality of the comparison abilities we observed in Exps.

1,2, and 3.

Method

Participants. One male and ten females between the ages of 18 and 35 participated in the
study. All had normél or corrected-to-normal hearing and vision. Three additional subjects were
excluded for failing to complete all 3 experimental sessions.

Design. All participants completed 3 separate experimental sessions, with conditions
presented in counterbalanced order. Auditory/Temporal, Visual/Spatial, and Crossmodal/Cross-
format (again abbreviated to “Cross”) conditions were blocked; participants received two blocks
of 40 trials of each condition, for a total of 80 trials per condition per session (and a grand total
of 240 trials per condition). Before the experimental blocks began, there were 10 practice trials
in each condition. At the beginning of each experimental block, participants were informed of

the condition of the block. There were 5 possible comparison ratios, each presented in 4 absolute
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set sizes as shown in Table 1. In each block, each ratio/set size combination was presented twice

(once in the order in which is shown in the table, and once in the reverse order).

Set Size 1 Set Size 2 Set Size 3 Set Size 4
Ratio 1:2 10 and 20 15 and 30 20 and 40 25 and 50
Ratio 2:3 10 and 15 20 and 30 24 and 36 30 and 45
Ratio 3:4 9 and 12 15 and 20 24 and 32 30 and 40
Ratio 4:5 12 and 15 20 and 25 28 and 35 40 and 50
Ratio 7:8 14 and 16 21 and 24 28 and 32 35 and 40

Table 1. The numerosities used in Experiment 4.

Stimuli. Experiment 4 used the same basic stimuli as Experiment 3, visual arrays and
auditory sequences, except that their numerosities were determined as shown above.

Procedure. The procedure was the same as that used in Experiment 3, except that |
participants were now required to judge the numerosity of the second stimulus as “more” or
“fewer” than the first. Auditory sequences were also altered so that tone durations varied from 20
— 60 ms within each sequence.

Measures. The method we used previously to assess Cross performance compared to
Worse Uni may have introduced a bias by yielding a deceptively low Worse Uni score. This was
due to the fact that we used the same data set both to determine which “Uni” condition the
subject was worse at, Auditory/Temporal or Visual/Spatial, and to provide the accuracy score
used in the comparison with Cross accuracy as well. Because each participant in Experiment 4
completed 3 sessions, we were able to avoid this bias in the present analysis by using an
independent data set for each subject to determine which Uni condition led to lower performance
for that subject. We chose subjects’ Worse Uni conditions from data from that subject’s first

session, but used accuracy scores only from the last 2 sessions for the comparison.
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Resuits.

The mean Worse Uni accuracy score was 81%, and the mean Cross accuracy score was
77% (see Figure 5) This slight accuracy difference between Cross and Worse Uni trials did not
reach significance (t(10) = -2.11, p > .05). A repeated-measures ANOVA of correct RT's
(Condition x Ratio x Group Size) revealed main effects of all three within-subjects factors
[Condition: F(2, 18) = 17.3, p < .0005; Ratio: F(4, 36) = 7.8, p < .0005; Size: F(3,27) =3.8,p<
.05]. The main effect of Size results from a decreasing linear trend in reaction time as set size
increases, while reaction time increases with Ratio. Regressions are shown in Figure 6 for Size

and in Figure 7 for Ratio.

Discussion.

The key result of Experiment 4 is that response time does not increase at all with absolute
set size; comparison ratio alone determines the time necessary for these numerosity judgments.
This finding is inconsistent with theories of numerosity estimation that rely upon iterative
mechanisms, because such mechanisms would necessarily require more time to enumerate larger
sets. If anything, participants in the present experiment were faster for larger set sizes. We must
be sure to take into account, however, the complications that temporal sequence trials introduce
to any measure of reaction time, as discussed in the earlier experiments. Therefore, strong
conclusions about enumeration mechanisms should not be drawn based solely on reaction time
data from trials involving sequential stimuli. However, Exp. 4 also provides RT data from trials
which involve only visual arrays, which do not introduce the complications that sequences do.
Any claim to be made regarding mechanisms of enumeration should rest upon RT data from
these Visual trials. The Visual trials show no increase in RT with increasing set size, so this

experiment can provide strong evidence of a non-iterative mechanism for the enumeration of
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spatial/simultaneous sets. However, temporal/sequential sets may be enumerated through a
different process.

This experiment also supported our previous findings that adults can very effectively
compare numerosities across both modality and format. In Experiment 4, participants again
showed little or no performance cost when comparing numerosities in the Cross condition
relative to performance on their worse single modality/format condition, even though the Cross
comparisons were again being made across both modality and format. There may be some slight
improvement of Cross performance relative to worse single modality/format in Exp. 4 (compared
to Exp. 3), for several reasons. First, Experiment 4 included many more trials (240 per condition
for each subject), so participants had more practice in Exp. 4. It is possible that this additional
practice produced more of an improvement in the Cross condition than it did in the single
modality/format conditions. Second, the analysis we used in order to correct for our biased
analysis in Experiment 3 may have affected the result in an unexpected way. Though the newer
method was expected, if anything, to increase the difference between crossmodal and worse
unimodal performance, perhaps it had the opposite effect. This would be possible if practice
effects for this task had a greater influence on the condition that participants were worse at to
begin with®. A third possible explanation is the fact that the task was changed from “choose same
or different” in Exp. 3 to “choose fewer or more” in Exp. 4. The same/different task is much less
clear-cut, and the difficulties involved in making this judgment might be especially pronounced

for the Crossmodal condition.

* For example, if a participant performed badly in the “visual” condition in the first session, and moderately in the
“auditory” condition, then practice might improve “visual” performance a great deal, but “auditory” performance
only slightly. Yet “visual” would be counted as the “worse” unimodal score. However, this does not seem to be the
cause of the difference between Experiments 3 and 4, because participants were very consistent across sessions in
that a person who performed better with visual arrays in the first session tended to continue that way throughout the
study.



There is another possible explanation which does not involve the actual comparison
component of the task. All conditions were blocked in Experiments 1, 2, and 3, so that the
Crossmodal and Cross-format conditions were the only ones in which different kinds of stimuli
were presented. Consider the task-switching involved in the “Crossmodal” condition of
Experiment 3: at the beginning of each trial, the participant knows neither the format nor the
modality of the next stimulus. It could be a sequence or an array; auditory or visual. In
Experiment 1, however, modality is unknown but everything is a sequence, and in Experiment 2,
format is unknown but everything is visual. It is possible that preparing for each trial is more
difficult when both of these quantities are unknown. To test this possibility, we repeated a briefer
version of Experiment 4 (40 trials per condition, rather than the 240 trials per condition of
Experiment 4), with the Auditory/Temporal and Visual/Spatial trials interleaved. The task was
again a more/fewer decision, so that the difficulties of the same/different task could not affect
performance. Results showed that the Crossmodal/Crossformat performance deficit remained,
despite this interleaved design, suggesting that task-switching problems did not contribute to the

sl ght cost for the Crossmodal/Crossformat condition. We conducted a number of follow-up
studies using the more/fewer task with various trial and block structures, and the
Crossmodal/Crossformat condition always produced a slight deficit. This suggests that the slight
deficit we observed in Exp.4 is a robust result, and that it is not due to the same/different task of
Exp. 3.

Experiment 4’s results support our findings in Exp. 3 that crossmodal/cross-format
comparisons are only slightly more difficult than intramodal or intra-format comparisons. Again,
there was a non-significant drop in accuracy when comparing across both format and modality
simultaneously. The experiment also shows that because response time does not increase with set
size for the Visual condition, the mechanism used to enumerate spatial arrays is likely to be non-

iterative.
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2.5 General Discussion

The present finding that there is little or no cost for comparing numerosities across
stimulus format or modality, relative to accuracy on intramodal and intra-format comparisons,
shows that adults’ judgments of approximate numerosity are based on abstract representations of
number. In addition, adults take no longer to make comparisons between large visual sets than
between small visual sets, when the ratio between the numerosities to be compared remains the
same. Human adults appear to compare large discrete spatial quantities through the non-iterative
construction of representations of numerosity that are independent of the modality or format of
the stimulus.

Our findings show that these numerosity judgments could not have been made on the
basis of modality- and format-specific stimulus attributes such as duration, rate, texture density,
or area. Rather, these quantities may have acted as cues in the formation of an abstract
numerosity representation. Durgin (1995) has shown that some models of human numerosity
perception which purport to depend only on one stimulus attribute, such as area, must in fact
implicitly make use of density information if they are to deal with a range of numerosities.
Related studies have suggested that numerosity judgments are influenced by different stimulus
attributes depending on the range of numerosities to be judged (Durgin, 1995). The present
experiments show that representations of perceptual stimulus attributes cannot be directly
responsible for numerosity judgments, and that there must be some transformation of this
perceptual information into an abstract form. Taken together, these findings provide strong
evidence that abstract numerosity representations are constructed from multiple perceptual cues,
much as a unified percept of depth is the product of many cues such as texture gradients,

binocular disparity, and motion parallax.



Our second major finding is that abstract numerosity representations appear to be derived
from perceptual representations by a non-iterative process, at least when the quantity to be
enumerated is presented in a spatial/simultaneous format. How can we reconcile the current
results with other findings that have been presented in support of iterative enumeration
mechanisms? A long tradition of evidence from numerosity estimation tasks has led some
researchers to posit iterative enumeration mechanisms such as preverbal counting(Gallistel and
Gelman 1992), or protocounting (Davis and Perusse 1988). When adults are shown an array of
dots, for example, and asked to make a speeded judgment of how many there are (by producing a
number), response time reliably increases with the number of dots; this has been explained in
terms of serial enumeration mechanisms. However, as the number of dots increases, our rough
approximation of their numerosity becomes even rougher, and our fuzzy representatibn of the
number of dots maps onto a larger set of possible symbolic responses. This increase in the
number of response options qould make response selection more difficult, accounting for the
observed increases in reaction time. In the task used in Experiment 4, on the other hand,
responses were limited to two alternatives, and we observed no increase in reaction time as a
function of set size. A preverbal counting system could not have produced the patterns of
reaction time we observed in Experiment 4; the fact that reaction time did not increase with set
size shows that these sets were enumerated by a non-iterative process. Support for non-iterative
enumeration processes in children has been found as well (Huntley-Fenner 2001).

Our claim that a non-iterative process is involved in deriving numerosity meshes well
with prior findings that numerosity judgments are extremely sensitive to perceptual properties of
the stimuli to be enumerated. It is certainly possible for an iterative counting-like process to be
affected by such properties. For example, any counting mechanism must individuate elements,
and the effectiveness of this individuation process could certainly be influenced by changes in

the arrangement or size of the elements. But the stimulus-dependence that has been observed can
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be more parsimoniously attributed to the operation of a non-iterative enumeration process, which
uses multiple stimulus attributes in combination as cues to numerosity. Thus, information about a
visual array such as its density and area might be transformed into a representation of the array’s
numerosity that is modality-independent. Under such conditions, any attribute of the stimulus
that affects our perception of these cues (e.g. density aftereffects or anchoring effects) will
clearly alter our representations of numerosity as well. The nature of this transformation from
stimulus-specific properties to numerosity representations remains unknown; the same
mechanism may serve to convert all spatially presented stimuli to abstract form, while another
may perform the same task for all temporal presentations. The latter sort of mechanism may be
responsible for animals’ representation of the numerosity of a sequence of events; it has been
proposed that animals keep track of the average interval between events and the overall sequence
duration, using these two durations to compute the total number of events (Church and
Broadbent 1990).

The task involved in Experiment 4 required a more vs. fewer judgment, which is of
course a judgment of relative numerosity. Some investigators have suggested that absolute and
relative numerosity judgments should be considered separately, and that animals’ ability to make
relative judgments has nothing to do with the purely human ability to judge absolute numerosity
(Davis 1993). Therefore it could be argued that our results are not truly comparable to those that
require estimation of a single quantity, for example, which are precisely those results that lend
support to the idea of an iterative nonverbal counting procedure (Gallistel and Gelman 1992)

However, in order to discuss the presence or absence of various forms of numerical
competence, it is necessary to define exactly what is meant by “competence with absolute
numerosity.” A nonhuman animal may have no need of absolute numerosity judgment for
foraging, where the goal is to identify which food source yields “more” than the others. Yet in

order to judge relative numerosity, there must be some implicit representation of absolute



numerosity first unless animals directly extract differences or ratios. Absolute numerosity
judgment may also be useful in judging whether a particular foraging effort is worthwhile in the
first place. One possible definition of ‘numerical competence’ includes the implicit requirement
that the quantity in question must be accessible to the animal and available as a modulator of
behavior. It is possible that nonhuman animals do not have access to any representation of
absolute numerosity; therefore, according to the above definition, they would not demonstrate
numerical competence for judgments of absolute numerosity. If, on the other hand, we speak of
nonhuman animals’ ability to represent absolute numerosity, making no claim about the
availability of this representation as a guide for behavior, then it is clear that this ability is
present. Indeed, the fact that chimpanzees can be taught to use absolute number at all (with
extensive training: Matsuzawa 1985; Kawai and Matsuzawa 2000) suggests that they may have
the ability to represent it all along, though it is also possible that extensive training gives them
previously unavailable representational power.

Future work will test whether our findings with relative numerosity judgments can be
found using tasks that necessitate the explicit use of absolute approximate numerosities, without
requiring manipulation of Arabic digits or choice among large numbers of responses. In addition,
though we have provided evidence in support of a general class of enumeration mechanisms, we
have not identified the specific steps involved. Is there a unitary mechanism responsible for the
enumeration of all elements, regardless of modality or format? Or is the process for the most part
modality- and format-specific, though it culminates in a representation that is neither? Ongoing
studies will target the nature of the process by which modality-specific stimulus properties serve

as cues in the non-iterative formation of abstract representations of numerosity.
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Figure 1a. Schematic depiction of possible ways to perform a numerical comparison

task within modality — such tasks cannot rule out the possibility that modality-specific
representations are being compared. The question mark is an unknown perceptual
representation of numerosity, which is specific to some property of the stimulus such as
modality. The graduated cylinder is a numerical representation that is not modality-specific.

Figure 1b. Crossmodal numerical comparisons cannot be made on the basis of
modality-specific representations.
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Figure 2. Accuracy scores for Experiment 2.1
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Figure 2a. Accuracy scores as function of ratio for Experiment 2.1
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Figure 3. Accuracy scores for Experiment 2.2
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Figure 3a. Accuracy scores as function of ratio for Experiment 2.2
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Figure 4. Accuracy scores for Experiment 2.3
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Figure 4a. Accuracy scores as function of ratio for Experiment 2.3
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Figure 5. Accuracy scores for Experiment 2.4
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Figure 6. Regression lines for RT as a function of set size in Experiment 2.4
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Chapter 3

Nonsymbolic Arithmetic with Large Approximate Numerosities

Abstract

Human adults, like infants and nonhuman animals, are able to process numerical
quantities without the use of symbolic notation; this ability has been called the “number sense.”
Previous research has elucidated a great deal about the abstract nature of this number concept
and the form of the representationé from which it springs. One question which remains
unanswered concerns the depth and richness of the number sense in humans and animals: can
number representations function in arithmetic operations? Some evidence has suggested that the
number sense constitutes a biologically specified knowledge system, shared by humans and
many other species, which underlies the uniquely human mathematical capabilities we have
developed. Results suggesting that nonhuman animals are capable of some arithmetic
computations are consistent with this view, but little is known about comparable abilities in
humans. The present experiments assess the abilities of human adults to perform computations
on large nonsymbolic sets. We find that large approximate quantity representations are indeed
available for operations such as addition and subtraction, multiplication and division. We discuss
the implications of the specific patterns of results for the relationship between symbolic and

nonsymbolic arithmetic, and for the nature of large number representation.
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3.0 Introduction

In the past few decades, researchers have demonstrated that human infants and nonhuman
animals have impressive numerical abilities that share many characteristics with those observed
in human adults. This has led to the common supposition that there is a basic preverbal “number
sense,” or rough representation of mental magnitude, that is present across species. These mental
magnitudes resemble the representations we use for other physical magnitudes, such as weight or
brightness, in that they are subject to Weber’s Law (the discriminability of two magnitudes
depends on their ratio). Evidence from studies on animals and humans further suggests that this
mental magnitude representation may form the basis for more complex symbolic numerical
capabilities developed by humans alone (Dehaene, Dehaene-Lambertz and Cohen 1998).
However, it remains to be seen whether approximate numerical representations can be used in
arithmetical manipulations themselves. If it is true that the preverbal number sense is the
biologically specified base of the symbolic numerical abilities developed by humans, we would

expect preverbal representations to be available for arithmetical manipulation.

There is certainly evidence that the preverbal number sense underlies, or at the very least
accompanies, some kinds of uniquely human numerical abilities. Mahy tasks that deal explicitly
with exact numbers may actually make implicit use of approximate quantity representations,
which appear to be automatically activated in most tasks that involve numbers even when
numerical value is irrelevant. For example, when human adults are asked to compare the
numerical sizes of two Arabic digits, their speed and accuracy depend on the ratio of the two

numbers. This is a characteristic result for operations that are subject to Weber’s Law.

Approximate quantity manipulations may be involved in more aspects of simple

arithmetic than we realize. When children are first learning to subtract, they often use a strategy

63



referred to as the “choice” algorithm, which involves either countiﬁg from the subtrahend up to
the minuend (e.g. to answer “8 - 5” by counting “6, 7, 8” which yields the answer in the number
of counting-steps, 3) or counting from the minuend down by a number of steps equal to the
subtrahend (e.g. to answer “8 - 3” by counting ‘7, 6, 5” which yields answer in the final number
reached, 5). The “choice” algorithm is so named because children choose the strategy that
requires the smallest number of counting-steps. That is, before they can make their choice of the
most efficient counting method, they must first compute the answer, very possibly through
nonverbal magnitude representations (Resnick 1983; Gallistel and Gelman 1992). Evidence for
the intertwining of approximate numerical ability with symbolic math is not limited to the early
stages of mathematical training, however; adults are able to perform rapid approximate
arithmetic on Arabic digits, apparently utilizing a cerebral circuit distinct from that involved with
the retrieval of exact numerical facts (Dehaene, Spelke, Pinel, Stanescu, and Tsivkin 1999).
However, we do not know what kinds of operations adults can perform on quantities that are
only approximately specified in the first place. If an innately determined number sense, common
to many species, does in fact form the basis for more complex human mathematical skills, then
approximate operations available to animals and preverbal humans could be expected to appear
in human adults as well. Also, if the preverbal numerical abilities that we share with other
animals underlie later, more sophisticated operations like symbolic arithmetic, we might expect
to see patterns of performance in nonsymbolic arithmetic tasks that reflect the patterns observed
in symbolic tasks.

Human infants can perform simple arithmetic operations such as addition and subtraction
at least on small numbers of objects. When presented with displays in which 2 items are placed
behind a screen and then one is removed, infants expect exactly one item to remain. Similarly,
when two items are sequentially placed behind a screen, infants expect there to be exactly two

(Wynn 1992). Studies with various nonhuman animals also demonstrate remarkable arithmetic



skills though the subjects cannot make use of a symbolic number system (Church and Meck
1984). Though most of these studies involve extensive training, wild rhesus monkeys have been
found capable of the same simple addition and subtraction operations that Wynn demonstrated in
human infants, and more (Hauser, MacNeilage, and Ware 1996; Sulkowski and Hauser 2001).
While alternative perceptual explanations have not been entirely ruled out, it seems that there is
promising evidence for arithmetic capabilities in some primates.

These particular infant and monkey studies involved the manipulation of exact very small
numerical quantities. As there is some evidence that processing of such quantities may be
distinct from that of larger approximate numerosities (Dehaene 1997; Carey 2001; but see
Gallistel 1990), these studies may not deal with mechanisms analogous to those that could allow
human adults to perform approximate arithmetical operations. While infants can discriminate
between larger sets as well, given large enough comparison ratios (Xu and Spelke 2000), it is not
clear whether these ranges of numefosities may also be used in arithmetic operations. However,
there is extensive evidence that animals process representations of larger numbers arithmetically.
Research on foraging behavior has shown that foraging patterns seem to depend on animals’
calculation of rate of return, which requires a complex combination of duration and number
information (Gallistel and Gelman 1992). A large body of research on temporal processing,
which is likely to depend upon representations very similar to representations of numerical
quantity, has demonstrated arithmetic processing of durations (Meck, Church, and Gibbon 1985;

Gibbon, Malapani, Dale, and Gallistel 1997).

More direct assessments of arithmetic capabilities with larger quantities have also
produced convincing results, many of which suggest that certain arithmetic operations such as
summation may be automatic when two quantities are presented closely in space and/or time. In
a striking demonstration of spontaneous summation across modalities, researchers showed that

when rats see two lights and hear two sounds at once, they give the conditioned response that
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means “4” (Church and Meck 1984). Spontaneous summation has also been demonstrated in
many other species; chimpanzees have been found to sum quantities presented both
nonsymbolically (without training) and symbolically (with training of the symbolic associations,
but no training of the summation process) (Rumbaugh, Savage-Rumbaugh, and Hegel 1987;
Rumbaugh, Savage-Rumbaugh, and Pate 1988; Boysen and Berntson 1989). Chimpanzees are
not the only animals capable of symbolic operations like addition; spontaneous summation of
trained symbols has also been demonstrated by Olthof and colleagues in squirrel monkeys and in

pigeons (Olthof, Iden, and Roberts 1997; Olthof and Roberts 2000).

Characteristics of arithmetic processing may be quite stable even across such seemingly
different operations as learned symbolic addition in human adults and rough addition of
quantities in animals. By the time formally educated humans reach adulthood, they tend to
perform simple addition and multiplication tasks by retrieving learned facts (Ashcraft 1992).
They also tend to sum small symbolic quantities automatically, as it seems nonhuman anjmals do
with nonsymbolic quantities (LeFevre, Bisanz, and Mrkonjic 1988; Stadler, Geary, and Hogan
2001). The “obligatory activation” of the sum of two Arabic numerals has been explained in
terms of the overlearned associations between number pairs and their sums in adult humans with
- years of training in simple arithmetic. Given the similarity of automatic summation in animals,
though, it is tempting to suppose that this symbolic-learning explanation is mistaken, and that a

common process underlies both phenomena.

In this series of studies, we probe adults’ performance on the addition, subtraction,
multiplication, and division of large nonsymbolic quantities. It remains to be seen whether
nonsymbolic large-number arithmetic in human adults will mirror the performance patterns

observed in other species, other developmental stages, or other types of tasks.
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3.1  Chapter 3 Experiment 1

In Experiment 1, we asked participants to perform comparison and addition tasks on large
sets. Comparisons could be made within a type of set (comparing the numerosities of 2 dot
arrays) or across types of sets (comparing a dot array to a tone sequence). Similarly, addition
could require adding 2 dot arrays or adding a dot array to a tone sequence. One might expect
performance to be worse in the Addition conditions for many reasons. First, in the Addition
tasks, participants had to perform approximate additions of large sets and then keep track of the
mental representation of this sum, in order to compare it to the test set. The Addition conditions
require a comparison between the sum (a representation that is the result of an operation on two
explicitly presented sets) and the test set (which is also explicitly presented). In the Comparison
tasks, participants only need to compare two explicitly presented sets. Also, representations of
approximate numerosity are noisy; the inclusion of a third set should mean that the Addition
tasks would allow less accurate judgments than the Comparison tasks, which
only require the subject to deal with two sets. And finally, participants might sﬁhply be unable to

perform an operation like addition on large sets of elements, within or across modalities.

Method

Participants. Fourteen subjects between the ages of 18 and 35 were paid to participate in

the study. All had normal or corrected-to-normal hearing and vision.

Apparatus. Participants sat in a small darkened room at a distance of approximately 60

cm from the presentation screen. Visual stimuli were presented on a Sony Multiscan monitor by
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a Power Macintosh 8600 computer. Auditory stimuli were presented from the Macintosh’s built-

in speaker. The apparatus was the same for all of the experiments that follow.

Design. All participants received the same four stimulus conditions in counterbalanced
order. Visual Comparison, Visual Addition, Crossmodal Comparison, and Crossmodal Addition
trials were blocked; participants received one block of 62 trials of each condition. Before the
experimental blocks began, there were 5 practice trials in each condition. At the beginning of
each experimental block, participants were informed of the condition of the block (Visual
Comparison, Visual Addition, Crossmodal Comparison, or Crossmodal Addition). The
numerosities used in the Comparison task were matched to the comparisons to be made in the
Addition task. For example, an addition problem might be an approximate version of “30 + 20 =
(50) vs. 40.” The corresponding comparison problem would be “50 vs. 40.” There were four

possible ratios of the numerosities to be compared: 0.75, 0.8, 0.83, and 0.86.

Stimuli. An auditory sequence consisted of a series of brief tones. All tones in a particular

sequence had the same duration, but tone duration varied from sequence to sequence between
~20 and ~60 ms. Tone presentation rate ranged from 7 to 11 tones per second, varying randomly
so that the duration of the entire sequence was not a reliable cue to numerosity. The end of each
tone sequence was marked by a brief high-pitched beep. A visual array consisted of small black
dots on a mid-gray background. The arrays of dots were presented inside an imaginary square
measuring ~13 by 13 cm. The distribution of the dots was pseudorandom, though they did not
touch or overlap. All of the dots in a particular array were the same size, but dot diameter varied
from array to array between 0.2 and 0.6 cm.

Procedure. In the Visual Comparison condition, a small red fixation cross appeared for

~400 ms, followed by a dot array, a pause of ~930 ms, and a second dot array. The task was to



determine whether the second array had more or fewer dots. In the Crossmodal Comparison
condition, one dot array was replaced by a tone sequence; participants determined whether the
second set (whether it was a dot array or a tone sequence) contained more or fewer dots. The
Addition conditions were somewhat more complex; in the Visual Addition case, participants first
saw a small red fixation cross for ~400 ms, followed by a dot array for ~200 ms, the fixation
cross for ~400 ms, and a second dot array for ~200 ms. They were instructed to “get a rough idea
of the sum” of these two arrays during the pause that followed for ~1300 ms. This followed by
the word “TEST” for ~700 ms, signaling that the test array would appear next. The third “test”
array then appeared for ~200 ms. The task was to determine whether the test array had fewer or
more dots than the sum of the first two. The Crossmodal Addition case was similar, except that
one of the addends was a tone sequence and one was a dot array. Half of the “test” sets were tone
sequences; half were dot arrays. Responses were made by pressing one button for “fewer” and
another button for “more.” The terms fewer and more were used rather than smaller and bigger
because the latter can be used to refer to mass nouns, while the former can only be used for count
nouns; it is possible that subjects might be more inclined to make judgments based on non-
numerical stimulus properties when judging smaller or bigger. Feedback was given throughout
the experiment; participants heard a high beep when they chose the correct answer and a low

beep when they chose the incorrect answer.

Results.

The top plot in Figure 1 shows mean accuracy for all four conditions. Accuracy scores for
Visual Comparison, Crossmodal Comparison, Visual Addition, and Crossmodal Addition were
76%, 713%, 72%, and 74%, respectively. A one-way ANOVA demonstrated no accuracy

differences among the conditions (p > 0.2). Reaction times are shown in the lower panel of
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Figure 1. Mean RTs for Visual Comparison, Crossmodal Compéﬁéoﬁ, Visual Addition, and
Crossmodal Addition were 890 ms, 1209 ms, 974 ms, and 992 ms, respectively. A one-way
ANOVA (pb< .002) followed by a Tukey HSD test revealed that the mean RT for Crossmodal
Comparison was significantly different from Visual Comparison (p < .01) and Visual Addition
(p < .05). Figure 2 shows accuracy and reaction time for all four conditions as functions of

comparison ratio.

Discussion.

We found that our participants were indeed able to perform the addition task extremely
well: there was no performance cost for Addition compared to Comparison, nor was there any
performance cost for operations performed across modalities compared to those performed
within modality. Accuracy also tended to decrease with larger comparison ratios, in accordance
with Weber's Law. The finding that operations performed across different modalities are not
more difficult than those performed within a modality is consistent with some previous results
involving comparison tasks. (Barth, Kanwisher, and Spelke 2001) These studies provide
additional evidence for the abstract nature of approximate representations of large numbers;
adults can perform approximate arithmetic operations quite easily, even when the modalities of
the addend sets differ. It is difficult to explain our puzzling finding that the more complex
addition task, which itself contains the simpler comparison task, does not produce worse

performance (as measured by accuracy or reaction time) than the comparison task alone.
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3.2  Chapter 3 Experiment 2

In Experiment 2, we asked participants to perform a similar task to that in Exp. 1, but we
substituted subtraction for addition. Subtraction with Arabic numerals is often more difficult than
addition (Fuson 1984); if the approximate arithmetic abilities involved in the current tasks
underlie human abilities at exact arithmetic with Arabic numerals, we might expect to find that
approximate subtraction is more difficult than approximate addition. However, some
explanations of the difficulty of subtraction attribute deficits to learned verbal strategies
(Baroody 1984; Fuson 1984). If these explanations are accurate, there should not be a subtraction
deficit for a large approximate task. A deficit would mean that the source of subtracti;)n’s
difficulty relative to addition goes beyond learned arithmetic strategies.

Because pilot testing suggested that including both addition and subtraction tasks in a
session leads to task-switching problems, we contrasted performance in Comparison tasks to
performance in Subtraction tasks. We concentrate here on within-modality operations, so all of

the conditions involved only visual arrays.

Method

Participants. Eleven participants between the ages of 18 and 35 participated in the study.

All had normal or corrected-to-normal hearing and vision.
Apparatus. The experimental apparatus was the same as in Exp. 1.

Design. All participants received the same two stimulus conditions in counterbalanced
order. Visual Comparison and Visual Subtraction trials were blocked; participants received two
blocks of 62 trials of each condition, for a total of 124 trials per condition. Before the

experimental blocks began, there were 5 practice trials in each condition. At the beginning of
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each experimental block, participants were informed of the condition of the block (Visual
Comparison, Visual Subtraction). The Subtraction problems were reversed versions of the
Addition problems of Exp. 1; for example, if an Addition problem was equivalent to “15 + 25 =
(35) vs. 42,” the corresponding Subtraction problem might be “35 — 15 = (25) vs. 30.” Therefore
the magnitudes that were involved in the solving of the Exp. 1 Addition problem and its Exp. 2
Subtraction version were the same. The quantities to be compared, however (Sum vs Test in Exp.
1 and Difference vs. Test in Exp. 2) were clearly not the same. For this reason, the Comparison
condition of Exp. 2 did not use the same numerosities as the Comparison condition of Exp 1;
rather, in Exp. 2 these Comparison numerosities were matched to the comparisons made in the
subtraction problems. Overall, the Comparison condition of Exp. 2 involved smaller quantities
than the Exp. 1 Comparison condition. As in Exp. 1, there were four comparison ratios: 0.75, 0.8,

0.83, and 0.86.

Stimuli. The dot arrays used in this experiment were the same as those used in

Experiment 1.

Procedure. The Visual Comparison condition of Experiment 2 was the same as the
Visual Comparison condition from Experiment 1, except that the compared numerosities were
matched in this case to the Subtraction problems rather than to the Addition problems. The
Subtraction condition was essentially the reverse of the Visual Addition condition of Experiment
1: participants first saw a small red fixation cross for ~400 ms, followed by a dot array, a pause
of ~930 ms, and a second dot array. They were instructed to “get a rough idea of the difference”
of these two arrays, and they were told that the first array would always be bigger so the
difference would always be positive. These two first arrays were followed by the word “TEST”
and a third array. The task was to determine whether the third “test” array had fewer or more

dots than the difference of the first two. Responses were made by pressing one button for
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“fewer” and another button for “more.” Feedback was given throughout the experiment;
participants heard a high beep when they chose the correct answer and a low beep when they

chose the incorrect answer.

Results.

The plot in the top panetl of Figure 3 shows mean accuracy for both conditions. Mean
accuracy for the Comparison task was 78%, and mean accuracy for the Subtraction task was
66%.. Reaction times are shown in the bottom panel of Figure 3; the mean RT for the
Comparison task was 1017 ms, and the mean RT for the Subtraction fask was 1122 ms. Figure 4

shows accuracy and reaction time for both conditions as functions of comparison ratio.

Discussion.

This experiment demonstrated that approximate subtraction is more difficult than
comparison, unlike approximate addition for which no deficit was detected. As in the previous
study, accuracy tended to decrease with larger comparison ratios in accordance with Weber's
Law. In order to investigate possible causes of the subtraction difficulty, we also performed two
additional versions of the study. To assess whether performance is better when subjects are
queried about the subtrahend rather than the difference, the same subtraction problems were
presented to a naive group with slightly altered instructions. We found no effect of reordering the
problems so that the subtrahend was the basis for comparison. The second revision of the study
was carried out in order to assess whether a subtraction problem could be performed better when
presented to subjects as an addition problem. Again the same problems were presented to a new
group of participants, with instructions altered so that they were described in terms of addition,

not subtraction. In the original subtraction version, participants were essentially asked, “Does the
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first minus the second equal the third?” In this new reworded addition version, participants were
asked, “Does the third plus the second equal the first?” There was no effect of this manipulation
either, though many subjects reported mentally reframing the problems in terms of subtraction.

Because a great deal of research has presented evidence that summation of contiguously
presented quantities is automatic, it seems quite possible that the form of these problems triggers
automatic summation, which would be likely interfere with a subtractive process. If this is the
case, we might have observed a subtraction deficit that was a product of our experimental design,
rather than being caused by the approximate subtraction process itself. Could adults perform
better when the set to be subtracted is shown moving away from the larger set, or disappearing,
as typically happens in analogous experiments with small children? Experiment 3 addressed

these issues.

3.3  Chapter 3 Experiment 3

The previous studies suggested that the typical difficulty differences found between
symbolic addition and subtraction were also found in nonsymbolic addition and subtraction
carried out upon visual quantities. However, Exps. 1 and 2 did not allow for direct comparison of
addition and subtraction. Addition and subtraction were not combined in a single study
previously because of concerns about the difficulty of switching tasks within a single testing
session. Ideally, one would obtain addition and subtraction data from each subject, but the
complications of task switching are not trivial in this case. Our procedure for both types of
operation consisted of the sequential presentation of two arrays; depending on the study, these
arrays were either added or subtracted. Presenting one quantity and then a second is a natural

way to represent summation, but perhaps a less natural way to represent subtraction. If it is true
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that summation often occurs automatically, it would make sense that the subtraction process
would be hampered by the way the problems were presented. If both addition and subtraction
were being performed in the same testing session, any such effected could be amplified.

If the subtraction deficit that we observed with nonsymbolic quantities was in fact due to
the structure of the problem as it was presented, then it is possible that nonsymbolic subtraction
is not really more difficult than nonsymbolic addition. Could a more natural representation of the
subtréction operation — a more “ecologically valid” version of the task - improve subtraction
performance relative to addition performance? To investigate this, we developed a nonsymbolic
arithmetic paradigm patterned after the arithmetic studies performed on human infants and
nonhuman primates (Wynn 1992; Hauser, MacNeilage, and Ware 1996; Sulkowski and Hauser
2001). Instead of simply presenting quantities and instructing the subjects to perform a particular
operation, we used sequences of events that suggested those operations. For the addition task, we
presented a first visual quantity, occluded it, and presented a second quantity that moved behind
the occluder to join the first quantity. Then the occluder was removed to reveal the third quantity.
Participants judged whether the third quantity was smaller or larger than the sum. For the
subtraction task, the first quantity was presented and occluded, and the second quantity moved
out from behind the occluder. Then the occluder was removed to reveal the third quantity, and
participants judged whether it was smaller or larger than the difference. One group of
participants performed these new versions of the addition and subtraction tasks, and another
group performed the original tasks. We predicted that this new occlusion manipulation could

improve subtraction performance relative to the original formulation of the task.

75



Method

Participants. Thirty-five subjects between the ages of 18 and 35 participated in the study.
All had normal or corrected-to-normal hearing and vision. One of the 35 was excluded from the

final analysis for performance more than 2 standard deviations below the mean.

~ Apparatus. The experiment was carried out using the same equipment and environment

as the previous studies.

Design. Experiment 3 employed a mixed design, with the new “screen” manipulation as a
between-subjects factor and the operation manipulation as a within-subjects factor. The first
group of 17 participants comprised the No Screen group, and each of these 17 received Addition
and Subtraction conditions. The remaining 17 subjects made up the Screen group and these 17
also received both Addition and Subtraction conditions. To minimize task switching
requirements in the No Screen group, roughly half the subjects received all of the addition trials
first (2 blocks) and the other half received all of the subtraction trials first. In the Screen case,
subjects received two blocks of each operation in ABBA order, with the order of operations
counterbalanced across subjects. The addition and subtraction problems were identical across

groups (the same addition problems from Exp. 1 and the subtraction problems from Exp. 2).

Stimuli. The No Screen group used the dot arrays from Experiment 1, in which each
array contained dots of the same size, but across arrays the dot sizes varied. The Screen
condition, unlike the No Screen condition, required that the dot arrays be contained in small
areas of the computer screen. Because of this, there was not enough space to vary the dot sizes in
- the same manner as in the no Screen condition (the Screen condition required smaller dot sizes

overall). Instead, each array contained dots of varying sizes, ranging from 0.3 to 0.6 cm.

Procedure. The No Screen Addition condition involved the same additions that were

used in Exp. 1, and the procedure was the same. This was the case as well for the no Screen
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Subtraction condition and the problems of Exp. 2; for both operations, the first array was
presented, followed by the second array, and then the Test array which the subject compared to
the sum or to the remainder, depending on the operation to be performed. The procedure differed
for the Screen group‘; though the actual addition and subtraction problems were identical, as were
the discriminations to be made between the test arrays and the answers to those problems. Also,
the timing was adjusted in order to keep the length of a Screen trial as similar as possible to the
length of a No Screen trial. In the Screen Addition condition, the first addend array appeared in
an imaginary rectangle in the bottom center portion of the display for ~400 ms. Then an opaque
occluding rectangle appeared (the “screen”), concealing the array. After ~1000 ms, while the
first array remained concealed, the second array appeared to travel from the top left portion of
the display to the edge of the screen and then to disappear behind it. The motion of the second
array was not smooth in order to prevent tracking of the array, which might lead observers to
attempt to count the dots. Also, the second array disappeared behind the occluding screen in a
single step so that no cues to numerosity were available from the gradual occlusion of the array.
The second array appeared, traveled across the display, and disappeared in ~800 ms. Then after a
pause of ~1300 ms, the screen disappeared, revealing the test array which remained for 400 ms.
Subjects were told that they would see a representation of an addition problem; an initiai quantity
would be shown and covered, followed by the addition of a second quantity to the first, behind
the screen. The screen would be removed, revealing a third quantity, which was an incorrect
representation of the sum. The task was to determine whether the third revealed quantity was too
small or too big to be the correct sum. The Screen Subtraction condition was analogous to Screen
Addition but the quantities were the same as in the No Screen Subtraction case, and the second
array appeared to move out from behind the concealing screen to the edge of the display rather
than moving from the edge of the display toward the screen. In all conditions in Exp. 3,

participants were not asked to make speeded responses, but were allowed to respond in whatever
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way seemed comfortable to them. They were, however, told that they would probably do better
on the task if they chose the answer that fit their first impression, and did not think too long

about the task.

Results.

The plot in Figure 5 shows mean accuracy for all four conditions. Accuracy scores were
as follows: No Screen Addition 71%, No Screen Subtraction 66%, Screen Addition 75%, Screen
Subtraction 70%. A mixed design ANOVA (Operation x Presentation) demonstrated a main
effect of the within-subjects factor Operation (p < .0005) and a main effect of the between-
subjects factor Presentation ( p < .02). There was no interaction. Figure 6 shows accuracy and

reaction time as functions of comparison ratio for all four conditions.

Discussion.

In designing this study, we hypothesized that the manner of presentation used for our
earlier addition and subtraction studies had been biasing our results against good subtraction
performance. We predicted that the Screen condition mi ght lead to the closing of the
performance gap between the operations, in which case we would have seen an interaction
between the factors (i.e., a subtraction deficit without the screen and no deficit with the screen)
We did not observe any such interaction but we did see main effects of both factors. The |
subtraction deficit is clearly present in both the Screen and the No Screen groups. Interestingly,
however, there is a clear effect of the mode of presentation as well — introducing the screen has
improved performance on 5oth the nonsymbolic addition task and the nonsymbolic subtraction
task. Identical addition and subtraction problems produced higher levels of performance when

they included simple animations that “acted out” the arithmetic operations. This was the case
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even though many of our participants were MIT students with sophisticated mathematical skills.
When the trials were structured so that the operations to be performed were “acted out” by the

elements of those operations, participants were more successful.

3.4  Chapter 3 Experiment 4

All of the previous experiments demonstrated that human adults can perform
nonsymbolic addition and subtraction on large visual sets. Here, we inquire about adults’ ability
to perform multiplication and division as well. Patient studies have suggested that rote
memorization is the basis for most multiplication, and have not shown evidence for preserved
approximate abilities with multiplication when other broad quantity-based representations
remain available (Dehaene and Cohen 1997). However, calculation of rates and ratios at some
level seems to be a crucial part of animal foraging behavior. It is possible that adults possess
approximate multiplication and division processes. However, the explicit multiplication and
division of approximate quantity representations is more difficult to conceptualize than the
addition and subtraction of such representations. While we can picture addition and subtraction
as, for example, moves along a mental “number line” of sorts, it is not easy to come up with a

comparable model for multiplication and division.

Method

Participants. Sixteen subjects between the ages of 18 and 35 participated in the study. All

had normal or corrected-to-normal hearing and vision. Three of these participants were excluded
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from the final analysis; two of these did not complete all of the trials due to time constraints, and

one failed to follow the experimenter’s instructions.
Apparatus. The experimental apparatus was the same as in the previous studies.

Design. All participants received the same two stimulus conditions in counterbalanced
order. Multiplication and Division trials were blocked; participants received two blocks of 62
trials of each condition, for a total of 124 trials per condition. Before the experimental blocks
began, there were 5 practice trials in each condition. At the beginning of each experimental
block, participants were informed of the condition of the block. There were 3 subdivisions within
each condition so that different aspects of the problems could be matched across Multiplication

and Division conditions. These subtypes were as follows:

Multiplication Type 1 (M1): operands of similar sizes, both relatively small but neither

subitizable; comparisons matched to M2; inverse of D1
M1 example: 9 ¢ 6 = (54) vs. 36

Multiplication Type 2 (M2): operands of different sizes, multiplicand relatively large,

multiplier subitizable; comparisons matched to M1; inverse of D2
M2 example: 18 ¢ 3 = (54) vs. 36

Multiplication Type 3 (M3): both operands relatively small, similar to M1 but some

- operands are subitizable; comparisons matched to D2
M3 example: 3 ¢ 6 = (18) vs. 12

Division Type 1 (D1): dividends large and matched to D2; divisors relatively small but

not subitizable; comparisons matched to D3; inverse of M1

D1 example: 54 + 6 =(9) vs. 6
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Division Type 2 (D2): dividends large and matched to D1; divisors subitizable;

comparisons matched to M3; inverse 6f M2
D2 example: 54 +3 = (18) vs. 12

Division Type 3 (D3): dividends smaller than D1 and D2; divisors subitizable;

comparisons matched to D1

D3 example: 18 +2=(9) vs. 6

This design allowed us to test various hypotheses about the steps taken in carrying out these
operations. For example, the comparisons fq be made in M1 and M2 are identical, but the
operands are different. If nonsymbolic multiplication is performed through a series of sequential
additions, reaction times should be greater for M1 than M2. As another example, M3 and D2 will
allow us to assess performance differences across operations when the required comparisons are

identical.

We hypothesized that multiplication and division performance would be worse than
addition and subtraction performance, so the comparison ratios were slightly altered in
Experiment 4. In the previous experiments, there were four comparison ratios: 0.75, 0.8, 0.83,
and 0.86. In Experiment 4, the 2 most difficult ratios were dropped and one easier one was

added, so the final ratios were 0.67, 0.75, and 0.8.

Stimuli. The dot arrays in this experiment were constructed in the same way as those in

Experiments 1 and 2; there were no Screen conditions.

Procedure. The Multiplication and Division conditions in Exp. 4 were structured in the
same way as the previous studies (except the Screen conditions from Exp. 3). The numerosities

of the arrays, of course, were changed to form multiplication and division problems rather than
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addition and subtraction (as detailed in Design, above). As in Exp. 3, participants were not asked
to make speeded responses, but were told that they would probably do better on the task if they

chose the answer that fit their first impression.

Results.

The plot in the top panel of Figure 7 shows mean accuracy for both conditions. Mean
accuracy for the Multiplication task was 67%, and mean accuracy for the Division task was also
67%. Reaction times are shown in the bottom panel of Figure 7; the mean RT for Multiplication
was 1275 ms, and the mean RT for the Division task was 1368 ms. T-tests revealed that
Multiplication and Division conditions were not significantly different either in accuracy or

reaction time.

Figure 8 depicts the changes in performance with different comparison ratios for both
conditions. Accuracy scores are shown on the top. A repeated measures ANOVA (Operation x
Ratio) revealed a main effect of Ratio, F(2,24) = 22.43, p < .0001. Reaction times are shown in

the bottom panel; ratio had no significant effect on reaction time.

Each condition in Exp. 4 (Multiplication or Division) was divided into 3 different
subtypes. Plotted in Figure 9 are the paired comparisons of the subtypes in which the final
comparison judgments are identical (M1 and M2, M3 and D2, D1 and D3). Accuracy is shown in
the top panel. The first two pairs were not significantly different, but accuracy was higher for D3
than for D1 (t(13) = -2.20, p < .05). In the bottom panel, reaction times are plotted for each

subtype; none of these pairs show significant RT differences.

Figure 10 shows the subtypes of the Multiplication and Division conditions which are
inverses of each other (i.e., the division problems were created by inverting the multiplication

problems). Accuracy is shown in the top panel, and reaction times in the bottom panel. M1 and
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D1 show no significant differences in accuracy or reaction time. M2 and D2 also showed no

differences either in accuracy or reaction time.

Discussion.

The results of Experiment 4 demonstrate that human adults can multiply and divide
nonsymbolié visual sets, and that there are no performance differences between these operations
as measured either by accuracy or reaction time, at least for the comparison ratios tested here.
Though there were no overall group differences across these operations, most individual
participants did report subjective differences that were reflected in their data. Often these
subjective differences were explained in terms of strategies used to perform the operations. One
participant reported that division seemed much easier to him than multiplication; he reported
using a strategy he termed “caveman arithmetic” with division, which involved imagining, for
example, 40 apples divided among 5 people. This participant reported that he had come up with
no such strategy for multiplication and so his performance was worse. As in the case of all other
operations addressed in this paper, participants reported that they made the correct choices when

they judged “by instinct,” and that conscious analysis of the problems tended to prodilce errors.

The final comparison ratios had a clear effect on both multiplication and division
performance (see Figure 8); the most difficult ratio, 4:5, produced the worst accuracy scores.
This result provides support for the idea that the participants were truly multiplying and dividing,
for the comparison ratio could only have such an effect on performance if the products and

quotients were in fact calculated and represented with some degree of accuracy.

We made a number of predictions about the results of the subtype comparisons. In the

following section, examples of each subtype are included for clarification.



1. Is multiplication a separate process, or is it just sequential addition?

We predicted that the multiplication process would not be carried out by repeated
summations; if multiple additions were used, we would expect reaction times to be greater for
M1 [9 ¢ 6 = (54) vs. 36] than M2 [18 3 = (54) vs. 36]. This would not necessarily be so if it
took longer to assess the numerosity of the “18” array than the “S” array, but previous studies
have shown the enumeration process does not seem to operate iteratively on visual sets (Barth,
Kanwisher, and Spelke 2001).We can be confident that any reaction time difference between
these two subtypes would not be due to the difficulty of the final comparisons, because these
comparisons are matched (see Figure 9). Our results 'sho'w that there was no difference in RT
between these subtypes, suggesting that participants did not simply turn the multiplication

operation into a series of additions.

2. Does the presence of a subitizable operand help?

When one of the operands in a problem is small enough that it can be subitized, it seems
likely that performance would be improved compared to problems with no subitizable operands,
because in the former problem type, at least one of the quantities would be known exactly. If this
is the case, performance should be better for D2 [54 + 3 = (18) vs. 12] than for D1 [54 + 6 = (9)
vs. 6]. The dividends are the same in these two subtypes, but the divisors are subitizable in D2
and they are not subitizable in D1. These two subtypes were not found to be significantly
different in accuracy or reaction time (see Figure 9). However, D1 and D2 were necessarily not
matched for the exact numerosities of the comparisons, so the effect of having a subitizable
operand has not been perfectly isolated. The effect of operands that may be subitized can also be
assessed by looking at differences between M1 [9 * 6 = (54) vs. 36] and M2 [18 « 3 = (54) vs.

36], which were already shown to be nonsignificant in (1). M1 and M2 do have perfectly



matched comparisons, unlike D1 and D2, but their dividends are not identical as they were in D1
and D2 (again, see Figure 9). Therefore, again the effect of a subitizable operand is not perfectly
isolated (which would of course be impossible, as the dividends and the quotients cannot be
perfectly matched at once across sets of problems, unless the divisors are also identical). Taken
together, these findings (that M1 vs. M2 and D1 vs. D2 did not produce performance differences)
suggest that the presehce of a subitizable operand, oddly, did not improve performance. This
result is surprising not only because a subitizable operand has a numerosity that can be known
exactly. It is also surprising because intuition would suggest that dividing a visually presented
quantity into 2 or 3 parts, or multiplying it by 2 or 3, should be egsier than dividing or
multiplying by larger numbers. To divide a dot array by 2 or 3, for example, one only has to
adjust one’s perceptual grouping of the array so that it is not made up of one large group, but
instead of 2 or 3 groups of roughly equal numerosities. Dividing the array into 6 such groups
must be a more difficult feat of perceptual grouping; therefore, the similar performance levels
found in subtypes with and without subitizable operands suggests that these operations are not

being performed by the perceptual manipulation of the arrays.

3. When identical quantities are involved, is one operation more difficult than the other?

Two of the division subtypes were constructed by taking the inverses of the multiplication
subtypes M1 [9 ¢ 6 = (54) vs. 36] and M2 [18 » 3 = (54) vs. 36] . This means that the elements of
the problems in D1 [54 + 6 = (9) vs. 6] are the same as the elements in the M1 problems, albeit in
a different order. The same goes for D2 and M2. The comparisons, of course, are not matched,;
they involve smaller numerosities for the division subtypes. Figure 10 shows accuracy and
reaction time scores for these inverse pairs; there are no significant differences by either

measure. This may mean that when the multiplication and division problems involve identical
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quantities, neither operation is more difficult. It is possible, however, that the differences in

comparison numerosities affected this result in some way.

4. When final comparisons are perfectly matched, what kinds of problems are easier?

Three pairs of subtypes had comparisons that were identical to each other (Figure 9). Two of
these pairs were matched within the same operation. The within-multiplication pair was M1 [9 »
6 = (54) vs. 36] and M2 [18 » 3 =(54) vs. 36], and the within-division pair was D1 [54 + 6 = (9)
vs. 6] and D3 [18 + 2 = (9) vs. 6]. One of these pairs had comparisons that were matched across
operations: M3 [3 ¢ 6 = (18) vs. 12] and D2 [54 + 3 = (18) vs. 12]. The only one of these three
pairs that showed any performance differences was the within-division pair, D1 vs. D3. There
was no RT difference, but accuracy was better for D3 than D1. This may be due to a combination
of factors. The divisors were subitizable in D3 and not in D1, though this factor did not seem to
affect performance in the pairs discussed earlier. The operand numerosities were also greater in

D1 than D3; it is possible that the smaller quantities of D3 were easier to manipulate.

3.5 General Discussion

This set of experiments demonstrates that analog magnitude representations are available
to human adults for calculation. First, we found that neither addition nor combarison of large sets
is more difficult across stimuli that differ in modality and format. This finding is consistent with
our previous results on comparison tasks (Barth, Kanwisher, and Spelke 2001), and it extends
these results as well into the realm of calculation. Adults can perform approximate addition even

when the modalities of the addend sets differ, supporting the claim that adults’ processing of
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approximate numerosity is indeed based on truly abstract number representations. The fact that
arithmetic operations can be performed overtly on nonsymbolic quantities a all is a novel result
which deepens our understanding of the role that analog magnitude representations may play in
human calculation. The notion that a biologically determined number sense, based on analog
magnitudes, forms the basis for more complex human mathematical skills is consistent with
these results.

Subtraction tasks with nonsymbolic visual sets are more difficult for adults than addition
tasks. This result parallels the fact that symbolic subtraction is more difficult than symbolic
addition, providing evidence against the claim that the symbolic subtraction deficit is due solely
to learned verbal calculation strategies. The differences between subtraction and addition
performance remained when we attempted to control for the possibility that subtraction was
hampered by the involuntary, automatic addition of the quantities presented for subtraction.
Thus, it seems that subtraction is a more difficult process than addition whether it is carried out
through symbols or nonsymbolic quantities. Parallels such as this one between symbolic and
nonsymbolic results support the idea that operations on analog magnitudes underlie learned
operations on Arabic numerals. Experimental studies with infants and small children, and
teaching methods used on small children, often involve “acting out” the processes that the
researchers or teachers are trying to communicate. The present studies have shown that these
enriched presentation methods, the “acting out” of addition and subtraction, can enhance
performance even in mathematically advanced human adults.

According to studies in patients, rote memorization is the basis for multiplication
processes. Even when patients retain the ability to use approximate quantity representations, they
have not shown evidence of preserved approximate abilities with multiplication (Dehaene and
Cohen 1997). However, these studies have dealt with the manipulation of Arabic numerals rather

than nonsymbolic quantities, so it is possible that they failed to access approximate capabilities
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that did remain intact. We present evidence that both multiplication and division of approximate
nonsymbolic quantities is possible though difficult. Though we have some preliminary evidence
regarding the methods subjects may have used to carry out these calculations, it is difficult to
come up with an intuitive way of multiplying a magnitude representation, for example, compared
to adding such a representation. Further experimentation is needed before any conclusive
statements can be made about the structure of approximate multiplication and division.

All of the operations tested in this set of studies demonstrated sensitivity to Weber’s Law;
performance was dependent on the ratio of the sum, difference, product, or quotient to the
comparison numerosity. Figure 11 demonstrates this result; in the figure, accuracy scores were
averaged across different experiments but within operations. This yielded an average percent
correct for each type of arithmetic operation as a function of the comparison ratio. Though the
basic accuracy means are obviously different for each type of operation, we see extremely
regular patterns of performance, lending support to the idea that common representations, subject
to the same rules, underlie all of these processes, and that the processes themselves add various
sources of error which are reflected in performance. By demonstrating the relationship among
these operations, and the relationships between some of these operations and their symbolic
counterparts, these results contribute evidence to the idea that the noisy magnitude
representations we share with other species are in fact available as operands in arithmetic
computations, and thatvthey may well may form the basis for more exclusively human symbolic

numerical capabilities.
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Figure 1. Accuracy and reaction time totals for the 4 conditions of Experiment 3.1
(Visual Comparison, Visual Addition, Crossmodal Comparison, Crossmodal Addition).
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Figure 2. Accuracy and reaction time as functions of comparison ratio for Experiment 1.
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Figure 3. Accuracy and reaction time totals for the 2 conditions of Experiment 2
(Comparison and Subtraction, both visual).
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Figure 4. Accuracy and reaction time as functions of comparison ratio for Experiment 3.2.
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Figure 5. Accuracy and reaction time totals for the 4 conditions of Experiment 3.3

(No Screen Addition, No Screen Subtraction, Screen Addition, and Screen Subtraction).
No Screen Addition and No Screen Subtraction conditions correspond to one group of
17 participants; a different group of 17 are represented in the Screen Addition

and Screen Subtraction conditions.
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Figure 6. Accuracy and reaction time as functions of comparison ratio for Experiment 3.3
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Figure 7. Accuracy and reaction time totals for the 2 conditions of Experiment 3.4

(Multiplication and Division, both visual).
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Figure 8. Accuracy and reaction time as functions of comparison ratio for Experiment 3.4.

Chapter 3 Experiment 4: Ratios

Accuracy

100
90

% Correct
S 8 48 3

—e— multiplication ==-division °

20
10

00.66 068 07 072 074 076 078 08 082
Comparison Ratio

Reaction Time

a

— —

. ®,

—e— multiplication =-&-~division

066 068 07 072 074 076 078 08 0382

Comparison Ratio

99



1S0ONS

Matched Compar

Accuracy

100

Chapter 3 Experiment 4

Figure 9. Accuracy and reaction time totals for Matched Comparisons in Experiment 3.4;

shown are the pairs of subtypes across which the final comparisons were identical.

cemeereeeeeseee iy _ CEOECCER ™
. RN O g8 ! R R R a
* oy
x 8.3
I - W 2 [ regmaman o d
Ch 1o o o s b (b () . ol L b ko hd e e e iy
PR AR AR ANH K I XXX X R] T A (R RA I KR KK ] =
B R S R M (@) PR 1 0
m
QTR RO CROT OO O OT O RO OO CROTCR BN (7] m__u PR O G OO OO OO
Lo, R, IR TG SR T e I o A RO R HOR, oOR, o o] O
I e e T e P P P o P M (77 I T e A P e e o e o A R o o
- A (o) n = x
o= B
58 -5
(] )
A e L Q
'S
m
e e e e =
—l_ -llvll lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 2 .m “ lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 2
lﬂ ..................................... 3= IR B e pey fyivivhyigisiviviulyigilylyilriviigiyiotrivilylyistylvillyivtrlyietylgitrlol
= g§ | | s p=
=l
Hagli=" —“
YRyt SISy YRR -~ W = N B B T LT LT T -~
T T T P Yy = e
fbylyhylohylybylyivlyiylyiolylplytylplylylyiylyllplylylplpighylplyl = W | Srvivivioloivivivivivtoioiyiviyivioivlylylpiyioiyiviiyiytviyiolylyiplyirivivipipiph d =
rrryTrrryrrrrrrmryprrryp rrriprmrryrrrrprrea | LI T T T T T T 71T T T 1 TTT

000000000
0 K~ O IO < O N +

1600
1400
1200
1000
0
600
400
200

1091100 9,



Figure 10. Accuracy and reaction time totals for Inverse Problems in Experiment 3.4;

shown are the pairs of subtypes in which the division problems were created by

inverting the multiplication problems.
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Figure 11. Accuracy as a function of comparison ratio for 5 different operations
(comparison, addition, subtraction, multiplication, and division), averaged across
multiple experiments.
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Chapter 4

Conclusions

4.1  Abstract representation and enumeration mechanisms

These studies show first that adults’ judgments of approximate numerosity are based on
abstract representations of number by demonstrating that there is little or no cost for comparing
or for adding numerosities across stimulus format or modality, relative to accuracy on intramodal
and intra-format comparisons. Contrary to some theories of numerosity assessment, perceptual
stimulus attributes cannot be directly responsible for numerosity judgments, suggesting that there
must be some transformation of this perceptual information into an abstract form. Multiple
perceptual cues may be combined to form abstract numerosity representations, perhaps
analogous to the formation of depth percepts from binocular disparity, texture, and other cues.

The type of mechanism which constructs these representations has been further
constrained by these experiments. When the difficulty of the numerical comparisons is held
constant as defined by Weber ratio, adults take no longer to make comparisons between large
visual sets than between small visual sets. This suggests that abstract numerosity representations
are derived from perceptual representations by a non-iterative enumeration process of some sort.
We believe that earlier findings of sensitivity to perceptual stimulus properties in enumeration
tasks is due to the use of information that is tied to the perceptual properties of the stimulus in
the construction of the numerosity representation, in a process analogous to depth perception as
mentioned earlier.

Though enumeration mechanisms that operate iteratively have been invoked to explain

many pieces of evidence from numerosity estimation tasks, our results are not compatible with
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such explanations at least for simultaneously present visual quantities. Our results do not contact
the arguments for iterative enumeration mechanisms for sequential stimuli, and indeed this type
of mechanism is intuitively suitable for such an enumeration task. Support for non-iterative
enumeration for visual groups, however, has been found as well in human infants and small
children (Xu and Spelke 2000; Huntley-Fenner 2001).

Chapter 2’s results, taken together, suggest that human adults compare large discrete
spatial quantities through the non-iterative construction of representations of numerosity, and

that these representations are independent of the modality or format of the stimulus.

4.2  Calculation with nonsymbolic quantities

Chapter 3’s experiments demonstrate that analog magnitude representations are available
to human adults for calculation. We found that neither addition nor comparison of large sets is
more difficult across stimuli that differ in modality and format, a finding that is consistent with
our previous results on comparison tasks (Barth, Kanwisher, and Spelke 2001), and it extends
these results as well into the realm of calculation. Adults can perform approximate addition even
when the modalities of the addend sets differ, supporting the claim that adults’ processing of
approximate numerosity is indeed based on truly abstract number representations. The fact that
arithmetic operations can be performed overtly on nonsymbolic quantities at all is a novel result
which deepens our understanding of the role that analog magnitude representations may play in
human calculation. We also find that subtraction is a more difficult process than addition
whether it is carried out through symbols or nonsymbolic quantities. Parallels such as this one
between symbolic and nonsymbolic results support the idea that operations on analog

magnitudes underlie learned operations on Arabic numerals.
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All of the operations tested in this set of studies demonstrated sensitivity to Weber’s Law;
performance was dependent on the ratio of the sum, difference, product, or quotient to the
comparison numerosity. Figure 11 demonstrates this result; in the figure, accuracy scores were
averaged across different experiments but within operations. This yielded an average percent
correct for each type of arithmetic operation as a function of the comparison ratio. Though the
basic accuracy means are obviously different for each type of operation, we see extremely
regular patterns of performance, lending support to the idea that common representations, subject
to the same rules, underlie all of these processes, and that the processes themselves add various
sources of error which are reflected in performance. By demonstrating the relationship among
these operations, and the relationships between some of these operations and their symbolic
counterparts, these results contribute evidence to the idea that the noisy magnitude
representations we share with other species are in fact available as operands in arithmetic
computations, and that they may well may form the basis for more exclusively human symbolic

numerical capabilities.

4.3  Numerical competence in animals: relationship with continuous quantity

Sensitivity to number
Some theorists are of the opinion that competence with “number” rather than continuous

" quantity should not readily be attributed to animals. A foraging animal wants the largest quantity
of food presumably by volume, roughly, or mass, not by number. Number and continuous
quantity tend to covary, and many researchers have suggested that animals use number only as a
last resort, preferring to judge by continuous quantity. Why then be sensitive to number at all, if

continuous quantity will do the job? Consider a potential foraging situation, taking into account
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the typical perceptual characteristics of the natural world. Occlusion is a constant in vision; each
particular object in this hypothetical scene may well be only partially visible. Assessing foraging
potential through continuous quantity in this situation will not necessarily yield an accurate
representation of the food that’s present, because continuous variables like visible area are
affected by occlusion. However, if an animal is sensitive to discrete number, it can mark each
visible segment as an object and assess the total amount of food accurately. This explanation for
animals’ sensitivity to large number accords with many other findings that nonverbal creatures

are sensitive to discrete objects.

Calculation
Often, discussions of calculation abilities in animals urge caution in considering much of

the relevant research, because in many cases there are confounds of number and continuous
quantity. These confounds may not be as problematic as some claim, though, if the issue in
question is animals’ operational ability rather than their ability to represent discrete number.
Analog magnitude representations are just that — analog — and it is quite possible that the
magnitude representation of a continuous quantity such as volume is indistinguishable from the
analog representation of discrete number. If this is the case, there is no reason t(;think that it
would be possible to calculate with a magnitude representation that originated in a continuous
stimulus, but impossible to calculate with a representation that originated in a discrete stimulus.
Evidence of arithmetical processing of magnitlide representations of area, volume, or rate,

therefore, may be relevant to the issue of arithmetical processing of number representations.
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4.4  The form of analog representations of magnitude — linear or logarithmic?

Analog magnitude representations, like representations of perceptual properties such as
brightness or loudness, are subject to Weber’s Law. A lengthy historical debate concerns the
source of these Weber effects in perception; the issue remains controversial in the realm of
numerical cognition as well. The numerical version of the debate asks whether the Weber’s Law
effects are due to logarithmic compression of the number representation (Dehaene and Mehler
1992), or to a representation that exhibits scalar variability (Gibbon 1977; Gallistel and Gelman
1992). According to the first hypothesis, Weber’s Law results from a number representation that
is compressed such that the difference between 5 and 10 is the same as the difference between 20
and 40. On this view, discriminability depends on the ratios between numbers rather than the
absolute numerical distance because the relative subjective differences in the number
representation itself depend on the ratios of the objective numbers. This type of explanation has
traditionally been favored for Weber’s Law in psychophysics research (Brannon, Wusthoff,
Gallistel, and Gibbon 2001). The second hypothesis states that the number representation is
linear in its relation to objective number, but its variability increases proportion.al» to the objective
number’s mean, so that larger numbers have a more uncertain location in the representation
(Gallistel and Gelman 1992). On this view, discriminability depends on the ratios between
numbers rather than the absolute numerical distance because the uncertainty in the
representations of larger numbers means that they may overlap. Indirect evidence from animals
supports this theory because duration and number appear to be represented very similarly in
(Meck and Church 1983), and duration appears not to be represented in a logarithmically
compressed form (Gibbon and Church 1981). |

The main difficulty in distinguishing between these theories is that in most situations,

they both make the same prediction. However, in a few select cases this is not true. For example,
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the according to the logarithmic hypothesis, the difference between two subjective magnitudes
depends on their ratio. The difference between any pair of magnitudes will be the same as the
difference between any other pair if their ratios are the same. This is not the case according to the
scalar variability hypothesis, which says that the differences between subjective magnitudes are
determined by the absolute distances between objective magnitudes, and not by their ratios.
Clearly arithmetic operations on this second type of representation are simpler to contemplate,
which is another reason the hypothesis has been favored by some (Gallistel and Gelman 1992;
Brannon, Wusthoff, Gallistel, and Gibbon 2001). It seems to be the case that analog magnitude
representations are used for arithmetic operations, so a number representation with a morphology
that is easily adapted to such operations should be preferred. Recent work in pigeons has
presented further evidence for the scalar variability theory, by taking advantage of the distinction
described above. Experimenters determined that pigeons’ perceptions of differences between
quantities were dependent upon absolute numerical difference as predicted by scalar variability,
not ratio as predicted by logarithmic compression (Brannon, Wusthoff, Gallistel, and Gibbon
2001). However, it has been suggested that the observed behaviors were not actually based on
differences, and further that the forms of internal representations of this sort may not be
accessible to experimental techniques (Dehaene 2001). While it is possible that the former
criticism is valid, the latter does not seem very robust considering the large amount of
information that experiments have yielded so far regarding the nature of number representation.
There is no clear logical motivation for declaring this particular distinction beyond the reach of
experimentation.

Our studies on arithmetic in human adults can make contact with this debate from a
number of angles. First, it seems that if we know certain operations can be performed on a
representation, there is some reason to favor a hypothesis in which the format of the

representation is well-suited to these operations. So if we know that nonsymbolic subtraction is
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performed in pigeons at all, a representation that allows for easy subtraction should be preferred
over one that obscures the subtraction process. This is not direct experimental evidence, of
course, but merely an intuitive guideline. Now, in this example involving pigeon subtraction, one
would probably not imagine that the pi geons actually overtly attempt to subtract quantities. The
computations involved are, presumably, not being carried out pufposely by the pigeon. In the
foraging literature, and indeed in most of the huge body of comparative psychology litérature, it
has been demonstrated repeatedly that at some level, animals’ brains are capable of complex
calculations involving integrations, probability, and so on. Therefore it could easily be argued
that the fact that pigeons can subtract does nof mean anything about the format of the number
representation, because the manner in which calculations might be carried out upon that
representation does not need to be transparent to the human observer; it simply needs to be
manipulable by the brain. This is true, but consider a similar task given to a human subject who
is directed to subtract two nqnsymbolic quantities. In this case, presumably the subject is overtly
attempting to subtract quantities. If this task could be achieved, it might provide slightly stronger
support for scalar variability than the pigeon example, because a representation that is amenable
to the subtraction operation, and hence a method of subtraction that is transparent to the human
observer, would seem to be advantageous. Again, this is not direct evidence, but another intuitive
guideline. We cannot assume much about the internal calculations taking place based on
introspection about the process.

Direct evidence against the logarithmic compression hypothesis is what the present
studies have provided. We have demonstrated that addition and subtraction of nonsymbolic
quantities is indeed possible for human adults, and that addition is even strikingly easy in that it
appears no more difficult than simple comparison. If the logarithmic hypothesis were correct, the
subjective sum of two magnitudes would be equivalent to their objective product; for example,

20 dots plus 20 dots would equal roughly 400 dots, and addition performance would be atrocious
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(Gallistel, personal communication). Similarly, in the case of subtraction, the difference of two
magnitudes, according to the logarithmic hypothesis, should depend only on their ratio. These
subtraction experiments largely involved problems with identical operand ratios, so the task
should have been impossible if the number representation were logarithmically compressed. It is
possible that some elaborate translation mechanism exists, allowing logarithmic number
representations to be translated into linear form for calculation purposes, but because this is
unparsimonious in the extreme, it seems more probable that the scalar variability hypothesis is

the better explanation of Weber’s Law in numerical processing.

The nature of numerical knowledge in human infanfs, human adults, and nonhuman
animals has received extensive attention from researchers in recent years. These studies have
suggested answers to some of the outstanding questions regarding the scope of numerical
knowledge in humﬁn adults. The first set of experiments presents new evidence about the form of
number representations and the ways in which we might construct them, and the second set
second explores the kinds of processes that make use of these magnitude representations.
Continuing work will advance our understanding of the “number concept” as found in human
adults and the relationship of nonlinguistic number knowledge to the elaborate mathematical

abilities humans have developed.
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