

Symbiotic Strategies in Enterprise Ecology: Modeling Commercial Aviation as an Enterprise of Enterprises

Sgouris Sgouridis

LAI ANNUAL CONFERENCE LEAN ENTERPRISE TRANSFORMATION 2008

Massachusetts Institute of Technology

Boston, MA April 23, 2008

Agenda

Overview, Motivation, and Methodology

Research Questions

Modeling Commercial Aviation as an Enterprise of Enterprise

Results and Conclusions

Contributions

Future Work

Motivation

- Cyclicality exists in Commercial Aviation
- Cyclicality has repercussions across the *enterprise ecosystem*
- Lack of centralized control makes *coordinated* action to moderate cyclicality difficult
- Symbiotic strategies that can moderate cyclicality in a way beneficial to multiple stakeholders are not readily identifiable

Overview & Methodology

Understanding key aspects of:

- Commercial Aviation
- Business cycles in economics and supply chains
- Enterprise modeling

Representing Commercial Aviation as *Enterprise of Enterprises* (CA EoE) to identify leverage points, strategic alternatives and interests

Modeling of the CA EoE using System Dynamics

Testing strategic alternatives for effectiveness and implementability

Key Finding

- If Boeing follows the Airbus aircraft delivery model then
 - BOTH the manufacturers (Boeing: +87%, Airbus: +55% total op. profit)
 - AND the airline industry as a whole (Airline NPV: +20%) will enjoy increased profitability
 - WHILE passenger surplus will not be affected substantially (total passenger welfare may actually increase)
 - (Until 2025, one scenario, assuming no new entrants in the large commercial aircraft (>100 seats) category)
- More combinations of strategic alternatives (policies) improve on this performance!

Overview, Motivation, and Methodology

Research Questions

Modeling Commercial Aviation as an Enterprise of Enterprise

Results and Conclusions

Contributions

Future Work

Research Questions

- How is cyclicality manifested in commercial aviation? What are the impacts from cyclicality in commercial aviation?
- What are the salient causal mechanisms that induce the cyclical behavior in commercial aviation?
- What are implementable strategic alternatives for dampening that cyclicality and what are their benefits?

How is cyclicality manifested in commercial aviation? (I)

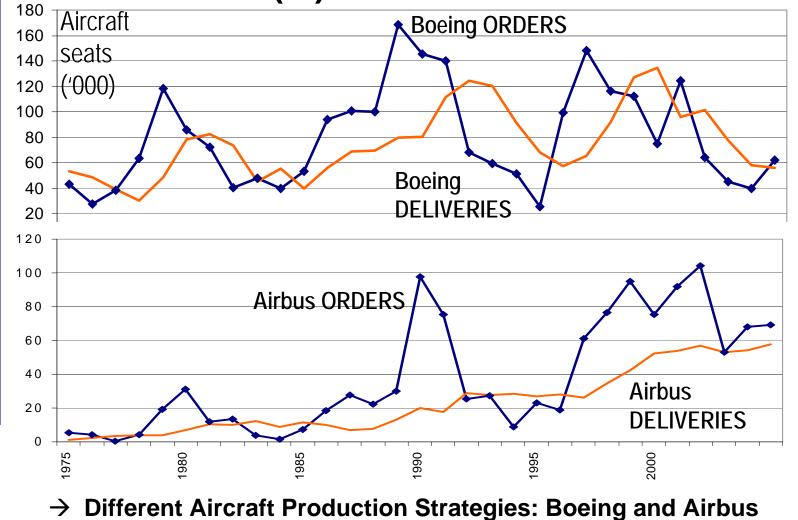
\rightarrow Cyclical profitability for airlines


 \rightarrow Increasing amplitude post-deregulation

Global Data – Data Sources: ATA (2006)

How is cyclicality manifested in commercial aviation? (II)

Growth Rates (%)

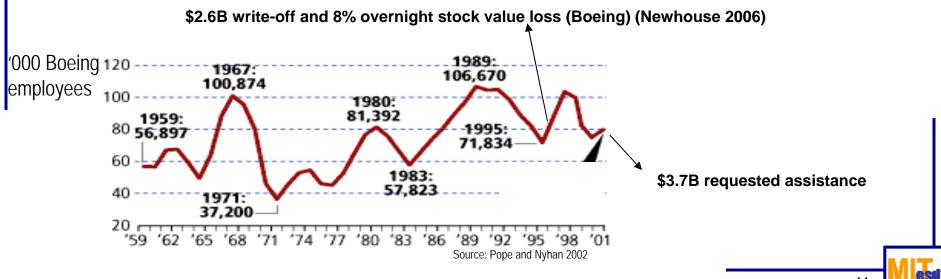


- \rightarrow Correlation between GDP growth and travel demand
- \rightarrow Bullwhip effect in aircraft orders

Global Data – Data Sources: ATA (2006), Boeing and Airbus Databases

© 2007 Sgouris Sgouridis, Engineering Systems Division, Massachusetts Institute of Technology

How is cyclicality manifested in commercial aviation? (III)



Global Data – Data Sources: Boeing and Airbus Databases

What are the impacts from cyclicality in commercial aviation?

- Low industry-wide return on invested capital
- Periodic overcapacity and constrained capacity of aircraft:
 - Hire fire cycles. Airport and ATC planning. Inconsistent LOS and fares.
- Periodic overcapacity and constrained capacity of manufacturing resources:
 - Hire/fire cycles. Production efficiency deterioration. Labor/mgt relations.

What are the salient causal mechanisms that induce the cyclical behavior? From business cycle literature

- Triggers:
 - Macroeconomic cycle
 - Input variability
- Psychological Factors
 - Bounded Rationality (Metzler 1941, Abramovitz 1950, Lucas 1975)
 - Supply chain discounting (Sterman 1989, Croson et al 2004, 2006)
 - Investment exuberance, risk tolerance and strategic optimism (Pigou 1929, Krainer 2003)
- Industry Structure
 - Imperfect financing and capital market volatility (Carpenter et al. 1994, Bernanke and Getler 1989)
 - Inventory investment accelerator (Clark 1917, Kitchin 1923, Lucas 1975, Anderson and Fine 2000)
 - Investment irreversibility and intertemporal substitution (Timbergen 1931, Einarsen 1938)
 - Underutilized capacity and labor 'hoarding' (Petersen and Strongin 1996)
 - Technological change (Schumpeter 1911,1939)
 - Low barriers to entry, high barriers to exit, commoditization (Weil 1996)
- Supply chains (Simchi-Levi et al. 2003, Lee et al. 1997, Forrester 1961, Towill 1996)
 - Order batching
 - Inventories.
 - Long lead times.
 - Order gaming due to constrained supply
 - Price fluctuations (promotions, bulk discounts)
 - Strong seasonality or network effects

r applicable to commercial aviation

© 2007 Sgouris Sgouridis, Engineering Systems Division, Massachusetts Institute of Technology

Overview, Motivation, and Methodology

Research Questions

Modeling Commercial Aviation as an Enterprise of Enterprises

Results and Conclusions

Contributions

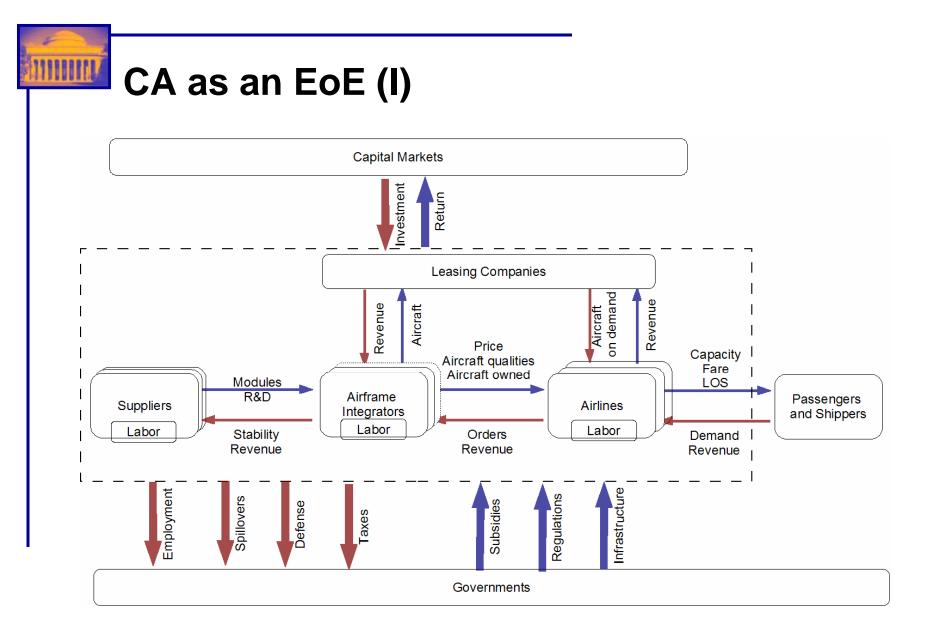
Future Work

Modeling an Enterprise of Enterprises (EoE)

1. Define EoE Study Objectives:

2. Qualitatively Represent the EoE: Identify:

- Primary constituent enterprises,
- Interests and objectives of constituents (value functions),
 - Interfaces between constituents


3.1. Define the Plausible Futures

3.2. Define the Solution Space

4. Model the EoE

5. Experiment Using the EoE Model

6. Consider implementability of strategic alternatives

→ Abstraction of the CA EoE interfaces, primary constituent enterprises and non-enterprise stakeholders

15

CA as an EoE (II)

Constituent Enterprise/ Stakeholder	Values	Metrics		
Passengers/ Shippers	Availability of air travel	ASK / year		
	Affordability of air travel	Average fares		
	Level of Service	Frequency, reliability, amenities (load factors as proxy)		
Carriers	Economic Return	Economic Value Added (EVA: Op. Profit – Taxes – Cost of Capital) Discounted to NPV		
	Stability of Return	Coefficient of variation (CV)		
	Downturn time	Average time with negative returns		
Airframe Manufacturers	Economic Return	Economic Value Added (EVA: Op. Profit – Taxes – Cost of Capital) Discounted to NPV		
	Stability of Aircraft Deliveries	Coefficient of variation (CV)		
	Downturn time	Average time with negative returns		
Capital	Return on investment	Combination of airlines and airframe manufacturers returns		
Markets	Defaults avoidance	Economic losses due to defaults		
Governments	Availability of air travel	ASK/year		
	Returns of domestic industries	EVA		
	Min. subsidies	Amount of assistance in support of airlines and aircraft manufacturers		
	Employment stability	Employment numbers		

- → Representation of constituent enterprise and stakeholder value functions
- \rightarrow Used to evaluate and compare effects of strategic alternatives

© 2007 Sgouris Sgouridis, Engineering Systems Division, Massachusetts Institute of Technology

Modeling EoEs

1. Define EoE Study Objectives:

2. Qualitatively Describe the EoE

3.1. Define Plausible Futures: Create scenarios that represent realistic outcomes 3.2. Define the Solution Space: Identify strategic alternatives towards the desired EoE state

4. Model the EoE

5. Experiment Using the EoE Model

6. Consider implementability of strategic alternatives

Strategic areas for reducing cyclicality

- Flexibility in airline operations:
 - Fixed vs. variable costs
 - Profit sharing and outsourcing
 - Leasing
 - Aircraft fleet management
 - Flexibility in Aircraft Fleet Utilization
 - Aircraft retirement
 - Aircraft ordering
 - Supply chain visibility
 - Demand Forecasting
 - Effect of Profitability on Orders

• Airline competitive environment

- Yield management
- Effect of Airline Entry and Exit on Pricing

• Aircraft manufacturers competitive environment

- Aircraft pricing
- Manufacturing
 - Production rate adjustments
 - Production costs

Modeling EoEs

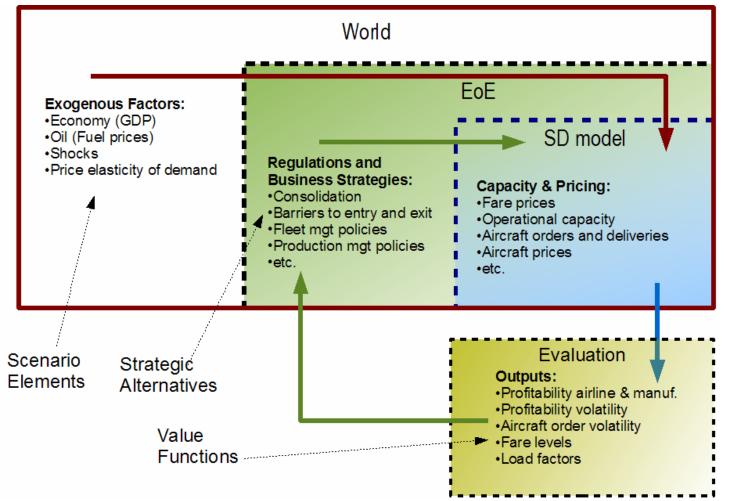
1. Define EoE Study Objectives:

2. Qualitatively Describe the EoE

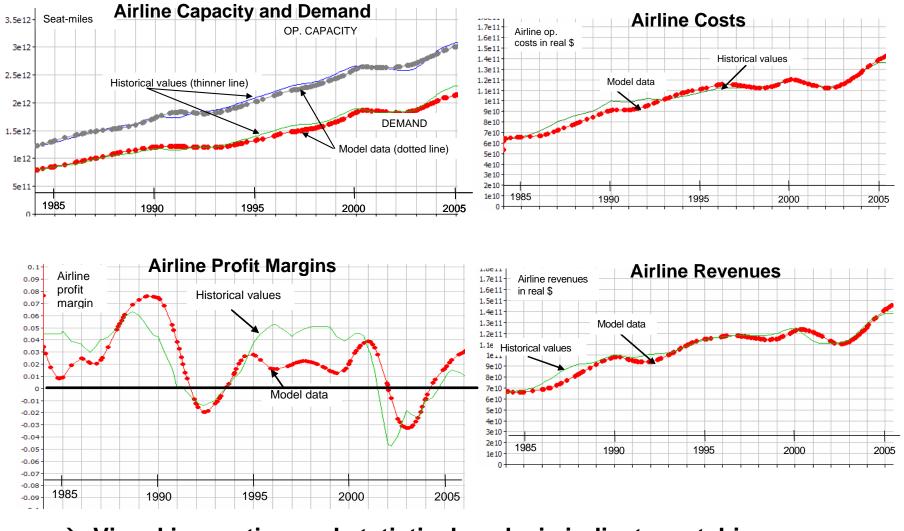
3.1. Define the Plausible Futures

3.2. Define the Solution Space

4. Model the EoE:
Identify appropriate modeling method(s)
Quantify the value functions of constituent enterprises,
Quantify and model the interfaces between constituents,
Calibrate, validate and verify the resulting model


5. Experiment Using the EoE Model

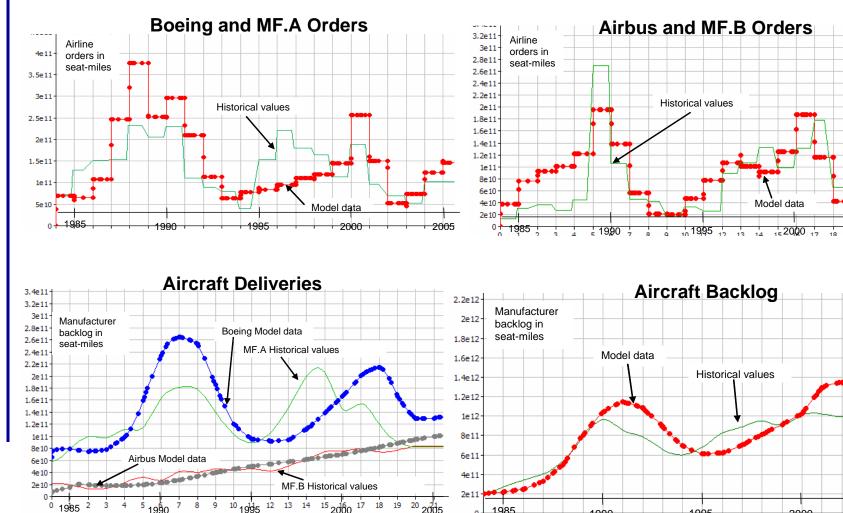
6. Consider implementability of strategic alternatives


CA EoE Modeling

- \rightarrow SD Model: captures critical aspects of the EoE
- \rightarrow Integration of scenarios, strategies and value functions

minut

CA EoE SD Model Validation: Airlines



\rightarrow Visual inspection and statistical analysis indicate matching

© 2007 Sgouris Sgouridis, Engineering Systems Division, Massachusetts Institute of Technology

RSI

CA EOE SD Model Validation: Manufacturers

\rightarrow Visual inspection and statistical analysis indicate matching

1985

1990

© 2007 Sgouris Sgouridis, Engineering Systems Division, Massachusetts Institute of Technology

22

2005

65

2000

-2005

Overview, Motivation, and Methodology

Research Questions

Modeling Commercial Aviation as an Enterprise of Enterprises

Results and Conclusions

Contributions

Future Work

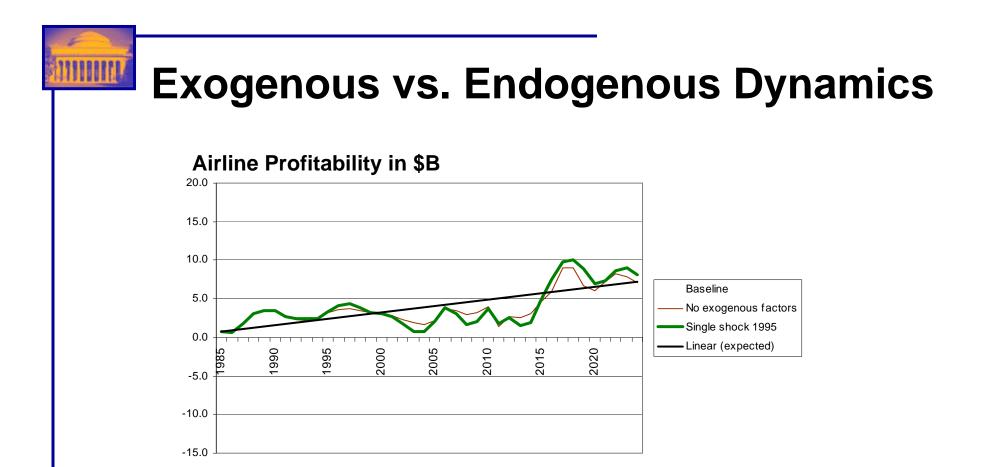
Modeling EoEs

1. Define EoE Study Objectives:

2. Qualitatively Describe the EoE

3.1. Define the Plausible Futures

3.2. Define the Solution Space


4. Model the EoE

- 5. Experiment Using the EoE Model:
- Quantify strategic alternatives (SA)
- Design experiments that cover interactions across (SA)
 - Run experiments across scenarios
 - Compare and identify the promising SA

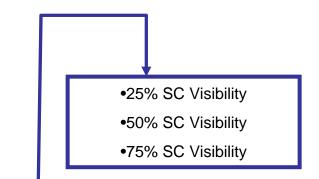
6. Consider implementability of strategic alternatives:

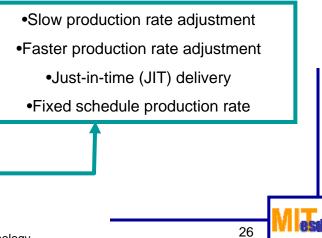
- Design implementation strategy based on institutional/regulatory aspects of the EoE
- Game theory and compensation schemes
- for non-Pareto optimal strategic alternatives

→ There is cyclical behavior even in the absence of exogenous factors

Relative effect on cyclicality of exogenous factors:

- 1. Fuel (CV : 1.12)
- 2. GDP (CV: 0.87)
- 3. External shocks (CV: 0.46)


From Strategic areas to Strategic


Alternatives: 2 examples

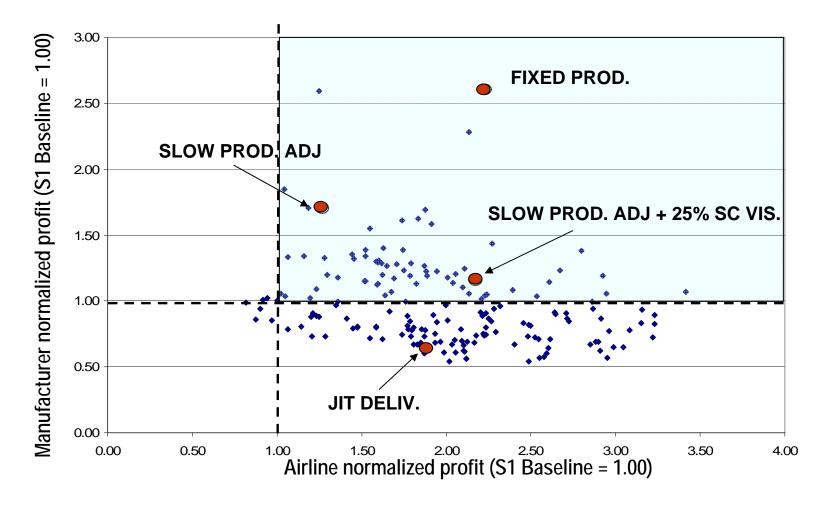
- Flexibility in airline operations:
 - Fixed vs. variable costs
 - Profit sharing and outsourcing
 - Leasing
 - Aircraft fleet management
 - Flexibility in Aircraft Fleet Utilization
 - Aircraft retirement
 - Aircraft ordering
 - Supply chain visibility
 - Demand Forecasting
 - Effect of Profitability on Orders

Airline competitive environment

- Yield management
- Effect of Airline Entry and Exit on Pricing
- Aircraft manufacturers competitive environment
 - Aircraft pricing
 - Manufacturing
 - Production rate adjustments
 - Production costs

Results: Individual Strategic Alternatives Performance (average across scenarios)

	Airline		Manufacturers		Passengers	
	NPV	CV	NPV	Order CV	Fare	LF
	Change	change	Change	Change	Change	change
75% SC visibility	256.4%	54.0%	-45.6%	41.8%	2.6%	13.8%
50% SC visibility	168.7%	47.3%	-38.9%	31.5%	2.7%	9.5%
MF fixed prod. Rate	49.6%	-23.4%	123.3%	N/A	-0.3%	2.8%
Slow prod rate change	25.6%	-2.6%	63.7%	-43.5%	-0.8%	1.3%
Slow prod rate change + 25%SC visibility	142.2%	50.5%	4.3%	5.3%	2.2%	7.4%
MF JIT+ lean + 25% SC visibility	90.6%	41.9%	-40.2%	25.4%	3.6%	5.2%


 \rightarrow Control of Capacity is key

Symbiotic Quadrant –

Optimization search for strategic alternative bundles

\rightarrow Control of capacity leads to symbiotic strategies close to the Pareto front

 \rightarrow There are benefits to be gained from bundling strategic alternatives

Conclusions

- → Strong endogenous dynamics in commercial aviation structure that fuel cyclicality
- → Non-collusive slowing of production rate adjustment provides strong symbiotic benefits to both manufacturers and airlines while passengers are not negatively impacted
- No synergistic advantage found if MF.A pursues JIT and MF.B maintains its slow-to-adapt production strategy (*)
- \rightarrow Other interesting strategic alternatives were shown:
- Airline industry consolidation
 - In pricing (*)
 - In ordering (reducing 'supply chain discounting')
- Increasing fleet flexibility (higher level of short term op. leases) (*)
- → Bundling of alternatives can provide improvements but production control (in the extreme) is on the Pareto front
- → Commercial Aviation as an EoE: a useful perspective

Thank you for your attention!

Questions?

© 2007 Sgouris Sgouridis, Engineering Systems Division, Massachusetts Institute of Technology

Back-up

Overview, Motivation, and Methodology

Research Questions

Modeling Commercial Aviation as an Enterprise of Enterprises

Results and Conclusions

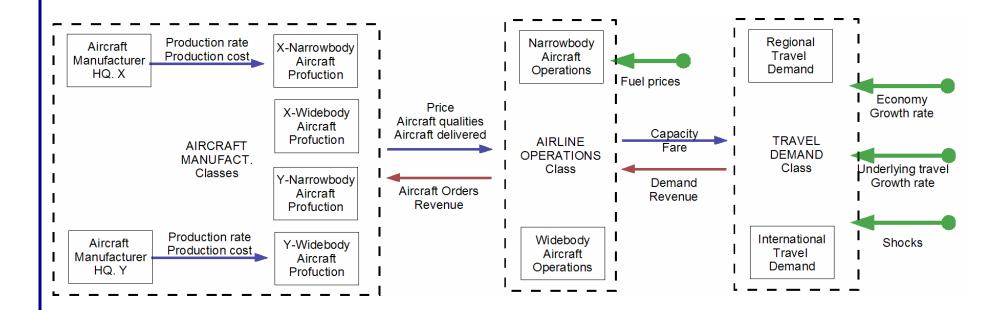
Contributions

Future Work

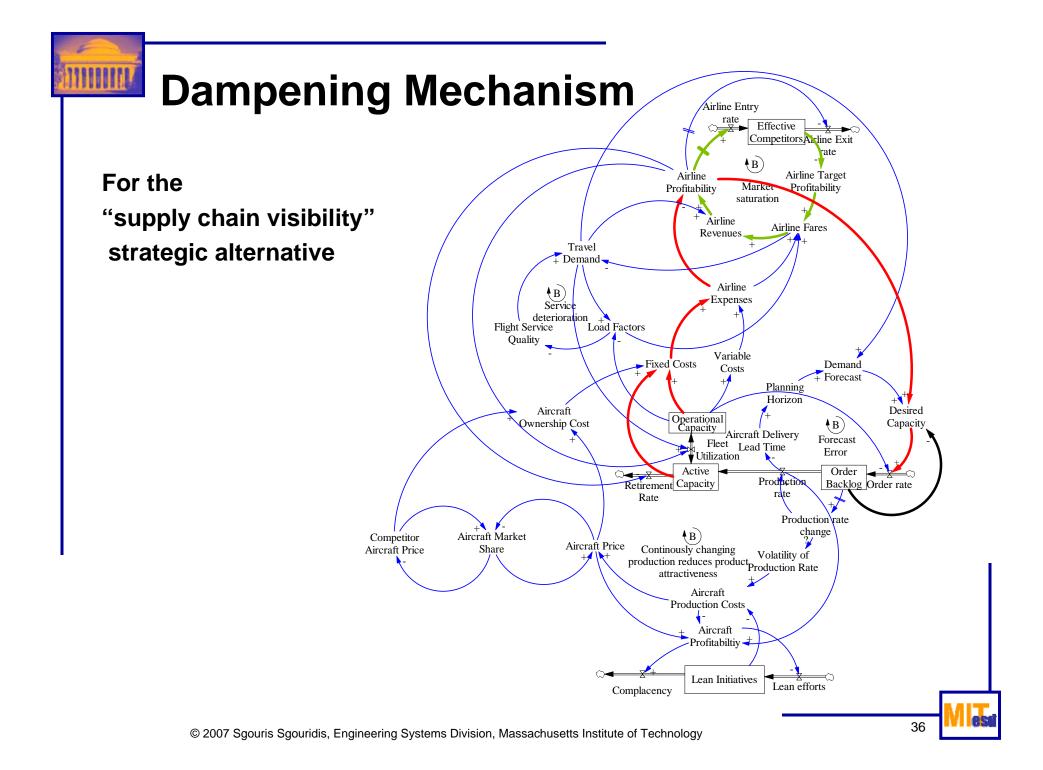
Contributions

- Integrating disparate literature strands:
 - Extensive coverage of commercial aviation
 - Synthesis of the literature on business cycles in economics and supply chain
 - Modeling approaches for enterprises (Ch. 8)
- Formalizing the Enterprise of Enterprises concept
- Creating an SD model of the CA EoE with duopolist manufacturer dynamics and separate narrow-, wide- body market segments
- Identifying and comparing CA EoE specific symbiotic strategic alternatives

© 2007 Sgouris Sgouridis, Engineering Systems Division, Massachusetts Institute of Technology

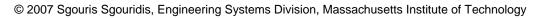


- Use agents to model airline behavior and specifically the evolution of Airline – Manufacturer partnerships
- Model manufacturer new entrants
- Extend competition on aircraft market beyond only price: introduce endogenous dynamic decisions for technological aircraft change
- Calibrate the manufacturer module of the model with proprietary industry data
- Adapt the EoE view and methodology to other cyclical industries and seek generalizations on mechanisms for cyclical dynamics



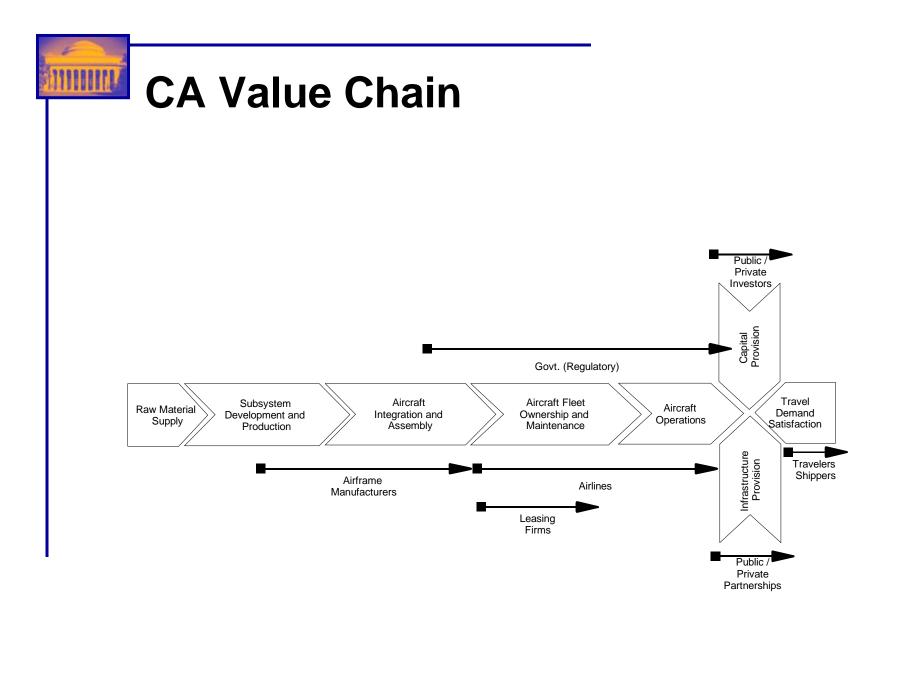
CA EoE Model Structural View

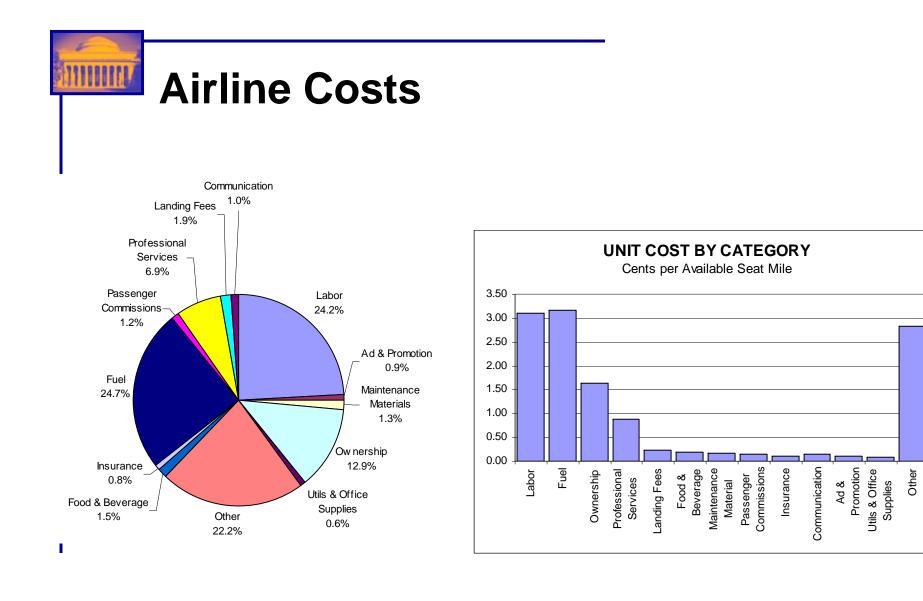
- Based on and extended H. Weil's airline industry model (1996)
- Partly developed in collaboration with J. Lin and J. McConnell.
- Implemented using Anylogic


ASI

Competitive Dynamics for S1 (I)

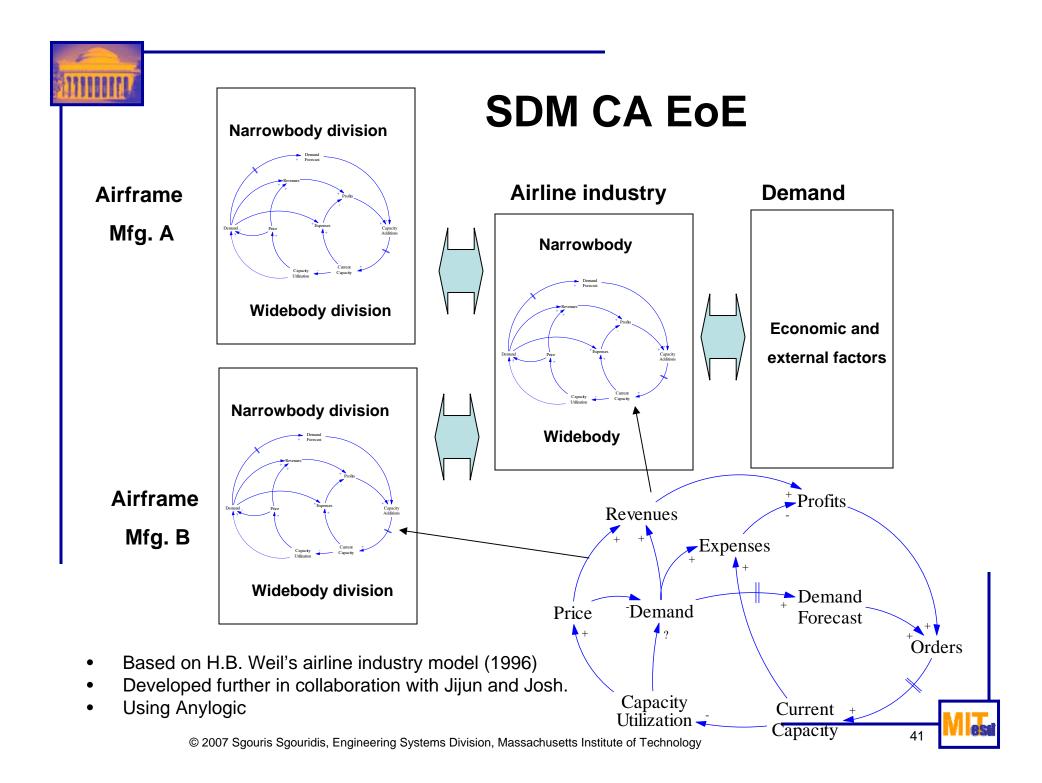
	E	xp 1	Ex	0 2	1	Exp 3	Exp	94		Exp 5	E	xp 6	E	Exp 7
Strategic Alternatives	Mf. A	Mf. B	Mf. A	Mf. B	Mf. A	Mf. B	Mf.A I	Mf. B	Mf. A	Mf. B	Mf. A	Mf. B	Mf. A	Mf. B
Production scheduling													_	
JIT delivery	*		*		*		*		*		*		*	
Slow production rate change		*		*		*		*		*		*		*
Quick production rate change														
Fixed production schedule														
Production costs														
Lean manufacturing	*		*		*	*	*		*		*	*	*	*
Adaptive production (costs)			*		*									
Industry relations and pricing														
Vertical integration (50%)							*			*		*	*	*
Aggressive Competition													*	*
		Exp1	Exp	02	Exp3	Exp4	Exp5	Ex	p6	Exp7		-		-
Airlines														
NPV Change		0.20	% 3.0	0%	2.6%	0.6%	0.6%	60.	1%	1.8%				
Coef. Var. Change		21.69	% 19.1	1%	21.7%	25.1%	24.0%	6 28.	6%	12.6%				
Mf. A														
NPV Change		<mark>-21.4</mark> 9			48.1%					<mark>-98.2%</mark>				
Total order change		-2.19	% 1.	5%	2.7%			68.	8%	-1.6%				
Order coef. Of Var. change	!	10.59	% 10.0	6%	9.7%	13.2%	13.4%	6 19.	7%	4.3%				
Mf. B														
NPV Change		-9.19			-15.2%					<mark>-49.1%</mark>				
Total order change		1.20		8%	2.0%			_	7%	9.9%				
Order coef. Of Var. change		21.39	% 18.	1%	22.4%	23.0%	23.6%	6 19.	4%	21.1%				
Pax		0.00		10/	0.00/	0.00/	0.00		10/	1 50/				
Fare change		-0.20			0.0%				1%	-1.5%				
LF change Total Return		-0.29	% -0. [*]	1 70	-0.2%	-0.3%	-0.3%	<u>₀ -0</u> .	5%	0.3%				
Universal owner view		0	3 1	08	108	93	9	2	93	65				
Rank		9		00	100	93	9/	<u> </u>	93	05				
Universal owner view		12	6		5	11	13	1		15				
		12	0		5		13			15		_		

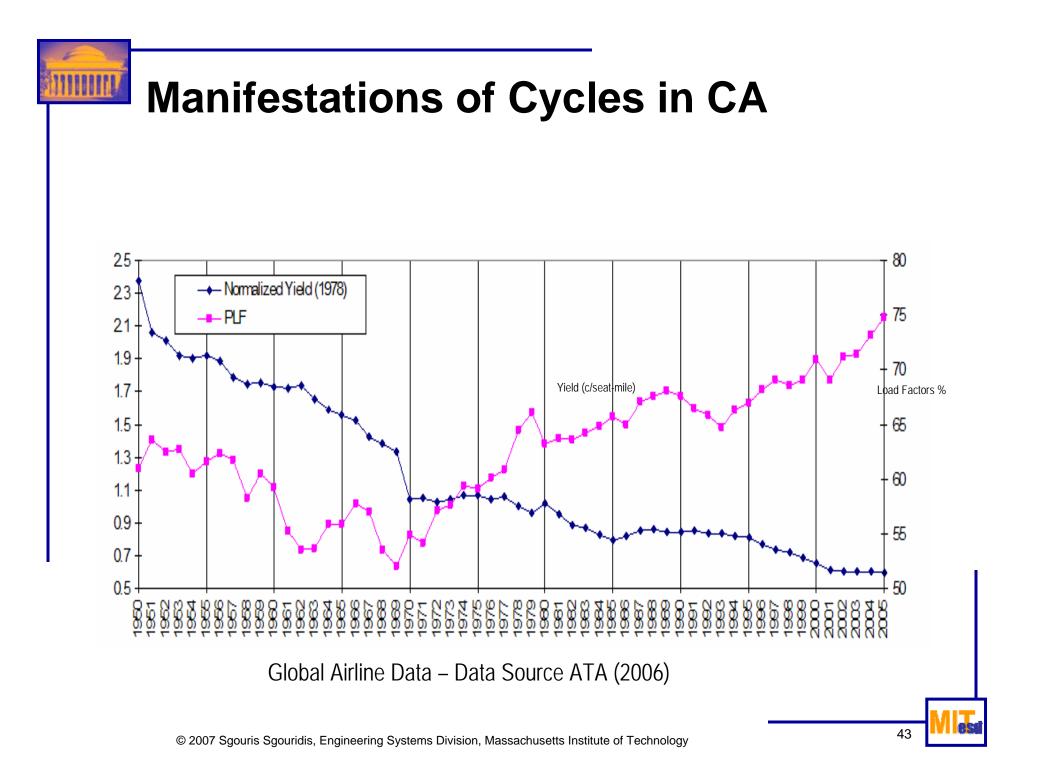


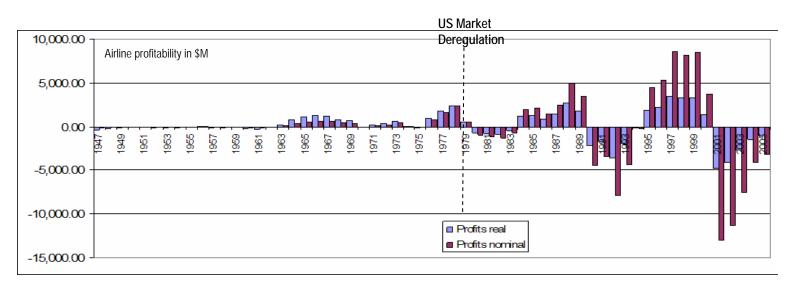

STITLE OF

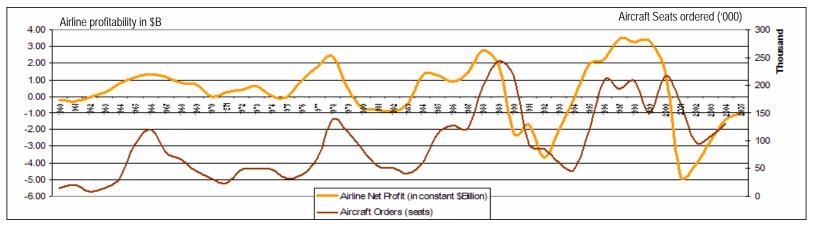
Competitive Dynamics for S1 (II)

I	۲v	kp 8	F.	(p 9	E.	kp 10	Fv	p 11	Exp	12	F۲	p 13	F	xp 14	Fv	p 15
Strategic Alternatives		1		1		Mf. B	Mf. A	Mf. B	Mf. A				Mf.A	Mf. B	Mf. A	Mf. B
Production scheduling																
JIT delivery	*		*		*	*										
Slow production rate change		*						*				*	*	*	*	*
Quick production rate change							*		*	*	*					
Fixed production schedule				*												
Production costs																
Lean manufacturing	*	*	*	*	*	*	*	*	*		*	*	*		**	**
Adaptive production (costs)	*	*			*	*	*	*				*			*	*
Industry relations and pricing																
Vertical integration (15%)	*	*										*			*	*
Aggressive Competition																


	Exp8	Exp9	Exp10	Exp11	Exp12	Exp13	Exp14	Exp15
Airlines		-	•		•		-	-
NPV Change	1.2%	12.4%	55.9%	0.7%	11.1%	-0.1%	20.5%	17.7%
Coef. Var. Change	22.2%	6.4%	-11.4%	3.0%	-2.1%	3.2%	2.5%	5.7%
Mf. A								
NPV Change	32.0%	-51.5%	-26.7%	46.8%	-10.0%	5.3%	87.1%	119.6%
Total order change	2.4%	-6.8%	-44.1%	-3.0%	-23.0%	-1.8%	15.0%	22.6%
Order coef. Of Var. change	18.9%	28.7%	-6.1%	1.7%	-6.2%	5.2%	-11.9%	-11.2%
Mf. B								
NPV Change	-13.6%	-18.0%	-21.1%	0.3%	-27.3%	-5.0%	55.8%	35.5%
Total order change	-1.2%	3.8%	-20.9%	3.2%	-0.6%	0.2%	53.0%	49.3%
Order coef. Of Var. change	19.7%	21.8%	9.2%	5.5%	13.8%	4.1%	10.3%	10.1%
Pax								
Fare change	0.0%	-1.2%	-3.1%	0.3%	-1.5%	0.2%	0.4%	-2.6%
LF change	-0.2%	0.9%	3.9%	0.0%	1.3%	-0.1%	1.6%	1.4%
Total Return								
Universal owner view	104	90	116	111	96	100	145	146
Rank								
Universal owner view	7	14	3	4	9	8	2	1

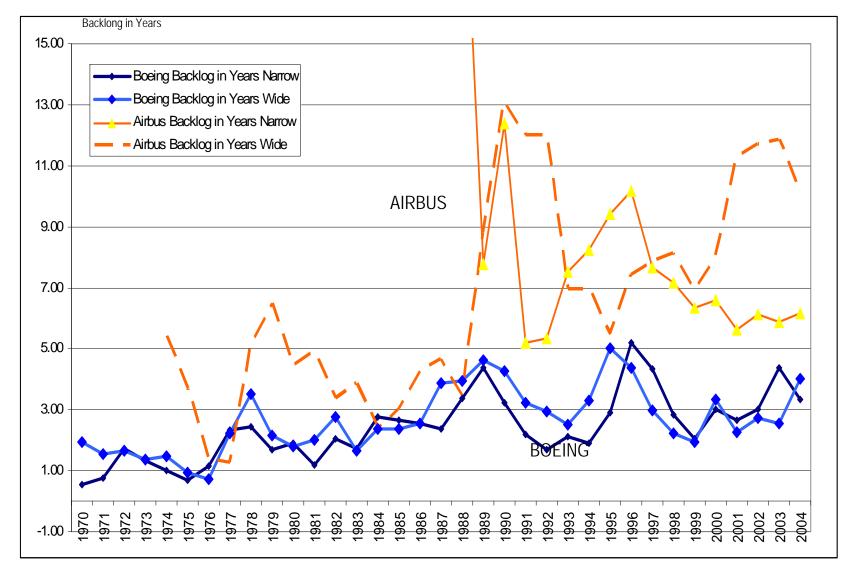

© 2007 Sgouris Sgouridis, Engineering Systems Division, Massachusetts Institute of Technology




Statistical Tests

					Theil statistics				Statistically
Variable	Mean d	Mean m	Sqrt (MSE)	R sq.	Um	Us	Uc	P(T<=t) two- tail	significant difference at 0.05
Capacity (in trillion op. ASM)	2.03	2.03	0.077	0.981	0.001	0.153	0.845	0.986	No
Demand (in trillion RPM)	1.39	1.39	0.061	0.975	0.004	0.007	0.989	0.976	No
Load factors	0.68	0.68	0.02	0.430	0.019	0.002	0.979	0.718	No
Airline costs in (\$B)	101	98.9	5	0.959	0.172	0.246	0.582	0.730	No
Airline revenues	103	101.1	5.2	0.949	0.152	0.185	0.663	0.735	No
Airline profit margins	0.026	0.027	0.018	0.663	0.003	0.000	0.997	0.916	No
Aircraft orders (in trillion ASM)	0.21	0.19	0.067	0.628	0.081	0.095	0.824	0.531	No
Aircraft backlog (in trillion ASM)	0.61	0.63	0.164	0.636	0.019	0.111	0.871	0.771	No

Manifestations of Cycles in CA

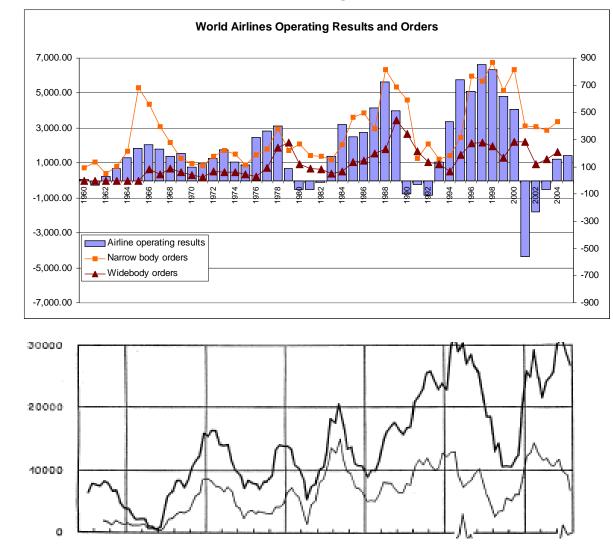


Global Data – Data Sources: ATA (2006), Boeing and Airbus order and delivery history

SD Model Basic Assumptions

- Manufacturers produce equivalent models compete on price (can be relaxed)
- There are no manufacturer entrants

Manufacturer Response to Cycles



BSI

Business Cycles?

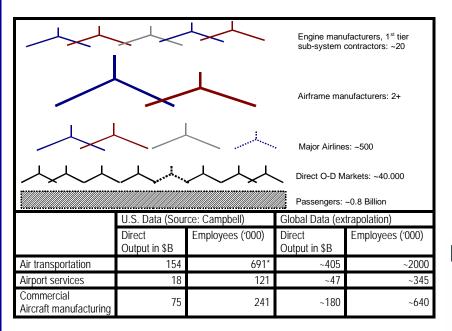
Shipbuilding in tons for Norwegian Ship Owners (1883-1913) [Source: Einarsen 1938]

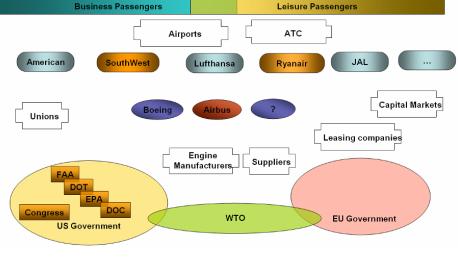
RSI

Airframe manufacturers due to their central position in the value chain have the potential power to enhance system stability.

Objective:

Symbiotic strategies that can enhance long term value by supplanting zero-sum games with value adding propositions. They can be cooperative but not necessarily so.




Value Functions: CA as an EoE

	Value function	Symbols
Passengers	$P_{VF} = \begin{cases} \max \sum_{t} \sum_{i} Q_{ti} \\ \min \sum_{t} \sum_{i} D_{ti} F_{ti} (1+r_p)^{t}, r_p = 0 \\ \min \frac{\sum_{t} D_{ti}}{\sum_{i} Q_{ti}}, \forall t \end{cases}$	
Carriers	$Car_{VF} = \begin{cases} \max\left(\sum_{t} \underbrace{(F_{it}D_{it} - C_{it}Q_{it})}_{EVA} \cdot (1 + r_{i})^{t}\right) \\ \min\left(std(EVA)\right) \\ \min(t, EVA < 0) \end{cases}$	t: unit of time i: carrier j: airframe manufacturer r: discount rate Q; Available Seat Kilometers (ASK) D; Realized demand in Revenue Passenger Kilometer (RPK) E; Yield (Revenue / RPK) C; Unit cost (Expenses/ASK)
Airframe <u>Manuf</u> .	$Mfg_{VF} = \begin{cases} \max\left(\sum_{t} (P_{jt} - CP_{jt})QP_{jt} \cdot (1 + r_{j})^{t}\right) \\ \min\left(std(QP_{jt})\right) \end{cases}$	including cost of capital P: Manufacturer revenue per aircraft OP: Aircraft delivered CP: Production costs per aircraft including cost of capital
Government	$Gov_{VF} = \begin{cases} \sum_{i} Q_{ti} > q_{t}, \forall \ domestic i \\ and \\ \sum_{j} QP_{ti} > qp_{t}, \forall \ domestic j \end{cases}$	
Capital Markets	$Cap_{VF} = \begin{cases} \max\left(\sum_{t} (F_{it}D_{it} - C_{it}Q_{it}) \cdot (1 + r_m)^t + \sum_{t} or \right) \\ \max\left((F_iD_i - C_iQ_i) + (P_j - C_iQ_i)\right) \\ \end{array}$	

Views of Commercial Aviation

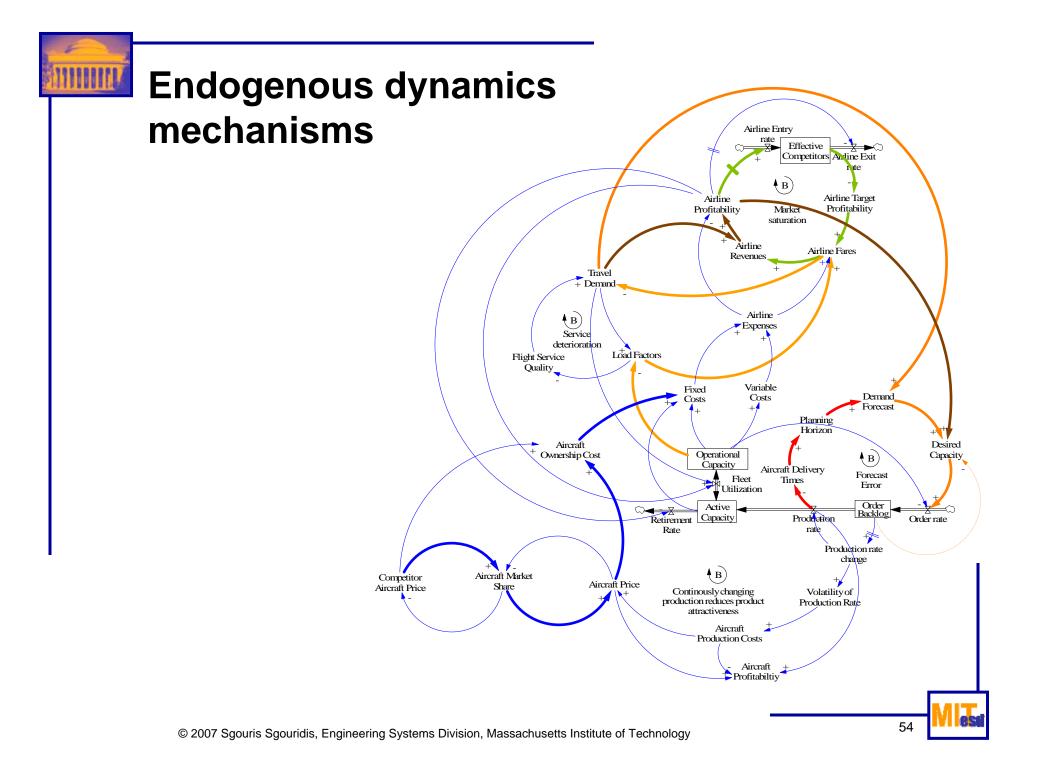
1111111

Two enterprise models

	Shareholder-centric/modular	Stakeholder-centric/integral
	Enterprise	Enterprise
View	Suppliers FIRM Customers	Governments Investors Political Groups Suppliers FIRM Customers Trade Associations Employees Communities
Goals	Maximize shareholder wealth	Pursue multiple objectives of parties with different interests
Governance	Principal-Agent Model: Managers are agents of stakeholders. Control is the key task.	Team production model: Coordination, cooperation, & conflict resolution are the key tasks.
Performance metrics	Shareholder value	Fair distribution of value

Based on: Donaldson and Preston (1995), Kochan and Rubinstein (2000), Piepenbrock (2005)

Cyclical behavior in the absence of exogenous factors Effect of exogenous factors in order of importance:

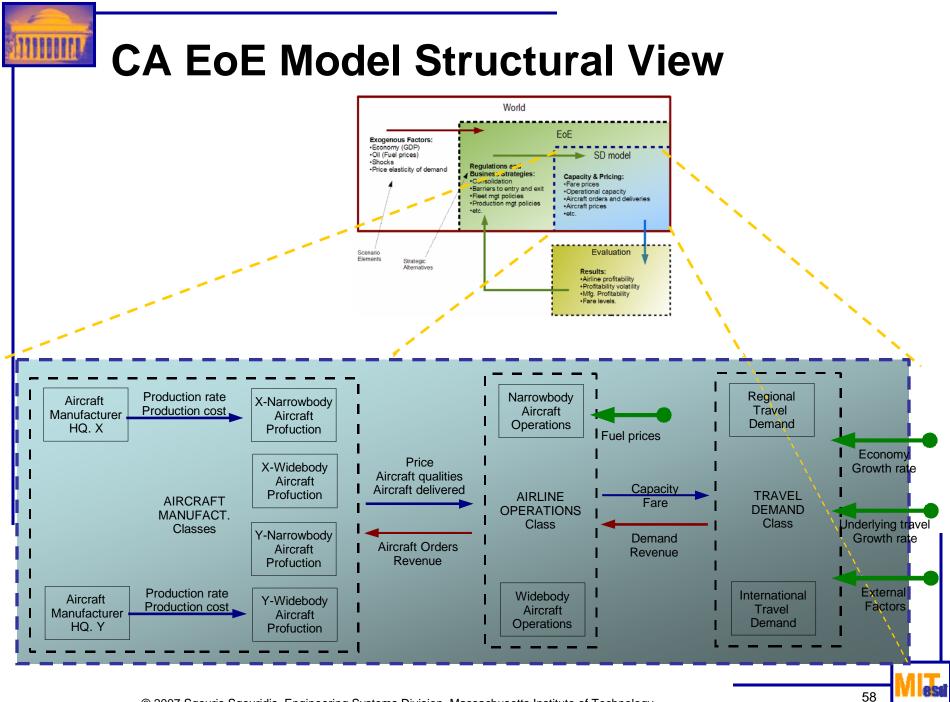

- 1. Fuel
- 2. GDP
- 3. External shocks

Model Key Assumptions

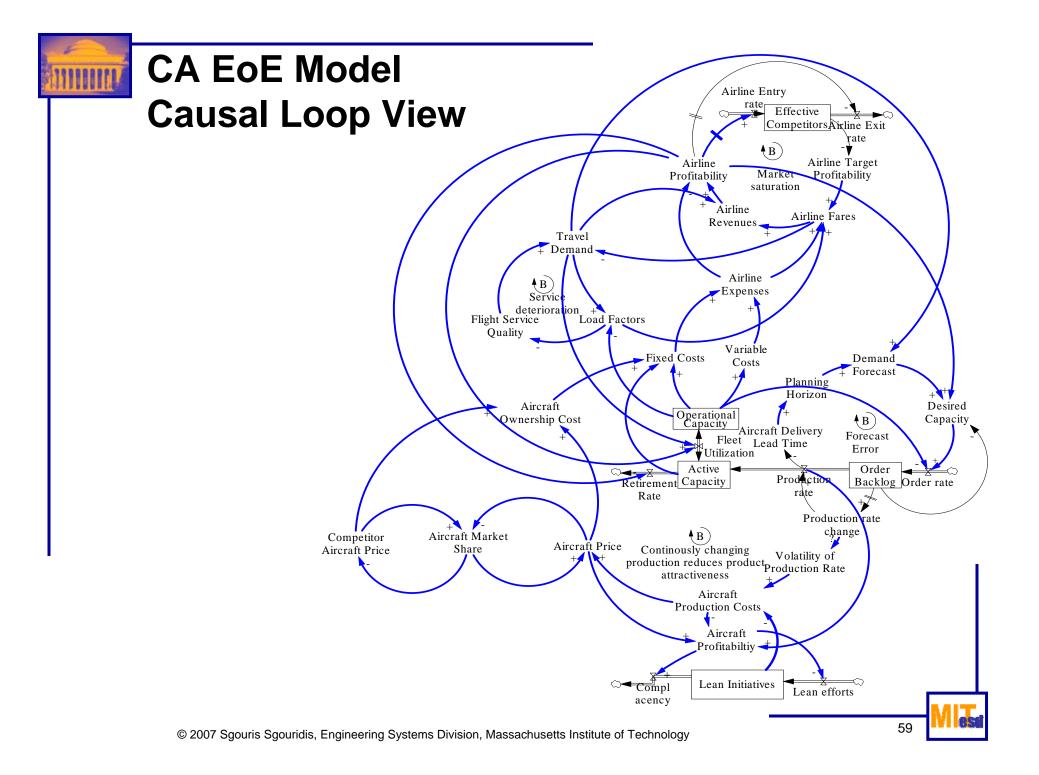
- Equivalent aircraft
- Freight market represented by passengers

What are the salient causal mechanisms that induce the cyclical behavior? CA-specific factors

Disruptive technologies	Jets, 2-pilot cockpit, fuel efficient designs, product families etc.
Technical regulations	Noise abatement, stage 2,3,4 aircraft
Exogenous factors	Macroeconomic cycles, fuel prices, materials, interest rates
Demand shocks	Iraq war I, 9/11, SARS etc.
Reinvestment cycle Intertemporal substitution	Aircraft as large capital investment with limited but adjustable lifetime
Bullwhip in supply chains, labor, and inventory	Long lead times for both labor and capital. Irreversibility.
Industry characteristics	Scale economies and large investment in upfront R&D incentivize airframe mfg. to promote their wares aggressively in short term Low marginal costs for airlines
Market regulations	Deregulation combined with imperfect financing allows multiple entrants. Subsidies, bankruptcy protections, and national pride policies retain players in weak markets
Decision-making	Bounded rationality and strategic optimism create overreaction by multiple entrants. Large number of decision makers.
Financing volatility	Debt and equity financing available in economic upturns lowers barriers to entry BUT dries quickly in downturns increasing risk of price wars. Short-term returns can be overemphasized over long-term stability.

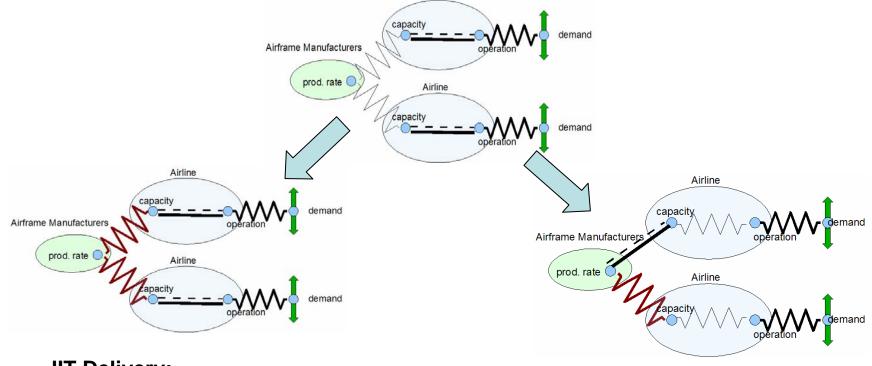

Airline Strategic Areas

Strategic Area	Desired effect
Pr	Flexibility. Reduces fixed capacity costs.
Profit-sharing programs	Flexibility. Reduces labor costs during hard times.
Good mix of ages in the fleet	Flexibility. Old amortized aircraft can be retired or parked without penalty on fixed costs.
Off-cyclical behavior (buy low, sell high)	Bullwhip reduction. Individual airline bottom line boost.
Steady ordering and flexible retirement	Bullwhip reduction.
Long-term profit-based planning	Bullwhip reduction. Compared to short-term profit-based vs. market- share based planning.
Less aggressive revenue management	Bullwhip reduction. Marginal costs of seats are not zero – holding off price wars.
Mergers	Number of players. Consolidating capacity will increase market power and reduce excessive capacity.
Tempered expectations	Decision making. Reducing irrational exuberance.



Airframe Manufacturers Strategic Areas

Strategic Area	Desired Effect
Pricing	Bullwhip reduction. Pro-cyclical pricing vs. stable pricing. Need based delivery: Auctioning production slots.
Ordering	Flexibility. Allowing family orders with specification of size later in time. Order cancellation policies Order vetting.
Standardize aircraft design	Flexibility. Stronger second hand and leasing markets. Facilitate quick post-manufacture customization (custom color schemes).
From aircraft manufacturer to service provider	Fly-by-the-hour aircraft services. Capacity decisions made with a system wide view.
New aircraft family release timing.	Cycle dampening. Follow the reinvestment cycle.
Production capacity management.	Cycle dampening. Allow backlogs to build before new production facility is established.
Lean mfg. Capacity delivery lead times.	Bullwhip reduction. Capacity effects are felt faster. Capacity inflow is more stable. Flexible production.
Production and development costs (lean improvements)	Bullwhip reduction. Lower capacity costs and higher profit margins.



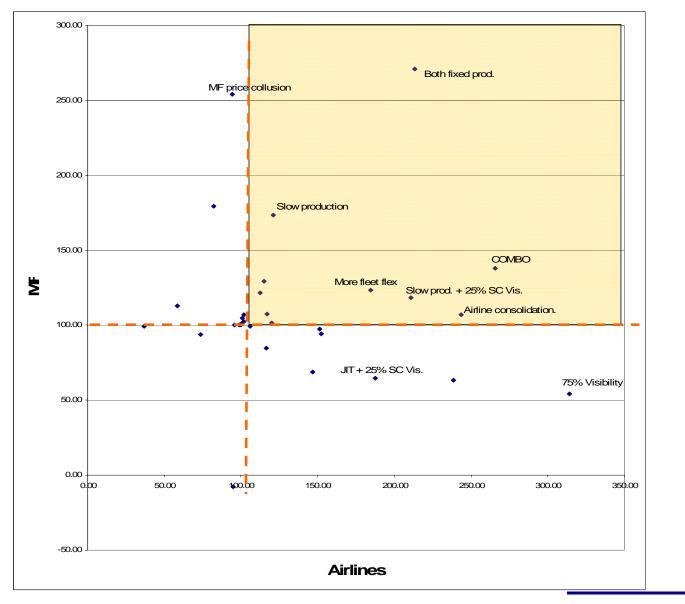
© 2007 Sgouris Sgouridis, Engineering Systems Division, Massachusetts Institute of Technology

Two conceptual ways to dampen the CA EoE based on Manufacturer Constituents

Airline

JIT Delivery:

- + No requirement for collusion
- + Increasing barriers to entry
- -Depends on technical feasibility
- -Provides comparatively less ROIC


Decoupling Capacity:

- + No requirement for collusion
- + Provides very high ROIC
- Attracts entrants
- Depending on implementation, may increase fares

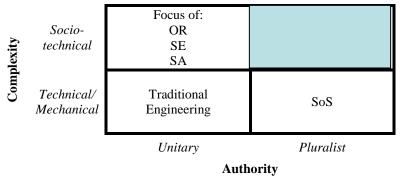
Results: Symbiotic Quadrants

RSI

EoE is a conceptual abstraction of an enterprise ecosystem

Strategic alternative is a specified action

- Symbiotic strategic alternative is an action that improves total system performance by
- (a) increasing the probability of survival for a majority of the EoE constituents; and
- (b) without significantly compromising the longterm value delivered to any single constituent


Systems and Enterprises

Layers of systems (based on Hitchins 1994):

Layer 5 - Socio-economic. Principal lever of control is regulation.

Layer 4 - Industry. Complete and competitive supply chains.

- Layer 3 *Business*. Controlled optimization independent of competitor/partner performance.
- Layer 2 Project. The making of complex artifacts.
- Layer 1 Product. The making of tangible artifacts.

Classification based on Jackson and Keys (1984)

From SoS to Enterprise of Enterprises

"organizations are purposeful systems which contain purposeful parts and which are themselves part of larger purposeful systems.

Hence organizations have responsibilities to their own purposes, to the purposes of their parts, and to the purposes of the larger systems of which they are part." (Jackson and Keys 1984)

Characteristics of EOEs (based on SoS -- Maier 1998, Sage and Cuppan 2001):

- Operational Independence of the Constituent enterprises
- Managerial Independence of the Constituent enterprises
- Evolutionary Development
- Emergent Behavior
- Diversity of Interfaces

Distinct value functions of constituents from emergent global value

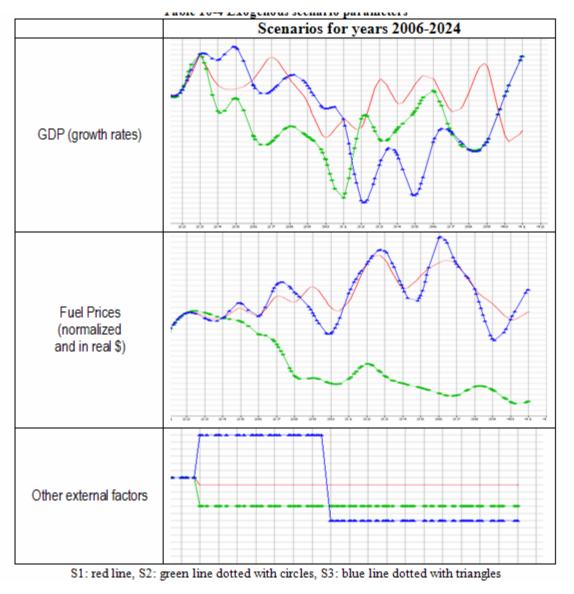
No obvious architect or point of leverage

Large system inertia

Loose coupling at interfaces

(tighter coupling EoE \rightarrow Extended Enterprise (Nightingale 2004))

Loose coupling vs. Tight coupling



© 2007 Sgouris Sgouridis, Engineering Systems Division, Massachusetts Institute of Technology

Scenarios

- S1: Global Village
- S2: Islands of Sufficiency

 S3: Growth and overshoot

