Managing Risk and Uncertainty: Traditional Methods and the Lean Enterprise

Presented By
Major Robb Wirthlin
MIT/LAI
April 18, 2006
Introduction

• My background
 • USAF Academy, BS Engineering Sciences, 1994
 • Experience in Air & Space Acquisition, Space Operations
 • Logistics Center (Ogden)
 • Product Center (SMC)
 • Space Operations (Buckley)
 • Spectrum of Duties
 • Chief Systems Engineer
 • Deputy Program Manager
 • Executive Officer
 • Branch Chief
 • Major in USAF

• Previous LAI experience
 • Master’s Student at MIT 1998-2000, SDM Program
 • Thesis title: Best Practices in User Needs/Requirements Generation

"The views expressed in this presentation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. "

http://lean.mit.edu
Agenda/Overview

• Review of Recent LAI research
 • Josef Oehmen
 • Steve Bresnahan
 • McManus/Hastings
 • Research Conclusions

• My Proposed Research
 • Motivation for study
 • Areas of Interest
Snapshot of Recent Research

• Josef Oehmen– Approaches to Crisis Prevention in Lean Product Development by High Performance Teams and Through Risk Management
• Dr. Hugh McManus & Professor Daniel Hastings - A Framework for Understanding Uncertainty and its Mitigation and Exploration in Complex Systems
• Steven Bresnahan – Understanding and Managing Uncertainty in Lean Aerospace Product Development

Previous LAI Research
• Dr. Tyson Browning – Reducing Uncertainty in Product Development Projects
A Risk Management Framework

- **Collection of Processes and Inputs/Outputs**
- **Three Basic Loops**
 - Project Risk Management
 - Risk Monitoring and Metrics
 - Integration with Higher Management
- **Literature Review of Risk Management**
 - 75 different RM methods found
 - Only 1 method for Higher Management found ("Aggregation")

Literature Review of Different Risk Management Methods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Modes, Effects and Criticality Analysis</td>
<td>Identification by Failure Modes</td>
<td>Qualitative analysis with Risk Scenarios</td>
<td>General Classes of Impact, Likelihood, and Time Component</td>
<td>Top 10 Risk Ranking</td>
<td>Classification of Actions</td>
<td>Review of Actions initiated</td>
<td>Total Risk Scenarios</td>
</tr>
<tr>
<td>- FMECA 2-4</td>
<td>Cause Structure – Failure Mode Matrix</td>
<td>Decision Tree Analysis</td>
<td>Risk Data Quality Assessment</td>
<td>Pareto Analysis</td>
<td>Action Plan</td>
<td>Project Risk Management Panel</td>
<td></td>
</tr>
<tr>
<td>- FMECA 5-6</td>
<td>Identification by Checklist</td>
<td>5 Whys</td>
<td>Quantification by Group Consensus</td>
<td>Sensitivity Analysis</td>
<td>Application of Problem Solving Cycle</td>
<td>Monitoring of Expected Losses</td>
<td></td>
</tr>
<tr>
<td>- FMECA 7,8,11</td>
<td>Interviews</td>
<td>Ishikawa or Fishbone Diagram</td>
<td>Quantification by Assignment to Experts</td>
<td>Utility Function</td>
<td>Risk Reduction Leverage</td>
<td>Measuring Risks Prevented</td>
<td></td>
</tr>
<tr>
<td>- FMECA 9, 10</td>
<td>Review of Documentation</td>
<td>Risk Categorization</td>
<td>Quantification by team-based Delphi</td>
<td>Nominal Group Technique</td>
<td>Measuring Impact Mitigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RISK Value Method</td>
<td>Identification by Brainstorming</td>
<td>Cause-oriented Event Sequence Diagrams</td>
<td>Failure Rate Tables</td>
<td>Weighted Multivoting</td>
<td>Counting New Risks Identified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- RVM 1</td>
<td>Identification by SWOT</td>
<td>Fault Tree Analysis</td>
<td>Statistical Quality Control</td>
<td></td>
<td></td>
<td>Reserve Analysis</td>
<td></td>
</tr>
<tr>
<td>- RVM 2</td>
<td>Identification by Work Breakdown Structure</td>
<td>Reliability Block Diagram</td>
<td>Statistical Reliability Test</td>
<td></td>
<td></td>
<td>Unidentified but later occurred risks</td>
<td></td>
</tr>
<tr>
<td>- RVM 3</td>
<td>Requirements Analysis</td>
<td>Part Count Method</td>
<td>Calculation-based quantification of likelihood</td>
<td></td>
<td></td>
<td>Risk Management Index</td>
<td></td>
</tr>
<tr>
<td>- RVM 4</td>
<td>Identification by Key Characteristics</td>
<td>Impact-oriented Event Sequence Diagram</td>
<td>Risk Timeframe/ Urgency Assessment</td>
<td></td>
<td></td>
<td>Other Tactical Metrics</td>
<td></td>
</tr>
<tr>
<td>- RVM 5</td>
<td>Geometry-based Variation simulation</td>
<td></td>
<td>Calculation of Expected Loss</td>
<td></td>
<td></td>
<td>Risk Inventory</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Identification by Stress Factors</td>
<td>Risk Matrix for Likelihood and Impact</td>
<td></td>
<td></td>
<td></td>
<td>Monitoring of Risk Map</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identification by Project Schedule</td>
<td>Expected Monetary Value Analysis</td>
<td></td>
<td></td>
<td></td>
<td>Scenario-based Tracking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identification by Generic Development Process</td>
<td>Probability Distribution of Impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monte Carlo Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk Severity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Notional Risk Framework

<table>
<thead>
<tr>
<th>Uncertainties</th>
<th>Risks/Opportunities</th>
<th>Mitigations/Exploitations</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of Knowledge</td>
<td>Disaster</td>
<td>Margins</td>
<td>Reliability</td>
</tr>
<tr>
<td>Lack of Definition</td>
<td>Failure</td>
<td>Redundancy</td>
<td>Robustness</td>
</tr>
<tr>
<td>Statistically Characterized</td>
<td>Degradation</td>
<td>Design Choices</td>
<td>Versatility</td>
</tr>
<tr>
<td>Variables</td>
<td>Cost/Schedule (+/-)</td>
<td>Verification and Test</td>
<td>Flexibility</td>
</tr>
<tr>
<td>Known Unknowns</td>
<td>Market shifts (+/-)</td>
<td>Generality</td>
<td>Evolvability</td>
</tr>
<tr>
<td>Unknown Unknowns</td>
<td>Need shifts (+/-)</td>
<td>upgradeability</td>
<td>Interoperability</td>
</tr>
<tr>
<td></td>
<td>Extra Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emergent Capabilities</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<Uncertainty> causes <Risk> handled by <Mitigation> resulting in <Outcome>
Application of Risk Framework

<table>
<thead>
<tr>
<th>Uncertainties</th>
<th>Risks/Opportunities</th>
<th>Mitigations/Exploitations</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lack of Knowledge</td>
<td>- Disaster</td>
<td>- Margins</td>
<td>- Reliability</td>
</tr>
<tr>
<td>- Lack of Definition</td>
<td>- Failure</td>
<td>- Redundancy</td>
<td>- Robustness</td>
</tr>
<tr>
<td>- Statistically</td>
<td>- Degradation</td>
<td>- Design Choices</td>
<td>- Versatility</td>
</tr>
<tr>
<td>Characterized</td>
<td>- Cost/Schedule (+/-)</td>
<td>- Verification and Test</td>
<td>- Flexibility</td>
</tr>
<tr>
<td>Variables</td>
<td>- Market shifts (+/-)</td>
<td>- Generality</td>
<td>- Evolvability</td>
</tr>
<tr>
<td>- Known Unknowns</td>
<td>- Need shifts (+/-)</td>
<td>- Upgradeability</td>
<td>- Interoperability</td>
</tr>
<tr>
<td>- Unknown Unknowns</td>
<td>- Extra Capacity</td>
<td>- Modularity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Emergent Capabilities</td>
<td>- Tradespace Exploration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Portfolios&Real Options</td>
<td></td>
</tr>
</tbody>
</table>

Bottom Line: The type of risk encountered dictates the path to take. Not all risks have the same attributes and pathways.

Copyright Hastings and McManus, used with permission
Risk Management Case Study

- **Scenario**: an aerospace commercial aircraft system in product development
 - Four different teams responsible for numerous subsystems
 - Relative success of each team is summarized
 - All of the teams experienced problems – and most were not technical in nature

Generation of value is linked to the reduction or elimination of product risks and uncertainties

http://lean.mit.edu
Case Study Results: Performance

- Horizontal axis shows relative amount of risk reduction effort applied during subsystem development
- Vertical axes show number of problem reports and cost overrun percentage

Case Study Results: Economic Impact

Artifact of Risk: spending of the budget vs. the planned budget expenditure over time

Expenditures - Pump

Expenditures - Electronics

Expenditures - Software

Expenditures - Fluid Metering Unit

http://lean.mit.edu

Mitigation Activity Effectiveness: Survey Results

Leading engineers and managers asked “Which classical risk mitigation activities were effective versus these types of uncertainty?”

<table>
<thead>
<tr>
<th>Uncertainty Type</th>
<th>Variability</th>
<th>New Technology</th>
<th>Enterprise Capability</th>
<th>Customer</th>
<th>System Interactions</th>
<th>Design errors</th>
<th>Life Cycle Concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
</tr>
<tr>
<td>Supplier Integration</td>
<td>✔</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
</tr>
<tr>
<td>Customer Integration</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Prototyping</td>
<td>✔</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
</tr>
<tr>
<td>Design Reviews</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Set-Based Design</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Resue</td>
<td>✔</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Standard Work</td>
<td>✔</td>
<td>❌</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Upgradeable Architectures</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Design Margin</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Integration Test</td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tolerance Control</td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Industry Standards</td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DFX</td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Sensitivity Analysis</td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Organizational Mitigation</td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>❌</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Selected Examples of Program Timing: Survey Results

- Simulation
- Set-based Design
- Standard Work
- DFX

Framework for Risk Mitigation by Program Phase

<table>
<thead>
<tr>
<th>Review</th>
<th>Recommended Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage Gate 1 – After requirements capture and prior to concept generation</td>
<td>• Review customer integration activities which should be complete (customer risk)</td>
</tr>
<tr>
<td></td>
<td>• Establish plans or targets for reuse (design errors, variability), set-based design (new technology), supplier integration (enterprise capability) and/or, upgradeable architectures (life cycle concerns, interactions) for the next phase of the program.</td>
</tr>
<tr>
<td>Stage Gate 2 – After concept selection and prior to preliminary design</td>
<td>• Review results against plans established in stage gate 1</td>
</tr>
<tr>
<td></td>
<td>• Establish plans or targets for prototyping (new technology, design errors, enterprise capability, customer), simulation (interactions), sensitivity analysis (variability, interactions) and/or DFX (life cycle concerns).</td>
</tr>
<tr>
<td>Stage Gate 3 – After preliminary design and prior to detailed design</td>
<td>• Review results against plans established in stage gate 2</td>
</tr>
<tr>
<td></td>
<td>• Establish plans or targets for standard work (design errors, interactions, enterprise capability), tolerance control and margin allowances (variability), design reviews (customer, life cycle)</td>
</tr>
<tr>
<td>Stage Gate 4 – After detailed design and prior to verification</td>
<td>• Review results against plans established in stage gate 3</td>
</tr>
<tr>
<td></td>
<td>• Establish plans or targets for integration test (interactions)</td>
</tr>
<tr>
<td>Stage Gate 5 – After verification and prior to certification</td>
<td>• Review results against plans established in stage gate 4</td>
</tr>
<tr>
<td></td>
<td>• All risks should be reduced adequately by this time</td>
</tr>
</tbody>
</table>

Recommendations based on survey results

Different methods are useful in different program phases...using multiple methods simultaneously is useful in different program phases

http://lean.mit.edu

© 2006 Massachusetts Institute of Technology Robb Wirthlin/April 18 - 16

LAI Research Take-aways

- Frameworks for Risk, Risk Management, and Risk Mitigation developed
 - Oehmen suggests additional RM tools and provides a thorough RM methods literature search
 - Bresnahan, McManus/Hastings have frameworks for approaching Risks/Risk Management depending on task or program phase.
 - Frameworks provide different ways to approach and understand Risk and Uncertainty for the practitioner

- Bresnahan shows the tangible impact of overall RM performance as well as effective methods based on experience from leading engineers and managers.
 - Data illustrates the positive relationship between reducing waste in lean product development (risk and uncertainty) and adding value

Why Study Uncertainty & Risk (even more)?

- Risk Management can still be improved
 - Young Commission
 - Blue-ribbon panel
 - DAPA panel report
- Acquisition of systems have run into trouble
 - Space portfolio missteps (cost, schedule, performance)
 - Other portfolios
- USAF putting together a “Risk-based Decision Making” process for Portfolio Managers
 - Outgrowth of Future Acquisition Team discussions on metrics
 - Designed to bring “Risk-Based Decision-Making” to the USAF in Acquisition
- New PD Enterprise Framework implies strong link
 - Dynamic nature of uncertainty and risk & Proposed metrics suggest its importance at the Enterprise level
Observations

• Risk Management methods and tools are rich in number, variety, and application
 • Given the experiences of the past, what makes or breaks these methods?
 • Organizational design? “Cognitive capability of organizations?”

• Coping with uncertainty gets “harder” when viewed in context of the overall Enterprise
 • Multiple programs can create cascading effects among other programs or cause unforeseen interactions
 • Causal paths originating outside of program / company / Enterprise impossible to predict and foresee
 • What are the best ways to prepare for and handle them?

Are these issues important to you? What kinds of things relating to uncertainty and risk be valuable to you?
My Interests

• Understand the causal relationships between communication paths, different project types, and Enterprise Uncertainty
 • Hypothesis: Different organizational structures (for various project types) exist that effectively mitigate uncertainty and minimize risks
 • At Enterprise level
 • At Project level
 • Want to examine:
 • Multiple Companies portfolios of projects
 • AF Acquisition portfolio(s) (e.g. Space, Aircraft)

• Goal: Tool/methodology to predict organizational effectiveness vs. uncertainty in Product Development and way to select appropriate org design for uncertainty
Backups
Conclusions

- **Part I: Overview of past LAI research**
 - Useful frameworks exist
 - Methods/tools/literature robust at project & system level
 - Demonstrated goodness of risk management (cost, schedule, performance) in Product Development

- **Part II: My research**
 - Enterprise interactions/contributions to uncertainty
 - Aggregation methods are underrepresented in RM literature
 - an opportunity for further research?
 - Provide an original contribution to the body of knowledge

http://lean.mit.edu
Areas of Interest

• Enterprise Management: practiced daily by portfolio managers and others
 • What methods and metrics are they using and how effective are they?
 • Are method outcomes and metrics selectively used by decision-makers to make decisions? Why?

• Additional Focus Areas:
 • Decision Analysis
 • Portfolio Management
 • “Traditional Risk Management”
 • Scaling attributes to an Enterprise level
 • Explore gap noted in the research literature
 • Good methods of “Aggregation” (corporate level RM) are notably lacking or not mature
Personal Motivation

- Previous research on the Front-End leads to Risk Management
 - Evidence suggests if done well early; better outcomes
- Personal experience
 - Risk – often emphasized & used differently in programs
 - Difficult to predict problems trouble a priori
- New area of research: just starting
 - I also see AF team activities and recognize its importance
 - Part of team’s effort to arrive at integrated product for Enterprise PD.
Basic Attributes of Risk

• **The probability of occurrence**, based on a (more or less complex) causal structure.

• **The type of the risks impact**

• **The timeframe of the risks development**

• **Causal networks describing the causes and effects of the risk** (e.g. scenarios).

• **Hazards** arising from the product itself or the processes used to produce the product

Research will scale these attributes to the Enterprise Level

How & Where Does RM tie into Lean Product Development?

- Lean PD should manage and decrease the uncertainty surrounding *product attributes* (Lead Time, Lifecycle Cost, Performance)
- Lean PD should manage and decrease the uncertainty surrounding *process attributes* (Schedule adherence, Budget, Quality)
- At Enterprise level - strong tie to the PD framework. For example:
 - **Quality**: Measures the degree of effectiveness of a method in a decision environment and captures the strengths and weaknesses of the method.
 - **Capacity**: Measures whether the enterprise has the resources (i.e. time, money, people, etc.) required to do a job on schedule and on budget that meets customers’ needs at a specified risk level. This is measured across all decision environments.
 - **Continuity**: Measures the ratio of information that is available but unused vs. the information that is being used at a state.
 - ...and if these aren't nailed you'll have problems with handoffs, information flows, etc. This is why RM is so important at the enterprise level.

Josef Oehmen Thesis Framework

Thesis Goals and General Approach

Topic: Crisis Prevention in Lean Product Development through High Performance Teams and Risk Management

Areas of Research

Factors defining High Performance Teams

The relation of High Performance Teams and Risk Management

Risk Management approaches

Goal: Provide basic definitions
- Lean Product Development
- High Performance Teams
- Overview Risk Management
- Crisis and Crisis Prevention

Goal: Describe factors characterizing High Performance Teams

Goal: Discuss relation of High Performance Teams and Risk Management based on literature

Goal: Present general framework and collection of methods regarding Risk Management

Goal: Investigate relation of High Performance Teams and Risk Management in industry

Goal: Compare results of literature review to processes / methods in industry

Modes of Research

Literature Review

Field Study
General Areas of Application of Risk Management

Risk Management Areas of Application

Public Sector
- Police
 - Medical Emergency Response
 - Firefighting & Rescue
 - Response to Natural Hazards
 - Other issues of public safety

Private Sector
- Cross-functional Applications
 - Safety & Security RM
 - Financial RM
 - Strategic RM
 - Project RM
 - RM in Product Development
 - RM in Supply Chain Mgmt.
 - ...

Application in Value Chain

Strength of Assertions from Case Studies

<table>
<thead>
<tr>
<th>Observation</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased effort spent on risk mitigation activities produces fewer problems</td>
<td>-0.9767</td>
</tr>
<tr>
<td>Risk effort expended and the amount of budget overrun</td>
<td>-0.8777</td>
</tr>
<tr>
<td>Number of significant problems and the amount of cost overrun</td>
<td>0.7551</td>
</tr>
</tbody>
</table>

Highly correlated! Data illustrates the relationship between minimizing risk and reducing waste in a lean product development environment.

Research Design

• Use various methodologies
 • Case Studies
 • Commercial & Military applications
 • Survey Research
 • Econometric Models
 • Framework development with Key Metrics
Timeline

- Start: Jan 06
- Stop: Aug 08
- Presentations: Apr 06, Apr 07, Apr 08, Other Conferences
- Journal Papers: Aug 06, Mar 07, Aug 07, Mar 08, Aug 08
- General Exams / Orals: Jan 07
- Defend Dissertation: May 08
- Final Revisions: May-Jul 08
- PCS: 22 Aug 08
Expected Products

- Working Reports: Yes
- Conference Presentations: Yes
- Papers for Publication: Yes
- Dissertation: Yes
Definition of Risk*

• An uncertain,
• Time-related
• Loss of Value,
• Being part of and influenced by complex dynamic networks of factors and/or events

*Based on several references and inference from his data collection and study

Six Categories of Value in Lean Product Development

<table>
<thead>
<tr>
<th>Stakeholders</th>
<th>Objects</th>
<th>Generic Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers</td>
<td>Product</td>
<td>1: (low) Lead Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: (low) Lifecycle Cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: (high) Performance</td>
</tr>
<tr>
<td>Shareholders</td>
<td>PD Process</td>
<td>4: (high) Schedule Adherence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5: (high) Budget Adherence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6: (high) Conformity to Standards</td>
</tr>
</tbody>
</table>

The inverse of these generic goals are termed the “General Failure Modes” of Lean Product Development.
Ties to LAI Research Framework

• **Lean Basics: Add Value and Minimize Waste**
 - Browning: *Value creation* in Product Development is through *uncertainty reduction*

• **Key assertion: Product Development is a decision-making activity**
 - Consider all of the decisions made during development: which interface to use? What methods to reduce risk? What features to include/develop?

• **Therefore, a *key area* of decision-making in product development is in *risk and uncertainty management***
Current Application Example: USAF Risk Team

- **Background**
 - Outgrowth of Future Acquisition Team discussions on metrics
 - Designed to bring “Risk-Based Decision-Making” to the USAF in Acquisition

- **Aggressive Timeline**
 - Pilot projects (Mar – June)
 - Prototyping (July – Sep)
 - Full-scale AF-wide rollout – NLT Dec 2006

- **All product centers participating (AAC and SMC are co-leads)**

- **Leaning toward adopting a modified version of the Army’s Probability of Success Model as the preferred USAF Portfolio Management Tool**
 - Movement within OSD to mandate use of Army tool across all services uniquely tailored to each service
Which RM methods are effective?
Survey Results

• Leading engineers and managers asked “Which classical risk mitigation activities were effective versus these types of uncertainty?”

• Risk Mitigation Activities: Simulation, Supplier Integration, Customer Integration, Prototyping, Design Reviews, Set-Based Design, Reuse, Standard Work, Upgradeable Architectures, Design Margin, Integration Test, Tolerance Control, Industry Standards, DFX, Sensitivity Analysis, Organizational Mitigation

All of the Risk Mitigation Activities were considered “Very Good” in at least one phase of development*
*except Organizational Mitigation