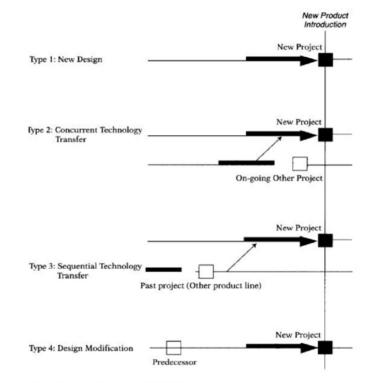


Platform Issues in Commercial Aircraft Companies

Presented by Damien Bador - MIT

April 18th, 2006


Damien's Biography

- Master's student in Aero-Astro and ESD at MIT. Industrial Engineer student at ENSAM Paris.
- Joined LAI in Spring, and integrated the Product Lifecycle Team.
- Practical work experience during summer internships in aerospace companies in Europe.
- Focus on long-term Platform issues in commercial aircraft industry.

Interest of Product Families

- Reduce the overall development cost of products portfolio.
- Reduce lead time of derivative products.
- Integrate new technology faster through module improvements.
- Increase standardization of the development process.

Source: Nobeoka and Cusumano, 1995, p. 398.

Specificities of Aircraft Industry

- Long lead time Few development projects at the same time.
- Few new projects Increasing specialization of aircraft engineers.
- Long product lifecycle Sequential evolution of products.
- Complexity of products Intricate development process.
- Specific requirements Constraints on integrality / modularity trade-offs.

Current State of the Practice

- Platforms advantages perceived. Ex: Airbus A320 family.
- Need to integrate legacy systems and reframe organization.

Ex: duplicated processes resulting from Boeing mergers in the late 1990s.

- Unequal integration of platform strategies into more global Product Development reframing.
- Platform strategy used to achieve different goals in different enterprises.

Observations to date Commercial Aircrafts

Boeing:

- recent focus on commonality. Extreme differentiation across aircraft models.
- high integration level of enterprise transformation. Topdown strategy.
- specialized knowledge scattered across the enterprise.

<u>Airbus:</u>

- historical concern about product families. Commonality central to its success.
- more emphasis on product innovation than on enterpriselevel improvements.
- production system dispersed across Europe.

Sources:

Willcox, Karen and Wakayama, Sean. "Simultaneous Optimization of a Multiple-Aircraft Family." Reston, VA: Journal of Aircraft, Vol.40, No.4, July-August 2003.

Nuffort, Matthew R. "Managing Subsystem Commonality." Cambridge, MA: Massachusetts Institute of Technology, February 2001.

Boeing and Airbus websites (<u>http://www.boeing.com</u> and <u>http://www.airbus.com</u>).
http://lean.mit.edu
© 2005 Massachusetts Institute of Technology Damien Bador / 04-18-2006 - 6

Developing metrics

Some propositions:

Functional	Organizational
(external point of view)	(internal point of view)
Aircraft training savings	Production tools and machines savings
Maintenance productivity increase	Lead time reduction for derivative aircrafts
Spare parts investment savings	Percentage of elements reused

Future Research

- How platform strategies should be tailored to the aircraft industry? Current initiatives of main companies (Boeing / Airbus)?
- What metrics could be best assess the efficiency of aircraft platforms?
- What is the integration of platform strategies in current overall Product Development transformations (ex: Boeing Lean+)?

Questions?

Ecole Nationale Supérieure d'Arts et Métiers

Massachusetts Institute of Technology

Damien Bador Contact: (617) 253-7633 elendil@mit.edu

© 2005 Massachusetts Institute of Technology Damien Bador / 04-18-2006 - 9