Slides Used by Tom Allen

Cross Functional Teaming and Collaboration
The Process of Innovation

INNOVATION

Technology

Market

January 31, 2002

Lean Aerospace Initiative
Project Team Organization

Technology

P1 P2 P3 P4 P5 P6

Market

Lean Aerospace Initiative
Matrix Organization

Lean Aerospace Initiative
Matrix Organization

Lean Aerospace Initiative
The Basic Tradeoff and Dilemma in Product Development Organization

- **Departmental Organization**
 - Departmental structure is more closely mapped to the structure of the supporting technologies.
 - It thereby provides a better connection to those technologies and better ongoing technical support to the project effort.
 - This is, however, accomplished at the cost of much greater difficulty in coordination of the project tasks and less responsiveness to market change.

- **Project Team Organization**
 - Project Team structure groups people from different disciplines together in a single team all reporting to a common manager.
 - It thereby provides better coordination of the project tasks and increased sensitivity to market dynamics.
 - This is, however, accomplished at the cost of a separation from the disciplinary knowledge underlying the project effort. When this is carried to an extreme, it will gradually erode the technology base of the organization.
The First Variable

\[\frac{dK}{dt} = \text{rate of change of knowledge} \]
The Second Variable

\[I_{ss} \]

\[\frac{dK}{dt} = \text{rate of change of knowledge} \]

\[I_{ss} = \text{subsystem interdependence} \]
Locating Projects in the Space

\[I_{ss} \]

\[\frac{dK}{dt} \]
Locating Projects in the Space

Project Team

Departments

January 31, 2002

Lean Aerospace Initiative
Dividing into Two Regions

Project Team

Departments

I \text{ss} \quad \frac{dK}{dt}
A More Normal Situation
Locating People in the Space

[Diagram showing a plot with a dashed line, labeled as I_{ss} and dK/dt, with points labeled as Project Team and Departments.]

January 31, 2002

Lean Aerospace Initiative
Locating the Boundary

\[I_{ss} \]

\[Project\ Team \]

\[T_1 = \text{Duration of project assignment} \]

\[T_1 > T_2 \]

\[\text{Department} \]

\[\frac{dK}{dt} \]
What About This Situation?

\[I_{ss} \]

- Project Team
- Departments

\[\frac{dK}{dt} \]
What About This Situation?

- Periodically rotate engineers on a temporary basis between team and departments over the life of the project.
- Make use of spatial location to offset organizational separations.
• **Standard Industrial Practice**
 – Ignores the rate at which technologies are developing (despite the fact that this can often be measured).
 – Usually ignores the interdependencies in project work (seasoned project managers are an exception).
 – Focuses on project duration (and usually makes the wrong decision on this parameter).
Balance in the Matrix

• Should there be a balance of power between the project side and the departmental side of the product development Matrix?
 – Some argue for balance.
 – Some argue for “Heavyweight Project Managers”.
 – Does project size and complexity make a difference?
Nature of the Survey

• Engineers and managers working on over 100 projects in 10 organizations were surveyed.
• There were approximately 2500 responses.
• Projects were divided into those that were smaller and/or less complex and those that were larger (top quartile in size) and more complex.
The Nature of the Survey

Project team members were asked to indicate on a scale where the locus of influence lay for each of the following:

Influence Over Technical Decisions
Influence Over Salary & Promotions
Influence in the Organization

Project Manager Equal Departmental Management

January 31, 2002

Lean Aerospace Initiative
Box & Whisker Representation of a Distribution

Project Performance

25% 25% 25% 25%
Project Performance as a Function of Project Size and Complexity and Locus of Influence Over Salaries and Promotions

Size and Complexity of Project

Lean Aerospace Initiative

January 31, 2002
Project Performance as a Function of Project Size and Complexity and Locus of Organizational Influence

Project Performance

Less

More

Size and Complexity of Project

Lean Aerospace Initiative

January 31, 2002
Project Performance as a Function of Project Size and Complexity and Locus of Influence Over Technical Decisions

Size and Complexity of Project

January 31, 2002
What Have We Learned?

• There are four variables that are important in determining organizational structure for product development.
• Whether balance is necessary in the product development matrix is dependent upon the nature of the project.