Growing the Lean Community
An LAI Plenary Conference

Lean Product Development Definitions and Concepts
April 10, 2001

Presented By:
Hugh McManus, MIT
Ed Harmon, NGC

Research Sponsored By LAI
Conceptually, value stream *thinking* is a key tool to understanding product development.

Can we use “classic” (*Lean Thinking, Leaning to See*) lean techniques in Product Development?

How?

“PD is a creative process - lean doesn’t apply”
“What is the value of staring out the window?”
“What is the value of a design option not chosen?”
Aspects of Lean Projects

➢ Concentrate here on the processes involved in design

➢ They are done repeatedly

➢ Often the “pacemaker” (bottleneck)

Phases of Product Development

From Ulrich & Eppinger, Product Design and Development
Most (Aerospace) PD is process

➢ “Invention is 1% inspiration and 99% perspiration” - TA Edison

➢ 40% of PD effort “pure waste”, 29% “necessary waste” (workshop opinion survey)

➢ 30% of PD charged time “setup and waiting” (aero and auto industry survey)

➢ “Product development is 1% inspiration, 30% perspiration, and 69% frustration” - HL McManus
➢ Value from the customer’s perspective
➢ Value Stream mapping and analysis
➢ Eliminate waste
➢ Flow and Pull
➢ Perfection and People

PD has some unique aspects in each case
Solutions (at least partial) known
Product Development serves the End User Indirectly—makes defining “Customer Value” non-trivial

Other stakeholders make demands on PD
Complexity of PD Value

Constraining Requirements
- Value-added actions (w.r.t. regulatory requirements)
 - Minimum required time spent ensuring that OSHA, EEO, and other regulatory requirements are met.

Product (Primary) Value Stream
- Value-added actions (w.r.t. the Product)
 - Contribution to product definition (form and function)
 - Contribution to manufacturing process definition.
 - Contribution to risk reduction
- Non Value-added actions (w.r.t. the Product)
 - Contribution to rework
 - Contribution to enhancement (is it a customer requirement?)
 - Contribution to efficiency
 - Contribution to technology

Human Resource (Secondary) Value Stream
- Value-added actions (w.r.t. the Employee)
 - Employee satisfaction
 - Employee training
 - Employee hiring
 - Employee benefits

Facilities/Equipment (Secondary) Value Stream
- Value-added actions (w.r.t. Facilities/Equipment)
 - Acquiring better equipment
 - Workplace organization

Financial Resources (Secondary) Value Stream
- Value-added actions (w.r.t. Financial Resources)
 - Generating financial statements for investors
 - Paying employees - Acquisition

Classic Lean says attack this and other benefits will follow

Be aware of, but not distracted by, other values
Defining Value in PD

- Slack (1998) - elements of Customer Value, needs of other stakeholders, and interactions
 - Complexities of global definition of value
- Chase et al. - local definition

PD processes contribute value via:

- Functional performance of end product
- Definition of processes to deliver product
- Form of final output (build-to-package...)
- Reduction of risks and uncertainties
➢ Womack: “the flows are invisible”
 ➢ They are flows of *information*, not material

➢ Complex, non-linear, and iterative flows
 ➢ Sometimes this is bad: simplify and straighten
 ➢ Others, necessary: facilitate

➢ Informal exchanges versus procedures

Millard will speak on value stream mapping tools
Lean tools for eliminating waste

➢ Office/technical processes
➢ Information flows
➢ *Reinterpret classic lean tools in this context*
 ➢ 7 Wastes
 ➢ 5 S
 ➢ Load Leveling
 ➢ Single-minute die exchange
Info-Wastes

➢ Reinterpret the seven wastes in an information context

➢ Dramatically different interpretations, consequences, and solutions, e.g.:

1 Over-production

➢ Easy and cheap/free to duplicate and distribute information, *but*

➢ Handling, sorting, filing unwanted information is a waste (think about your email inbox…)

1 Over-production
 ➢ Handling of duplicated information
 ➢ Creation of unnecessary data and information
 ➢ Information over-dissemination
 ➢ Pushing, not pulling, data

2 Inventory
 ➢ Lack of control
 ➢ Too much in information
 ➢ Complicated retrieval
 ➢ Outdated information, obsolete information

3 Transportation
 ➢ Information incompatibility
 ➢ Software incompatibility
 ➢ Communications failure
 ➢ Security issues

4 Unnecessary Movement
 ➢ Unnecessary Handoffs
 ➢ Lack of direct access
 ➢ Reformatting

5 Waiting
 ➢ Late delivery of information
 ➢ Delivery too early (leads to rework)

6 Defective Products
 ➢ Haste
 ➢ Lack of reviews, tests, verifications
 ➢ Requirement is for information or knowledge and data is delivered

7 Processing
 ➢ Unnecessary serial production
 ➢ Excessive/custom formatting
 ➢ Too many iterations
Alternate definitions

- **Over Production**
 - Too much detail
 - Unnecessary Information
 - Redundant Development (Reuse not practiced)

- **Transportation**
 - Information/Software incompatibility
 - Communications failure
 - Not standards based
 - Multiple sources
 - Incompatible destinations requiring multiple transport

- **Waiting**
 - Information created too early
 - Late delivery of information
 - Unavailable information
 - Quality suspect

- **Inventory**
 - Too much information
 - Incomplete content
 - Poor configuration management

- **Unnecessary Movement**
 - Information User not Connected to sources, requiring manual intervention
 - Information Pushed to Wrong People

- **Processing**
 - Unnecessary serial processing
 - Lack of needed information
 - Poor/Bad decisions affecting future
 - Excessive/Custom processing
 - Not processed per process
 - Too many iterations/cycles
 - Excessive data conversion
 - Excessive verification
 - No transformation instructions
 - Decision criteria unclear
 - Working with wrong level of detail
 - Propagation of bad decisions
 - Processing of defective information
 - Multiple tasking when not required

- **Defective Product**
 - Quality lacking or suspect
 - Conversion error
 - Wrong level of information, i.e., need information/knowledge, received data
 - Incomplete information
 - Ambiguous information
 - Inaccurate information
 - Tolerance exceeded
 - Poor configuration management
Ward’s nine Wastes

➢ Hand-offs
➢ Useless information
➢ Discarded knowledge
➢ Wishful thinking
➢ Testing to spec.
➢ Waiting
➢ Ignored expertise
➢ Scatter
➢ Wrong tool

PD may have unique wastes
Nothing sacred about the seven
5 S (Straighten, Sort, Shine…)

➢ Take the time to produce a productive work environment *for you*
➢ NOT about mandatory housekeeping rules
➢ Applies directly to your cube
➢ Applies directly to your e-desktop: sort, filter, script..
Single Minute Exchange of Dies (vs. *days*) *revolutionized* Toyota production system

A great deal of engineering work is set-up!

Set-up!

Revolutionize this!
Flow and Pull

➢ Flow achieved when PD processes move and communicate without errors or waiting

➢ 62% of tasks idle at any given time (detailed member company study)

➢ 50-90% task idle time found in Kaizen-type events

➢ Pull achieved when PD can be completed inside the customer’s decision cycle time

We have a long way to go...
➢ Strive for *perfection*, NOT improvement or competitor benchmarks

➢ A neglected lean principle: Use the capabilities and knowledge of the *people doing the tasks*

Engineers hate to be told what to do

Engineers are perfectionists

Turn a barrier into an enabler!
Summary

➢ “Classic” lean can apply to PD processes
 ➢ Especially to (but not limited to) repeated design processes
➢ Value defined
➢ Value stream tools exist
➢ Lean tools apply with some interpretation
➢ Participation and control by people in the process is a key enabler

Change incremental, but strive for perfection