Lean Aerospace Initiative

Design Methods in the Aerospace Industry: Looking for Evidence of Set-Based Methods

October 14, 1998

Presented By: Joshua Bernstein

Research Sponsored by the Lean Aerospace Initiative

- Introduction
- What is set-based concurrent engineering (SBCE)?
- Investigating aerospace industry design practices
- Lessons and recommendations

Project Genesis and Research Goals

• Project Genesis

LEAN AEROSPACE

INITIATIVE

- Initial literature review on product design and risk management
- Significant interest in set-based methods after Al Ward's Plenary talk (October, 1997)
- Research moved to assess set-based methods for aerospace applications
- Research Goals
 - Understand set-based concurrent engineering (SBCE)
 - What elements of SBCE already exist in the aerospace industry?
 - Should companies attempt to implement more set-based practices?

Why Investigate SBCE?

- Primary example to date is Toyota
- Uses approximately 50% fewer person years for development than Chrysler
- Delays finalizing body hardpoints
- Communicates less frequently with suppliers
- But...
 - Develops a larger number of prototypes

→ Can aerospace see the same benefits?

Toyota examples from "The Second Toyota Paradox..." by Ward et al.

What is Set-Based Concurrent Engineering?

"reasoning, developing, and communicating about sets of solutions in parallel and relatively independently"^{*}

Set-Based Techniques

- Requirements: ranges or minimum constraints
- Define limits rather than "best" designs
- Delay selecting a single concept
- Stay within sets once committed
- Seek conceptual robustness
- Integrate using intersections between sets

An Example: Subsystem Installation

SBCE vs. Platform Design

- Platform Design
 - Product strategy
 - Design the product so that several variations can be easily produced and marketed
- Set-Based Concurrent Engineering
 - Design strategy
 - Consider a large number of design options in order to develop the best final product

SBCE can be used to develop a platform family or a single product

Investigating aerospace industry design practices

Scope of Study

Number of sites visited	9
Sectors represented	Aircraft, Missiles, Electronics, Space
Total number of Interviews	88
Number of interviewees with title of Manager, Director, Leader, or Chief Engineer	65 (74% of total)
Number of interviewees with title of Engineer	23 (26% of total)

• 2 criteria to qualify as SBCE:

① Consider a large number of design alternatives

② Allow specialties to consider a design from their own perspectives, using the intersection between sets to integrate a design

- In general, few clear examples of SBCE
- Several examples of use of sets...
 - ✓ Descriptions of narrowing
 - **X** Usually confined to conceptual design
 - **X** Involved limited numbers of designers
 - **X** Constrained sharing of options
 - **X** Searches for "best" design rather than limits
- Many companies in the process of reforming design methods
 - Complicated data collection efforts

Obstacles to SBCE in Aerospace

- Suppliers and lead times
- Environmental Testing
- Design and analysis cycles
- Limits of parametric models
- **Working with the customer**

Lessons and recommendations

LEAN AEROSPACE INITIATIVE

Lessons: When to Apply SBCE

<i>If the development project is characterized by:</i>	Then apply:
 A large number of design variables Tight coupling between variables Conflicting requirements Flexibility in requirements to allow trades Technologies or design problems that are not well understood and require rapid learning 	Set-based techniques
 Requirements for specific technologies Requirements to optimize the design along only one or two parameters Well-understood technologies or design problems 	Point-based techniques

- Customer attitudes can have significant effects on development methods
- Engineers' perceptions of customer attitudes
- Historical bid processes...
- ... Evidence of changes coming

Recommendations: Data Generation

Can SBCE have the same benefits for the aerospace industry as it does for Toyota?

- This effort found no good points for comparison
- Lean Forum or similar activity could provide the needed data

I invite you to ask questions...

For Further Reading...

Carbone, James. "At Toyota, Supplier Targets and Specs Go Together." Purchasing, November 23, 1995. pp. 15-21.

- Chang, Tzyy-Shuh, Allen C. Ward, and Jinkoo Lee. "Conceptual Robustness in Simultaneous Engineering: An Extension of Taguchi's Parameter Design." *Research in Engineering Design*, Vol. 6, 1994. pp. 211-222.
- Finch, William, and Allen C. Ward. "A Set-Based System for Eliminating Infeasible Designs in Engineering Problems Dominated by Uncertainty." *Proceedings* of the 1997 ASME Design Engineering Technical Conferences. Paper #DETC97/DTM-3886. Sept. 14-17, 1997. Sacramento, California.
- Liker, Jeffrey K., Durward K. Sobek, II, Allen C. Ward, and John J. Cristiano. "Involving Suppliers in Product Development in the United States and Japan: Evidence for Set-Based Concurrent Engineering." *IEEE Transactions on Engineering Management*, Vol. 43, No. 2 (May, 1996). pp. 165-178.
- Sobek, Durward K., II, Allen C. Ward, and Jeffrey K. Liker. "Principles from Toyota's Set-Based Concurrent Engineering Process." White Paper, Dept. of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT., 1997.
- Sobek (1997), Durward K., II. Principles that Shape Product Development Systems: A Toyota-Chrysler Comparison. Ph.D. Dissertation, Industrial and Operations Engineering, University of Michigan, 1997.

Sobek (1996), Durward K., II. "A Set-Based Model of Design." Mechanical Engineering, Vol. 118, No. 7, July 1996. pp. 78-81.

VanDyke Parunak, H., Mitch Fleisher, John Sauter, and Al Ward. "A Marketplace of Design Agents for Distributed Concurrent Set-Based Design." Advances in Concurrent Engineering -- CE97, Fourth ISPE International Conference on Concurrent Engineering: Research and Applications. Oakland University, August 20-22, 1997. pp. 287-293.

Ward, Allen. "Toyota, Termites, and Zero Risk System Development." Presentation to LAI Plenary Workshop, October 9, 1997.

Ward, Allen, Jeffrey K. Liker, John J. Cristiano, and Durward K. Sobek, II. "The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster." Sloan Management Review. Vol. 36, Iss. 3, Spring 1995. pp. 43-61.

Ward, Allen. "A Recursive Model for Managing the Design Process." DTM, 1990. pp. 47-52.