Agile Manufacturing and Customer-Supplier Relations in the Auto and Aircraft Industries

Daniel E Whitney
and
Charles H Fine
MIT
Objectives

• Understand how to improve complex customer-supplier relationships, using assemblies as an example

• Compare methods and performance of auto and aircraft industries

• Develop new methods and tools

• Develop metrics

• Test tools and metrics in partner companies
Methods

• Use a set of lenses to draw out different issues

• Combine technical and organizational solutions

• Develop tools that improve communication

• Perform case studies at partner companies to test tools

• Emphasize full cycle from product design to organizational learning for next product
Research Partners

Aerospace
Industry Partners

Vought
C-17 Nacelle & 767 Tail

Boeing
777 Wiring Harnesses, Airframe structures

Auto Industry
Partners

Ford
Explorer
Hood & Fender

Electronics
ABS. EEC

General Motors

Delphi-Saginaw
Half shaft & Int. Shaft

Park Avenue
Die Development

Mid-Lux
ABS, Tooling
Make-Buy Complexity: Product Development on a Web

A product design starts out from one point.

Final assembly is the "moment of truth" for the entire process.

It gets dispersed over the supply web.

Hundreds or thousands of miles away from the initial design, the assembly process begins.

LAI Talk Oct 16, 1996
PDP Complexity: Focus on Assemblies

- Product development for complex assembled products involves many participants in a web
- Defining and managing the interfaces among parts and tools and the corresponding web participants is a key element in fast/flexible product development
- The assembly process is inherently integrative and reveals web problems vividly
Planning and Coordinating Shared Distributed Product Development

Customer Requirements

- How to plan the development process?
- How to convert to engineering?
- How to find suppliers?
- How to relate requirements to them?

- What are the relations between decisions?
- What’s the right sequence for making them?
- How do we know if the decisions are cost-effective?
- How can we tell if everyone knows what the others are doing?
- How do we capture the design in CAD with all this information?

Are these questions related?

Are there tools to help answer them?
Tools and Their Relationships

Customer Requirements

Find suppliers
Relate requirements to them
"Design" web

Convert to engineering specifications

Flow down requirements

Coordinate assembly suppliers

Web Maps

Track costs over web

Define information to be exchanged

DSMs

Pass design information

Plan development process

Create CAD models with KCs

Capture KCs for assemblies

Contact Chains

Feature-based Design for Assembly

Pass design information

Create CAD models with KCs

Capture KCs for assemblies

Customer Requirements

Track affordability

Activity Cost Chains

Define information to be exchanged

Feature-based Design for Assembly

Flow down requirements

Coordinate assembly suppliers

Web Maps

Convert to engineering specifications
Manufacturing Example: Supplier Web Superimposed on Contact Chain

Shows clearly who delivers what and how long the chains of delivery are.

PART COUNT: 9
PART SOURCES: 7
TOOL COUNT: 5
TOOL SOURCES: 4
CHECK FIXTURE COUNT: 2
CHECK FIXTURE SOURCES: 2
DISPERSAL INDEX: 81%
Key Characteristics

Product Key Characteristics (PKC)

What is important?

Assembly Key Characteristics (AKC)

How is it delivered?

Manufacturing Key Characteristic (MKC)

How is it realized?
Boeing 767 KC Flowdown:
A Snapshot

- Boeing 767
- Horizontal Stabilizer
- Main Torque Box
- Aft Spar
- Spar Chord
- Upper Chord Angle

KCs

- Bo-KC767-STB-L5-101
 (affects sweep for rear spar chord near pivot rib)
- A-KC767-STB-L4-100
 (affects contour)
- A-KC767-STB-L3-300
 (affects sweep for rear spar chord near pivot rib)
- A-KC767-STB-L5-100
 (affects contour)

Key:
- Contour
- Spar width at every rib location
- Spar width (affects contour)
Projects with Companies

- Corrective Action at Ford and Vought N-G (2)
- Precision Assembly of 767 Horiz Stab Skin (2)
- KC - process capability formulation at GM (1)
- Org learning for precision assembly (1)
- Modeling of assembly layouts for top-down design and process planning (2)
- Strategies for long term outsourcing, supply chain design, and product module definition (2)
Precision Assembly Project

1. KC Flowdown
2. PKCs
3. AKCs
4. Assembly Sequence Generation
5. Prune into Families
6. Identify most promising family
7. Analyze Sequences
8. Propose Assembly Features
9. Equipment Requirements

Skin Gaps
FTB
FTE
Forward Skin
Aft Skin
Plus Chord

ORIGINAL PKCs
ACHIEVE PKCs
SEPARATELY (ASSEMBLY IMPOSSIBLE)
ASSEMBLY POSSIBLE - PKCs COUPLED
CURRENT METHOD USING FIXTURES
TWO ALTERNATE METHODS REQUIRING DIFFERENT AKCs
using hole and slot features
using edge features

ASSEMBLY LEVEL DATUMS
PART LEVEL DATUMS
FORWARD SKIN
AFT SKIN
SPLICE STRINGER
PLUS CHORD
PKC #1
PKC #2
PKC #3
AKC #1

AFT SKIN
PLUS
CHORD
STRINGER #3

FORWARD SKIN
STRINGER

VSA RESULTS
Findings

• Auto and aircraft industries have similar problems

• Supply chains are large and complex

• Products are outsourced down to the last part and tool

• There is too much rework and too little up-front work
 - This is much less a problem for cars

• People and companies have trouble thinking about complete systems like assemblies
Findings, continued

• Product design repeats past thinking
 – same subassemblies, module breaks, priorities

• Corrective action focuses on parts
 – little knowledge of “other” areas or why they are important

• The procurement process still delays consideration of basic producibility issues
“Connectivity” is Missing

- People think of assembly as fastening
- Assembly is really chaining
- Assembly is in fact a classic systems problem:
 - problems show up “here”
 - causes are “over there”
 - “over there” means another part, another work area, another department, another company
Complex Problems Require New Solutions and Communication Tools

• Relationships between design, manufacturing, and supply chain design are extremely complex
• Consequently they are hard to explain
• Few people are accustomed to thinking in multi-dimensional ways about organizations or geometry
• Solutions to these problems involve a combination of technical and organizational changes
• *3D CAD will not do it alone*
New Design Tools Must Have a New Level of Communicative Power

• Design teams are multi-functional and multi-cultural
• Getting everyone to understand the other person’s problem may be more important than getting every detail right the first time
• Communicative power may have to be gained at the temporary expense of technical accuracy
We Need to Focus on Chains

- Product quality increasingly is delivered by systems
- Key characteristics are delivered by chains of parts that are designed and produced by chains of companies
- We need better design methods, data models, and customer-supplier practices that encourage product development that focuses on these chains
A Vision for Chain-driven Product Development

• Top-down design defines KCs and relates them to modules and parts
 – KC deliverability and cost criteria applied
• Product design and producibility system design have equal status
• Vendor system is designed to deliver these KCs
• Everyone in the chain knows their contribution
• CAD/CAM/CAE/PIM capable of supporting integrative data, queries, calculations
A Vision for Chain-Driven Product Development

Chief Systems Engineer
Responsibility for overall product-process coherence

Chief Performance System Engineer
Responsibility for performance

Chief Producibility System Engineer
Responsibility for building the supply chain and assembly system to deliver the KCs
Information on the Web

Fast and Flexible Communication Projects at MIT

follow the links to other related MIT pages

look for papers about flexible assembly, make/buy decisions, descriptions of the fast/flexible project, supply chain dynamics, and assembly modeling