
COMMUNICATION, INFORMATION AND RESPONSIBILITY DISTRIBUTION

STRATEGIES FOR EFFECTIVE REAL-TIME TRANSIT SERVICE MANAGEMENT

by

David P. Barker

B.A., Vassar College (1998)

SUBMITTED TO THE DEPARTMENT OF CIVIL AND
ENVIRONMENTAL ENGINEERING IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN TRANSPORTATION

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 2002

Copyright © Massachusetts Institute of Technology 2002. All rights reserved.

Signature of Author

Certified by

Certified by

Accepted by

LIBRARIES

Department of Civil and Environmental Engineering
May 24, 2002

d Professor Nigel H. M. Wilson

/1 -. Ihs pervisor

Senior Rseach Associate Carl Martland
Research Supervisor

'am.m

Oral Buyukozturk
Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 3 2002



M IT Libraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://Iibraries.mit.edu/docs

DISCLAIM ER

MISSING PAGE(S)

Page 166 / Table A-1 is missing from the
Archives copy. This is the most complete
version available.



COMMUNICATION, INFORMATION AND RESPONSIBILITY DISTRIBUTION
STRATEGIES FOR EFFECTIVE REAL-TIME TRANSIT SERVICE MANAGEMENT

by

David P. Barker

Submitted to the Department of Civil and Environmental Engineering on May 24, 2002
in partial fulfillment of the requirements for the degree of

Master of Science in Transportation

Resolving disruptions is a continual challenge to providing quality, cost-effective transit service.
While a number of recovery techniques exist to recover from disruptions, detecting a disruption,
choosing a response and implementing it in a timely manner is a difficult task. Different agencies
use different combinations of field supervision, centralized control, and traditional and advanced
communication technology. While these different service management strategies have different
results, there is no consensus on what makes a good strategy, nor a systematic method for
evaluating a proposed strategy and predicting its strengths and weaknesses. The purpose of this
thesis is to create a framework for studying bus service management strategies and draw general
lessons from an application of that framework.

This thesis categorizes 15 distinct disruptions in bus service, the most common responses to each,
and the information and resources necessary both to reach a decision on the most appropriate
response and to implement it. It introduces a spreadsheet model for starting with the number of
disruptions an agency faces and its chain of command for dealing with them and calculating the
number of conversations that take place and the demand those conversations put on
communications channels. Values gathered from studying Chicago Transit Authority (CTA)
supervisor radio recordings allow this model to show the unused capacity of communications
channels, if any, so that the feasibility of a prospective strategy can be determined.

This method of studying strategy is applied to CTA. It is found that CTA bus operations suffer
from two bottlenecks. The control center relays delay reports too slowly for them to be useful,
and the communications channels allotted to supervisors are less than they would be required to
air all messages related to service restoration. As a result, street supervisors have few service
restoration options available to respond to delays, and they lack the information needed to choose
an option effectively. The net result is that minor delays typically go unaddressed until they
deteriorate into major ones, and major delays impose greater cost on passengers than they should.
The impact of adding handheld computers with real-time location information is studied, and it is
found that this would let supervisors use a wider range of restoration techniques, allow them to
choose the best technique more accurately, let them address minor delays before they become
more serious and free the supervisory radio channels for more effective management of
breakdowns, accidents and disturbances.

It is concluded that there are inherent advantages in managing schedule adherence from the field
and managing incidents from a control center, regardless of an agency's level of communication
investment. It is further concluded that digital messaging has a natural strength in dealing with
routine and well-understood instructions, while voice communication is essential for tasks that
are less predictable or require collaboration. Digital messaging can play a substantial role in a
good service management strategy but can never replace voice radio.

Thesis Supervisor: Nigel H. M. Wilson
Title: Professor of Civil and Environmental Engineering





Acknowledgements

First of all, thank you to Nigel Wilson and Carl Martland, for guiding my hand, for
pushing me to do more, and for not giving up on me when any sane man would.

At CTA, thank you first of all to Darryl Lampkins, for welcoming me during my
internship and being so supportive of my work. Thank you to George Neal and Tom
Pleuger, who answered every question I could think of and just as many that I couldn't,
and who between them know all that is knowable about the bus side of the control center.
Thank you also to Daniel Shurz, who knows everything else about CTA, for answering
my questions. Thank you to all the dispatchers that I spoke to, including Raheem,
Minnie, Brooks, Hodges, George and Chris, each of whom withstood literally hours of
questioning. And thank you to the CTA itself for making this research possible.

Thanks also go to everyone at the MBTA who helped me, including Marion Driscoll,
Maureen Trainor and Janice Murphy who were kind enough to answer so many
questions, and Bill MacArthur who did that while letting me watch him juggle half the
T's breakdowns and emergencies. Thanks also to Dave Carney for taking the time to
study my conception of delays and responses and for providing such encouraging
feedback.

Thanks to Mike Gil in Denver for telling me so much about their dispatching system.
Thanks to Scott Wilder of the Brookline Police Department for graciously allowing me to
use their dispatching recording and playback system, coming to my rescue when I needed
it most. Thanks for Lawrence Wilson for filling me in on some CTA history all had
forgotten. Thanks to Mark Schofield and Cindy Barnhardt for helping me move to a
more productive work environment with free donuts.

Thanks to Ken Krukemeyer and Fred Salvucci, for providing such a wonderful research
program so filled with opportunity and flexibility. Thanks to Ginny Siggia, for putting
out more fires than I can count.

Thanks to Angela Moore, for contributing in more ways than can be consolidated here.
A full summary of the ideas, information, perspective and support she provided would
require not just its own page but an entire acknowledgements chapter to cover in full.

Finally, thanks to my mom and dad for getting me here, and to Shaula for getting me
through this.

5



6



Table of Contents

Abstract ............................................................................................................................ 3

A cknow ledgem ents ...................................................................................................... 5

List of Figures ................................................................................................................ 10

List of Tables.................................................................................................................. 11

1. Introduction ............................................................................................................... 13
1.1 Disruptions and Recovery: The Context of This Research .............................. 13
1.2 M otivation............................................................................................................ 15
1.3 Purpose of this thesis ......................................................................................... 16
1.4 M ethod................................................................................................................. 17
1.5 Structure of this docum ent ................................................................................ 18

2. Literature review .................................................................................................... 20
2.1 Context: Theory and Practice of Bus Service Management............................. 20
2.2 Som e Basic Approaches to Service M anagem ent ............................................ 23
2.3 Techniques for Studying Service Management Strategies ................................ 27
2.4 Communication's Limits: The Burlington-Northern Study .............................. 30
2.5 Sum m ary.............................................................................................................. 31

3. An Overview of Communications Channel Types .................................................. 33
3.1 Open M ic Radio Channels ................................................................................ 33
3.2 Digitally M anaged / Trunked Radio Channels................................................. 34
3.3 Digital M essaging .............................................................................................. 36
3.4 Direct Contact.................................................................................................. 38
3.5 Cellular Phones ................................................................................................ 39
3.6 Conventional Phones and Payphones............................................................... 40
3.7 Silent Alarm s .................................................................................................... 41
3.8 Sum m ary.............................................................................................................. 42

7



4. Situations and R esponses ....................................................................................... 45
4.1 C om m on Service D isruptions ............................................................................ 45

4.1.1 Bus early ............................................................................................................................ 46
4.1.2 Bus delay (short headway route) ................................................................................... 47
4.1.3 Bus delay (long headway route)................................................................................... 47
4.1.4 Crush load (one bus, not delayed)................................................................................ 47
4.1.5 M echanical problem (m inor - bus movable)....................................................................48
4.1.6 Mechanical problem (serious - bus movable without passengers) ............... 48
4.1.7 M echanical problem (m ajor - bus immobilized) ............................................................. 48
4.1.8 Em ergency / Security / Fare Dispute............................................................................ 49
4.1.9 Accident.............................................................................................................................49
4.1.10 Operator M isses Relief ................................................................................................. 49
4.1.11 Blockage ............................................................................................................................ 50
4.1.12 Bus Standing / Service Gap .......................................................................................... 50
4.1.13 Unfilled Run......................................................................................................................50
4.1.14 Unplanned Bus Bridge................................................................................................. 51
4.1.15 Congestion / W eather / Route-wide Crowding............................................................ 51
4.1.16 Late Pull-Out ..................................................................................................................... 52

4.2 Recovery Techniques....................................................................................... 52
4.2.1 M anaging Headways and Schedules (H) .................................................................... 55
4.2.2 Solving M echanical Problems (M ).............................................................................. 59
4.2.3 M anaging Reliefs (R).................................................................................................... 60
4.2.4 Providing Additional or Altered Services (A) .............................................................. 62
4.2.5 Dealing with Emergencies (E)...................................................................................... 63

4.3 Information Needs in Disruption Management................................................. 64
4.3.1 Chart Form at ..................................................................................................................... 64
4.3.2 Bus Early ........................................................................................................................... 67
4.3.3 Bus Delay (Short Headway Route).............................................................................. 70
4.3.4 Bus Delay (Long Headway Route) ............................................................................. 72
4.3.5 Crush Load (One Bus, Not Delayed) ............................................................................ 72
4.3.6 M echanical Problem (M inor - Bus M ovable)................................................................75
4.3.7 Mechanical Problem (Serious - Bus Movable without Passengers).............75
4.3.8 M echanical Problem (M ajor - Bus Immobilized)...........................................................78
4.3.9 Em ergency / Security / Fare Dispute............................................................................ 78
4.3.10 Accident.............................................................................................................................81
4.3.11 Operator M isses Relief ................................................................................................. 81
4.3.12 Blockage ............................................................................................................................ 84
4.3.13 Bus Standing / Service Gap .......................................................................................... 84
4.3.14 Unfilled Run......................................................................................................................87
4.3.15 Unplanned Bus Bridge................................................................................................. 87
4.3.16 Congestion / W eather / Route-wide Crowding............................................................ 90
4.3.17 Late Pull-Out .................................................................................................................... 90

4.4 The Im portance of Tim eliness in Inform ation.................................................. 90

8



5. Introducing the M odel............................................................................................. 101
5.1 Assumptions ...................................................................................................... 101
5.2 Analysis Approach............................................................................................. 102

5.2.1 Situations, Decisions, and Actions: Structure and Volume...........................................102
5.2.2 Actors and Tasks: Responsibility and Assignment ....................................................... 103
5.2.3 Information and Knowledge: Known, Requirements and Transmission......................104
5.2.4 Strain on Channels: Individual and Total Costs ............................................................ 105

5.3 M odel Definition................................................................................................ 106
5.3.1 Known: What Actors Already Know ......................................................................... 106
5.3.2 Required: The Facts Required for Each Action.............................................................107
5.3.3 Conversations: The Conversations that Stem from Each Situation .............................. 108
5.3.4 Strain: The Bandwidth Taken by Each Tranmission of a Fact ..................................... 114
5.3.5 Results: The Total Strain on Each Channel ................................................................... 115

6. Application of the Communications Model to the Chicago Transit Authority... 121
6.1 Data Sources ...................................................................................................... 121

6.1.1 Communications Bandwidth Usage: Voice Recordings ............................................... 121
6.1.2 Event Volume: The BECS Database..............................................................................122
6.1.3 Communications and Decision-Making Procedures: Observations, Interviews

an d In feren ce ................................................................................................................... 12 8
6.2 M odel W alk-Through ........................................................................................ 129

6.2.1 Creating and Understanding Conversation Tables ........................................................ 129
6.2.2 Adjusting Goals to Results ............................................................................................. 134

6.3 Implications for CTA: Available Service Restoration Options .......................... 138
6.4 Predicting the Impact of PDAs on CTA............................................................. 143

7. Sum m ary and Conclusions...................................................................................... 151
7 .1 F in d in g s ............................................................................................................. 15 1
7.2 Conclusions........................................................................................................ 155
7.3 Future W ork....................................................................................................... 161

7.3.1 Im proving the M odel ...................................................................................................... 16 1
7.3.2 Developing a Better Understanding of the Costs and Benefits of Service

R estoration T echniques...................................................................................................162
7.3.3 Determining the Optimum Placement of Supervisors...................................................162
7.3.4 Efficiently Dividing Work Among Supervisors Along a Route ................................... 162
7.3.5 Developing Digital Messaging Systems for Transit Tasks ........................................... 163

References .................................................................................................................... 163

Appendix A: Tables from Communications M odel .................................................. 165

Appendix B: CTA Operations Data ........................................................................... 183

9



List of Figures

4 -1: B u s E arly ............................................................................................................. 6 8
4-2: Bus Delay - Short Headway Route................................................................... 71
4-3: Bus Delay - Long Headway Route .................................................................. 73
4-4: Crush Load (One Bus - Not Delayed)............................................................. 74
4-5: M echanical Problem (M inor - Bus M ovable)...................................................... 76
4-6: Mechanical Problem (Serious - Bus Movable without Passengers) ................. 77
4-7: M echanical Problem (M ajor - Bus Immobilized)................................................ 79
4-8: Emergency / Security / Fare Dispute................................................................. 80
4-9: Accident............................................................................................................... 82
4-10: Operator M isses Relief .................................................................................... 83
4-11: Blockage .............................................................................................................. 85
4-12: Bus Standing / Service Gap ............................................................................. 86
4-13: Unfilled Run .................................................................................................... 88
4-14: Unplanned Bus Bridge....................................................................................... 89
4-15: Congestion / W eather / Route-wide Crowding ................................................ 91
4-16: Late Pull-Out .................................................................................................... 92

6-1: Use of CTA Supervisory Radio, 3-3:30PM ........................................................ 121
6-2: Disruption Volum es by Hour Throughout Day.................................................. 124
6-3: Range of the Average Time to Relay Delay Reports ......................................... 126
6-4: Lower Bound of Average Time to Relay Equipment Defect Reports................ 127
6-5: Current Accident Procedure............................................................................... 129
6-6: Use of Voice Channels, Observed and Simulated.............................................. 137
6-7: Current Accident Procedure............................................................................... 138
6-8: Implied Delay Procedure ................................................................................... 139
6-9: Actual Delay Procedure ..................................................................................... 141
6-10: Delays Procedure with PDAs............................................................................. 145

7-1: Unfilled Run ............................................... 152
7-2: Disruption Volum es Throughout Day................................................................ 153

10



List of Tables

4-1: Response Techniques by Category .................................................................. 53
4-2: D isruptions and Responses .............................................................................. 65
4-3: Information Timeliness Example: On-Time Operations ................................... 94
4-4: Information Timeliness Example: No Response............................................... 95
4-5: Information Timeliness Example: Immediate Response ................................... 96
4-6: Information Timeliness Example: Delayed Response 1................................... 98
4-7: Information Timeliness Example: Delayed Response 2.................................... 99
4-8: Change in Passenger Waiting Time Given Different Response Times.............. 100

5-1: A portion of the "Know n" Page ......................................................................... 107
5-2: A Portion of the "Required" Page...................................................................... 108
5-3: Meanings of Rows in "Conversations" Page ..................................................... 110
5-4: Selection of "Conversations" Related to Crush Load ........................................ 112
5-5: A Portion of the "Transm ittable" Chart ............................................................. 115

6-1: Breakdow n of a C onversation............................................................................ 119
6-2: Model Input: Number of Events in Time Periods .............................................. 124
6-3: Modeling How CTA Responds to Accidents ..................................................... 130
6-4: Supply on Supervisory Channels Available for Conversations Represented

in M o d el............................................................................................................. 13 4
6-5: Supply on Digitally Managed Bus Channels Available for Conversations

R epresented in M odel ........................................................................................ 134
6-6: Use of Radio Channels, CTA Today (Preliminary) ........................................... 135
6-7: Use of Radio Channels, CTA Today (Adjusted)................................................ 136
6-8: Implied CTA recovery techniques to a delay on a short headway route ............ 140
6-9: Implied CTA Recovery Techniques to a Delay (Short Headway Route)........... 142
6-10: CTA Recovery Techniques to a Delay (Short Headway Route) with PDAs...... 145
6-11: Supervisor Channel Sum m ary ........................................................................... 147

7-1: Supervisor Channel Sum m ary ........................................................................... 154
7-2: Implied CTA Recovery Techniques to a Delay (Short Headway Route)........... 154
7-3: CTA Recovery Techniques to a Delay (Short Headway Route) with PDAs...... 154

11



12



Chapter 1: Introduction
Disruptions are unplanned problems that, if not addressed, will cause transit service to

gradually or suddenly worsen. Some study has been put into the effects of certain

disruptions and ways to abate or recover from them. These studies sometimes assume

perfect information and sometimes assume very limited information. Other studies have

looked at ways to distribute information or move decision-making, with the assumption

that certain changes will improve the choice of recovery strategies. Few studies have

looked at the difference that information can make, at the different ways it can be

distributed, or at the capacity of a certain number of individuals to recommend and

implement service management strategies based on the information they've been given.

This thesis will study the effectiveness of different organizational structures and

communication systems at allowing decision makers to resolve disruptions, and present

an original methodology for studying the load on communication channels and

individuals, thus allowing transit agencies to better plan communication investments and

reorganization.

1.1 Disruptions and Recovery: The Context of This Research
Disruptions are unplanned events posing an obstacle to routine operation. Despite the

implication of this definition, disruptions are routine in transit. A trolley breaks down,

unable to carry its passengers and blocking the vehicles behind it. A passenger holds a

subway door open twenty seconds for a friend, creating a slight imbalance in rush-hour

headways. Construction blocks a street, stranding buses until they know how to reroute

and adding travel time to the route. Other common examples of disruptions are:
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accidents, wheelchair lift use, fare disputes, missed reliefs, late pull-outs, demand spikes,

and traffic jams.

Left unaddressed, disruptions such as these can have a number of negative consequences.

In the event of the use of a wheelchair lift on a busy bus route, the extra two minutes can

be enough to put the bus behind schedule and lead to bus bunching. Passengers on board

that bus and passengers waiting downstream are delayed. The driver may then arrive too

late to pull out of the terminal on time for his next trip, prolonging the delay to the other

direction; miss a relief, creating a delay on another route; or finish his run late, costing

the agency overtime.

It is usually desirable or necessary for a transit agency to respond to a disruption in some

way. Often there are several aspects to respond to. In the case of a late bus, changes may

need to be made to the schedule of the line to minimize passenger wait time and agency

overtime. In the case of a breakdown, the above also applies, but the agency must also

respond with a repair crew that can either fix the bus where it stands or tow it to a garage.

In the case of an accident, both of the above also apply, but the agency must also dispatch

a supervisor and the police to each take their reports. In addition, relief problems

generated by any of these incidents may need to be addressed, and vehicles on other

routes might need to be held to allow for connections to be made.

A number of different service management techniques aimed at restoring regular service

and recovering from a disruption have been used and studied. A delayed bus might be

short-turned before it reaches its terminal; it might be expressed to a later point; its leader

might be held, to pick up passengers that would otherwise be waiting for the delayed bus;

14



etc. Or there might be no service management intervention other than to let the bus finish

its trip, hoping its recovery time at the terminal will be sufficient to let it start the next

trip on time. Many papers have studied the costs and benefits of different techniques,

usually approaching the problem from the point of view of a single omniscient and

omnipotent decision-maker, knowing all quantifiable data and able to give any instruction

to any vehicle. This is an excellent way to study different control strategies, but it differs

significantly from the usual reality of real-time control.

1.2 Motivation
A wide variety of communication systems and strategies are in use throughout the world.

At the Chicago Transit Authority (CTA), buses communicate digitally with a control

center, which communicates verbally with supervisors in the field. At the Massachusetts

Bay Transportation Authority (MBTA), buses, chief inspectors, radio cars and

dispatchers all share one radio channel for their service area. These communication

systems offer very different capabilities to decision-making personnel. At the CTA, the

control center can track the location of individual buses and send text messages to an

individual bus operators or operators en masse, but street supervisors cannot

communicate with bus operators without going through the control center or visiting the

bus in person. At the MBTA, buses cannot be tracked and there is no digital messaging,

but supervisors and bus operators can communicate directly.

Different service management techniques require different kinds of information and

communication channels. The CTA can easily hold buses ahead of schedule at certain

points where street supervisors are stationed, but it is difficult to hold the leader of a late

bus. The MBTA, having fewer street supervisors at points along routes, would find it
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takes more work to hold a bus that's ahead of schedule than at CTA, but thanks to easier

communication it would be no harder to hold a late bus' leader. Even within the use of

one service management technique, different communication systems allow for different

variations of that technique. In a recent study Xuhui Yang found that vehicle holding

supported with real-time information could be more precise than without, leading to a

38% reduction in passenger wait time (Xuhui Yang, 2002.)

Different communication systems enable an agency to use different service management

techniques. Agencies across the country are beginning to make serious investments in

technologies such as GPS, digital radio, digital messaging, cell phones, etc. As they look

at technologies and choose among them, the fundamental question an agency must face is

"how will this communications system allow us to improve service, and does it justify the

cost?" Currently, there is no documented systematic method for answering this question

in transit.

1.3 Purpose of This Thesis
This thesis studies the effectiveness of different organizational structures and

communication systems in supporting transit personnel's efforts to recover from

disruptions. The impacts of centralization and decentralization are considered.

Communication technologies, including conventional radio, trunked radio and digital

messaging are considered. This study is to produce information on which structures, and

which technologies, effectively enable an agency to use particular service management

techniques, and therefore how effectively the organization can then improve service.

This thesis also introduces a new methodology for assessing a transit agency's real-time

decision-making capacity. This methodology takes the personnel deployment,
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communications system, service volume and disruption frequency data as inputs and

produces the service management techniques that are available to recover from these

disruptions as outputs. This methodology can also illustrate bottlenecks and potential

areas of improvement. It is to be usable for diagnosing an existing system, studying a

proposed organizational change, studying a proposed communications change, and

studying change to both at once.

1.4 Method
The methodology has two parts. The first must be performed once to calibrate the model;

the second must be performed for each use of the model.

In the first part, the author will categorize the different disruptions to which an agency

can respond, the different service management techniques it can use, and how they

correspond. He will break down each step of each service management technique, and

determine what information is needed to effectively carry out each step, as well as what

instructions must be given out. The author will categorize different communications

technologies, and the amount of "strain" that relaying the above instructions and pieces of

information takes.

The second part is to study an agency for a given time of day. Using knowledge of an

agency's management structure, the author will map out who performs what step, who

gives instructions to whom and what communication options people in different positions

have available. From this, the model will derive what information needs to be

communicated from the information people already have and the information each task

requires. It will also derive what methods of communication can be used for these

messages, based on the access people have and the abilities of different communication

17



methods. Combining this information with the number of disruptions (and hence tasks)

an agency faces and the "strain" each message takes will show the use of each

communication channel, and the elimination of infeasible options will show the limits of

the responses available to the agency.

1.5 Structure of This Document
Chapter two will serve as a literature review. This will include papers on the

appropriateness of responses to disruptions, some existing service management strategies,

some of their positives and negatives, and the study of organizations and

communications.

Chapter three will provide a brief overview of different communication technologies

currently available. The strengths, limitations and capacity issues of voice

communication, digital messaging and direct contact, among others, will be described.

Chapter four will catalogue the different disruptions that can affect operation, the

different service management techniques that an agency can employ, and how they

correspond. The decisions that must be made to choose the most appropriate response

and the information required for every step will be identified. Each disruption and

service management technique will be described individually, and while broad

generalizations will be made regarding the general usefulness or effectiveness of each

technique, the thesis will not attempt to simulate the choice of an appropriate technique

for a given situation, or attempt to demonstrate that any technique is categorically more

useful than another. The importance of timeliness in information will also be described.
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Chapter five will describe the model for appraising an agency's service management

strategy. It will outline the assumptions, the theory, and the step-by-step instructions

involved.

Chapter six will analyze the Chicago Transit Authority's bus operations, and serve as a

walkthrough of the methodology used. The agency's actors and communication system

will be described; the agency's volume of disruptions and assignment of responsibility

will be described; the methodology will be walked through, step by step. The model will

also be applied to study the introduction of a new communication system. The strengths

and weaknesses the model indicates for each strategy will be described, and a

recommendation of whether the change would be a significant improvement will be

made.

Chapter seven will review the thesis and the analysis method, including its strengths and

weaknesses. Conclusions will be drawn on effective service management strategies.

Finally, future work will be suggested.
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Chapter 2: Literature review
In this chapter, we will first review bus service management and the context of a bus

service management strategy. We will look at the differences between some service

management strategies, and some of the differences in their effectiveness. We will

introduce an existing framework that could be applied to service management strategies,

and observe where it is applicable and where it is lacking, notably in the role of

communication. We will introduce a model used to study communications issues, and

finally we will propose a means of combining these two models into one method, and

outline the steps necessary to do so.

2.1 Context: Theory and Practice of Bus Service Management
An extensive body of literature exists describing the problems ("disruptions") that can

occur in bus service and the effectiveness of various responses. One excellent guide

covering numerous disruptions and responses is Theory and Practice ofBus Service

Management, based on the restoration techniques used by RATP in Paris (Edith Froloff et

al., 1994). This book details the problems that commonly occur in bus transit, the

responses commonly applied, and what one must consider in choosing the most

appropriate response. It begins by defining service management:

"The OS [Operating Schedule] is the result of an optimization of the

supply of service as a function of the objectives and the constraints of the

operation. However, since this optimization is carried out in "anticipated

time," it requires, in particular, the formulation of hypotheses on the

conditions of traffic and the demand for service. Now, these two factors

are complex phenomena, and are of an uncertain nature. This is why the

OS can only define the modes of optimal functioning of the route for the

average conditions of operation. As soon as one moves away from these
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average conditions, it becomes necessary to manage the service in order to

confront the degradation of the quality of service which arises from this

drift.

"Service management is, therefore, the process of the adjustment in real time of

the OS to operating conditions." (p 11)

There are many disruptions that can occur on a route. A bus can be behind or ahead of

schedule. Buses can bunch together. A breakdown can occur, needing a repair or a tow

and leaving the route with one less buss but just as many drivers. Supervisors face

competing and conflicting goals, as well, principally headway regularity, schedule

adherence, serving all passengers, getting relief drivers to relief points on time, and

staying within budget. Management identifies fifteen different common restoration

actions that address some of these goals:

"a) Six restoration actions at the originating terminal:

- jumping

- reassigning

- shift schedule time frame

- elimination of a departure

- insertion of a departure

- re-spacing of intervals

"b) Six restoration actions on the route:

- modification of the scheduled running times

- waiting at a bus stop

- bus change

- passing on the route

- exchange of drivers on the route

- deviation

"c) Three service management restoration actions which can be directed as

required by the situation, at the terminal or on the route:
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- the change of trip type by short-turning

- the change of the trip type by means of extension

- the change of the trip type by means of trip modification" (p 18)

(See chapter 4 for explanation of these response techniques.)

Management describes a number of situations for which the impacts of different

responses are discussed. A wealth of information is provided for the reader to consider:

the schedule of a route, branches, length, demand along various segments, relief points,

traffic conditions, the nature and cause of a problem, and a time/space diagram showing

every bus on the route are shown and their impact on decisions discussed. Of a route

with even loads throughout it notes that when dealing with a late bus

"the restoration action of a deadhead, which is intended to move a vehicle,

as quickly as possible, to a point of loading is, therefore, not effective. In

regard to short-turns, these are very poorly received by the passenger in

this configuration. In case of a significant delay, the controller can be led

to order dropping a round trip for one or several vehicles." (p 69)

On a route where the relief point is far from the garage, it observes that if a relief driver is

absent then "a long time is necessary for a substitute driver from the depot to get to the

relief point. The controller is often led to cancel the departure, with re-spacing, and to

have the vehicle parked." (p 87)

These diverse problems offer the reader an opportunity to learn what makes one response

appropriate for a given situation and another not. They also serve to illustrate one of the

chief difficulties in service management. While it is already challenging to solve these

problems when shown all information, a supervisor charged with making such a decision

often knows a fraction of the information given in the book and is unable to use some of

the techniques shown. For instance, if one bus is falling behind schedule, one technique
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is to hold its leader. But to do that a supervisor standing on the street must know the bus

is late as its leader passes him or must be able to communicate with the leader when the

late bus reaches him. The comparison is not strictly fair, but illustrative: a street

supervisor and a service planner are both charged with creating an operating schedule,

but a supervisor must do so with less data, with fewer tools, and in a fraction of the time.

Because if he takes too much time, not only has the situation deteriorated (a route "tends

to move away from optimum") (p 12, Edith Froloff et al., 1994) but other disruptions he

is responsible for will begin to pile up.

This begs the question: what can we do to facilitate effective decision-making for service

restoration? What information and tools should we provide, what tasks should we

automate, how many people should oversee one route, how many routes should one

person oversee, should a given disruption be managed by different people, how should

they divide up the work, and who should have final authority?

An organizational structure with associated communications and computations systems

provides a set of answers to these questions and is what is meant by service management

strategy.

2.2 Some Basic Approaches to Service Management
The basic resources for service restoration are

" Point supervisors

" Mobile supervisors

* Dispatchers

" Communication

" Computer aid
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There are many ways in which these resources can be combined. Some of the broad

characteristics that differentiate service management strategies are

" Centralization - work and responsibility can be focused in the control center, or in

the field

" Automation - tasks can be accomplished with much or little computer help

" Regionalization - people can be organized into groups overseeing different

service areas or can be organized as one large unit

" Specialization - individuals can manage one aspect of many disruptions or all

aspects of fewer disruptions

These characteristics are all relevant to the service management strategies described

briefly below. In Denver's Computer Aided Dispatch Automatic Vehicle Location

System: The Human Factor Consequences, Mary D. Stearns, describes the strategy of

Denver's Regional Transportation District (RTD.) RTD operates a system of about 800

buses and two light rail lines, with 12 mobile supervisors and six dispatchers on duty at

peak (there are no point supervisors.) A digital messaging system allows location

tracking and digital messaging between all parties, and automation facilitates seeing all

buses on a route. Voice communication is possible between dispatchers and supervisors

with no delay and possible from buses to dispatchers or supervisors with some delay.

The strategy is highly centralized and automated. Bus operators report problems to the

control center, and schedule deviations are detected electronically and reported to the

control center. If a situation can be addressed through instructions to bus operators a

dispatcher will address it, otherwise he will dispatch a supervisor to the scene. This

system has helped the agency be very effective at incident management and schedule

adherence - on time performance increased from 88% to 90% between 1992 and 1996

despite increasing ridership (Mary D. Stearns, 1999.)
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The Massachusetts Bay Transportation Authority (MBTA) operates a similarly sized bus

system with about 800 buses, and also operates four subway lines and an extensive

commuter rail network. (A bus rapid transit line is under construction at this writing.)

They have 18 point supervisors, 18 mobile supervisors and two dispatchers on duty at

peak. Each of two radio frequencies is applied to buses, supervisors and a dispatcher by

service area, and supervisors have access to one additional frequency. Their system is

regionalized, very decentralized and uses almost no automation. Buses that experience a

significant disruption announce it over their radio channel and the supervisor assigns it to

a supervisor, who handles all aspects of the disruption. Schedule and headway issues are

dealt with almost exclusively by supervisors at terminals. This system helps the agency

be effective at incident management but poor at schedule adherence - in a recent

performance review, not one route achieved the agency's on-time performance goals.

The Chicago Transit Authority (CTA) operates a bus system of 1,800 buses as well as six

rapid transit lines, and works in cooperation with Metra, which provides an extensive

commuter rail network, and Pace, which provides suburban bus service. At peak it has

over 60 point supervisors, five mobile supervisors and six dispatchers. Eight radio

frequencies are available to bus operations. Most of CTA's buses have digital

messaging, GPS and automatic voice channel management. Supervisors have ordinary

radios and the control center has both but supervisors cannot communicate with bus

operators except in person. Their system is specialized and not very automated. Two

radio channels are allocated to supervisors and the balance to bus communication. Buses

report problems to dispatchers, dispatchers may take some action but for most issues
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inform the supervisors of the problem. The system helped the agency be adequately with

at incident management but is poor in terms of schedule adherence.

It should be noted that CTA's digital messaging technology has only been in use since

1999, and was originally intended to be part of a more complex system. The current

dispatching technology, Bus Emergency Communication System (BECS,) was to be part

of an automated schedule monitoring and adjustment system called the Bus Service

Management System (BSMS.) This system would allow for centralized oversight of

schedule adherence and headway regularity in the control center, where controllers would

monitor routes and intervene to maintain schedule adherence. BSMS was designed to

automatically suggest recovery techniques and automate their execution, and was

intended to perform customer service tasks like automating stop announcements and

updating real-time arrival signage at bus stops. For a variety of reasons CTA no longer

plans to implement BSMS as described, although some of the underlying software would

support a proposed modification discussed in chapter 6. The general opinion at CTA, as

revealed in interviews conducted in the summer of 2001, was that BECS had made

operations more difficult and been marginally detrimental to service quality.

Of course an agency's effectiveness at managing incidents or delays is not solely a

function of its service management strategy. But the importance of service management

cannot be dismissed either. When Tri-Met introduced digital messaging and bus tracking

in Portland, headway variation declined by 15% in the peak. In an experiment, Tri-Met

then modified the division of responsibility among supervisors and dispatchers to

facilitate more service restoration techniques along its "transit mall" trunk corridors,

causing another 9.4% reduction in variance along those corridors (James G. Strathman,
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2001.) In Canada the Toronto Transit Commission (TTC) introduced vehicle tracking

and centralized schedule monitoring in 1976 and experienced moderate increases in on-

time performance despite a 30% increase in vehicular traffic and a 13-21% increase in

ridership (Edward K. Morlok, 1993.) But what characteristics of a service management

strategy make it effective or ineffective? Why did Denver, Tri-Met and TTC experience

service improvements with GPS and digital messaging while CTA employees felt the

change made things worse? How can an agency predict what changes in effectiveness a

change in strategy may bring? And how can it choose a strategy that will improve

performance?

2.3 Techniques for Studying Service Management Strategies
In his 1990 thesis, Robert Fellows devised an effective method for studying alternate

management strategies for maintaining even headways on the MBTA's Green Line. The

Green line is a very old light rail line with four branches and 200,000 daily passenger

trips, and has historically been operated in a decentralized manner. Point supervisors

manage headways and schedule adherence with radio and personal contact, while a

dispatcher served primarily to coordinate emergency response. The MBTA was

considering upgrading the Green Line's communication system to provide location

information in the control center, and using that information to heavily centralize

operations. Fellows' thesis compared the performance of the existing strategy with the

likely performance of centralized operations.

Fellows drew on existing Green Line analysis to study the effectiveness of point

supervisors' headway restoration decisions. He cited Deckoff's 1990 work, in which a

spreadsheet model of observed restoration decisions showed that 73.8% of short turns
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reduced total passenger delay. Deckoff also concluded that by using different decision-

making rules, supervisors could increase their success rate to 93.6% without any

additional tools (and passenger time saved would increase from 9,400 minutes to 13,000

despite a reduction in the number of interventions.) He then studied the control center's

likely abilities based on the information that dispatchers would have. He found that

while the dispatcher would have more access to information about the line as a whole

than supervisors do, they would not have access to the level of detail that supervisors

have, and in particular "The resolution of the information provided by the [proposed]

system may not be fine enough to provide an intuitive graphical representation of train

spacing..." (p 85) and that the system would "fall short of providing much of the

information needed to make the routine headway management decisions" (p 88) currently

performed by supervisors. He concluded that, contrary to centralizing decision-making,

"continuing the present division of authority, such that dispatchers continue to manage

incidents and inspectors continue to control headways, may be the only way to capture

the benefits of improved information and strategic control promised by the introduction

of AVI." (p 146) His advice was heeded and the MBTA did not centralize its Green Line

operations.

Fellows' thesis suggests the fundamentals of studying service management strategies. He

studied what people would know under different circumstances, and how that would

impact the quality of their service restoration decisions. The methods of Fellows' thesis,

however, cannot be directly applied to bus service management. Most bus networks are

significantly more complicated in total than one light rail line. The mechanics of

headway and schedule restoration are different due to smaller passenger loads, larger
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headways, and mixed traffic. Bus operations' higher frequency of accidents, mechanical

defects and route diversions make studying the effectiveness of incident management

strategies as important as studying headway maintenance. Finally, there may be

numerous routes that interact and far more vehicles, but far fewer supervisors per vehicle

and fewer shared communications resources per vehicle. (The MBTA has 3.7 two-car

Green Line trains per supervisor and 28 buses per supervisor. A national survey in 1991

found that 21 buses per supervisor was typical (Herbert S. Levinson, 1991.)) This makes

effective division of labor and communication of information both more important and

more difficult.

In Craig Phillip's 1980 thesis Improving Freight Car Distribution Organization Support

Systems: A Planned Change Approach, he suggested a framework for studying a problem

that reflects some of the complication of bus management: efficient distribution of empty

cars on a large freight rail network. Phillip defines the goals of the process as "control

tasks," and suggested the following approach to studying their effectiveness:

"Based on previous research concerned with decision-making and

organization behavior, three key dimensions of this [task] environment

have been identified: (1) the organizational structure; (2) the information

systems; and (3) the decision processes. Unfortunately most previous

research has focussed (sic) on a single one of these elements; linking the

analysis of all three together in a consistent fashion remains a significant

challenge. Yet it is the linkage which is essential, since the problem here

is to understand how changes in one dimension impact, and are impacted

by, the other two dimensions.... by organizing the analyses of the three

dimensions around these control tasks it is possible to understand how

changes in one will impact or be impacted by the other two." (pp 21-23)
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The fundamental building blocks of the distribution problem are a number of moving

vehicles traveling over a large network, a network that must be managed in a way that

continually brings the system closer to its ideal (no empty cars,) despite continuously

changing circumstances and the impossibility of one individual knowing or

understanding every system variable. Freight cars are not buses, but the problem is

analogous to bus service management in slow motion. By defining the different control

tasks of freight rail in the context of decision processes, organizational structure and

information systems - and how those aspects interrelate - one can determine the

effectiveness of a task environment at managing freight. By defining the different

disruptions that must be addressed in bus service in the context of the steps of each

decision and response, who has what responsibility, and how they communicate

information - and how those aspects interrelate - one can determine the effectiveness of a

bus service management strategy.

The steps of decisions and responses can be derived from the detailed analysis of

responding to disruptions in Theory and Practice ofBus Service Management. Potential

assignments of responsibilities to individuals can come from reviewing agency structure

in the manner shown in section 2.2. What remains is a framework for studying

communication.

2.4 Communication's Limits: The Burlington-Northern Study
In 1990, the Burlington Northern radio was considering a shift from voice dispatching to

digital messaging, and needed to determine what impact such a change was likely to

have. In A Comparison of Voice and Data Link Communication: Railroad Dispatcher's

Perspective, John Vanderhorst studied the existing use of communication to answer
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questions such as "What does the dispatcher experience in using these media to

communicate? What amount of communication is required of the dispatcher using these

media? How long do communication exchanges take? What types of messages are

communicated?" (p 6) He accomplished this by transcribing entire days of radio

communication and noting the purpose of the communication, the information being

conveyed, and the length of time the communication took. He then compared it to the

way each task would be handled and how each piece of information would be sent using

a proposed digital system. This allowed him to compare the difficulty of the task for the

dispatcher and the speed of information delivery between the two systems, and served to

demonstrate whether any messages were currently in use but would not be supported

digitally. The analysis concluded that the change would reduce dispatcher workload, by

making information easier to get and automating some processes, and would improve

communications speed and efficiency by eliminating problems of weak radio

transmission and multiple parties trying to use the radio at once.

This analysis was performed on freight rail, but the technique is applicable to bus

communications. By studying the messages on a communication channel, the

information given, the people giving it, the time spent, and the conflicts from overuse,

one can gauge what needs that channel is meeting and what needs it is not.

2.5 Summary
Bus service can experience frequent, varied and unpredictable disruptions. A number of

responses can be used to mitigate these disruptions, and determining the most appropriate

response to a disruption, even on paper, is a complicated process with many variables. In

transit service, those choosing a response do not have access to all the variables or all
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responses, and can make better decisions with more information and tools. Defining an

organizational structure and communication system distributes information,

communication and responsibility to give a decision maker the most information possible

related to the decisions he makes.

Not all service management strategies are equally effective. Existing studies of similar

topics suggest a method for studying a bus service management strategy. The steps

necessary to respond to a disruption and the information required to do them well can be

derived from existing literature studying responses to disruptions. The assignment of

tasks to decision-makers can be derived from an organizational structure. The

effectiveness of communication channels can be derived from studying the information

that it needs to carry and its ability to carry it. Combining these approaches will show

how quickly an organization can respond to a disruption, what techniques it can apply

and how effectively it can choose between them. The more responses an agency has

available to a kind of disruption and the more information it can use in choosing among

them, the better the response chosen for each distinct disruption can be. This thesis will

not determine the relative effectiveness of every response at dealing with every manner

of disruption, but instead will understand that a strategy that enables more responses is

more effective, and that certain types of responses are complimentary. This approach

will lead to a demonstration of how well an organization can respond to particular

disruptions using a given strategy, and an effective analysis of bus service management

strategies.
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Chapter 3: An Overview of Communications Channel
Types
In this chapter, we will examine some of the communications options available to an

agency. For each channel we will comment on who can use it to communicate, and with

how many people at once; how quickly it can be used; what can be communicated; what

the capacity is, and how service degrades as it approaches capacity; how reliable they are,

in general and under specific circumstances; and how they can be recorded. The

communications systems covered will include "open mic" radio channels, trunked radio,

digital data, direct contact, cell phones, conventional and pay phones, and silent alarms.

3.1 Open Mic Radio Channels
Open mic radio channels are the most conventional form of radio, dating back to the start

of the twentieth century. Fixed or portable radios can transmit sounds on a given radio

frequency, and any other radio tuned to that frequency play the sound. Someone using

the radio cannot speak over the frequency and listen to it at the same time. For wide

areas, an agency may have "repeaters," large antennas that pick up signals and

rebroadcast them in other areas, allowing for better reception over large areas. An

agency typically has access to a fixed number of frequencies which it can use as it sees

fit. Communications can be scrambled to prevent those outside the agency from

eavesdropping, but typically are not, in which case anyone with a commercially available

police scanner can listen in. It is not uncommon for news agencies to have scanners

listening to radio transmissions, including those of transit agencies.

Anyone with an agency radio can speak on one of these frequencies, and everyone else

on the frequency will hear it. While in theory one can start speaking as soon as one
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wants to - the moment someone pushes his radio key, his radio is transmitting - in reality

not only must he wait for the frequency to be clear of other conversations, but he must get

the attention of the parties relevant to his message, and for a busy frequency he may have

to get permission from a central authority to speak. This, in addition to the end of the

conversation, results in an average of about ten seconds of overhead for each

conversation (see appendix B.) Almost any information can be communicated on an

open mic radio, but if the signal is not scrambled, it cannot be used for information that

must stay within the agency for reasons of public relations, customer or employee

privacy, or security. The greater the amount of information transmitted, the greater

amount of capacity, or time, is used (see appendix B.) Radio frequencies are vulnerable

in a number of ways. Something as simple as one employee sitting on his radio's "talk"

button can make a frequency virtually useless. Although radios are a very old and well-

understood technology that can be built reliably, parts of individual radios still break in

the field. If a repeater tower loses power or is knocked down in a storm, it can be

difficult for people in one area to be heard by those outside it and vice-versa, although if

a system is built with some redundancy the problem would be minor. Interference can

also be a problem in severe weather. A radio frequency can be interfered with by those

with ill intent by sabotage of the repeaters or transmission of static over the frequency.

Agencies can record channels for quality assurance and legal liability purposes.

3.2 Digitally Managed/ Trunked Radio Channels
This category refers to any kind of communication that is voice communication over

radio waves but is not open mic. A central computer or special digital protocol between

radios dynamically assigns the ability to speak and listen to certain frequencies according
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to the needs requested by the users. This means that the frequencies can be used for

specific one-to-one conversations or conversations with groups of people. Trunked radio

is relatively new, and different standards have different characteristics. Some increase

the conversations that can occur per frequency, some do not. Some carry data, some do

not. Some are secure and safe for confidential information, some are not. Time to set up

a conversation can vary greatly, from an average time of 105 seconds from a bus' request

to talk to the start of conversation at CTA (assuming immediate controller response) to an

average time of 0.5 seconds with TErrestrial Trunked RAdio (TETRA,) which is being

adopted by a number of European public service agencies. The technology used and the

number of frequencies available both have an impact on conversation setup speed.

Digitally managed radio frequencies can offer the considerable advantage that a user can

address a message to an arbitrary group of people determined on the fly, rather than a

fixed group of people as with an open mic channel. If an agency is too large to contain

all of its communications on one channel, this avoids the inefficiency of having to send

some messages on both channels to reach everyone, and having to hunt through several

channels to find a specific person. Also, by assigning different open mic frequencies to

different regions or aspects of service, the demand on some of those channels can exceed

capacity, while others go underutilized. This can happen consistently, as it is rarely

possible to divide the frequencies between functions such that each will have an equal

amount of demand, and it can happen sporadically, as an unusually large number of

disruptions occur at once in a given aspect of service. By assigning frequencies to

conversations dynamically, trunked radio makes the only constraints to establishing

communication the number of frequencies available and the availability of radio users.
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If a radio system is managed by a central computer, as is common, a failure in the

computer can lead to a failure in the communication system. Depending on design and

the nature of the failure, the radios may become entirely inoperative, or could revert to a

fixed-frequency system. A digital radio system is less vulnerable to jamming or

interference, as interference with one frequency reduces the capacity shared by everyone

using the digital system, rather than eliminating the capacity of everyone using the given

frequency. In other ways, such as with the use of repeaters, trunked radio is like open

mic radio.

3.3 Digital Messaging
The transmission of digital messages can occur either over wires or over a dedicated

radio frequency. Transmission over wires is most often done with a "broadcast"

protocol, such as Ethernet, which is decentralized. Due to the higher lag time of radio,

communication over the air is more often through "polling," in which all messages go

through a central computer. Digital messaging has several advantages not found in voice

communication, and also its own drawbacks.

Digital messages can go from anyone with a digital message unit to anyone with a digital

message unit, including a number of recipients simultaneously. A computer program

performing simple service management tasks automatically could be the sender of the

message, the recipient, or both. A message might also contain some information from a

person and some from a computer, as when a bus driver sends a breakdown report and

the on-board computer includes the bus' location in the message. The capacity of a

digital messaging frequency allows for many more messages to be sent during an hour

over one frequency than would be possible with voice. Messages can be automatically

36



queued for the recipient, allowing them to finish the task they are working on before

reading the message, and allowing multiple senders to send messages to the same

recipient simultaneously.

The drawbacks of digital messaging include the cost, the limitations on what messages

can be sent, the speed and accuracy of sending a message, and its inability to support a

conversation. A digital messaging system can only send the messages that it was

designed for. This limits the amount of detail that can be given about a situation. If a bus

operator can only send a message saying he has a mechanical defect, voice

communication is necessary for the respondent to determine the severity of the defect and

the most appropriate response. The more messages are made available to send, the more

complicated the system, and the greater the chance of operator error. More messages

available for sending also mean that it takes longer to enter the message to be sent. If a

bus operator wishes to report that he is behind schedule, it may only take him ten seconds

to send the message using an open mic, and he may be able to do it when the bus is in

motion. If it takes him one minute to enter the report into a computer, and he must pull

over to do so safely, he is now an additional minute late. Dispatchers and mobile

supervisors may have access to systems with keyboards, allowing them to send whatever

text message they wish, but this is unwieldy for street supervisors and bus operators, who

must usually choose a limited number of messages from a menu. The limitation on what

data can be sent also limits the possibility of collaborative problem solving over the

communications channel, which is more difficult without the freedom to explain

whatever details are thought relevant and the nuances of voice communication.
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Digital messaging handles excess demand more gracefully than open mic or trunked

radio. Messages may be relayed more slowly, but it would take a prolonged and

exceedingly high demand to delay messages more than several seconds. Communication

over wires is dependant on the condition and security of the wires, while communication

over the air is dependant on all the factors found in any radio system (see section 3.1) and

the operation of one central computer. Digital communication is more susceptible to

repeater tower failure than voice communication. If a repeater tower is disabled, people

on voice radio can often be picked up through another tower, and need only to shout and

repeat themselves to be heard over the static. Data units cannot always compensate in the

same way. One cannot eavesdrop on data messages without equipment and inside

knowledge, so they are appropriate for confidential communication. Not only can

agencies record digital messages for quality assurance and legal liability purposes, but

they can also use the stored information to study service issues - searching the data

automatically to find out how many delay reports were sent during a particular time of

day, for example. (For an example of this application, see section 6.1.2.)

3.4 Direct Contact
Direct contact refers to people in the same place communicating with each other without

any kind of technology. It goes without saying that anything can be said, nothing is

recorded, the only capacity issue is the limit of what one person can do in a given period

of time, and personal contact is not susceptible to malfunction or sabotage.

The constraining aspect of direct contact is that it can only occur between people who are

in the same place, while transit agencies are most concerned with moving objects. This

means that messages between a bus and a point supervisor cannot be given by direct
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contact until the bus reaches the point supervisor, at which point the bus must hold in that

place until the conversation is finished. Messages between a bus and a mobile supervisor

can only occur if the mobile supervisor seeks out the bus, which depending on the

situation may mean that some other method of communication was necessary to initiate

the process.

This constraint and the awareness of bus locations and conditions in the supervisor's line

of sight are the principle factors to consider when deciding where along a bus route a

point supervisor can do the most good. Placement of street supervision is an involved

topic, of too much depth to explore fully here. Broadly, supervisors at terminals are

better equipped to reschedule the street and manage route-wide issues, while supervisors

along the route are better equipped to manage headways and make schedule adjustments

to individual buses. See chapter four for more information on these problems and

recovery techniques.

3.5 Cellular Phones
Cellular phones allow their users to communicate with any other individual with a phone.

It takes on the order of thirty seconds to establish communication with another individual,

and longer to establish communication between three people. They are normally used for

communication between two people, as communication between three is usually

unwieldy.

Cellular phones make bandwidth an issue of the supplier, rather than the agency. This

can be positive, when a major disruption causes an agency to need much more capacity

than it would ordinarily budget for, or when an issue would benefit from a prolonged
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discussion between two people that would be impractical on an open mic system. It can

also be negative because this capacity is shared with the provider's other customers. A

company may routinely have insufficient capacity during certain times of day, and when

significant regional events increase overall cellular demand it reduces the value of the

phones to anyone. Cellular phones are also less reliable in certain areas and do not

usually function in tunnels.

Notably, conversations between two cellular phones cannot be conveniently recorded for

quality assurance or legal liability purposes. The only records available are when

conversations took place, whom those conversations were with, and how long they lasted.

Liability issues have caused some agencies (including the Massachusetts Bay

Transportation Authority) to phase out all cell phone use. An adequate number of

trunked radio channels is superior to cell phone use in almost every way. The advantages

cellular phones provide over digital radio is that they may be cheaper and faster to

deploy, and their bandwidth is not a constraint in the event of a major agency disruption

that is not accompanied by a regional emergency. Eavesdropping on them is almost

impossible and they are suitable for confidential communication.

3.6 Conventional Phones and Payphones
Conventional or "land line" telephones are far more reliable than cellular phones. Though

sometimes phone lines are damaged during heavy storms, it is very rare for a phone

switch to be overloaded by anything but a major regional emergency. Land line phones

are less expensive than cellular phones, and conversations can be recorded, although this

can be more expensive and problematic than recording voice radio if the calls do not all

go to a small number of central facilities. In other words, if a supervisor at one bus

40



terminal telephones a supervisor at another bus terminal, the conversation would not be

recorded if neither terminal had recording equipment. With the above exceptions, the

only difference between conventional and cellular phones is a cellular phone's mobility.

Supervisors or bus operators can use payphones if they are nearby. They can start a call

but they cannot be called. Payphones are sometimes used for routine messages that are

not time-sensitive, such as a reminder to the control center that a problem still has not

been resolved, or for relaying information too sensitive for the radio, such as the details

of an accident. While payphones are on the same network as conventional phones, the

payphones themselves are often unreliable. Dependence on pay phones outside city

centers may not be a viable long-term strategy. The increasing popularity of cellular

phones is taking business from payphones, and as a result phone companies are

disconnecting an increasing number of now unprofitable pay phones (Jon Auerbach,

1994.)

3.7 Silent Alarms
Silent alarms can work in several different ways and could be part of a number of the

categories listed above, but are listed here because of their unique qualities. A silent

alarm is a distress signal that a bus operator can send without the passengers' knowledge.

As such it is designed for use only in emergencies and must be transmitted reliably. It is

the only message for which the sender himself cannot add any more information, and in

the event of a sensitive or broken switch, it is the only message that can be sent

accidentally without the sender's awareness.

41



A silent alarm can be as simple as flashing lights on the front of a bus and a destination

sign that reads "NEED HELP - CALL POLICE." Such a system relies on a passerby to take

the initiative to find a phone and call 911. A more reliable system is a silent alarm that

sends a radio distress signal. This signal could be audio, digital, or a combination of the

two. It must indicate the bus or run number so that the recipient, usually the control

center, can dispatch police or supervision to look for the appropriate bus. Other

information may include the bus' location, whether the bus is moving, and a hidden

microphone broadcast of events on the bus. Transmitting the image from a security

camera is also possible, but the author does not know of an agency that does so. This

information can help authorities find a bus faster and be better prepared to intervene.

Because a silent alarm must be fail-safe, its signal is rarely scrambled, and it cannot be

deactivated remotely.

It is clearly critical that a silent alarm work when activated, but it is also important that

silent alarms do not often go off by mistake. False alarms create unnecessary work for

supervision or police, and several simultaneous silent alarms with hidden microphones

can take up most of an agency's communication channels, hindering their ability to

respond to the alarms or to anything else. If two buses send silent alarms on the same

frequency at the same time, one alarm false and the other an emergency, it may be very

difficult to hear what is happening on the bus experiencing an emergency, or even to

determine which transmission is which. Silent alarms are a powerful safety tool, but

poorly installed or maintained they can be as much a liability as they are an asset.

3.8 Summary
The following highlights can be drawn from the preceding descriptions:
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" A good trunked radio system, while more expensive than conventional radio or

cellular phones, combines the benefits of both: reliability, capacity, flexibility,

and the ability to be recorded.

" Digital data can be faster than voice communication and can give frequencies

more capacity, but is not a substitute for voice communication. Some messages

cannot be conveyed digitally and wireless digital systems are vulnerable to

interference and centralized failure.

" Digital data, with its ease in reporting and compiling locations, can be particularly

useful in managing headways and schedules; voice communication, with its

flexibility and allowance of detail, is particularly useful for responding to

breakdowns, accidents and disturbances.

* Pay phones are an appropriate means of communicating a slim minority of

messages, but may become too sparse to be useful in the future.

* Silent alarms can be a valuable safety tool, but can be very disruptive to

communications and operations if inadequate maintenance results in many false

alarms.
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Chapter 4: Situations and Responses
A transit agency of any size experiences a certain number of disruptions during the

course of its workday. While each of these disruptions is unique - no two accidents are

exactly alike - they can nonetheless be placed in broad categories that have much in

common. For every mechanical breakdown that disables a bus, there is a common set of

problems to be dealt with, a common set of decisions that must be made, and a common

set of potential responses. Determining these categories, these decisions, and these

responses is an important part in modeling any aspect of service restoration, and is the

purpose of this chapter.

We will first describe the disruptions that arise during transit service, and the most

common techniques used to deal with them and restore service. We will detail what real-

time information and general knowledge is necessary to implement these service

restoration techniques. We will outline the decisions that must be made to choose the

best response, ultimately presenting charts of all steps that might be taken in dealing with

a typical disruption. Finally we will examine the importance of timeliness in responding

to these events.

4.1 Common service disruptions
In this section, we present a list of the fifteen most common forms of disruption and one

situation that is not a disruption. This list is intended to include the disruptions that occur

regularly in the provision of transit service. It is not intended to include every problem

that conceivably could occur during transit service. One can imagine, for example, a

dual-mode bus that suffers an electrical failure, preventing itself from following its

scheduled route through an exclusive bus tunnel but not preventing it from serving a

45



route for which it is not scheduled. Such a scenario would not fit cleanly into the

situation list below, however it is not likely to be a common occurrence for most

agencies. Agencies using the methods outlined in this thesis should stop to consider if

their bus operations have any frequent problems that are not represented in this list.

The following

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10
4.1.11
4.1.12
4.1.13
4.1.14
4.1.15
4.1.16

disruptions will be covered:

Bus early
Bus delay (short headway route)
Bus delay (long headway route)
Crush load (one bus, not delayed)
Mechanical problem (minor - bus movable)
Mechanical problem (serious - bus movable without passengers)
Mechanical problem (major - bus immobilized)
Emergency / Security / Fare Dispute
Accident
Operator Misses Relief
Blockage
Bus Standing / Service Gap
Unfilled Run
Unplanned Bus Bridge
Congestion / Weather / Route-wide Crowding
Late Pull-Out

The selection and organization of items on this list is a synthesis of the material in Theory

and Practice in Service Management (Edith Froloff et al., 1994), the original Bus Service

Management Systems specification (Lawrence Wilson, 1992), and the Chicago Transit

Authority's Bus Emergency Communications System program structure.

4.1.1 Bus Early
A bus is early if it is ahead of its schedule. An early bus may or may not be a problem.

Imagine a route that runs every half hour, collecting passengers in the suburbs and then

taking a highway to a downtown transit center. If the bus is ahead of schedule in the

middle of the collection portion of its route, passengers who arrive on time will miss the
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bus, so that is a problem. If the bus makes unusually good time on the highway, that is

not a problem, as no one else is expected to board. In this paper, "bus early" refers to any

time a bus is early, whether it is actually a disruption or not.

4.1.2 Bus delay (short headway route)
A bus is delayed if it is behind schedule. Delays are the most common kind of disruption

for many agencies, and there are many potential ways to divide them into categories. For

our purposes, delays will be divided into routes with short or long headways.

A "short headway route" can be approximated as any route with a headway of ten

minutes or less, but can more accurately be described as any route for which most

passengers show up randomly, or any route on which a delayed bus is likely to lead to

bus bunching.

4.1.3 Bus delay (long headway route)
For our purposes, a "long headway route" can be approximated as any route with a

headway of greater than ten minutes, but can more accurately be described as any route

for which most passengers time their arrival at the bus stop according to the bus'

scheduled arrival.

4.1.4 Crush load (one bus, not delayed)
Delayed buses are often crowded, but it is also possible to have an excessively crowded

bus that is still on schedule. The crowding increases the probability that the bus will fall

behind schedule, but as it is sometimes possible to proactively address this problem

before the bus becomes late, crush load is included here as its own condition.
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4.1.5 Mechanical problem (minor - bus movable)
Mechanical problems can also be subdivided in a number of different ways; however for

our purposes they will be divided into problems leaving the bus movable and in service,

problems serious enough to prohibit passengers from riding the bus, and major problems

which immobilize the bus entirely. Examples of minor problems include disabled

climate control, leaking roof, or a broken wheelchair lift or farebox. Depending on

agency policy, a broken lift or farebox may be considered a serious mechanical problem,

but in general a minor mechanical problem is any problem that is unpleasant, but not so

troublesome that it is worse than providing no service at all.

4.1.6 Mechanical problem (serious - bus movable without
passengers)
A serious mechanical problem is any problem for which the bus can still move, but the

agency cannot use the bus to carry passengers. The most common kind of serious

mechanical problems are safety problems, such as broken doors or a smoky interior.

A serious mechanical problem gives rise to an unfilled run (4.1.13) and a service gap

(4.1.12.)

4.1.7 Mechanical problem (major - bus immobilized)
A major mechanical problem is any problem for which the bus is immobilized.

Examples of major mechanical problems include dead motors, worn-out clutches, and

faulty brakes.

Major mechanical problems often result in an unfilled run (4.1.13) and a service gap

(4.1.12.)
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4.1.8 Emergency / Security / Fare Dispute
A disruption in this category could be something as simple as graffiti in process to

something as grave as an assault on a driver, and could also include sick passengers.

While these situations may ultimately require very different responses, they are

deliberately combined into the same category because learning the severity of a problem

is often difficult. A silent alarm on a bus could go off by mistake, or could indicate grave

danger, and the agency must often take action without knowing the severity of the

situation.

Emergencies often occur with a bus delay (4.1.2, 4.1.3.)

4.1.9 Accident
An accident is any situation in which the bus makes contact with another object outside

the agency's garage. Like emergencies, accidents have a wide range of type and severity

that govern the urgency and degree of response.

Accidents often give rise to a mechanical problem (4.1.5, 4.1.6, 4.1.7), an unfilled run

(4.1.13) and a service gap (4.1.12.)

4.1.10 Operator Misses Relief
An operator missing a relief occurs when a bus driver arrives at a relief point expecting to

be relieved, and his relief is not present. An operator not reporting to a garage to begin a

run is not considered a missed relief for our purposes; if no driver can be found within the

garage, it would be considered an unfilled run (4.1.13.)

The frequency of this disruption, and the appropriate service restoration techniques, vary

tremendously from one agency to another. They are both greatly impacted by work rules
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and agency policy. This thesis will use a generalized framework of possible responses,

which most agencies will need to adapt to their own situation.

4.1.11 Blockage
A blockage is any condition on a route that prevents buses from traveling along a portion

of the route. A blockage can be the result of a flooded street or a fire, or it can be as

simple as a broken railway gate or double-parked car. Blockages can usually be

bypassed on different streets, but this reroute must be managed so that buses can do so

consistently and without getting lost.

Blockages often result in bus delays (4.1.2, 4.1.3) and may prompt the equivalent of an

unfilled run (4.1.13.)

4.1.12 Bus Standing / Service Gap
A service gap refers to the adjustments that must be made to provide the best service

possible on a route operating with one fewer run than usual. This can be caused by a bus

standing instead of being in service or by an unfilled run. Many of the situations in this

list create a service gap.

4.1.13 Unfilled Run
An unfilled run is the absence of both a bus and a driver needed for a run. The difference

between bus standing / service gap, above, and an unfilled run refers to the different

aspects of the problem of not having a bus and driver ready for a scheduled trip. Bus

standing / service gap refers to the need to manage service without the run. Unfilled run

refers to the effort to restore the run. An unfilled run implies a service gap, but a service

gap does not imply an unfilled run. A situation in which a driver is present without a

50



working bus (such as a mechanical failure) or a bus is present without a driver (such as a

missed relief) is not considered an unfilled run, as they are addressed in different ways.

4.1.14 Unplanned Bus Bridge
A bus bridge (or "shuttle") is not itself a disruption, but is a service necessitated by a rail

disruption. A bus bridge is necessary when a portion of a rapid transit line is shut down,

requiring bus substitution. It is only applicable to agencies that have a rail component, or

share an operating area with an agency that has a rail component. Unplanned bus bridges

require the agency to provide a great many buses and drivers at once, usually pulling

some of them from other routes. While some aspects of a bus bridge can and should be

planned ahead of time, such as what routes the buses should take, the route must be

managed more actively than other routes because there is no set schedule for its drivers to

follow. Therefore headway management, and especially putting the buses in place as the

bridge begins operation, requires active oversight.

4.1.15 Congestion / Weather / Route-wide Crowding
Sometimes conditions occur which adversely affect most of a route, or a number of

routes. When this occurs, the route's schedule can become impossible to adhere to, and

the route can become over-crowded, with each condition contributing to the other. This

category carries a wide range of severity, from a slowdown due to construction to heavy

snowfall; a true system-wide emergency, though, like rampant flooding, is outside the

scope of this thesis.
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4.1.16 Late Pull-Out
A late pull-out is not a disruption, but still a service event that must be addressed. A late

pull-out signifies the end of an unfilled run. The techniques that were started to deal with

the unfilled run should be stopped when the late pull-out is put in place.

4.2 Recovery Techniques
In this section, we present a list of the 29 most common recovery techniques agencies use

to restore service in the event of a disruption. This list is intended to include the

techniques used fairly regularly by a number of agencies and is not intended to include

every technique that an agency could conceivably use. The resourcefulness of managers

in the field often leads to one-of-a-kind creative responses to unusual combinations of

situations. Furthermore not all of these responses will be available to all agencies. One

agency might have no mobile repair trucks, another might have strict work rules that

prohibit drivers from driving runs other than those they are assigned.

It should also be noted that signal priority does not appear on this list. It is assumed that

if an agency uses signal priority in its operations, it happens automatically based on the

bus' location and perhaps schedule adherence. The interventions appearing on this list

are only those for which some human intervention is required.

The techniques in this list are broken into five broad categories: managing headways and

schedules, solving mechanical problems, managing reliefs, providing additional or altered

service, and managing emergencies. They are listed by category in Table 4-1. These

categories are intended to organize the list, rather than definitively state the purpose of

the techniques in it. A number of techniques could have fitted equally well into several

categories.

52



53

Table 4-1: Response Techniques by Category
# H M R A E

Headways/schedules Mechanical problems Reliefs Additional service Emergencies
T Hold bus Supervisor repairs Wait for relief Use standby bus Bus continues to

bus at terminal point supervision
2 Hold leader Supervisor repairs Relief operator relieves other Fill from another street Dispatch mobile

bus on site than scheduled operator supervision
3  Drop off only Truck repairs bus on Relief operator relieves Fill with pull-in Dispatch police

site scheduled operator later and/or medics
4 Express to a later Maintenance brings Pull in Put bus in place

point bus change
5 Express down a Maintenance tows Pull out instead of relieve Emergency reroute

different street bus
6 Short turn Pis in/out Operator exchange
7 Follower picks up Jump buses

passengers
8 Spread the interval
9 Spread the terminal /

reschedule street
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The selection and organization of items on this list is a synthesis of the material in Theory

and Practice in Service Management (Edith Froloff et al., 1994), the original Bus Service

Management Systems specification (Lawrence Wilson, 1992), and observations made at

the Chicago Transit Authority.

4.2.1 Managing Headways and Schedules (H)

H.1 Hold Bus
Holding a bus means having the bus driver wait in one place, usually at a stop, for a set

amount of time before resuming progress along its route.

For our purposes, hold bus refers only to holding a bus to benefit that bus, to deliberately

slow that bus down. For holding a bus for the sake of its follower, see "hold leader,"

below. To hold a bus, it is necessary to know how long to hold the bus for, which can be

is a function of the bus' current location and the schedule.

H.2 Hold Leader
Holding a bus' leader means having a bus' leader stand in place for a specified number of

minutes. By holding its leader, the bus' leading headway is reduced, resulting in less

passengers waiting to board this bus. This can help a bus travel faster.

Because holding a bus' leader is a fairly common and powerful technique, it is worth

discussing two common variations. In conventional or "normal" holding of a leader, the

leader of a late bus is held until the late bus' leading headway is equal to the route's

scheduled headway. This means that the held bus' leading headway is now about equal

to the late bus' leading headway before holding. The gap in service has not been
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eliminated so much as it has been moved further up the line to a less crowded bus. This

technique requires knowledge of the positions of the late bus and its leader.

With "prefol" holding of a leader, an abbreviation of "preceding - following," a bus'

leader is held until that bus' leading and following headways are equal. Say buses A, B,

and C are operating on a route with 8 minute headways, with A in the lead. Bus C is two

minutes late, giving it a 10 minute leading headway. Under normal holding of a leader,

bus B would be held 2 minutes to restore bus C's leading headway to normal, giving it a

headway of ten minutes. Under prefol holding of a leader, bus B would be held one

minute, giving buses B and C each 9 minute headways. Prefol holding "dissipates" a

delay, so that it can do less damage. In 2001, Xuhui Lang found that prefol holding led

to a 38% reduction in passenger wait time compared to conventional holding. This

technique requires knowledge of the positions of a late bus, its leader, and its leader's

leader.

H.3 Drop-off Only
Drop off only refers to allowing passengers to exit, but not allow boardings, for a portion

of the route. This allows the bus to operate faster than it otherwise would, while

inconveniencing passengers who are not allowed to board and must wait for the next bus.

The increase in speed is not as great as that from expressing, but no passengers are forced

to alight and wait for local service as with expressing, and no "follower picks up

passengers" (H.7) is necessary. To operate drop-off only service, a bus operator must

know the portion of the route for which he is to do so, which is a function of position,

schedule, and the expected time savings.
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H.4 Express to a Later Point
Expressing refers to proceeding along a portion of a route without stopping at scheduled

stops to pick up or discharge passengers. This allows the bus to travel faster than it

normally would, but it inconveniences passengers who would otherwise have exited or

boarded during the express portion of the trip. Passengers who would have exited must

exit beforehand, and then both sets of passengers must wait for the next bus. It is

necessary for the follower to pick up passengers (H.7) so that no passengers are charged

an extra fare. To express to a later point, an operator must know the portion of the route

for which to express, which is a function of bus position, schedule, and the expected time

savings.

H.5 Express Down a Different Street
Expressing down a different street is similar to expressing to a later point, except that the

bus operator takes a different route than usual to get from the beginning to the end of its

express portion. This is a useful variation if a street network happens to offer a faster

alternative to a portion of a route, which could be as simple as a parallel arterial or as

complicated as any set of directions. Having the follower pick up passengers (H.7) is still

required. Unlike when expressing to a later point, the driver needs to know not just the

starting and ending points (a function of bus position, schedule, expected time savings,

and street geography) of the expressed portion, but the alternate routing in between.

H.6 Short Turn
A short turn occurs when a bus operator does not proceed to the end of his route as

scheduled, but instead discharges his passengers, turns around, and starts a trip in the

return direction from a point after the normal beginning of the trip. This can bring a very

late bus back to schedule with one action, but is an inconvenience to discharged
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passengers and passengers in either direction who cannot board this bus. To execute a

short turn an operator must know at what point to turn, which is a function of the bus'

position and schedule. It is also necessary for the follower to pick up passengers (H.7.)

H.7 Follower Picks up Passengers
In this instance, the follower of a bus that was disabled, expressed, etc. allows passengers

to board for no fare. This may require the follower to know to allow passengers to board

freely, or it may require the affected bus driver to distribute transfer tickets to discharged

passengers, depending on the fare system the agency uses.

H.8 Spread the Interval
Spreading an interval refers to closing a gap on a route that has had a bus taken out of

service while on the street. If the agency has control over signal priority, this may

involve holding the gaps' leader and increasing the speed of the gap's follower until the

gap's length, the gap's leader's lead headway, and the gap's follower's following

headway are all equal. Spreading the interval can also involve only the gap's followers,

the gap's two leaders and two followers, etc. as dictated by the severity of the situation

and the abilities of the agency. Spreading the interval therefore requires the immediate,

coordinated action of several buses based on their location.

H.9 Spread the Terminal / Reschedule Street
Spreading the terminal refers to changing the headway of a route to reflect a loss or gain

of a bus operating on the route. For instance, if a route with a one hour cycle time and

five minute headways normally operates with 12 buses but loses two of them, the

terminal could be spread to six minute headways to minimize passenger impact.

Spreading the terminal requires the coordinated action of each bus departing a terminal.
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4.2.2 Solving Mechanical Problems (M)

M.1 Supervisor Repairs Bus at Terminal
This action is self-explanatory. If a supervisor is stationed at the terminal, then no

advanced notice is even necessary. He can attempt to repair the bus when it arrives (or

does not start.) If no supervisor is stationed there, the action would be more accurately

considered a repair of the bus on-site (below.)

M.2 Supervisor Repairs Bus on Site
This action refers to a supervisor repairing a bus at the place where it becomes disabled.

This generally means having a mobile supervisor travel to meet the disabled bus,

requiring that the supervisor know the bus' location.

M.3 Truck Repairs Bus on Site
This refers to a mobile repair truck driving to the site of a disabled bus and attempting to

repair it. As with a mobile supervisor, the repair truck must know the bus' location.

M.4 Maintenance Brings Bus Change
In this case a "runner" drives a bus from the garage to meet the driver of a bus that has

experienced a mechanical defect, in order to allow that bus driver to resume his run with

the new bus. The runner returns to the garage with the disabled bus, driving it in himself

if it is not immobilized, or riding with the tow truck if it is towed back (below.)

M.5 Maintenance Tows Bus
If a bus cannot be repaired on-site, the only remaining option is to tow it to the garage.
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M.6 Pull In/Out
When a bus is experiencing problems but is still movable, one option is for the bus

operator to drive the bus to the garage and drive out with a different bus. This is a

combined pull in and pull out, or "pull in and out."

M.7 Jump Buses
This recovery technique allows all trips on a route to be served if there are enough drivers

but one fewer bus than necessary. If the recovery time at the terminal is greater than the

route's headway, under normal operation there will always be at least one driver on break

at the terminal and one bus standing there, and they will not start their trip until after their

follower arrives at the terminal. If that standing bus is non-operational or undesirable,

and the driver pulls out and starts his trip with the bus that his follower pulled in with, it

is called jumping buses. That follower can then pull out with the bus of his follower, and

so on allowing trips to proceed as scheduled even if one bus 1 is disabled. Of course, it

effectively reduces recovery time by the headway of the route. As jumping buses is

limited to one location, only one order needs to be given, which can then be passed on

from one operator to the next.

4.2.3 Managing Reliefs (R)

R.1 Wait for Relief
If a relief operator is not present at a relief point, the easiest response can be for the

operator being relieved is simply to wait and see if the relief driver shows up soon. This

of course means there is no service until the relief appears, which can seriously

inconvenience any passengers already on the bus, but it avoids much of the complication

associated with juggling reliefs.
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R.2 Relief Operator Relieves Other Than Scheduled Operator
In this case, a relief operator relieves a different operator than he normally does. This can

never occur singly in isolation, but can be combined with itself or pull in (R.4.)

R.3 Relief Operator Relieves Scheduled Operator Later
In this case, a relief operator scheduled to make a relief of a certain driver at a certain

place and a certain time, makes the same relief of the same driver at the same place at a

later time, a half trip or round trip later. The driver is usually given overtime pay for his

extra work.

R.4 Pull In
In this case a driver returns his bus to the garage at a time when he would normally be

relieved or in the case of mechanical defects, continue in service. For reliefs it is often

accompanied with a "pull out instead of relieve," below.

R.5 Pull-out Instead of Relieve
In this case, a relief operator who would normally make a relief at a relief point starts a

trip at a garage instead. This works best if the driver to relieve has pulled in, above, and

the relief point is fairly close to the garage.

R.6 Operator Exchange
When "juggling reliefs," as the application of some of the above is called, an agency can

end up with all their trips filled but some of them filled with different drivers than usual.

Sometimes the drivers can just remain on their new runs, but they can also be scheduled

to work for different lengths of time, scheduled to make reliefs, scheduled to take

different routes later on, etc. In these cases it is sometimes necessary for operators to

meet in the middle of a route, cross the street to the other bus, and resume their regular
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route. This is an operator exchange. Along busier streets, it is usually necessary to

determine the location ahead of time in order to idle at designated stops and cross the

street at designated crosswalks. Along streets with light traffic it can sometimes be easier

just to trade buses when they make visual contact.

4.2.4 Providing Additional or Altered Service (A)

A.1 Use StandbyBus
Some transit agencies will have a standby or "Run As Directed (RAD)" bus and driver

ready to quickly take the place of a run that is not in service for any reason, or provide

extra service where it is needed. There are many different uses of standby buses,

including providing extra service for a crowded route, replacing a bus with a mechanical

defect, etc. which for our purposes we will lump together. The operator of the standby

bus needs to know where to go, what to do on arrival, and possibly an entire run schedule

and driving directions. Before someone makes a decision to use a standby bus, that

person must first know whether the bus is already in use.

A.2 Fill from Another Street
This refers to taking a bus and driver normally operating on one route and placing it on

another. This is most frequently used to make sure that an departure on a long-headway

route is not missed, at the expense of crowding on a short-headway route. It can also be

used to balance crowding on a number of routes.

A.3 Fill with Pull-in
Another way to provide replacement or additional service is to use a bus and driver that

were originally scheduled to pull in. This usually involves the expense of overtime pay.
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A.4 Put Bus in Place
If a bus is beginning its run late or is going back in service after an absence, it is

necessary to determine where the bus should resume its service. This decision is

complicated by modifications that have been made to the route's schedule to compensate

for the bus' absence, reliefs the operator is involved in later in the day, etc.

A.5 Emergency reroute
If bus operators are required en masse to operate along a different route than they are

used to, they must all be given instructions on how to proceed along their new route.

Adjustments to the schedule, or the creation of an entirely new schedule, may also be

necessary.

4.2.5 Dealing with Emergencies (E)

E.1 Bus Continues to Point Supervision
In some emergencies, the bus can safely continue to the nearest point supervisor, who can

deal with the situation. For this to happen effectively, the bus operator may need to be

instructed to proceed, and the point supervisor should be notified to ensure that he is there

and prepared to assist when the bus reaches him.

E.2 Dispatch Mobile Supervision
At times it is necessary to dispatch mobile supervision to deal with an emergency, either

to a fixed point or to intercept a bus in motion. To do so the mobile supervisor needs to

know the nature of the emergency, the location of the bus, and if the bus is moving,

enough information to locate it successfully (either knowledge of the bus' route and the

time corresponding to the given location, or real-time tracking.)
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E.3 Dispatch Police and / or Medics
If police or medics are necessary, the police department or 911 dispatching center must

be informed of the nature of the emergency and the bus' location. If a bus is moving, it

would be necessary to give the police department enough information to locate the bus,

which would involve a greater degree of communication than when dispatching mobile

supervision above because the police are likely to have less knowledge of agency bus

routes on hand than a mobile supervisor.

4.3 Information Needs in Disruption Management
In this section, we will study the information requirements of understanding the

occurrence of disruptions, choosing the most appropriate response technique, and

implementing that technique. Note that the examples we will review are generalized.

Some rarely used responses are omitted, and some charts will vary greatly by agency.

These charts are intended as a general, rather than an exhaustive, framework. Table 4-2

summarizes the relationship between responses and disruptions.

4.3.1 Chart Format

Symbols

Problem impacting one bus specifically, such as a breakdown

Problem impacting a bus route in general, such as congestion

V Knowledge that does not change often, such as the schedule of a bus

T Information that changes continually, such as the location of a bus

f An actor such as a bus driver
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Table 4-2: Disruptions and Responses
1 Bus early Hold bus (H1)
2 Bus delay (short headway) Hold leader (H2), drop off only (H3), expressing (H4, H5), short turn (H6), follower picks up passengers

(H7)
3 Bus delay (long headway) Drop off only (H3), expressing (H4, H5), short turn (H6), follower picks up passengers (H7)
4 Crush load Hold leader (H2), drop off only (H3), use standby bus (Al)
5 Mechanical problem, minor Repair at terminal (MI), jump buses (M7), juggle reliefs (Rl-6)
6 Mechanical problem, serious Repair bus (M1-3), bring bus change (M4), jump buses (M7), juggle reliefs (R1-6), use standby (A1)
7 Mechanical problem, major Repair bus (M1-3), bring bus change (M4), tow bus (M5), jump buses (M7), juggle reliefs (Rl-6)
8 Emergency Continue to point supervision (El), dispatch mobile supervision (E2), dispatch police / medics (E3)
9 Accident Dispatch mobile supervision (E2), dispatch police / medics (E3)
10 Operator misses relief Juggle reliefs (Ri-6)
11 Blockage Emergency reroute (AS)
12 Bus standing / Service gap Follower picks up passengers (H7), spread the interval (H8), spread the terminal (H9)
13 Unfilled run Use standby bus (Al), fill from another street (A2), fill with pull-in (A3)
14 Unplanned bus bridge Use standby bus (Al), fill from another street (A2), fill with pull-in (A3), pull out instead of relieve (R5),

emergency reroute (A)
15 Congestion / Weather Spread the terminal (H8), use standby bus (Al), fill from another street (A2), fill with pull-in (A3)
16 Late pull-out Put bus in place (A4), stop spreading the terminal (H8)
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An action or intervention to improve service, such as expressing a bus

A "necessary" action, such as towing a disabled bus

(0 The first (second, third...) choice among several similar recovery techniques

Shapes

First block - nature of problem

Following blocks - information required to know of problem

VNat=ure of blockageEL

First block - a question, the answer to which determines the next action

Second block -knowledge or information needed to answer the above question

Dashed line - Points to a possible decision stemming from the question

Solid line - Points to a "default" choice if there is not enough information to answer the

relevant question

0 Alt. bus operator

# R~elief operator (@ relief pt).

(DBus location,

t Tow truck

Second and third blocks - knowledge, information or actors required to execute the

action indicated in block one
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Fourth block - action which accompanies the action indicated in block one

Fifth and sixth blocks - knowledge, information or actors required to execute the action

indicated in block 4

TBus' location ZSched. hdwy

( Bus' lead hdwy,(DBus' location

TLeader's hdwy Qu'edhwy

I Follower*F Follower

Left hand blocks (marked "1") - preferred version of two similar actions

Right hand blocks (marked "2") - less preferred version of two similar actions

SDo some of each

0 Area schedules

t. Pull-in bus.

, Standby available?

SStandby bus

(D Status of other routes

SAlternate bus

Striped box - Indicates a set of actions, each of which should be considered

4.3.2 Bus Early (Figure 4-1)
While preventing buses from being early may seem to be a trivial problem, it is a

problem that exists, and it serves as a good introduction to this set of charts.
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Figure 4-1: Bus Early
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On the left of the diagram is the problem: a bus is early. To be aware that a bus is early

one must know both the bus' schedule - where it is supposed to be - and the bus'

location, where the bus actually is.

Following the arrow to the center blocks, we come to the only question that must be

asked in order to deal with this problem effectively. It makes sense to hold a bus only if

more people are expected to board. If they will board, then they run the risk of missing

the bus if it arrives early. However, if the bus is nearing the end of its trip, it may only be

distributing passengers already on board. Therefore, to choose an appropriate response,

one must know the bus' location (or roughly where it should be) and where people

typically board.

Based on this, the solution to the problem is either to hold the bus - an action that

requires knowledge of the bus schedule and location, so that the bus can be held for the

appropriate length of time, and an action by the bus driver - or the solution is to do

nothing. Holding the bus is the "default" solution. If no one is in a position to decide

whether letting the bus stay ahead of schedule would be damaging, then the bus should be

held to ensure that passengers who arrive on time do not miss the bus.

While the purpose of these charts is not to determine the optimum role of responsibilities

chart-by-chart, in this one instance it is useful to see where that would take us. The bus

driver is the only actor here, and he already knows the necessary information to hold the

bus. As this is the default of the two choices, one option is to have the bus operator

always hold the bus if he is ahead of schedule. This ensures that passengers who arrive

on time will be able to board, so it solves the main problem, but it may also create some
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unnecessary delay if the bus is held near the end of its route. If a bus driver knows where

customers typically board, another option is to give him the power to make the holding

decision or not. While this is an elegant solution it means giving the driver a great deal

of discretion, and can have negative consequences. Allowing the driver to make this

choice may occasionally reduce the cost that would be caused by unnecessary waiting,

but it could also create the significant cost of a passenger missing his bus because of an

operator's lapse in judgment. One solution would be to give the authority to someone

else who knows the schedule and the demand, the scheduler, who could note portions of

the route for which holding is unnecessary. Another would be to place supervisors in

charge of holding, but this is a step back as the bus would only be held at points with

supervisors. Incorporating the information in the schedule is the most elegant solution.

4.3.3 Bus Delay - Short Headway Route (Figure 4-2)
Here we see that in order to know that a bus is late, one must know the bus' schedule and

location.

Whether it is appropriate to express the bus, have it drop off passengers only, short turn,

hold its leader or do nothing depends on the above information, the following headway,

the route's schedule and its demand. To know whether expressing a bus down a different

route is a time-saving option, a basic knowledge of street geometry is required as well.

The bus' following headway is important to decisions on expressing, short turning and

running as drop off only because it denotes the length of additional time passengers who

would have boarded the bus will have to wait, and it is particularly important for

expressing and short turning, for which the cost also applies to passengers forced to

disembark. "Do nothing" is the default response because without this fundamental
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Figure 4-2: Bus Delay -
Short Headway Route
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knowledge, a decision-maker is liable to make things worse with an intervention, and

would therefore err on the side of caution and let the bus be late. As short-turning a bus

is particularly disruptive, it should only be considered if a bus will start its next trip late

without intervention. In the case of short-turning or expressing it is essential that the

following bus allow free boarding to any passengers that were forced to disembark.

Depending on an agency's fare system, this may or may not require that the follower be

notified. Even if it does, it must be notified only when it reaches the point of expressing,

meaning that a point supervisor can manage both parts of this operation.

4.3.4 Bus Delay - Long Headway Route (Figure 4-3)
This chart is similar to Figure 4-2, although holding the leader is no longer an option, as

it is not likely to help on a long headway route. Most noteworthy is that one must first

consider whether the bus is bunched, and if it is not, simply let it complete its trip. If

passengers are going to be forced to wait forty minutes for the next bus, the overall effect

of expressing is going to be highly negative. As a delayed bus on a long-headway route

is not likely to be bunched in the first place, interventions are unlikely for long-headway

routes.

4.3.5 Crush Load (One Bus - Not Delayed) (Figure 4-4)
In dealing with a crush load, the most important distinction is the frequency of the route.

If the service is frequent, then those unable to board a bus experience a delay waiting for

the next one. In this case the usual favored response is to hold the bus' leader, in order to

have less passengers waiting to board the bus at future stops, ameliorating its crowding.

If holding the leader is not possible, drop-off only has some appeal; those who are passed
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Figure 4-3: Bus Delay -
Long Headway Route
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Figure 4-4: Crush Load
(One Bus - Not Delayed)
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by the bus might not be able to board it anyway due to the crowding, so this would help

the bus return to a normal load and stay on schedule.

If headways are very large, customers are effectively being denied service altogether. In

this case, it is necessary to try to bring a bus in from somewhere else, most likely a

standby bus. A standby bus is also an option for short-headway routes, but it is less

likely to be the best use of that bus.

4.3.6 Mechanical Problem (Minor - Bus Movable) (Figure 4-5)
In dealing with a mechanical defect that does not take a bus out of service, the objective

must be to fix the defect if it is possible to do so without disrupting service, and to fix the

defect using as little of an agency's resources as possible. Calling a repair truck or

ordering a bus change is not usually a viable option, as maintenance's resources need to

be reserved for repairing buses that are out of service. Repairing the defect on-site with a

supervisor partway through the route may be advisable, depending on the severity of the

problem and the likely difficulty of repair, but may be inadvisable due to the delay to the

bus and its passengers during the repair. That leaves having a supervisor repair a defect

at the terminal, the best option, or a number of options for taking the bus out of service

without missing any trips.

4.3.7 Mechanical Problem (Serious - Bus Movable without
Passengers) (Figure 4-6)
If a bus cannot carry passengers, it should be removed from service if possible. Two

ways to do this are juggling reliefs and using a standby bus. In the case of a standby bus,

the driver of the disabled bus would meet the driver of the standby bus, they would
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Figure 4-5: Mechanical Problem
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Figure 4-6: Mechanical Problem
(Serious - Bus Movable w/o Passengers)
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exchange buses, and the driver of the standby bus would pull in and out. In either of

these cases the bus is removed from service with very little disruption. If neither one is

possible, then jumping buses can prevent the breakdown from impacting additional

passengers for the time being. The bus would of course have to make it to a terminal for

jumping buses to be an option. If buses are being jumped, then a supervisor or a repair

truck can attempt a repair, or maintenance can bring a bus change. The driver can also

pull in and out, although this is incompatible with jumping buses and leaves a run without

service for the time taken to perform the activity.

An attempt to repair the bus may fail, in which case the same decision must be made

again, but with a smaller number of options. Juggling reliefs should be re-examined as

time has passed since before the repair attempt.

4.3.8 Mechanical Problem (Major - Bus Immobilized) (Figure 4-7)
If the bus happens to have failed at a terminal, then jumping buses should be instituted.

Other than that, the bus' immobility has reduced the possible choices from the previous

problem. It can only be repaired on-site or towed, and towing may be accompanied by

either a bus change brought by maintenance or an alteration to the relief schedule.

Towing can also occur by itself, in which case the run will remain unfilled for its

duration.

4.3.9 Emergency / Security / Fare dispute (Figure 4-8)
Emergency, security and fare dispute issues require an agency presence of higher

authority than a bus driver, such as a mobile or point street supervisor. They often

require police or even medical personnel. Fare disputes can usually be dealt with without

outside help, but one cannot assume that this will be the case.
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Figure 4-7: Mechanical Problem
(Major - Bus Immobilized)
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IFiaure 4-8: Emeraencv / Security / Fare disDute I
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4.3.10 Accident (Figure 4-9)

The only distinction between accidents and emergencies is that accidents necessarily

involve the police and result in mechanical defects. Note that an accident that occurred

within a garage, such as one bus brushing another during a pull-out, would not qualify as

an "accident" under this definition, but as an internal garage issue, potentially resulting in

an unfilled run (4.3.14).

4.3.11 Operator Misses Relief (Figure 4-10)
In dealing with an early bus, the appropriate response is obvious and consistent, but in

dealing with a missed relief, the possible responses are many and vary greatly from

agency to agency. This chart represents one possible course, designed to show a

maximum of potential responses.

If possible, operators should start jumping reliefs immediately, in order to prevent or

minimize any absence in service. In this chart, the agency is shown ordering the bus to

continue in service and juggle reliefs later if jumping reliefs is not possible and there are

passengers on the bus in the middle of their trip. Of course, this policy may vary greatly

from agency to agency, ranging from continuing in service even if it means starting a new

trip on a high-frequency route, to standing the bus even if it is standing room only.

Similarly, this chart shows both juggling reliefs with and without a pull-in, and pulling in

and letting the relieving driver pull out late; the various merit of these varies greatly

according to agency policy and operating environment.
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Figure 4-9: Accident
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Figure 4-10: Operator Misses Relief I
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4.3.12 Blockage (Figure 4-11)
Some blockages, such as those resulting from auto accidents, may only last a short period

of time. If such a prediction can be made, then rerouting buses may be more trouble than

it is worth, and the blockage should be treated as a bus delay. If the blockage is expected

to last a long period of time, or if this cannot be reasonably determined, then rerouting is

necessary.

If the reroute adds a significant amount of length to the route, then either the street must

be re-spaced ("spread the terminal," also known as "reschedule the street") or buses must

be added to the route. This is analogous to Unfilled run (4.3.14), even though there is not

technically a run that is unfilled. Under severe circumstances it may be analogous to a

number of unfilled runs.

4.3.13 Bus Standing / Service Gap (Figure 4-12)
A note should be made about the relationship of Bus standing /Service Gap to Unfilled

run (4.3.14.) These represent two conditions that commonly occur together. Bus standing

/ service gap represents an immediate absence of service, and how to run the route

effectively without that service until it is returned. Unfilled run refers to the absence of

both a bus and a driver, and the attempts to restore service providing both. An accident

in which the driver is removed from service and the bus is damaged would create both an

unfilled run and a service gap. A serious mechanical defect would create a service gap,

but not an unfilled run, as there is a driver available, but no bus, necessitating a different

set of restorative techniques.
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Figure 4-12: Bus Standing / Service Gap
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With this understood, the chart is fairly self-explanatory. Any stranded passengers must

be picked up free of charge by the follower, which might require an action on the

follower's part or might happen automatically, depending on the agency's fare system

and transfer policy. Spreading the interval should be done if the route is high-frequency

and the agency has the communications capacity to do so, and spreading the terminal is

required as well.

4.3.14 Unfilled Run (Figure 4-13)
(See also Bus standing / service gap, above, for a description of the distinction between it

and Unfilled run.)

If a standby bus is available, then it should fill the run. If not, then the action taken

depends on the headway of the route. If the route has a short headway, then it should

make do by spreading the terminal. Only if the service is infrequent should the agency

fill the run from another street or suffer overtime pay to avoid stranding passengers.

4.3.15 Unplanned Bus Bridge (Figure 4-14)
This condition is not unlike Blockage (4.3.12) but requires a greater number of buses and

benefits greatly from a greater amount of oversight. Because of this, pulling out

operators instead of relieving becomes an option, due to the greater number of buses that

will be required. Also, due to the high volume of buses arriving at the route, the

operators' unfamiliarity with the route itself, and the "improvisational" nature of the

operation, the route can benefit disproportionately from a higher level of oversight in its

early stages. Unfortunately, the information provided to someone operating on the route

or supervising from a point along the route is much less than for a typical route, because

they are not familiar with the patterns of the route or even its schedule.
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Figure 4-13: Unfilled Run I
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Figure 4-14: Unplanned Bus Bridge
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4.3.16 Congestion / Weather! Routewide Crowding (Figure 4-15)

This chart is also fairly self-explanatory. It should be noted that in the case of severe

weather, it is not usually advisable to add a run from another route, as all the routes in the

system are experiencing similar conditions.

4.3.17 Late Pull-out (Figure 4-16)
This item is unique within this list in that it represents the end of a problem rather than

the onset of one. It is included because it does require certain actions to be performed,

namely putting the bus in place and undoing the actions that had been taken to deal with

the bus' absence. This usually means just stopping spreading the terminal, although if

there has been a more complicated rearrangement of buses and drivers, then returning to

normal operations may prove more complicated as well.

4.4 The Importance of Timeliness of Information
There are some situations in which information needs to be transmitted right away in

order to be of use, and others in which it has a significant shelf life. An example of

information with a long shelf life would be a broken heater on a bus. If it takes an extra

ten minutes to relay the problem to a decision-maker, passengers will continue to ride

without heat, but the problem will not escalate. An example of a situation in which a

response needs to happen quickly is holding in response to bus delays.

Let us study a simplified hypothetical route to demonstrate this phenomenon. Route X

northbound operates on eight minute headways. It has 20 stops, each located two

minutes apart, and each stop has the same demand of one passenger arriving every
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Figure 4-16: Late Pull-out
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minute. In our example, each passenger takes six seconds to board, and no time to exit.

We will study three buses, A, B and C. Table 4-3 shows the times (starting from t=O)

each bus reaches each stop if all three are on time throughout their trips. Each bus'

scheduled arrival time, actual arrival time, waiting passengers wishing to board and

departure time from the stop are also shown. For buses B and C, lateness compared to

schedule and lateness compared to scheduled headway are shown at the end. Since the

headways are consistent, there are always eight passengers waiting for each bus at each

stop, and the dwell time at each stop is always 48 seconds (eight passengers times six

seconds.)

In Table 4-4 we see what happens if bus C begins its trip two minutes late and there is no

response. As one would expect, the increased number of passengers at each stop causes

it to take longer at each stop, resulting in still more passengers waiting at the next stop

and so forth. Assuming that bus C has a follower that remains on schedule, they will

become bunched by stop 16.

In Table 4-5 we see what happens if bus B is held for one minute as soon as bus C makes

its late departure, when bus B is at stop 5. (This length of holding time, like later lengths

of holding time, was chosen to spread the delay between buses B and C as evenly as

possible at trip's end.) Now both buses B and C finish their trip late, but neither is

bunched, and by the end of their trips their headways are longer than scheduled by about

the same amount: 3.8 and 3.6 minutes.

Now suppose it took ten minutes for a message to go out from bus C to a decision maker,

for the decision maker to decide to hold bus B, and for the decision maker to inform bus
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Figure 4 3: Information Timeliness Example: On-Time Operations
Travel Bus A Bus B Bus C Lateness Late. Head.
time to

Stop # stop Sched. Arr. - Pax Dep. Sched. Arr. Pax Dep. Sched. Arr. Pax Dep. B C B C

1 2.0 0.0 0.0 8.0 0.8 8.0 8.0 8.0 8.8 16.0 16.0 8.0 16.8 0.0 0. 0.0 0.0

2 2.0 2.8 2.8 8.0 3.6 10.8 10.8 8.0 11.6 18.8 18.8 8.0 19.6 0.0 0.0.0.0 0.0

3 2.0 5.6 5.6 8.0 6.4 13.6 13.6 8.0 14.4 21.6 21.6 8.0 22.4 0.0 0.0 0.0 0.0

4 2.0 8.4 84 8.0 9.2 16.4 16.4 8.0 17.2 24.4 24.4 8.0 25.2 0.0 0.0 0.0 0:0

5 2.0 11.2 11.2 8.0 12.0 19.2 19.2 8.0 20.0 27.2 27.2 8.0 28.0 0.0 -0.0 0.0 0.0
6 2.0 14.0 14.0 8.0 14.8 22.0 -22.0 8.0 22.8 30.0 30.0 8.0 30.8 0.0 0.0 -0.0 0.0

7 2.0 16.8 16.8 8.0 17.6 24.8 24.8 8.0 25.6 32.8 32.8 8.0 33.6 0.0 0.0 0.0 0.0

8 2.0 19.6 19.6 8.0 20.4 27.6 27.6 8.0 28.4 35.6 35.6 8.0 36.4 0.0 0.0 0.0 0.0

9 2.0 22.4 22.4 8.0 23.2 30.4 30.4 8.0 31.2 38.4 -38.4 8.0 39.2 0.0 0.0 1.0 0.0

10 2.0 25.2 25.2 8.0 26.0 33.2 33.2 8.0 34.0 41.2 41.2 8.0 42.0 0.0 0.0 0.0 0,0

11 2.0 28.0 28.0 8,0 28.8 36.0 36.0 8.0 36.8 44.0 44.0 8.0 44.8 0.0 0.0 0.0 0.0

12 2.0 30.8 30.8 8,0 31.6 38.8 38.8 8,0 39.6 46.8 46.8 8.0 47.6 0.0 0.0 0.0 0.0

13 2.0 33.6 33.6 8.0 34.4 41.6 41,6 8.0 42.4 49.6 49.6 8.0 50.4 0.0 0.0 0.0 0.0

14 2.0 36.4 36.4 8.0 37.2 44.4 44.4 8.0 45.2 52.4 52.4 8.0 53.2 0.0 0.0 0.0 0.0

15 2.0 39.2 39.2 8.0 40.0 47.2 47.2 8.0 48.0 55.2 55.2 8.0 56.0 0.0 0.0 -0.0 0.0

16 2.0 42.0 42.0 8.0 42.8 50.0 50.0 8.0 50.8 58.0 58.0 8.0 58.8 0.0 0.0 1 0.0 0.0

17 2.0 44.8 44.8 8.0 45.6 52.8 52.8 8.0 53.6 60.8 60.8 8.0 61.6 0.0 0.0 0.0 0.0

18 2.0 47.6 47.6 8.0 48.4 55.6 55.6 8.0 56.4 63.6 63.6 8.0 64.4 0.0 0.0 0.0 0,0

19 2.0 50.4 50.4 8.0 51.2 58.4 584 8.0 59.2 66.4 66.4 8.0 67.2 0.0 0.0 0.0 0.0

20 2.0 53.2 53.2 8.0, 54.0 61.2 61,2 8.0 62.0 69.2 69.2 8.0 70.0 0.0 0.0 0.0 0.0
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Table 4-4: Information Timeliness Example: No response
Travel Bus A Bus B Bus C Lateness Late. Head.
time to

Stop # stop Sched. Arr. Pax Dep. Sched. Arr Pax Dep. Sched. Arr. Pax Dep. B C B C
1 2.0 0.0 0.0 8.0 0.8 8.0 8.0 8.0 8.8 16.0 18.0 10.0 19.0 0.0 2.0 0.0 2.0
2 2.0 2.8 2.8 8.0 3.6 10.8 10.8 8.0 11.6 18.8 21.0 10.2 22.0 0.0 2.2 0.0 2.2
3 2.0 5.6 5.6 8.0 6.4 13.6 13.6 8.0 14.4 21.6 24.0 10.4 25.1 0.0 2.4 0.0 2.4
4 2.0 8.4 8.4 8.0 9.2 16.4 16.4 8.0 17.2 24.4 27.1 10.7 28.1 0.0 2.7 0.0 2.7
5 2.0 11.2 11.2 8.0 12.0 19.2 19.2 8.0 20.0 27.2 30.1 10.9 31.2 0.0 2.9 .0.0. 2.9
6 2.0 14.0 14.0 8.0 14.8 22.0 22.0 8.0 22.8 30.0 33.2 11.2 34.3 0.0 3.2 0.0 3.2
7 2.0 16.8 16.8 8.0 17.6 24.8 24.8 8.0 25.6 32.8 36.3 11.5 37.5 0.0 3.5 0.0 3.5
8 2.0 19.6 19.6 8.0 20.4 27.6 27.6 8.0 28.4 35.6 39.5 11.9 40.7 0.0 3.9 0.0 3.9
9 2.0 22.4 22.4 8.0 23.2 30.4 30.4 8.0 31.2 38.4 42.7 12.3 43.9 0.0 4.3 0.0 4.3

10 2.0 25.2 25.2 8.0 26.0 33.2 33.2 8.0 34.0 41.2 45.9 12.7 47.2 0.0 4.7 0.0 4.7
11 2.0 28.0 28.0 8.0 28.8 36.0 36.0 8.0 36.8 44.0 49.2 13.2 50.5 0.0 5.2 0.0 5.2
12 2.0 30.8 30.8 8.0 31.6 38.8 38.8 8.0 39.6 46.8 52.5 13.7 53.9 0.0 5.7 0.0 5.7
13 2.0 33.6 33.6 8.0 34.4 41.6 41.6 8.0 42.4 49.6 55.9 14.3 57.3 0.0 6.3 0.0 6.3
14 2.0 36.4 36.4 8.0 37.2 44.4 44.4 8.0 45.2 52.4 59.3 14.9 60.8 0.0- 6.9 0.0 6.9
15 2.0 39.2 39.21 8.0 40.0 47.2 47.2 8.0 48.0 55.2 62.8 15.6 64.4 0.0 7.6 .0.0 7.6
16 2.0 42.0 42.0 8.0 42.8 50.0 50.0 8.0 50.8 58.0 66.4 16.4 68.0 0.0 .BA 0.0 8.4

17 2.0 44.8 44.8 8.0 45.6 52.8 52.8 8.0 53.6 60.8 70.0 17.2 71.7 0.0 9.2 0.0 9.2
18 2.0 47.6 47.6 8.0 48.4 55.6 55.6 8.0 56.4 63.6 73.7 18.1 75.5 0.0 10.1 0.0 10.1
19 2.0 50.4 50.4 8.0 51.2 58.4 58.4 8.0 59.2 66.4 77.5 19.1 79.4 0.0 11.1 0.0 11.1
20 2.0 53.2 53.2 8.0 54.0 61.2 612 8.0 62.0 69.2 81.4 20.2 83.5 0.0 12.2 &.0 12.2
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Table 4-5: Information Timeliness Example: Immediate response
Travel Bus A Bus B Bus C Lateniess Late. Head.
time to

Stop # stop Sched. Arr. Pax Dep. Sched. Arr. Pax Dep. Sched. Arr. Pax Dep. B C B C
1 2.0 0.0 0.0 8.0 0.8 8.0 8.0 8.0 8.8 16.0 18.0 10.0 19.0 0.0 2.0 0.0 2.0
2 2.0 2.8 2.8 8.0 3.6 10.8 10.8 8.0 11.6 18.8 21.0 10.2 22.0 0.0 2.2 0.0 2.2
3 2.0 5.6 5.6 8.0 6.4 13.6 13.6 8.0 14.4 21.6 24.0 10.4 25.1 0.0 2.4 0.0 2.4
4 2.0 8.4 8.4 8.0 9.2 16.4 16.4 8.0 17.2 24.4 27.1 10.7 28.1 0.0 2.7 0.0 2.7
5 2.0 11.2 11.2 8,0 12.0 19.2 19.2 8.0 21.0 27.2 30.1 10.9 31.2 0.0 2.9 0.0 2.9
6 2.0 14.0 14.0 8.0 14.8 22.0 23.0 9.0 23.9 30.0 33.2 10.2 34.2 1.0 3.2 1.0 2.2
7 2.0 16.8 16.8 8.0 17.6 24.8 25.9 9.1 26.8 32.8 36.2 10.3 37.3 1.1 3.4 1.1 2.3
8 2.0 19.6 19.6 8.0 20.4 27.6 28.8 9.2 29.7 35.6 39.3 10.5 40.3 1.2 3.7 1.2 2.5
9 2.0 22.4 22.4 8.0 23.2 30.4 31.7 9.3 32.7 38.4 42.3 10.6 43.4 1.3 3.9 1.3 2.6

10 2.0 25.2 25.2 8.0 26.0 33.2 34.7 9.5 35.6 41.2 45.4 10.7 46.5 1.5 4.2 1.5 -2.7
11 2.0 28.0 28.0 8.0 28.8 36.0 37.6 9.6 38.6 44.0 48.5 10.8 49.5 1.6 4.5 1.6 2.8
12 2.0 30.8 30.8 8.0 31.6 38.8 40.6 9.8 41.5 46.8 51.5 11.0 52.6 1.8 4.7 1,8 3.0
13 2.0 33.6 33.6 8.0 34.4 41.6 43.5 9.9 44.5 49.6 54.6 11.1 55.7 1.9 5.0 :1.9 3.1
14 2.0 36.4 36.4 8.0 37.2 44.4 46.5 10.1 47.6 52.4 57.7 11.2 58.9. 2.1, 5.3 .2.1 .3.2
15 2.0 39.2 39.2 8.0 40.0 47.2 49.6 10.4 50.6 55.2 60.9 11.3 62.0 2.4 5.7 2.4 .3.3
16 2.0 42.0 42.0 8.0 42.8 50.0 52.6 10.6 53.7 58.0 64.0 11.4 65.1 2.6 6.0 2.6 3.4
17 2.0 44.8 44.8 8.0 45.6 52.8 -55.7 10.9 56.7 60.8 67.1 11.5 68.3 2.9 6.3 2.9 3.5
18 2.0 47.6 47.6 8.0 48.4 55.6 58.7 11.1 59.9 63.6 70.3 11.5 71.4 3.1 6.7 3.1 3.5
19 2.0 50.4 50.4 8.0 51.2 58.4 61.9 11.5 63.0 66.4 73.4 11.6 74.6 3.5 7.0 3.5 3.6
20 2.0 53.2 53.2 8.0 54.0 61.2 65.0 11.8 66.2 69.2 76.6 11.6 77.8- 3.8 7.4 3.8 3.6
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B. In Table 4-6, bus B is not contacted until stop 9, and because the delay has gotten

worse, bus B holds for about ninety seconds. Now buses B and C both have a greater

degree of delay, operating at headways of about 12 minutes. If bus C's follower is not

held, it will catch up with bus C just before the end of the trip.

Finally, assume that bus C is not considered late until it is five minutes behind schedule,

which on Table 4-7 is shown to occur at stop 11. At that time (t-50) bus B is pulling in

to stop 16. Any action bus B takes will not affect bus C until stop 16. Not only is 16

very close to the end of the route, but if bus C's follower is not held it will bunch with

bus C as they arrive at stop 16. If bus B is held, even for four minutes, the impact will be

only on the last quarter of the route.

The total time passengers spend waiting to board a bus in each scenario is a good

measure of the effectiveness of the different response times shown. Assuming an even

arrival rate, total passenger waiting time for a bus' arrival at a stop can be calculated from

the number of people waiting for the bus and the average length of time each person

waits. The resulting formula is standard for calculating waiting time:

WT = /2 - (passengers arriving per minute) - (headway)2

To calculate the total passenger waiting time for a scenario, we must sum the waiting

times for all passengers waiting for each bus at each stop. We will also assume that a bus

D starts its trip eight minutes after bus C is scheduled to begin, and stays on schedule in

each scenario. Without making this assumption we would have no way to account for

those passengers who can board bus C only because it is delayed, but otherwise would
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Table 4-6: Information Timeliness Example: Delayed response I
Travel Bus A Bus B Bus C L__Lateness Late. -Iad.
time to

Stop # stop Sched. Arr Pax Dep. Sched. rr. Pax Dep. Sched. Arr. Pax Dep. B C B C
1 2.0 0.0 0.0 8.0 0.8 8.0 8.0 8.0 8.8 16.0 18.0 10.0 19.0 0.0 2.0 0.0 2.0
2 2.0 2.8 2.8 8.0 3.6 10.8 10.8 8.0 11.6 18.8 21.0 10.2 22.0 0.0 2.2 0.0 .2.2
3 2.0 5.6 5.6 8.0 6.4 13.6 13.6 8.0 14.4 21.6 24.0 10.4 25.1 0.0 2.4 0.0 2.4
4 2.0 8.4 8.4 8.0 9.2 16.4 16.4 8.0 17.2 24.4 27.1 10.7 28.1 0.0 2.7 0.0 2.7
5 2.0 11.2 11.2 8.0 12.0 19.2 19.2 8.0 20.0 27.2 30.1 10.9 31.2 0.0 2.9 0.0 2.9
6 2.0 14.0 14.0 8.0 14.8 22.0 22.0 8.0 22.8 30.0 33.2 11.2 34.3 0.0 :3.2 0.0 3.2
7 2.0 16.8 16.8 8.0 17.6 24.8 24.8 8.0 25.6 32.8 36.3 11.5 37.5 0.0 3.5 A.0 3.5
8 2.0 19.6 19.6 8.0 20.4 27.6 27.6 8.0 28.4 35.6 39.5 11.9 40.7 0.0. 0.0 3.9
9 2.0 22.4 22.4 8.0 23.2 30.4 30.4 8.0 32.8 38.4 42.7 12.3 43.9 0.0 4.3 0.0 4.3

10 2.0 25.2 25.2 8.0 26.0 33.2 34.8 9.6 35.8 41.2 45.9 11.1 47.0 1.6 4.7 1.6 3.1
11 2.0 28.0 28.0 8.0 28.8 36.0 37.8 9.8 38.7 44.0 49.0 11.3 50.2 1.8 5.0 1.8 3.3
12 2.0 30.8 30.8 8.0 31.6 38.8 40.7 9.9 41.7 46.8 52.2 11.4 53.3 1.9 5.4 1.9 3.4
13 2.0 33.6 33.6 8.0 34.4 41.6 43.7 10.1 44.7 49.6 55.3 11.6 56.5 2.1 5.7 2.1 3.6
14 2.0 36.4 36.4 8.0 37.2 44.4 46.7 10.3 47.8 52.4 58.5 11.7 59.6 2.3 6.1 2.3 3.7
15 2.0 39.2 39.2 8.0 40.0 47.2 49.8 10.6 50.8 55.2 61.6 11.8 62.8 2.6 -6.41 2.6 .3.8

16 2.0 42.0 42.0 8.0 42.8 50.0 52.8 10.8 53.9 58.0 64.8 12.0 66.0 2.8 :6.81-, 2.8 4.0
17 2.0 44.8 44.8 8.0 45.6 52.8 55.9 11.1 57.0 60.8 68.0 12.1 69.2 3-1 7.2 3.1 4.1
18 2.0 47.6 47.6 8.0 48.4 55.6 59.0 11.4 60.2 63.6 71.2 12.2 72.4 3.4 7,6 3.4 4.2
19 2.0 50.4 50.4 8.0 51.2 58.4 -62.2 11.8 63.3 66.4 74.4 12.3 75.7 3.8 8.0 3.8 4.3
20, 2.0 53.2 53.2 8.0 54.0, 61.2 65.3 12.1 66.6 69.2 77.7 12.3 78.9 4.1 8.5 4.1 4.3
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Table 4-7: Information Timeliness Example: Delayed response 2
Travel Bus A. Bus B Bus C Lateness Late. Head.
time to

Stop # stop Sched. Arr. Pax Dep. Sched. Arr. Pax Dep. Sched. Arr. Pax Dep. B IC B C
1 2.0 0.0 0.0 8.0 0.8 8.0 8.0 8.0 8.8 16.0 18.0 10.0 19.0 0.0 2.0 0.0 2.0
2 2.0 2.8 2.8 8.0 3.6 10.8 10.8 8.0 11.6 18.8 21.0 10.2 22.0 0.0 2.2 0.0 2.2
3 2.0 5.6 5.6 8.0 6.4 13.6 13.6 8.0 14.4 21.6 24.0 10.4 25.1 0.0 2.4 0.0 2.4
4 2.0 8.4 8.4 8.0 9.2 16.4 16.4 8.0 17.2 24.4 27.1 10.7 28.1 0.0 2.7 0.0 2.7
5 2.0 11.2 11.2 8.0 12.0 19.2 19.2 8.0 20.0 27.2 30.1 10.9 31.2 0.0 2.9 0.0 2.9
6 2.0 14.0 14.0 8.0 14.8 22.0 22.0 8.0 22.8 30.0 33.2 11.2 34.3 0.0 3.2 0.0 3.2
7 2.0 16.8 16.8 8.0 17.6 24.8 24.8 8.0 25.6 32.8 36.3 11.5 37.5 0.0 3.5 0.0 3.5
8 2.0 19.6 19.6 8.0 20.4 27.6 27.6 8.0 28.4 35.6 39.5 11.9 40.7 0.0 3.9 0.0 3.9
9 2.0 22.4 22.4 8.0 23.2 30.4 30.4 8.0 31.2 38.4 42.7 12.3 43.9 0.0 4.3 0.0 4.3

10 2.0 25.2 25.2 8.0 26.0 33.2 33.2 8.0 34.0 41.2 45.9 12.7 47.2 0.0 4.7 0.0 4.7
11 2.0 28.0 28.0 8.0 28.8 36.0 36.0 8.0 36.8 44.0 49.2 13.2 50.5 0.0 5.2 0.0 5.2
12 2.0 30.8 30.8 8.0 31.6 38.8 38.8 8.0 39.6 46.8 52.5 13.7 53.9 0.0 5.7 0.0 5.7
13 2.0 33.6 33.6 8.0 34.4 41.6 41.6 8.0 42.4 49.6 55.9 14.3 57.3 0.0 6.3 0.0 6.3
14 2.0 36.4 36.4 8.0 37.2 44.4 44.4 8.0 45.2 52.4 59.3 14.9 60.8 0.0 6.9 0.0 6.9
15 2.0 39.2 39.2 8.0 40.0 47.2 47.2 8.0 48.0 55.2 62.8 15.6 64.4 0.0 7.6 0.0 7.6
16 2.0 42.0 42.0 8.0 42.8 50.0 50.0 8.0 54.9 58.0 66.4 16.4 68.0 0.0 8.4 0.0 8.4
17 2.0 44.8 44.8 8.0 45.6 52.8 56.9 12.1 58.1 60.8 70.0 13.1 71.3 4.1 9.2 4.1 5.1
18 2.0 47.6 47.6 8.0 48.4 55.6 60.1 12.5 61.4 63.6 73.3 13.2 74.6 4.5 9.7 4.5 5.2
19 2.0 50.4 50.4 8.0 51.2 58.4 63.4 13.0 64.7 66.4 76.6 13.3 77.9 5.0 10.2 5.0 5.3
20 2.0 53.2 53. 8.0 54.0 61.2 66.7 13.5 68.0 69.2 79.9 13.3 81.3 5.5 10.7 5.5 5.3
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wait for bus D. Table 4-8 summarizes the waiting time created by the disruption in

passenger-minutes.

Table 4-8: Change in Passenger Waiting Time Given Different Response Times
Change in waiting time (passenger-minutes)

Scenario See Table: Bus A Bus B Bus C Bus D Total
On-time operations 5-3 0 0 0 0 0
Immediate response 5-5 0 294 545 -375 464
Delayed response 1 5-6 0 279 675 -428 526
Delayed response 2 5-7 0 199 989 -496 692
No response 5-4 0 0 1337 -511 826
Even the slowest response results in 134 minutes of savings compared to no response at

all, since the few stops at which the response has an impact are the ones where conditions

are worse. An immediate response saves 362 passenger-minutes, but a ten minute delay

reduces the savings to 300 passenger-minutes. Put another way, the ten minute delay has

a cost of 62 passenger-minutes. The longer delay scenario costs 228 passenger-minutes.

This is clearly a simplified example of a real bus route, but the important factors in the

effectiveness of holding are all accounted for. With timely information, the route does

not deteriorate much, while with poor information, little can be done and the buses

bunch. In this one case caused by an initial two minute delay, a response based on timely

information can save 228 passenger-minutes compared to a slow one. A more "invasive"

technique might have improved the situation, such as expressing the delayed bus, but

with timely information it would not have been necessary. When managing a route, early

detection of a problem and a fast response time have a significant impact on the

response's effectiveness. If it takes an agency too long to respond, some techniques will

become less powerful and eventually cease being useful.
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Chapter 5: Introducing the Model
In this chapter, we will describe a model created for studying the demands and capacity

of a transit agency communications system. Using the decision-making structure of an

agency and the volume of problems it experiences, we will model the amount of

information that must be carried over each channel during a certain time of day, and the

strain it places on those channels. With this model we can measure what recovery

techniques can and cannot reasonably be used by the agency, and how this would be

affected by different policies and communications channels.

We will first define the assumptions we will be making. We will then learn the methods

for representing all these aspects of transit communications. Finally we will formally

describe each section of the model.

5.1 Assumptions
There are two critical assumptions underlying this model:

a) The average of bandwidth from conversations over a long period Qf time.

accurately represents the bandwidth of conversations in a specific period of time.

One can hypothesize very small systems for which this is not true. For example, imagine

a transit agency with one bus and one dispatcher, in which the bus driver must call the

dispatcher from a payphone if the bus breaks down, having a conversation that takes six

minutes to complete. The bus breaks down every other day, and the driver carries

enough change for a five minute phone call. He would be fine on average, as he only

needs three minutes of conversation on the average day, but in fact he would be stranded

every time his bus broke down.
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It is assumed that this effect approaches zero as system size becomes large. If during

every rush hour an agency deals with an average of three breakdowns, eight delays, etc. it

is assumed that minor fluctuations will not matter. This still does not apply when a major

service-impacting event occurs, such as a bus bridge, meaning that such events must be

studied separately. Even without such events, there is a slight underestimation of demand

on each channel from this assumption.

b) Conversations are consistent in the information given.

This model assumes that when a dispatcher instructs a bus to express, he always gives the

same pieces of information, and it always takes roughly the same amount of time. This

might not necessarily be the case. One situation might require a great deal of detailed

information to be dealt with effectively. As these peculiarities can occur with any given

situation, a fixed portion of voice bandwidth is dedicated to conversations about detailed

aspects of certain situations.

5.2 Analysis Approach
In this section, we will describe the concepts that are included in the model, and the

methods used for modeling them.

5.2.1 Situations, Decisions, and Actions: Structure and Volume
The situations, decisions, and actions that are part of service recovery are based on those

studied in chapter 4. To use them in our model we must first customize them for the

agency being modeled. Not every agency uses every conceivable recovery technique.

CTA, for instance, has no standby buses. For that matter, not every agency faces the

same problems. Currently, AMA has no need to provide unplanned bus bridges, as there

is no rail to break down and require bus substitution. Further, different agencies have
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different incidence of situations. Mechanical defects and disruptions may vary according

to an agency's vehicle age and composition, its maintenance schedules and operating area

characteristics. Even the proportions of decisions and actions in response to these

situations may vary from agency to agency. A street layout might prevent expressing

down a different route at one agency, or a study of a communications system might show

that holding a late bus' leader simply isn't possible.

The volume of problems and the relative proportion of solutions must be customized for

each agency and each time of day. Determining the relative proportion of solutions can

be difficult, but it is not highly sensitive except between solutions that lead to highly

disparate amounts of transmission on particular channels. Short turning and expressing,

for example, require about the same amount of transmission: the instruction itself, the

location at which to perform the action, and in the case of expressing, the location at

which to stop. These volumes and proportions are represented as numbers in select cells

in the model, and will be easy to change. The flow of decision-making will be

represented by the placement of cells and their reference to each other in certain

formulas. Each situation will include rows for each task associated with it and each

conversation associated with that task. These cannot be changed automatically, and

require personal attention to modify.

5.2.2 Actors and Tasks: Responsibility and Assignment
Every task, whether it is recognizing the existence of a problem, deciding what response

is most appropriate, or executing a recovery technique, needs to be done by someone.

Most response techniques can only conceivably be performed by one sort of person - it is

ultimately the bus driver who expresses or holds a bus, regardless of who makes the
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decision. Most decisions could reasonably be made by a number of different individuals

- a dispatcher or street supervisor could make the decision to short turn a bus - but in

most organizations only one or two sorts of individuals actually make these decisions.

The model requires an actor to be assigned to any task, and does not differentiate between

tasks that must be done by a particular actor and tasks that anyone could do. Actors

assigned to tasks are represented both by a value in a cell and the relationship between

cells. These cannot be changed automatically, and require personal attention to modify.

If different sorts of people perform the same task in a given proportion, splitting

responsibility on a certain decision, then this can be represented by dividing the task in to

two or more tasks, identical except in their assignment to an actor. Through modification

of the volume of each of these choices, one can study the effects of assigning one task to

different individuals. Should one want to get around the model's limitation in the ease of

assigning a task to different people, it can be done using this technique and changing the

proportion of one and then the other task to zero.

5.2.3 Information and Knowledge: Known, Requirements and Transmission
Information and knowledge are reduced to about two dozen different "facts." Each of

these facts is tied to four characteristics.

1. It may, or may not, be required for a particular task. For example, one cannot

dispatch police to a bus without knowing the bus' location. This is indicated in

the model by a table of tasks and facts, with their requirement represented by a

true or false value.
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2. It may, or may not, always be known by a particular actor. For example, a bus

operator will always know the crowding level on his or her bus. This is

represented by a similar table to that above, in which actors replace tasks.

3. Each task may, or may not, be transmittable over any given channel. For

example, the demand profile of a route cannot be sent using a digital messaging

system. This is represented by another true/false table, in which channels take the

place of tasks.

4. Each fact consumes a certain amount of bandwidth or strain over any channel it is

sent over. For example, it typically takes about four seconds to ask for and learn a

bus' location over a radio channel, while it takes about fifteen seconds to ask for

and learn the details of a breakdown (see chapter 3.) This is represented by a

table of channels and facts, in which the values represent the bandwidth taken by

one transmission of a fact.

Any of these can be modified easily and without personal attention.

5.2.4 Strain on Channels: Individual and Total Costs
Each conversation outlined in 5.2.1 details what facts need to be transmitted and what

facts actually are transmitted. (The latter is a superset of the former, as policies may

require the verification of certain facts.) Also included is the speaker, recipient and

channel used. By calculating the frequency with which each conversation occurs, the

channel used for each conversation, the facts stated, the strain of each fact, and the strain

of starting and stopping the conversation, one can derive the strain being placed on each

communications medium. (Note that throughout this chapter, "frequency" will refer to

the number of instances of a situation per unit time, and not radio frequency.)
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5.3 Model Definition
The pages of this model work together in the following way:

Conversations show what situations occur, what decisions are made, what actions are

carried out, and who is behind each task. It addresses the disparity between Known,

showing what actors know, and Required, showing what an actor must know to carry out

a task. It presents the facts transmitted for each situation, decision and response, as well

as the frequency with which those occur. Those numbers are multiplied by Strain, the

bandwidth taken by each fact or conversation, to get Results, the total load on each

communications channel.

5.3.1 Known: What Actors Always Know
This page describes what actors always know. For example a street supervisor does not

need to be told the schedules of the buses he oversees, he already has the information.

Similarly a bus operator does not need to be told where his bus is, he can see it. This

information is captured here.

This page includes:

" One column of the ID number associated with each actor (not used under normal

circumstances, but maintained for flexibility of analysis.)

" One column of the name of each actor, one column to the right of the list of actor

ID numbers.

" One column for each fact.

" A 1 or a 0 in each cell corresponding to the intersection of one actor and one fact,

representing whether the actor knows (1) or does not know (0) the fact.
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Table 5-1: A Portion of the "Known" Page

Area bus Bus availability Route demand
Actor name schedules at garages Bus schedule profile
Bus operator 0 0 1 1

Bus operator off-site 0 0 0 1

Controller 1 1 1 0

Maintenance truck 0 1 0 0

Mobile supervisor 1 1 0 1

Point supervisor 1 1 1 1

Point supervisor on-site 1 1 1 1

All route drivers 0 0 0 1

All area drivers 0 0 0 0

Relieving operator 0 0 0 1

Table 5-1 shows a sample of this page. See appendix A for a complete example.

5.3.2 Required: The Facts Required for Each Action
This page describes what an actor must know to make a particular decision. This does

not consider what an actor does or does not already know, or any kind of actor

association at all, only whether a fact is necessary to make a decision.

Situations, decisions, and responses are all listed on this page. Decisions and responses

are listed once for each situation in which they appear. Because of this, the same

response technique can have different information requirements for different situations.

As of this writing there are no instances of this in the model.

This page includes:

* A column showing the name of the situation, decision or task. Situations are bold

and on a gray background. Decisions are in plain type on a white background and
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end in a question mark. Responses are in plain type on a white background and

do not end with a question mark.

* A column for each fact.

* A 1 or a 0 in each cell corresponding to the intersection of one task and one fact,

representing whether the fact is required (1) or not (0) to be aware of the situation,

make the decision, or carry out the response.

Table 5-2 shows a sample of this page. See appendix A for a complete example.

Table 5-2: A Portion of the "Required" Page.
Area bus Bus availability Bus Route demand

Task schedules at garages schedule profile

Are more passengers likely to board? 0 0 0 1

Do nothing 0 0 0 0

Hold bus 0 0 1 0

What response is least disruptive? 0 0 0 1

Do nothing 0 0 0 0

Drop-off only 0 0 1 1

Express down a different street 0 0 1 1

Express to a later point 0 0 1 1

Follower picks up passengers 0 0 0 0

Hold leader prefol / hold leader 0 0 0 0

Short turn 0 0 1 1

5.3.3 Conversations: The Conversations that Stem from Each Situation

This page is the heart of the model. It outlines what conversations take place in the

course of dealing with every situation, how often they take place, what is said, who says

it, and over what channel.

On this page, each row corresponds to a part of a task. The rows generally go down in
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chronological order and not all rows have the same meaning. Some of the rows represent

information that is required to make a decision or initiate a response; some rows represent

the knowledge of a certain actor; some rows represent the set of knowledge that is both

necessary and absent for a particular decision; some rows represent the information being

sent over a particular communication channel. Let's talk about the contents that are

common to each row before discussing how rows differ and relate to each other.

The columns, from left to right, are:

1. "Situation." The name of the situation

2. "Frequency." The number of times a situation, or a specific step, arises per unit

time.

3. "Step" and "Step detail." These two columns define the type of row. "Step" can

be a description of knowledge or communication. It can also be a decision or

response as listed in Required, in which case "Step detail" may define the row

further.

4. "Channel." What channel a conversation is taking place on, if applicable.

Represented with a number.

5. "#." The ID number of the actor speaking or acting in this row.

6. "Actor." The name of the actor speaking or acting in this row.

7. "Total." The total of the fact columns. This is only used for certain rows, as a

checksum (see below.)

8. Facts, Instructions, and Conversation overhead: These cells are 1 or 0, depending

on whether the item is active for the present row. What "active" means, and how

this is derived, depends entirely on the meaning of the row, as defined in "Step"
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and "Step detail." Instructions represent whether instructions are given, and

conversation overhead represents the overhead cost of each conversation.

Table 5-3 shows the different kind of rows, as defined with "Step" and "Step detail."

Table 5-3: Meanings of Rows in "Conversations" Page
Step Step detail Row description
Awareness - Shows the actor who becomes aware of a problem, and the

facts necessary to do so. The facts are copied from Required.
Reports to - Shows the person conveying facts, the channel over which it

is conveyed, and the facts that are conveyed. Data is entered
manually (not derived automatically.)

Known by - Shows the facts that a particular actor has. These are derived
by what they have learned so far OR'ed with what the actor
knows in Known.

Decision / Needed Shows what facts are needed to make a decision or
Response implement a response. This data is copied from Required.
Decision / Needed Shows what facts an actor slated to make a decision or
Response and implement a response needs but does not yet have. Derived

unknown logically from the "Needed" row and the "Known by" row if
one is present for the given actor, or the Known sheet if no
"Known by" row is present.

Decision / Instructs The facts and other communications overhead relayed by a
Response given actor over a given radio channel. This applies to

instructing an actor to take an action. This is done manually
and compared by hand to "Needed and unknown."*

Decision / Announces The facts and other communications overhead relayed by a
Response given actor over a given radio channel. This applies to

announcing that a certain action has been taken, as when a
dispatcher informs street supervisors that he has expressed a
bus. This is entered manually.

Decision / Announces The facts and other communications overhead relayed by a
Response & Instructs given actor over a given radio channel. This applies to

instructing that an action be taken and simultaneously
notifying any who need to know over the same channel. This
is entered manually and compared by hand to "Needed and

________unknown."

* If agencies transmitted exactly the facts that the model deemed necessary, these rows
could by copied directly from "Needed and unknown," with only the "Instructions" and
"Conversation overhead" filled in manually. However, agency practices often dictate
that information is sent which is not deemed necessary by the model. Deriving this by
hand yields more accurate results.
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Table 5-4 shows a sample of this table, the rows associated with a Crush Load in a model

of the Chicago Transit Authority. For a full example of this page, see appendix A.

Walking through the rows of this table will help explain the process of this page. Note

that some columns have been skipped over due to space constraints, including "Situation

type," "Frequency," and a number of facts. The column "Row" has been added to aide

this description.

" Row 1, Awareness, shows the facts necessary to recognize a crush load situation.

The facts are copied from Required None of the shown facts are active, although

the fact "Existence of problem" is active but not shown. Actor is "bus operator"

because he is the only one who is initially aware of the situation.

" Row 2, Reports to C/PCC, shows the initial message send to the C/PCC. This is

sent on channel 3, which is the Digital Data channel. This data is inputted

directly, based on knowledge of CTA's digital system. Note that Conversation

overhead is true. This value must be true once for every conversation.

" Row 3, Reports to supervision, shows the message being relayed from the C/PCC

to street supervision. This information is, again, entered manually. Note that

both the channel and actor are different from row 2, as this is a controller

speaking over the supervisor radio channel.

" Row 4, Known by supervision, shows what supervision now knows. This is

derived from oRing row 3 with what street supervisors already know, as stated in

Known.

* Row 5, What response is least disruptive? - Needed, is copied from the

corresponding row in Required.
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Table 5-4: Selection of "Conversations" Related to Crush Load. Some columns have been skipped over due to space
nitations. "Row" has been added to aide the accompanying text.hr
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Bus avail- Conver-
Area bus ability at Bus Bus Instruc- sation

Vw Step Step detail Channel Actor # Actor Total schedule garages sched. location tions overhead

Awareness . 1 Bus operator 0 0 0 0 0 0
Reports to
C/PCC 3 1 Bus operator 0 0 0 1 0 1
Reports to
supervision 1 3 Controller 0 0 0 1 0 1
Known by
supervision 1 1 1 1 0 0
What response
is least
disruptive? Needed 0 0 1 0 0 0
What response
s least Needed and
disruptive? unknown 6 Point supervisor 0 0 0 0 0 0 0

Do nothing 0 0 0 0 0 0

Drop-off only Needed 0 0 1 0 0 0
Needed and

Drop-off only unknown 1 Bus operator 0 0 0 0 0 0 0
0 Drop-off only Instructs 4 6 Point supervisor 0 0 0 1 1 1
1 Drop-off only Announces 1 6 Point supervisor 0 0 0 1 1 1

Hold prefol /
2 hold leader Needed 0 0 0 1 0 0

Hold prefol / Needed and
3 hold leader unknown 1 Bus operator 0 0 0 0 0 0 0

Hold prefol /
4 hold leader Instructs 4 6 Point supervisor 0 0 0 1 1 1

Hold prefol /
5 hold leader Announces 1 6 Point supervisor 0 0 0 1 1 1



* Row 6, What response is least disruptive? - Needed and unknown, is derived by

ANDing row 5 with the opposite (NOT) of row 4. In this case, the total is 0,

showing us that there is nothing that supervisors need to know that they do not

already know. This verifies that they can make the decision without any

additional communications.

* Row 7, Do nothing, is one of the three possible responses supervisors might

make. Because it involves taking no action, the columns in this row have no

significance.

" Row 8, Drop-off only - Needed, is the information needed to implement the

second of three possible responses. This is copied from Required.

* Row 9, Drop-off only - Needed and unknown, shows what facts the bus driver

would require to operate drop-off only service, but does not have. It is derived by

ANDing row 8 with the opposite (NOT) of the Bus operator entry in Known. The

total figure excludes the instruction, which includes the points between which the

operator is to operate in drop-off only service.

* Row 10, Drop-off only - Instructs, shows what facts the point supervisor gives to

the bus operator. This includes the conversation overhead, and of course

Instructions. Communications method 4 represents face-to-face communication.

" Rows 12 through 15 are functionally the same as rows 8 through 11, but for a

different recovery technique. These are all the rows associated with Crush load.
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5.3.4 Strain: The Bandwidth Taken by Each Transmission of a Fact
This page describes the bandwidth used by transmitting a fact over each given means of

communication, as well as whether such a transmission is possible. "Instructions" and

"Conversation overhead" also appear here.

This page contains four sections.

1. Transmittable: Whether each fact is transmittable on each channel.

2. Askingfor: The strain of asking for each fact on each channel.

3. Relaying: The strain of reporting each fact on each channel.

4. Total: The total strain of asking for and reporting each fact on each channel.

The general format for each of these is as follows:

" One column shows the ID number associated with each channel.

* One column shows the name of each channel.

* A column for each fact.

" A column for "Instructions," and a column for "Conversation overhead."

" For Transmittable, each cell contains a TRUE or FALSE value, representing whether

the corresponding can be conveyed on the corresponding channel. "Instructions"

and "Conversation overhead" are marked as TRUE for all channels.

* For Askingfor and Relaying, the cell contains the bandwidth taken by asking for

or relaying the fact. The definition of bandwidth can vary by channel, but it is

typically the number of seconds taken to say something over the radio (see

chapter 3.)

114



* "Instructions" is zero in Askingfor, as instructions are not asked for. Their only

value is in Relaying. For "Conversation overhead," only the sum of Askingfor

and Relaying matter, so they can be distributed however one wishes.

* For Total, cells calculate the sum of the corresponding cells in Askingfor and

Relaying.

Table 5-5 shows a sample of Transmittable. See appendix A for a complete example of

this page.

5.3.5 Results: The Total Strain on Each Channel
This page shows the total strain on each communications method. This is derived from

Conversations and Strain. For each channel, the rows of Conversations which use that

channel have their facts multiplied by the row's Frequency and their corresponding

strain. The sum of this is the total channel use.

Table 5-5: A Portion of the "Transmittable" Chart
Area bus Bus availability Bus Route demand

Channel ID Channel schedules at garages schedule profile
1 Sup radio FALSE TRUE TRUE TRUE
2 Bus chan FALSE TRUE TRUE TRUE
3 Digital data FALSE FALSE FALSE FALSE
4 Face to face TRUE TRUE TRUE TRUE
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Chapter 6: Application of the Communications Model to
the Chicago Transit Authority
In the previous chapter, we developed and described a communications model. In this

chapter, we will apply that model to the Chicago Transit Authority's bus communications

system. We will first describe the sources of the necessary data for our model. We will

then walk through a portion of model creation, to show explicitly how this is done. We

will discuss the results and implications of an analysis of CTA's current system of

communication, followed by the same for a hypothetical communications system with

wireless PDAs.

6.1 Data Sources
In this section, we will describe the sources of data necessary for the model. There are

three principle sources used: recordings of CTA radio traffic, to measure the length of

time taken to ask questions, state answers, and give instructions over the air; queries to

CTA's central events database to determine the volume of events; and personal

observation in CTA's Communications / Power Control Center, with accompanying

interviews, to determine the order and nature of decisions and responses particular to

CTA.

6.1.1 Communication Bandwidth Usage: Voice Recordings
The author obtained a one-week sample of voice recordings of CTA's radio channels.

This tape contained recordings of every voice channel, including the two bus supervisor

radio channels and three digitally managed channels shared by buses, as well as a number

of channels for rail lines, security, and power control. These recordings were stored on a

Dictaphone Prolog tape, playable on Dictaphone Prolog and Guardian equipment.
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The author listened to all supervisor and bus channels from 8:30-9AM, 11-11:30AM and 3-

3:30PM on Monday, September 10 2001. These samples were chosen because they

represented three distinct and consistent levels of activity, as indicated by the number of

disruptions logged in the control center's database (see next section.) A sample of

conversation follows with minor details altered to preserve employee privacy. When

numbers are given they are printed once as numbers for readability, followed by the

phonetics in italics. The sample, at 3:07PM on September 10, 2001, concerns bus 5876

which has been sending false silent alarms. The control center handles this as a minor

mechanical defect, allowing the bus to continue in service until there is an opportunity to

take it off the street without disruption. In this exchange the dispatcher asks street

supervisor K321 to address the problem by trading buses, and the supervisor asks for

clarification on what bus it is.

Control: K321 (K three twenty-one): earlier bus number 5876 (fifty-eight

seventy-six) was giving out several false alarms. When the

operator reaches your location sir will you trade that bus off?

K321: 10-4 (Ten-four), gimmie the run again.

Control: No run number is available, sir. The bus number is 5876 (fifty-

eight seventy-six).

K321: 5 876, 10-4 (Fifty-eight seventy-six, ten-four.)

The author broke down these conversations into pieces representing the facts being

conveyed or parts of conversational overhead and used an audio editing program to

measure the length of time these pieces took to say. Also marked was whether it would

be accounted for in the model - a supervisor announcing that buses were jumping reliefs

would be accounted for in the model, but a supervisor repeating himself because static
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interfered would not. Time spent silent was also noted. The following Table 6-1 shows

such a representation of the conversations above:

Table 6-1: Breakdown of a Conversation

Start Time and Speaker Words Purpose

duration

3:07:39 Control K321: ... Overhead (starts

(2 seconds) conversation)

3:07:41 Control earlier bus number 5876 was States existence of

(6 seconds) giving out several false alarms.... problem

3:07:48 Control When the operator reaches your Gives instructions

(5 seconds) location sir will you trade that bus

off?

3:07:53 K321 10-4... Overhead (confirming

(1 second) message)

3:07:54 K321 gimmie the run again. Outside model

(2 seconds) (requesting repetition)

3:07:56 Control No run is available, sir. The bus Outside model

(4 seconds) number is 5876. (repetition)

3:08:00 K321 5876, 10-4. Outside model

(2 seconds) (repetition)

From this data, we are able to determine the average amount of time it takes to ask for or

relay some information, or to offer instructions or describe a problem. For instance, it

takes six seconds to state the nature of a problem in the sample above, while the average

value is 6.5. Some pieces of information were not discussed over the air, such as a bus'

lead headway which is not generally known. In these cases, likely hypothetical times

were determined through comparison with existing data and a limited amount of

experimentation. Statements given by bus operators at CTA are consistently slower
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than their dispatcher or supervisor counterparts, as they spend so much less time on the

radio. To represent this, the strain of information on the digitally managed bus channels

is the strain of the information on supervisor channels multiplied by a fixed value (1.5)

which provided results consistent with samples.

We can also determine how much conversation takes place that the model cannot account

for. We assume that this is a constant value - that no matter what is under discussion, a

fixed number of statements will need to be repeated, and a fixed number of issues too

complicated to be described by the previous chapter's methodology will arise. (This

makes sense in the context of this study, as complicated issues generally cannot be

moved to data messaging and stay on a voice channel.) We can then consider this portion

of capacity to be unavailable.

As CTA has a "primary" and an "alternate" channel for supervisors, some time on the

primary channel is used by supervisors instructing each other to switch to the alternate

channel for a conversation. This extra time is averaged in to the time taken to start and

end a conversation.

Figure 6-1 shows how the time on the primary radio channel was used during the 3 to

3:30pm sample.

* "Overhead" refers to conversational overhead, such as asking the dispatcher for

permission to speak, acknowledging a message, etc.

* "Repetition" refers to the need to repeat anything due to interference or

inattention.

* "Switch channels" refers to a request to switch to the alternate radio channel,

including the overhead for that conversation.
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Figure 6-1: Use of CTA Supervisory Radio, 3-3:30pm

1%
13%

34%

M Overhead

M Repetition
G Switch channels

21% M Instructions
* Information
CI Silence
* Unknown

5%

6% 20%

0 "Unknown" refers to any words the author could not decipher, and the rest are

self-explanatory.

Of note is that although this is an off-peak time period, the channel is silent just 13% of

the time, indicating that it is approaching capacity. Overhead, repetition and channel

management occupy 60% of the total time, or 69% of the time that someone is speaking.

Also noteworthy is that despite a location being announced for almost every disruption, it

takes only 14% of the time spent giving information or 3% of the total. Knowledge of

city geography allows dispatchers and supervisors to indicate a location very quickly.

From the demand placed on the channel used in the afternoon, the reader may expect that

demand would exceed supply during the peak, which is correct. The need to
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communicate occurs at random intervals, and a supervisor will only relay some messages

if he can do so in a timely fashion and if there is enough unused capacity available to

warrant using it. Therefore there are occasional short pauses. But on the 8:30 to 9AM

sample there were no pauses of thirty seconds or more. The ramifications of this will be

discussed below.

See chapter 3 and appendix B for more information on these communication methods and

an analysis of CTA's voice channels, respectively.

6.1.2 Event Volume: The BECS Database
Everything that passes through the bus side of CTA's Communications / Power Control

Center (C/PCC) is logged in CTA's Bus Emergency Communications System database.

This database can be used to learn the amount of time it takes for the C/PCC to respond

to a disruption, which bus controllers had a role in the disruption, even the amount of

service delay caused by different disruptions. For this thesis, the author measured the

number of disruptions that typically occur during different times of day. This

information was obtained by averaging the number of disruptions of each type starting in

each hour on all Wednesdays for one year. (Analysis on total disruption volume showed

no significant variation between weekdays, with the exception of an increase in

disruptions on Friday night. Wednesdays were chosen at random.)

Some events treated separately in the model are considered together in the BECS

database. For instance, the model differentiates between three kinds of mechanical

defects: those that do not keep the bus out of service, those that keep the bus out of

service but do not immobilize it, and those that immobilize it. The BECS database does
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not make these distinctions. When numbers needed to be broken down, inference based

on interviews and personal experience was used.

Some events are listed under the generic heading of talk request or priority talk request.

This occurs when a driver chooses to push the "Request to talk" or the "Priority request

to talk" button instead of sending a digital message, usually because of unfamiliarity with

the mobile data terminal's menus. To rectify this, talk request time was distributed

among bus delay, mechanical problem, emergency, accident, missed relief, blockage, and

congestion according to the existing proportion of those conditions. Priority talk requests

were distributed between emergency and accident according to the existing proportion of

those conditions.

The event "bus early" does not pass through the control center at all. Because these

disruptions did not result in any communications in any scenario, the number of early

buses has no impact on the results of the model, so a reasonable guess was made.

Figure 6-2 shows the volume of events throughout the day, averaged by hour, and Table

6-2 shows the resulting amount of disruptions to be used in the model. Not only are

disruptions at CTA subject to peaking, but different disruptions peak at different times.

In the morning, equipment defects peak from 7 to 8 as buses pull out and enter service.

Delays peak in rush hour from 8 to 9, and emergencies peak from 9 to 10. Also of note is

that equipment defects only vary by about five per hour between 6am and 5pm, while

delays peak far more dramatically in the same period, ranging from about 5 per hour to

22.
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Table 6-2: Model Input: Number of Events in Time Periods
8-9am 3

Bus early 10 8
Bus late (short headway) 12 8
Bus late (long headway) 6 4

Crush load 1 2

Mechanical problem (minor) 6 5
Mechanical problem (serious) 2 2
Mechanical problem (major) 12 10
Emergency / Security 2 2

Accident 2 1

Operator misses relief 0 4

Blockage 2 2

Bus standing / service gap 26 21

Unfilled run 22 17
Unplanned bus bridge 0 0
Route-wide congestion 2 1
Late pull-out 4 5

One can also use the BECS database in conjunction with an understanding of control

center procedure to determine an upper and lower bounds of the length of time between
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the control center receiving a message and acting on it, although this is only possible for

certain messages. To do so it helps to understand basic roles with the control center:

garage controllers are responsible for communicating with a certain number of buses, and

the "Cl" controller is responsible for communications with the supervisors. The

controllers use computers that put incoming digital messages in an event queue. So when

information travels from a bus to supervisors through the control center it actually goes

through two different people. For example, when a bus sends a delay report of less than

thirty minutes to the control center, the control center's role is to relay it to street

supervisors, who can order a response to the disruption if appropriate. Within the control

center, the following sequence of events takes place:

1. The message appears in the event queue of a garage controller

2. The garage controller sends the message from his computer to the event

queue of the Cl controller

3. The Cl controller announces the delay over the air

4. The Cl controller "closes" the message, removing it from his queue, or

sends it back to the garage controller, who closes it

The control center database logs the time at which the message was received, the times it

is sent from one controller to another, and the time it is closed. The Cl controller

announces the message over the air at some point between receiving it and sending or

closing it, presenting an upper and lower bound. Figure 6-3 shows the average bounds on

the time it takes the control center to relay these delay messages by time of day, from

information gathered from four days. (A four day period was chosen because the

necessary information is only stored in the database for a short time. This measurement

may include a small number of duplicate delay reports that were never announced over

the air at all, however the results are corroborated by extensive personal observation.)
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The actual level of time is likely to be closer to the upper bound, as Cl controllers

typically close a delay message as soon as they have announced it to make more room in

their queue and ensure that they do not announce it again. It is notable that while the

garage controller's performance exhibits peaking, Cl's does not. One explanation for

this would be that C1 does not consider delay messages "urgent," and so focuses heavily

on other disruptions, which peak less.

Figure 6-3: Range of the average time to relay delay reports
(averaged from Monday November 19-Thursday November 22, 2001)
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Delays are also among the most time-sensitive reports, due to the tendency of a late bus

to become even later in the absence of any intervention (see section 4.4.) Because these

reports are for buses that are already at least 10 minutes late and take on the order of ten

minutes to get to supervisors, this information is only rarely useful for supervisors. The

implications of this will be discussed later in the chapter.

Delay reports are some of the slowest to be relayed, because dealing with accidents and

mechanical breakdowns takes priority within the C/PCC. A higher priority event is a
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mechanical defect. When a bus sends a digital message reporting an equipment defect,

the following events occur:

1. The message appears in the event queue of a garage controller

2. The garage controller usually makes voice contact with the bus for more

information

3. The garage controller sends the message, including the new information

he has gathered and his recommendation for the next action, from his

computer to the event queue of the Cl controller

4. The Cl controller assigns the equipment defect to a particular street

supervisor, mobile supervisor or repair truck, as appropriate

5. The CI controller leaves the message in his queue until the party assigned

to fix the problem reports back with a resolution

6. The C1 controller then "closes" the message, removing it from his queue

Because no digital event takes place after Cl assigns the problem to someone in the field,

one cannot learn an upper bound on the time taken to relay this message. The lower

bound is displayed in Figure 6-4.

Figure 6-4: Lower Bound of Average Time to Relay Equipment Defect
Reports (averaged from Mon. Nov. 19-Thurs. Nov. 22, 2001)
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Contacting the bus operator for more information typically takes two to three minutes, so

on average a garage controller is starting work on the disruption within one or two

minutes of receiving a message. The lack of peaking in this delay is noteworthy in light

of the peaking in disruption volumes shown in Figure 6-2, and is evidence of the higher

priority placed on this form of disruption. Personal observation indicates that the taken to

relay the message is typically 1-2 minutes above the lower bound shown, and

occasionally on the order of five minutes during a peak period. As the options for

responding to an equipment defect do not diminish over time, this is an entirely effective

timeframe for relaying messages, although less than ideal for responding to an associated

service gap.

See appendix B for more information about and from the BECS database.

6.1.3 Communications and Decision-Making Procedures:
Observations, Interviews and Inference
The roles and responsibilities of different CTA personnel in response to different

disruptions, including the communications each initiates, the decisions each makes and

the actions each takes, is of central importance to the model. The decision flow

framework established in chapter 4 and the checks built into the model itself help dictate

what is possible, but that must still be narrowed down to what actually happens or would

happen in an alternate scenario.

A model of existing CTA procedures was based on personal observations of CTA

supervisors and dispatchers, in-depth interviews with 6 dispatchers, and interviews with a

number of CTA employees'. A model of alternative CTA procedures, supported by new

1 Darryl Lampkins, George Neal, Tom Pleuger, and Daniel Shurz.
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communications technology, was based on the goals of the project as described by Tom

Pleuger, the existing procedures, and the framework established in chapter 4. While a

complete model of procedures is not shown, samples of the chain of command and

sequence of events resulting from certain disruptions will appear later in this chapter.

6.2 Model Walk-Through
This section will walk through the remaining steps in implementing the model introduced

in the previous chapter. This includes filling in the tables representing the steps CTA

takes when dealing with a disruption, noting any inconsistencies in model results, and

adjusting the tables to ensure reasonable and accurate results.

6.2.1 Creating and Understanding Conversation Tables
Here we will map the agency's process for dealing with disruptions onto the existing

structure of what communications this

process will generate. This is done

using a combination of the framework

in chapter 4 and knowledge of

operations. Let us start with a simple

example to see how this is done.

Figure 6-5 shows graphically how

CTA deals with an accident, and Table

6-3 shows the model's representation

of it. To conserve space in the model,

only relevant pieces of information are

.4
"p
"p

K'

Figure 6-5: Current
Accident procedure

Bus operator sends digital message to
garage controller, who follows up on
voice channel

Garage controller forwards digital
message to CI controller and phones 91'
dispatching center

CI controller announces accident and
dispatches mobile supervision over
supervisor radio channel

..... Digital message
-- Voice radio

-- - - Personal contact
Telephone
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Table 6-3: Modeling How CTA Responds to Accidents
# Step Step detail Chan. Actor Information

1 Awareness Bus operator Existence of problem

2 Reports to C/PCC Digital Bus operator Problem, location

3 C/PCC asks for detail Bus radio Controller Detail of problem

4 Known by controller Controller Problem, location, detail

5 Are medics needed? Needed Problem, detail

Needed &

6Are medics needed? unknown

7 Dispatch mobile super. Needed Problem, location, detail

Needed &

8 Dispatch mobile super. unknown

Announces & Super. Instruction, Problem,

9 Dispatch mobile super. Instructs radio Controller location, detail

10 Dispatch police Instructs Phone Controller Problem, location, detail

11 Dispatch police, medics Instructs Phone Controller Problem, location, detail

shown. Some data, like the number of times a step occurs, is omitted.

The following description shows what each row represents.

1. What a bus operator must know to be aware of the event. As this is an accident, he

simply needs to know that the accident has occurred.

2. The bus operator reports the accident to the control center using digital

communication. The digital message includes the nature of the incident and the bus'

location.

3. The control center calls the bus operator on the digitally managed voice channel and

asks the bus operator for details on the situation. This row does not represent the

entire conversation, because every accident has an accompanying mechanical defect,

which also requires this step. See below for an example of this conversation.

4. What the controller knows. In this case, it is no more than what he has been told.
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5. What a controller needs to know to decide whether medics are necessary: the

existence and details of the event.

6. What a controller needs to know, but does not know to decide whether medics are

necessary. This row is empty, as it should be: he knows everything he needs to. This

row serves as a confirmation that the procedure described makes sense.

7. What the controller must know in order to dispatch mobile supervision to the

accident: the existence of the event, the location and details. Details are necessary to

prioritize the event properly.

8. What the controller must know, but does not know, to dispatch mobile supervision.

As in row 6, this serves as a check.

9. The controller announces the accident over the supervisor radio channel, and in the

same conversation, dispatches mobile supervision to the scene. While this is not the

same controller, the distinction is not relevant for this model. As with row 3, this row

does not represent the entire conversation. See below for an example of this

conversation.

10. The controller telephones the 911 center to dispatch police.

11. The controller telephones the 911 center to dispatch police and medics.

The number of times each row is counted in the model is equal to the number of times the

step it represents occurs during the given time period. All rows but 10 and 11 are

counted once for each accident; the number of times rows 10 and 11 are counted must

sum to the number of accidents. If, for example, CTA contacted the police over its

supervisory radio channel but had to telephone a 911 center for medics, this distinction

would be necessary. As this is not the case, they could be combined, but are left separate

for consistency with the framework introduced in chapter 4.

While the model does not represent or create actual conversations with real information,

representing the values in rows 3 and 5 in this fashion can be illustrative of the
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relationship. Following are two entirely fictional and idealized conversations to show

what is being represented. Statements in bold are the only ones with corresponding

values in the accident table. All other rows are represented in the tables of other

disruptions that necessarily accompany an accident. The first, corresponding to row 3, is

the conversation between the controller and the bus operator.

1. Dispatcher:

2. Driver:

3. Dispatcher:

4. Driver:

5. Dispatcher:

6. Driver:

7. Dispatcher:

8. Driver:

9. Dispatcher:

10. Driver:

11. Dispatcher:

12. Driver:

13. Dispatcher:

14. Driver:

Run 612, pick up your handset please.

Run 612.

Run 612 what is your bus number and badge number?

Bus number 1642, badge 38925.

And what is your location and direction?

I'm at the corner of Addison and Pulaski, facing east.

Run 612 can you describe what happened?

I was pulling in to the stop when I felt a bump behind me. I

heard it to. I looked in my mirror and a car had hit me. But it

drove off.

Are there any injuries?

No, no injuries.

Have you looked at the damage?

Yeah, the corner of the bus is kind of banged up. The light is

broken. Some paint's scratched. But still runs OK.

OK, I'm passing this on supervision, you stay there until you're

clear.

10-4.

Statements 1 through 6 and 14 show the overhead of the conversation. They occur

whenever a dispatcher speaks with a bus operator. While all the information gathered is

transmitted with the original digital signal, dispatchers still ask this information to verify
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that it is correct. Statements 7 through 10 represent the detail of the problem. Statements

11 and 12 represent the detail of the equipment defect. 13 represents the instructions

given. In this case, every statement not represented in the accident table is represented in

the equipment defect table.

The following represents the conversation indicated in row 9. In this case, the dispatcher

continually reports a number of distinct pieces of information. To facilitate explanation

his statement is broken into a number of rows, even though they represents one

uninterrupted statement. Abbreviations are explained in line with text.

1. Dispatcher: Attention K12.

2. Run 612, 1642 on the bus, stands

3. at 74t and Polaski

4. after a 10-73 [collision of CTA vehicle and another vehicle]

5. with an auto. No injuries have been reported, vehicle reported to have

left the scene.

6. bus is not disabled and has been taken out of service.

7. 10-51[Go to location and assist as appropriate], please, 10-51...

8. Also your attention Ki 81 and KI 87, your attention to the Addison route.

9. K12: K12, 10-4.

Rows 1 and 8 represent the overhead of the conversation. Rows 2 and 4 represent the

statement of one problem, a mechanical defect. Those rows, the location in row 3 and the

instruction in row 7 are all represented by values in the mechanical defects table. Rows 4

and 5 represent the existence and detail of an accident, statements represented in the

accident table. Row 8 represents the statement of the a gap in service, represented in the

bus standing / service gap portion of the table.
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6.2.2 Adjusting Goals to Results
Everything is in place for us to calculate the demand on channels, and all that remains is

determining the supply. Tables 6-4 and 6-5 show the supply provided by two open mic

supervisory channels and three digitally managed bus radio channels, respectively. It

should be noted that while bus operators typically speak more slowly than supervisors,

they lose less time to overhead because less repetition is necessary.

Table 6-4: Supply on Supervisory Channels Available
for Conversations Represented in Model
(seconds) Primary Secondary

channel channel
Seconds in an hour 3600 3600
Seconds lost to repetition and -1116 -1116
conversation outside of model:
Seconds lost to inefficiencies -1332
from using two channels*:
Remaining capacity 2484 1152
Total remaining capacity: 3636
*Time spent switching channels and establishing new
conversation on alternate channel

Table 6-5: Supply on Digitally Managed Bus Channels
Available for Conversations Represented in Model
(seconds) Channel Channel Channel

1 2 3
Seconds in an hour 3600 3600 3600
Seconds lost to repetition and -789 -789 -789
conversation outside of model:
Remaining capacity 2811 2811 2811
Total remaining capacity: 8433

We can now divide the seconds of demand predicted by the

supply, showing our preliminary results in Table 6-6:

model by the seconds of
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Table 6-6: Use of Radio Channels, CTA Today (Preliminary)

Time Supervisor channels Bus channels

Observed Predicted Observed Predicted

8-9AM about 100% 116% About 75%* 79%

3-4PM 87% 101% -- 62%

* A rough estimate based on personal observation.

This is clearly not an accurate picture of channel use. Even disregarding the observed

values, CTA cannot use more than 100% of its supervisor channels' supply. If demand

on the radio outweighs supply, the radio becomes a constraint, and some communication

about less vital disruptions is dropped. When individuals compete for airtime, people

who know they have a less pressing need will tend to forgo it, and if they do not, CI will

ask them to wait while more urgent matters are discussed.

The disruptions which do not absolutely have to be dealt with are:

" Bus late (short headway)

" Bus late (long headway)

" Crush loads

" Service gaps (spreading the terminal)

Let us try leaving announcements that buses are late on the supervisor radio channel, as

they are standard operating procedure, but removing any supervisor discussion of service

responses, removing discussions in response to crush loads, and removing about half of

the conversations resulting from service gaps. We must do this consistently for all time

periods. While it is true that supervisors could change their behavior during certain times

of day, in general they behave consistently throughout the day. 50% of a weekday's

delays occur in just 20% of the time (8-9 AM and 3-7PM.) Over the course of a career, a

supervisor will deal with a majority of delays when communications are very busy. It is

135



unlikely that he will try to use more communication bandwidth to try more ambitious

techniques for the minority of delays that occur during the off-peak, a time when he may

perceive delays as less disruptive.

The number of disruptions occurring during different time periods, as shown in Table

6-2, does not change. All that changes is how they are dealt with, and the results are

shown in Table 6-7:

Table 6-7: Use of Radio Channels, CTA Today (Adjusted)

Time Supervisor channels Bus channels

Observed Predicted Observed Predicted

8-9AM about 100% 97% About 75%* 68%

3-4PM 87% 89% - 62%

* A rough estimate based on personal observation.

Observing these results without comparing them to any observed data, we find that they

appear very realistic. It does not show channels being used more than is possible, but it

does show use very close to maximum capacity in the peak period. As we had to reduce

communications to get here, this makes sense: we have established above that this

channel is a constraint at peak, so we would expect use of it to be at about 100%. Now,

by comparing these results to observed data, we see that we are producing accurate

results.

To test these results further, we can compare the makeup of the demand between the

conversations depicted by the model and the conversations observed. Figure 6-6

compares the predicted uses of supervisory radio for both time periods and the observed
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Figure 6-6: Use of
Voice Channels,
Observed and
Simulated
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use for one. The model combines multiple kinds of overhead, so for ease of comparison

overhead appears as one value in the observed chart as well.

The demand being placed on the supervisory radio, both in total and grouped by type of

use, is consistent with observed data. One must note that even if the numbers in our

simulated and observed afternoons happened to match exactly, it would not mean that the

demand placed on the channel will always be 89% of its capacity between 3 and 4 on
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weekdays. The number and kinds of disruptions fluctuates randomly, and so does

demand for communication. Adding three more accidents and one unfilled run to our

3:00 scenario pushes the predicted demand to 100%. But we can say that on an average

day, about all of the supervisory radio is used at peak, about nine tenths is used off peak,

and discussion related to most non-critical disruptions (delays, crowding, service gaps,

unfilled runs) is being omitted.

We can now evaluate what that means.

6.3 Implications for CTA: Available Service Restoration Options
We have built a model around how CTA's procedures are designed to handle disruptions,

and adjusted it according to the Figure 6-7: Current
. . Accident Procedure

limitations that communications puts

on those procedures. We can now Bus operator sends digital message to
garage controller, who follows up on

"voice channel
draw some conclusions concerning

how this affects service.

First, let us look at how CTA

handles accidents and breakdowns.

Figure 6-7, reprinted below, shows

how CTA responds to an accident.

(See section 6.2.1 for more detail on

this procedure.) When revising the

model's communication demand

figures to bring them within supply

Garage controller forwards digital
message to CI controller and phones 91'
dispatching center

Cl controller announces accident and
dispatches mobile supervision over
supervisor radio channel

U .......... Digital message
-Voice radio

- -- - Personal contact
Telephone
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there were no changes made that concerned accidents (although some changes did

concern service gaps, which accidents do cause.) By returning to Figure 4-9, which the

model representation was partly based on, we can see that all responses to an accident are

accounted for by CTA procedure. The bus operator gives supervision all the information

they need to make the best possible decision. In this case, the only decision the

dispatcher makes is a simple one, whether to request medical services when sending

police to the scene. Accidents
Figure 6-8: Implied Delay

are a high priority and can go , Procedure

over the air right away.

Responses to breakdowns,

while similar in structure to

accidents, may not reach the

supervisors as quickly in peak

periods because there is so

much use of the supervisor

channels. In practice, mobile

supervisors are often very busy

in the peak and have several

assignments waiting, so they

usually cannot proceed to the

disabled bus as soon as it is

announced. Communications

'7

p
in

I

V

Bus operator sends digital delay
message to garage controller

Garage controller forwards
digital message to C1 controller

C1 controller announces delay over
supervisor radio channel

A supervisor decides on an
intervention, orders it in person and
informs other supervisors over the radio
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is not a constraint in this case.

Delays are more complicated. CTA reporting procedures imply that the organization is to

respond to delays in the manner shown in Figure 6-8 and described in section 6.1.2. A

supervisor must decide on and implement a recovery technique, if any. Based on this

procedure and the information and resources necessary to choose and implement a

response to a delay on a short headway route, as shown in Figure 5-2, we can say that the

following techniques shown in Table 6-8 should be available for supervisors to respond

to these delays:

Table 6-8: Implied CTA recovery techniques to a delay on a short headway route
Technique Possible? Constraints Cost
Express down a Yes Not until bus reaches somewhat
different street supervisor unpredictable
Express to a later point Yes Not until bus reaches somewhat

supervisor unpredictable
Drop-off only Yes Not until bus reaches somewhat

supervisor unpredictable
Short turn Yes Not until bus reaches somewhat

supervisor unpredictable
Hold leader Yes Not until bus' leader Predictable

reaches supervisor,
questionable effectiveness

Do nothing Yes None Predictable

If the capacity on supervisor radio channels was not a constraint, every recovery

technique would be possible, but every technique has constraints and holding a leader is

particularly difficult. As observed in chapter 4, a bus whose leader is held continues to

become increasingly delayed until it reaches the point where the leader had been held.

We also observed that this technique is most effective if implemented as soon as the bus

is at all late. So while a supervisor could technically hold a leader, it is rarely possible to
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do effectively. For the rest, costs are somewhat unpredictable because the cost to some

passengers depends on the time they will now have to wait for the following bus. Using

CTA's reporting system, that bus could be up to nine minutes late and the supervisor

would not know yet. (He would know the follower's location if the buses are bunched,

and if not he may or may not be able to find out from another supervisor on the route,

depending on supervisor placement.) This does not impact the effectiveness of returning

the bus to schedule, but would aide in deciding between some responses. For example,

when deciding between expressing and operating as drop-off only, expressing can return

a bus to schedule faster but forces some passengers to alight and wait for the next bus.

The length of time they would wait can make the difference between the two techniques.

We have established in 6.1.2 that the delay information

that goes through the control center is not actually useful Figure 6-9: Actual delay
procedure

to supervisors most of the time. In theory, multiple

supervisors along a route could still share information

about late buses to form a picture of a route, but as

demonstrated in section 6.2.2 there is not enough radio

supply to support this level of detailed exchange during

the period when most delays take place. The resulting

procedure for intervening in delays is to do so through Digital message
- voice radio

direct contact between supervisors and buses, as shown in " " " Personal contact

Telephone

Figure 6-9, resulting in the available techniques shown in

Table 6-9:
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Table 6-9: Implied CTA Recovery Techniques to a Delay (Short Headway Route)
Technique Possible? Constraints Cost
Express down a Yes Not until bus reaches Very unpredictable
different street supervisor
Express to a later point Yes Not until bus reaches Very unpredictable

supervisor
Drop-off only Yes Not until bus reaches Very unpredictable

supervisor
Short turn Yes Not until bus reaches Extremely

supervisor unpredictable
Hold leader No N/A N/A
Do nothing Yes None Predictable

Holding a leader is no longer possible because a supervisor only has the opportunity to do

so before he is aware of the problem. Costs have become more unpredictable for two

reasons. One is that a bus' follower could be an number of minutes late without the

supervisor knowing. The follower could be further behind schedule than the bus in

question, in which case it could be fortunate that the bus in question is late, whether or

not it was deliberately held. More fundamentally, a supervisor does not know whether

other restoration actions are occurring on the route, and runs the risk of making a decision

that would compound the inconvenience to certain customers. If a supervisor expresses a

bus on the assumption that its follower is not far behind, and another supervisor has

short-turned that follower to bring him back on schedule, passengers will be

inconvenienced more than either of them could expect.

Under such circumstances, a supervisor's best decision is often to do nothing. If a bus is

so late it will miss its next trip, or the bus is bunched with a follower, a supervisor may be

reasonably sure than an intervention will do more good than harm. In the former case the

cost of inaction is greater, and in the latter case the cost of intervention is both smaller

and more predictable. Otherwise, doing nothing is the only course where the costs are
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known. On average, another technique might have a net positive effect, but doing

nothing has the most appealing worst-case scenario.

Major delays and bunched buses can still be addressed, but this strategy is ineffective

against small delays. Unfortunately as noted in chapter 4 a minor delay has a tendency to

become worse, until it reaches the end of its route or becomes a major delay or a bunched

bus. A delay cannot be addressed until it becomes a significant problem. The limits on

communication between buses and supervisors have a negative impact on service.

6.4 Predicting the Impact of PDAs on CTA
A proposal exists within CTA to give wireless PDAs to street supervisors. These

handheld computers would allow supervisors to communicate with the control center,

buses and each other using digital messaging. They would allow supervisors to track the

location of a bus or all the buses along a selected route. In addition, software would

detect when a bus is behind schedule and inform supervisors automatically. In an email

from CTA, Tom Pleuger estimated the cost at $80,000 for hardware plus 4 man-months

of development totaling $152,640 (Tom Pleuger, 2002.) This does not include time spent

solving existing procedural problems that would prevent the PDAs from being useful.

For example, the digital information from buses is sometimes incorrect, such when a bus

operator does not log in properly or when a bus is digitally "assigned" to a different

garage than the one out of which it actually works. These inaccuracies cause problems

for existing operations unrelated to PDAs, and this analysis assumes that they will be

addressed.
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To model this we must first determine the changes in CTA procedure. Procedures for

accidents and breakdowns would not change a great deal, while handling of delays would

change significantly.

To divide work efficiently among a group of people, a person needs to keep track of who

is doing what and who is the least busy. The only question is whether dividing work

between supervisors is easier or more difficult with digital messaging. Voice radio is

ideally suited to this task: a dispatcher can give out assignments rapidly, discussion can

move back and forth easily to determine who is free, and anyone can say whatever

information is relevant to assigning someone to a problem. Digital messaging is weak in

these areas. This is not to say that digital dispatching is not done, and done well. But

when it works it is because computers at both ends work to optimize the dispatching

tasks: keeping track of people's assignments for the dispatcher, prioritizing assignments

for each person in the field, letting the people in the field mark ajob as "complete"

automatically and removing it from the assignment list, and generally taking over a lot of

the dispatcher's work load. The PDA proposal for CTA does not have these qualities, so

we will assume that dispatching will continue to be done by voice, which is easier. The

one exception is the report from supervisors that a job is finished: it would be more

convenient for a dispatcher to receive these digitally so he could choose his free moments

to deal with them. But most dispatching would still go over the radio.

Delay management, by contrast, is perfectly suited to be handled digitally. The control

center's only role in delays is relaying information, which in this case can be done more

quickly without it. Delay reports would no longer be necessary over the supervisor radio.

Supervisors would be aware of the position of all buses on their routes, and be able to see
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delays as they begin to develop. If
Figure 6-10: Delay

supervisors use the PDAs to send digital Procedure with PDAs

messages to each other, then

announcements about responses to

delays - and, significantly, rescheduling

the street - would no longer be ......................... Digital message
- Voice radio

necessary. Such messages are of a more : - - - Personal contact
Telephone

predictable and routine nature than those

associated with dispatching, and so can be easy to send digitally. Figure 6-10 shows this

new relationship, and Table 6-10 shows the recovery techniques that can be used as a

result:

Table 6-10: CTA Recovery Techniques to a Delay (Short Headway Route)
with PDAs
Technique Possible? Constraints Cost
Express down a Yes Not until bus reaches Predictable
different street supervisor
Express to a later point Yes Not until bus reaches Predictable

supervisor
Drop-off only Yes None Predictable
Short turn Yes Not until bus reaches Relatively

supervisor predictable
Hold leader Yes None Predictable
Do nothing Yes None Predictable
Some assumptions underlie this list:

* A supervisor will only express or short turn a bus he can see, because:

o He can make a better decision knowing the load of the bus

o He may prefer to give the instruction personally to ensure that it is

understood (especially when expressing down a different street)
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o He will want to be on the scene to personally make sure that passengers

can board freely

* A short turn is less predictable than other techniques because it usually occurs

shortly before the bus reaches its terminal. If the bus that will be its follower

hasn't started its trip yet, there is no way to know with certainty what the bus'

following headway will be.

Given that holding a bus is an effective technique for recovering from minor delays, and

given the tendency of late buses to become later, we can say that this puts the CTA in a

substantially better position in two ways:

1. Supervisors can prevent many minor delays from becoming sign ificant delays.

2. Supervisors can make more informed choices in responding to major delays.

Another important change is that PDAs allow supervisors to reschedule a street to

compensate for a missing run, even if they are not stationed at the terminal. This is

important because few of CTA's terminals have a supervisor, making respacing very

difficult on those routes.

The majority of delays would be dealt with by holding, but other techniques will be used

as well. It is not clear whether supervisors will feel comfortable using techniques like

expressing without announcing their intentions over the radio. They may feel

comfortable informing the route's other supervisors digitally, or they may state the

intervention over the air to give others a chance to object. Table 6-11 summarized all the

results relating to supervisory radio channels, including two for PDA deployment. "With
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announcements" assumes that expressing, short turning, and street rescheduling involve

announcements over the radio. "Without announcements" does not.

Table 6-11: Supervisor Channel Summary Two thirds of the difference between

8-9AM 3-4PM
Observed about 100% 87% the two PDA results is time spend
Initial prediction 116% 101%
Adjusted prediction 97% 89% rescheduling the street. CTA
PDA with announcements 78% 71%
PDA without announcements 52% 50% experiences many service gaps,

because so many disruptions create one: unfilled runs, accidents, equipment defects,

disturbances, and missing reliefs (if jumping reliefs is not possible) all create service

gaps. The degree of automation the PDAs provide in addressing service gaps has a major

influence on the use of the supervisory radio. Currently, the absence of supervisors from

most terminals prevents a lot of street rescheduling, and the crowded state of supervisory

radio means it is not consistently announced. So the estimate of the amount of discussion

this takes was based on a fairly small sample of data. The difference this makes on the

supervisor radio may therefore be exaggerated, but there is no denying that this is an

important function for supervisors to make effective use of their PDAs. If the devices

show schedule adherence data that data must change to reflect the schedule that is

actually being used when a street is rescheduled.

In general PDAs provide a significant reduction in supervisor radio traffic. This will

serve to make the job of the dispatcher assigned to that channel easier. It will allow for

faster dispatching, particularly in the peak, and would also allow for more discussion

which could lead to better dispatching decisions. It is not clear whether either of these

will result in an improvement in service. Dispatching assignments a few minutes faster

in the peak may not have an impact because supervisors almost always have a job to
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finish before they can go on to another assignment. Nor is there evidence to indicate that

dispatchers need more time discussing assignments to do so effectively. However it can

only be good to have more free time on the channel, and on days when there are a

particularly large number of delays and accidents (such as a rainstorm) this prevents

responses to each from interfering with responses to the other. Delays peak more

severely than any other form of disruption, so it is good to move them to digital

communication, which scales well.

There are other benefits to the PDA deployment. Mobile supervisors will be able to find

buses more quickly using first hand location information. This is particularly useful when

dealing with silent alarms. Supervisors may gain a new understanding of how their

routes work by being able to see all of it in detail. Similarly their judgment may improve

as they see the full picture of their intervention's results, and as they watch the results of

interventions of those they work with. Digital record-keeping of the bus' locations and

supervisor messages can be used for employee evaluation and statistical information.

The most important benefit, however, will be the creation of direct communication

between supervisors and buses, allowing for better recovery from delays and other

disruptions.

Most of these benefits are very difficult to quantify, but one that we are in a position to

estimate is the value of using holding to prevent minor delays from becoming major. It

would be problematic to estimate these benefits by comparison with other agencies'

experiences. The change could be significantly greater than that experienced by Tri-Met

or Denver RTA, given that CTA would go from no communication between buses and

supervisors to digital tracking, and given that CTA would have one supervisor looking at
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information for every 20 buses, as compared to one dispatcher for every 200 buses in

Denver (Mary D. Stearns, 1999.) However an approximation can be made based on the

examination of the importance of information's timeliness in section 4.4 and some

information from CTA. According to the BECS database, bus operators sent 15,277 "ten

minute delay" reports in one year, and that on average they report the load at time of

delay as 56% of capacity. (September 1, 2000-2001, excepting major storms. See

appendix B.) A conservative assumption would be that 10% of these delays could be

detected with PDAs and addressed with holding. An assumption that this would reduce

the delay by about one half would be consistent with the demonstration in section 4.4, in

which immediate holding reduced passenger wait time by 44%. An assumption that bus

operators perceive 60 passengers as a bus' capacity would indicate that on average there

are 34 passengers on board each delayed bus. Multiplying these numbers shows a

savings in one year of 257,880 passenger minutes or almost a year of passenger waiting

time. A 1999 study Resource Systems Group did for the Chicago Department of

Transportation estimated waiting time at ten cents a minute, which would amount to a

$25,788 annual net benefit (Stacey Falzarano et. al., 2000.) This is a very conservative

estimate, and doubling the number of actionable delays from 10 to 20% would double the

resulting benefits while remaining a reasonable assumption. If this were the only benefit

of the PDAs they would take 5-10 years for the investment to start producing net benefit.

Because holding as a means of reducing passenger delay is just one of many responses

and goal they support, this analysis bodes very well.

New communications systems can suggest different distributions of responsibility, but in

this case PDAs would make the existing division of responsibility substantially easier.
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By providing location information and communications to buses in the field, supervisors

are significantly better equipped to manage the spacing of a route and are poised to save

hundreds of thousands of passenger-minutes annually just by applying one kind of

technique to one kind of problem. The control center, aware of all the situations that

require mobile supervision or repair trucks, remain in the best position to coordinate the

workloads of numerous response units.

Assuming that existing procedural issues are addressed, the use of wireless PDAs would

have a significant impact on CTA's most pressing communication problems with no

discernable negative impact and would provide a good return on investment.
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Chapter 7: Summary and Conclusions
This thesis has studied the impact of the relationship between information,

communication and responsibility on bus service management. In this chapter, the

findings of this work will be reviewed. Conclusions will be drawn and finally future

work will be suggested.

7.1 Findings

Disruptions have a predictable set of potential responses.
Information is necessary to choose and implement a response.
Figure 7-1, reprinted from chapter 4 below, shows the decisions and responses that step

from an unfilled run. There may be variations from one transit agency to another. Some

may not have standby buses, for example. Generally, however, for a given disruption

there is a set of responses that can be used, a set of information necessary to implement

each response, and a set of information necessary to choose the best response.

Disruptions, though random, occur with a predictable frequency
throughout the day. At CTA, delays and equipment defects
experience significant peaking, while other disruptions peak only
slightly.
Figure 7-2, reprinted from chapter 6 below, shows the frequency of various disruptions

throughout the weekday at CTA. It would not be reasonable to assume that the same

pattern applies at other agencies. It would be reasonable to assume that other agencies do

have patterns. Knowledge of these patterns can help an agency plan to deal with them

more effectively.
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Figure 7-2:
Disruption Volumes

Throughout Day
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Communication channels at CTA do not have enough capacity to
meet demand, creating a constraint restricting available restoration
actions, especially to delays.

Table 7-1, reprinted below from chapter 6, summarizes the findings of the load on CTA's

supervisory radio channels. The limited capacity of the supervisory channels prevents

information about "non critical" disruptions, such as delays, from going out in a timely

manner. It also prevents supervisors from discussing these events unless they become so

serious that they could be considered critical. Table 7-2 shows the difficulty a supervisor

faces in responding to a delay. In general, a supervisor at CTA can only feel confident

intervening in a very serious delay, because the cost of his intervention is unpredictable

to him.
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Table 7-1: Supervisor Channel use Summary

8-9AM 3-4PM
Observed about 100% 87%
Initial prediction 116% 101%
Adjusted prediction 97% 89%
PDA with announcements 78% 71%
PDA without announcements 52% 50%

Table 7-2: Implied CTA Recovery Techniques to a Delay ( Short Headway Route)
Technique Possible? Constraints Cost
Express down a Yes Not until bus reaches Very unpredictable
different street supervisor
Express to a later point Yes Not until bus reaches Very unpredictable

supervisor
Drop-off only Yes Not until bus reaches Very unpredictable

supervisor
Short turn Yes Not until bus reaches Extremely

supervisor unpredictable
Hold leader No N/A N/A
Do nothing Yes None Predictable

PDAs would allow CTA to make better restoration decisions and
address schedule issues more effectively.
Table 7-1 above shows the difference in radio traffic that PDAs would make, which can

help in dispatching in response to incidents. Table 7-3 below shows the improvement in

a supervisor's ability to choose and implement a response to a delay that PDAs would

provide. Supervisors would have more options and would be able to make better

decisions, resulting in more effective service restoration.

Table 7-3: CTA Recovery Techniques to a Delay (Short Headway Route) with PDAs
Technique Possible? Constraints Cost
Express down a Yes Not until bus reaches Predictable
different street supervisor
Express to a later point Yes Not until bus reaches Predictable

supervisor
Drop-off only Yes None Predictable
Short turn Yes Not until bus reaches Relatively predictable

supervisor
Hold leader Yes None Predictable
Do nothing Yes None Predictable

154



It is difficult to quantify many of the benefits that come from better information, but it is

possible to estimate the benefit of some of them. Using conservative assumptions, using

the PDAs to hold a bus' leader in response to moderately late buses would save 257,880

passenger minutes a year (see section 6.4.) This alone might not justify the system's

estimated $232,640 cost (Tom Pleuger 2002,) but when taken as part of a significantly

larger set of benefits is a strong indication of an investment that will bring positive return.

This assumes that certain aspects of the PDA rollout will go successfully, and notably

that some existing procedural problems will be remedied. For instance, for the PDAs to

track buses and allow supervisors to send messages, the central computer must be able to

correctly identify what buses are operating on what runs. It can only do so if drivers log

in correctly when starting their run and if buses are digitally assigned to the garages out

of which they actually work. Presently, drivers do not always log in and some buses are

not digitally assigned correctly. The PDAs will only be of benefit if these problems are

addressed.

7.2 Conclusions

The method and model developed in this paper are a useful approach
to the study of service management strategies, and are of potential
use to transit agencies seeking to change their communication
systems, the responsibilities of personnel, or both.
This thesis has applied a model of communications, information and responsibility to the

Chicago Transit Authority. The model produced a logical and accurate representation of

CTA as it is today, and a reasonable prediction of future changes. While the precision of

the model's estimation of strain on communication channels is only fair, it is effective at

giving estimates that appear reasonable. The method of determining what response
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techniques are or are not available shows useful insights into a strategy's strengths and

weaknesses, and offers a framework for comparison between different approaches.

To apply this model to another agency, the following steps are necessary:

" The kinds of personnel must be updated, and the information and knowledge they

already have must be entered.

" Communications channels must be replaced.

" The workflow must be changed. This is the most time-consuming part of the

process. First one must determine what the standard operating procedures are for

dealing with disruptions, and from that, what steps the agency goes through from

the instance of a disruption to the execution of response techniques. Then the

corresponding rows must be arranged in the model, and certain values checked to

ensure that the process being entered is a feasible one. This information must be

slightly modified for each proposed adjustment to the agency.

" The number of instances of each kind of disruption and each response technique

during a given hour must be determined and entered.

* Finally, if the agency conducts business in a language other than English, one

must listen to recordings of radio communication and mark the average time taken

to relay each piece of information that the agency works with.

When planning to use new communication technology, an agency
must develop new procedures simultaneously for the technology to
have maximum benefit.
In studying the use of the Bus Emergency Communication System at CTA, it became

clear that both its design and use suffer from a lack of understanding of the new

procedures surrounding it. An example of its design suffering is that messages about
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equipment defects do not include some information a dispatcher needs to make a

decision, while it does contain extraneous information. This means that a dispatcher

must make a voice call every time he receives a digital message about an equipment

defect, and the efficiency of digital messaging is lost. An example of its use suffering is

that SOPs were not initially updated to reflect the use of the technology, and operators

were not taught some basic facts such as which messages were for emergency use only.

This means that a number of messages are sent erroneously and dispatchers must work

through many emergency messages for non-emergency events. Fundamentally, failure to

develop new procedures simultaneous to new communication technology will result in

lost efficiencies and potentially serious problems. Better communications does not

necessarily mean better operations, instead it allows for better procedures. It is those

procedures that can mean better operations.

The strengths of voice communications, including ease of use and
flexibility, make it well suited to communications on unpredictable
service management tasks and tasks requiring collaboration.
Voice communication allows concerned parties to immediately relay whatever

information they deem relevant, quickly draw others into communication, and collaborate

on decisions. Digital messaging, in contrast, can send messages from a predetermined

list quickly and requires typing for anything else, and removes nuances of speech that

aide communication and collaboration. At CTA, digital messages from buses about

equipment defects are followed up with voice communication, because it allows

dispatchers the flexibility of learning the details they deem relevant and working with the

bus operator to find the easiest solution to the problem.
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The strengths of digital communications, including scalability, speed
for simple messages and automation, make it well suited to
communications on predictable service management tasks and tasks
that peak.

Digital messaging can allow people to send the most common messages very quickly, as

simply as pushing a button, and the message can be sent even if there is a lot of other

communications traffic. Voice communication, by contrast, requires the user to wait for

or request an available channel, get the attention of the message's recipient(s), and say

the message. Some information can also be relayed without any action at all, as when a

bus regularly transmits its location to a control center. If a problem is well understood,

digital messaging can help people respond to the problem more quickly, and make the

speed and reliability of communications more predictable and constant throughout the

day. If a kind of disruption that peaks significantly is handled with communications over

voice channels, those channels' availability for handling that disruption and other

disruptions will lessen during peaks. If the disruption is handled with digital

communications, both responses to it and responses to disruptions that are coordinated

over a voice channel experience an improvement in reliability.

For digital messaging to be an effective medium for deciding on and
implementing a response to a disruption, the procedures for doing so
must be well understood and supported by the system of messages.
At CTA, bus drivers send digital messages with considerable detail about equipment

failures, disturbances, even accidents. They are almost always followed by a voice call

because information the dispatcher considers important cannot be sent digitally using

CTA's system. Hypothetically almost any task can be accomplished using only digital

messaging if the task is understood well enough. Chicago's 911 center handles much of

its police dispatching digitally, but it does so with very sophisticated software that
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facilitates every aspect of the process, from the moment a call comes in and the phone

number and location are entered automatically into the message that will go to the police

car to the moment an officer enters the necessary information on how the problem was

resolved and clears the problem from his list of tasks. So while digital messaging can

potentially make a great many things easier, the level of detail necessary for complicated

tasks - and the cost of learning that information and designing a digital system

accordingly - can make automating them more complicated than it is worth.

The task of responding to incidents has a "natural home" in the
control center.
Responding to emergencies or breakdowns requires the coordination of multiple mobile

supervisors and repair trucks. To be done efficiently, this requires the coordination of

different personnel to ensure even workloads and timely responses. For the mobile units

to do this coordination effectively themselves would require that every person know the

assignments of every other person, or that they would pause to discuss who is most

appropriate for a task every time a new requirement arrives. One person can do this

much more efficiently and effectively. As incidents occur randomly throughout the

service area, this person gains nothing by being on the street. He would have first-hand

knowledge of only a fraction of events. A control center is the logical place for this

person to be, providing him with the resources that make the job easier: a desk, a

computer, and protection from distraction.

The task of making schedule adjustments has a "natural home" in the
field.
A supervisor standing on a route always has information that a dispatcher might not or

can not have:
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" The history of bus arrivals at that location

" The traffic conditions on that portion of the route

" The load of buses as they pass that location

* The understanding of a route that can come only by observing and interacting

with it for weeks

He can also talk to bus operators in person. It is possible to provide a dispatcher with

more technology or communications resources than a street supervisor, and this would

give him an advantage. For example, if all buses transmitted their location to the control

center but the information did not reach the street supervisors, the control center would

have a better picture about the line as a whole. Similarly if buses and dispatchers had

radios but supervisors did not, a dispatcher would have the ability to implement some

responses a supervisor could not. But putting radios or digital messaging in buses costs

far more than giving it to supervisors. Recall from chapter 2 that an agency has on the

order of 1 supervisor for every 30 buses. Equipment for supervisors is typically cheaper

than that for buses as it does not need to withstand the punishing vibrations of a bus. At

CTA, each personal digital assistant is expected to cost less than half of a bus data

terminal. So the marginal cost of extending communications technology to supervisors is

comparatively small. Technologies being equal, street supervisors are better at making

schedule adjustments than dispatchers can be.

Digital communication can supplement voice communication for a
transit agency, but can never replace it.
There is a roughly inverse relationship between the frequency with which a disruption

occurs and how well it is understood. No one can plan for every possible kind of

disruption, teach everyone the procedures for handling it, and program every message
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into a digital message system. On September 1 1 th, when many of Chicago's skyscrapers

were evacuated, CTA had to provide unplanned service to evacuate the downtown area

while watching for hints of suspicious activity so subtle that they would not usually be

cause for concern. Recordings show dispatchers and supervisors working together over

the radio, creating a strategy as they go along, and giving instructions to supervisors

(including "find out which buildings are being evacuated") that could not possibly have

been anticipated. This collaboration and instruction was all made possible with voice

communication. Being restricted to digital messaging, no matter how thoroughly it was

developed, would have been a substantial hindrance.

7.3 Future Work

7.3.1 Improving the Model
The usefulness of the model proposed in this thesis has been demonstrated, but the model

is also ripe for improvement. The system of measuring the time to relay individual pieces

of information was adequate for the study performed but does not appear to be robust.

For example in section 6.4 the difference between the two PDA scenarios, in terms of

predicted strain, is dominated by discussions on rescheduling the street. The capacity

taken up by these discussions may have been overestimated due to the little data currently

available for these discussions. A system based on measurements of actual messages,

rather than deconstructing and recombining the pieces of information that make up those

messages, might prove more accurate but would be considerably more labor-intensive.

Another improvement would be a more detailed model of the stages of dispatching, such

as choosing the most appropriate responder, giving an instruction, and receiving a report
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when the task is completed. A more sophisticated measure of capacity such as queuing

theory could also be of benefit.

7.3.2 Developing a Better Understanding of the Costs and Benefits of
Service Restoration Techniques
One limitation of this research was the absence of literature comparing the costs and

benefits of different responses to disruptions. This made it difficult to determine the

importance of a given response becoming available, or the benefits gained in providing

decision-makers with enough information to choose between them effectively. Having a

better understanding of the differences in using different response techniques would

clearly be of benefit to service restoration and the study thereof.

7.3.3 Determining the Optimum Placement of Supervisors
CTA has most of its supervisors along the route and few of them at terminals. The

MBTA takes the opposite approach. Broadly speaking, supervisors along the route have

an advantage in keeping buses on schedule, while supervisors at terminals have an

advantage at managing the route as a whole. It is unclear which has the greater impact on

service, and it is unclear whether either of these advantages are strengthened or

eliminated by new communication technologies. Answering these questions could lead

to improved service, and the framework developed in this thesis could potentially be

useful in doing so.

7.3.4 Efficiently Dividing Work Among Supervisors Along a Route
One topic not explored in this thesis is how a number of supervisors along a route can

best divide responsibility to effectively manage it. A supervisor might manage buses up

until and at the point where they pass him, at the point where they pass him and

afterwards, for a certain distance around him, or even all the buses a given direction from
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him (whether they are approaching him or moving away.) As communication technology

changes what a supervisor knows and does, determining how supervisors can best divide

responsibility for a route becomes increasingly important.

7.3.5 Developing Digital Messaging Systems for Transit Tasks
As stated in section 7.2, digital messaging can help individuals deal with a problem more

quickly, but only if the way the problem is dealt with is well understood. Starting with

the fundamentals of dispatching, of managing an accident, of correcting delays, etc. one

could create good digital messaging and computer support for these tasks. The

framework presented in this thesis could be a good place to start for schedule and

incident management, although less so for the act of dispatching itself. With support

systems designed around the way transit agency employees actually respond to

disruptions, their jobs could be made easier and their results more effective.
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Table A-2: Tasks Listed

Are more passengers likely to
board?
Do nothing
Hold bus

What response is least
disruptive?
Do nothing
Drop-off only
Express down a different street
Express to a later point
Follower picks up passengers
Hold leader prefol / hold leader
Short turn

Is bus so late that it is almost
bunched?
What response is least
disruptive?
Do nothing
Drop-off only
Express down a different street
Express to a later point
Follower picks up passengers
Short turn

What response is least
disruptive?
Do nothing
Drop-off only
Hold prefol / hold leader
Use standby bus

Can a supervisor repair it at
terminal?
Can bus be taken out of service
without disruption?
Do nothing
Jump buses
Operator exchange
Pull-in
Relief oper. Relieves other than
scheduled oper.
Supervisor repairs bus at
terminal
whnk p0beM.(ii &

Can bus be removed from.
service without harm?

in "Required"
How can bus be repaired or
replaced?
(Extra) How can bus be
replaced?
Jump buses
Maintenance brings bus change
Pull in/out
Relief oper. relieves other than
scheduled oper.
Pull-in
Supervisor repairs bus on-site
Truck repairs bus on-site
Use standby bus

i410Wj0
How can bus be repaired or
replaced?
Jump buses
Maint. tows bus
Maintenance brings bus change
Relief oper. relieves other than
sched. oper.
Supervisor repairs bus on-site
Truck repairs bus on-site

Are police and / or medics
reeded?
[s point supervision appropriate?
Bus continues to point
supervision
Dispatch mobile supervision
Dispatch police and/or medics
Do not dispatch police or medics

Are police and/or medics
needed?
Dispatch mobile supervision
Dispatch police
Dispatch police and medics

Are 
Are passengers stuck on bus?

Can relief operator get to garage
or relief point?
Is jumping reliefs possible?
will jumping reliefs be
possible later in the trip?
Continue in service
Jump reliefs
Pull in
Pull-out instead of relieve
Relief oper. relieves other than

sched.
Relief oper. relieves scheduled
oper. later
Stand bus

Is reroute significantly longer?
Will blockage end soon?
Do nothing
Emergency reroute
Hold leader
See: unfilled run
gggiu ip
Can we spread the interval?
Follower picks up passengers
Spread the interval
Spread the terminal until bus
restored

Can bus be borrowed?
Is a standby bus available?
Short-headway route?
Fill from another street
Fill with pull-in
Spread the terminal
Use standby bus

Do some of each:
Emergency reroute I / II
Fill from another street
Fill with pull-in
Pull-out instead of relieve
Use standby bus

Ro rbswaat
Are more buses warranted?
Fill from another street
Fill with pull-in
Reschedule street

Use standby bus

Un-spread the terminal
Put bus in place
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Table A-3: Sample from "Required:" Information Necessary to Deal with a Late Bus (Short Headway)

0 0 0 0
En ~ -- .

000

rp-fony 0 1 1 0 0 C 0 0 0 000 0 0 0 0 0

Folowr pck uppasener 0 0 0 0 0 0 0 0 00 0 0

H0 . 1.0 0 0 0 0

0 0 1 0 0 0 0

Wat response is least disruptive? 0__ 0__ 0__ 1__ 0 1 ___ 0 ___ 1 0 ___ C____ ____ 0

Donothing 0_ 0 0 0_ 0 0_ 0_ 0_ 0_ 0__ _ 0 0_ __ _ 0 0

Drop-off only 0_ 0 1 1 __ __ ___ __ ___ __ 0, 0_ 0_ 0__ __ __ 0 0

Express down a different street 0 0__ 1 1 _____ 1 0__ ___ __ 0 1 0__ 0__ 0__ ___ __ _ 0,
Express to a later point 0 0__ 1 1 0_ __, __ 0~ ___ 0 0 0 0 0

Follower picks up passengers 01_0 01 0 0__ 0 0__ 01_ __ 01_ 0__ 0__ 0__ 0_ 01 0 0 0 0

Hold leader prefol / hold leader 0_ 0_ 0_ 0, 0_ 0_ d_ _ _ 1 0 1 0 0_ _ _ 0 01

Short~ __m 0__ 1 1 01 0_ 1 __ d_ __ 1 __ __ - __ __ _ _
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Table A-6: Strain: Asking for and Getting Information

-0 0

>.~ r. c0.000ci~~~c 000 ;:t0 ~ ~
00 U) U) 00f

cd~- ; 0 ;: d 0
-. 0 . 0

1ISup radio 0__ 7.5 11.5 17 25.5 5.5 12 5 23 4_ 91 4 7.5 10.51 8.75 151 9 30 16 10 9.9
2Bus chan 0__ 9_ 14.5 23 35.5 7 15.5 6.5 30.5 4.5 7.5 3 10 13.75111.25 19 11.5 42.5 21 10103.2

3Dgitaldata 0 1 0 0 0_ 0 0 0 0 0_ 0 0 0 0 0 0 0 0_
Face to face _____ 0 0_ 0 0 0 0 __ 0 01 01 0!

Table A-7: Strain: What Information Can Go Over what Channels
.0.0 -o 00o ;

-n - qU)U 00 0- M "! 0
E0 0 0 0

;z cn 1 = ~ cd -- 0~0 00 x
0zc -0 0c E
cdoo o~ ;"0 00 7 0 5 ~ 0

1 Sup radio FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
2Bus chan FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

3 Digital data FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE

F 41Face to facel TRUE ITRUE ITRUE TRUE ITRUE TRUE ITRUE ITRUE ITRUE ITRUE, TRUE, TRUE TRUE TRUE TRUE ITRUE TRUE TRUE TRUE TRUE TRUEJ
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A-8: Conversations: All Phases and Steps

Table A-8.1: Bus Early

Frequency Step Step detail Channel # Actor
Early bus

I Given information
10 Awareness 1Bus operator
10 Are more passengers likely to board? Needed 1 Bus operator
10 Are more passengers likely to board? Needed and unknown 1 Bus operator

2 Do nothing 1 Bus operator
8 Hold bus Needed 1 Bus operator
8 Hold bus Needed and unknown

Table A-8.2: Bus Late (Short Headway)

Frequency Step Step detail Channel # Actor
Bus late (short head)

12
12 Awareness 1 Bus operator
12Reports to C/PCC _2 1 Bus operator
12 Reports to supervision 1 NPoint supervisor
12Known by supervision 6 Point supervisor
12What response is least disruptive? Needed

What response is least disruptive? Needed and unknown 6Point supervisor
Do nothing
Drop-off only \eeded
Drop-off only Needed and unknown
Drop-off only Instructs 4 -Point supervisor
Drop-off only Announces I 6Point supervisor
Express down a different street Needed
Express down a different street Needed and unknown
Express down a different street Instructs 4 6 Point supervisor
Express down a different street Announces 1 6 Point supervisor
Express to a later point Needed
Express to a later point Needed and unknown
Express to a later point Instructs 4 6Point supervisor
Express to a later point Announces 1 6Point supervisor

0 Follower picks up passengers Needed
OFollower picks up passengers Needed and unknown
OFollower picks up passengers Instructs 4 6 Point supervisor

Hold leader prefol / hold leader Needed I I
Hold leader prefol / hold leader Needed and unknown
Hold leader prefol / hold leader Instructs 4 6 Point supervisor
Hold leader prefol / hold leader Announces 1 6 Point supervisor
hort turn Needed
hort turn Needed and unknown
hort turn Instructs 4 j Point supervisor

_hort turn Announces 1 OPoint supervisor
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Table A-8.3: Bus Late (Long Headway)

Frequency Step Step detail Channel # Actor
Bus late (long headway)

6 Awareness 1 Bus operator
6 Reports to C/PCC 3
6 Reports to supervision
6 Known by supervision

Is bus so late it's bunching? Needed
Is bus so late it's bunching? Needed and unknown
What response is least disruptive? Needed
What response is least disruptive? Needed and unknown
Do nothing Needed

0 Drop-off only Needed
o Drop-off only Needed and unknown
o Drop-off only Instructs 4 - Point supervisor
ODrop-off only Announces 1 6 Point supervisor
0 Express down a different street Needed

0 Express down a different street Needed and unknown
0 Express down a different street Instructs 4 6Point supervisor
0 Express down a different street Announces 1 6Point supervisor
o Express to a later point Needed
0 Express to a later point Needed and unlown
0 Express to a later point Instructs 4 6Point supervisor
0 Express to a later point Announces 1 6,Point supervisor

Follower picks up passengers Needed
Follower picks up passengers Needed and unknown
Follower picks up passengers Instnicts 4 6 Point supervisor
Short turn Needed
Short turn Needed and unknown
Short turn Instructs 4 6Point supervisor
Short turn Announces 1 6Point supervisor

Table A-8.4: Crush Load

Frequenc Step Step detail hannel # Actor
Crush load

1 Awareness I Bus operator
I Reports to C/PCC 3 1 Bus operator

Reports to supervision 1 6 Point supervisor
Known by supervision
What response is least disruptive? Needed
What response is least disruptive? Needed and unknown

ODo nothing
0 Drop-off only Needed
0 Drop-off only Needed and unknown
0Drop-off only Instructs 4 6 Point supervisor

0 Drop-off only Announces 1 6 Point supervisor
Hold prefol / hold leader Needed

Hold prefol / hold leader Needed and unknown
Hold prefol / hold leader Instructs 4 6 Point supervisor

Hold prefol / hold leader Announces 1 6Point superviso
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Table A-8.5: Mechanical Problem (Minor)
Frequency Step Step detail Channel # Actor

Awareness I Bus operator
Reports to C/PCC 3 1 Bus operator

6C/PCC asks for detail 2 3Controller
Known by controller 31Controller
Can a supervisor repair it at terminal? Needed 3Controller

Can a supervisor repair it at terminal? Needed and unknown 31Controller

4Supervisor repairs bus at terminal Needed
4Supervisor repairs bus at terminal eeded and unknown
4Supervisor repairs bus at terminal Instnicts 1 3Controller
2Can bus be taken out of service without disruption? Needed
2Can bus be taken out of service without disruption? Needed and unknown
1 Do nothing
4Jump buses Needed
4 Jump buses Needed and unknown
4Jump buses Instructs 2 3Controller
4Jump buses Announces 1 3Controller
1 Operator exchange Needed
I Operator exchange Needed and unknown
1 Operator exchange Instructs 2 3Controller
1 Operator exchange Announces 1 3Controller
CIPull-in Needed
0 Pull-in Needed and unknown
( Pull-in Instructs 2 3 Controller
(Relief oper. Relieves other than scheduled oper. Needed
(Relief oper. Relieves other than scheduled oper. beeded and unknown
,Relief oper. Relieves other than scheduled oper. Anounces & Instructs 1 3Controller
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Table A-8.6: Mechanical Problem (Serious)

Frequency Step Step detail Channel Actor
2Awareness 1 Bus operator
2 Reports to C/PCC 3 1 Bus operator
2 C/PCC asks for detail 23 Controller
2Known by controller 3Controller

2Can bus be removed from service w/o harm? Needed
2Can bus be removed from service w/o harm? Needed and unknown
OPull-in Needed
OPull-in Needed and unknown
OPull-in Instructs 2 3Controller
0Relief oper. Relieves other than scheduled oper. Needed
QRelief oper. Relieves other than scheduled oper. Needed and unknown I

'Relief oper. Relieves other than scheduled oper. Announces & Instructs 1 3Controller
2Jump buses Needed
2Jump buses Needed and unknown
2Jump buses Instructs 2 3Controller
2Jump buses Announces 1 3Controller
2 How can bus be repaired or replaced? Needed
2 How can bus be repaired or replaced? Needed and unknown
2Supervisor repairs bus on-site 4eeded
2Supervisor repairs bus on-site 4eeded and unknown
2Supervisor repairs bus on-site nnounces & Instructs 1 3Controller
_ Truck repairs bus on-site Needed
_ Truck repairs bus on-site Needed and unknown
_ Truck repairs bus on-site Announces & Instructs 1 3Controller
_Maintenance brings bus change Needed
_Maintenance brings bus change Needed and unknown
0 Maintenance brings bus change Annotmces & Instructs 1 3 Controller
1 Pull in/out Needed
1 Pull in/out Needed and unknown
1 Pull in/out Instructs 23 Controller
1 Pull in/out Announces 1 3 Controller
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Table A-8.7: Mechanical Problem (Major)

Frequency Step Step detail Channel # Actor
Mechanical problem (major)

12Awareness 1 Bus operator
12Reports to C/PCC 3 1 Bus operator
12C/PCC asks for detail 2 3 Controller
12Known by controller 3 Controller
12 Jump buses Needed
12Jump buses Needed and unknown
12 Jump buses Instructs 2 3Controller
12 How can bus be repaired or replaced? Needed
12 How can bus be repaired or replaced? Needed and unknown

2Supervisor repairs bus on-site Needed
2Supervisor repairs bus on-site Needed and unknown
2Supervisor repairs bus on-site Announces & Instructs 1 31Controller
8 Truck repairs bus on-site Needed
8 Truck repairs bus on-site Needed and unknown
8 Truck repairs bus on-site Announces & Instructs 1 3Controller
0 Maintenance brings bus change Needed
_ Maintenance brings bus change Needed and unknown
o Maintenance brings bus change Announces & Instructs 1 31Controller
0 Relief oper. relieves other than sched. oper. Needed I
0Relief oper. relieves other than sched. oper. Needed and unknown I
0 Relief oper. relieves other than sched. oper. Announces & Instructs 1 3 Controller
2Maint. tows bus Needed
2Maint. tows bus eeded and unknown
2Maint. tows bus Announces & Instructs 1 3 Controller

Table A-8.8: Emergency / Security I Fare dispute

Frequency Step Step detail Channel # ctor
2Emergency / security / fare dispute
2Awareness 1 Bus operator
2Reports to C/PCC 3 1 Bus operator
2C/PCC asks for detail 2 3Controller
2 Known by controller 3Controller
2Are police and / or medics needed? Needed
2Are police and / or medics needed? Needed and unknown
21s point supervision appropriate? Needed
2 Is point supervision appropriate? Needed and unknown
I Bus continues to point supervision Needed
1 Bus continues to point supervision Needed and unknown
I Bus continues to point supervision Instructs 2 3Controller
1 Bus continues to point supervision Announces 1 3Controller
1 Dispatch mobile supervision Needed
1 Dispatch mobile supervision Needed and unknown
1 Dispatch mobile supervision Announces & Instructs I 3Controller

Dispatch police and/or medics Needed
Dispatch police and/or medics Needed and unknown
Dispatch police and/or medics Instructs 5 Controller
Dispatch police and/or medics Announces 1 JController
Do not dispatch police or medics I _IId
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Table A-8.9: Accident

Frequency Step Step detail Channel # Actor

Accident

2Awareness 1 Bus operator
2 Reports to C/PCC 3 1Bus operator
2C/PCC asks for detail 2 3Controller

2Known by controller 3Controller

2 Are police and/or medics needed? Needed

2Are police and/or medics needed? Needed and unknown

2 Dispatch mobile supervision Needed

2 Dispatch mobile supervision Needed and unknown

2 Dispatch mobile supervision Announces & Instructs 1 3Controller

I Dispatch police Instructs 5 3Controller
1 Dispatch police and medics Instructs 5 Controller

Operator misses relief

CAwareness 1 Bus operator
0 Reports to C/PCC 3 1Bus operator
_ C/PCC asks for detail 2 3Controller

0Known by controller 3Controller

OReports to supervision 1

(Known by supervision

( Is jumping reliefs possible? Needed

( Is jumping reliefs possible? Needed and unknown

_ Jump reliefs Needed

OJump reliefs Needed and unknown

SJump reliefs Instructs 4

_ Tump reliefs Announces 1

Table A-8.10: Operator Misses Relief
Frequency Step Step detail Channel # Actor

0 Awareness I Bus operator
0 Reports to C/PCC 3 1 Bus operator
0 C/PCC asks for detail 2 3 Controller
0 Known by controller 3 Controller
0 Reports to supervision 1
0 Known by supervision
o Is jumping reliefs possible? Needed
0 Is jumping reliefs possible? Needed and unknown
0 Jump reliefs Needed
0 Jump reliefs Needed and unknown
0 Jump reliefs Instructs 4
0 Jump reliefs Announces 1
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Table A-8.1 1: Blockage

Frequency Step Step detail Channel # Actor
Blockage

2 Awareness 1 Bus operator
2Reports to C/PCC 3 1 Bus operator
2C/PCC asks for detail 2 3Controller
2Known by controller 3 Controller
2 Will blockage end soon? Needed
2Will blockage end soon? Needed and unknown
1 Can bus reroute itself? 2 3Controller
1 Self-reroute 2 3Controller
2Reports to supervision 1 3 Controller
2Known by mobile supervisor
2 Emergency reroute Needed
2Emergency reroute Needed and unknown
2 Emergency reroute Instructs 4 5Mob. Sup.
21s reroute significantly longer? Needed 5 Mob. Sup.
2ls reroute significantly longer? Needed and unknown 5Mob. Sup.

See also: unfilled run

Table A-8.12: Bus Standing / Service Gap

Frequency Step Step detail Channel # Actor
Bus standing / service gap

261nformed 1 5Supervisor
10Spread the terminal Needed
1 Spread the terminal Needed and unknown
I Spread the terminal Instructs 4 5 Supervisor
lOSpread the terminal Announces 1 5Supervisor

Table A-8.13: Unfilled Run
Frequency Step Step detail Channel ctor

Unfilled run
22Informed 1 5Supervisor
22Known by supervisor 5 Supervisor
22Short-headway route? Needed
22Short-headway route? Needed and unknown

8Can bus be borrowed? Needed
8Can bus be borrowed? Needed and unknown
8Can bus be borrowed? Inquiry 1 5 Supervisor
4Fill from another street Instruct 1 5Supervisor
4 Fill from another street Instruct 4 5Supervisor
_ Fill with pull-in Instruct 1 5 Supervisor
0 Fill with pull-in instruct 4 5 Supervisor

See also: bus standing / service gap I I _I
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Table A-8.14: Unplanned Bus Bridge
Frequency Step Step detail Channel # Actor

Unplanned bus bridge
0 Awareness 3Controller
0 Dispatch mobile supervision 1 3 Controller
_ Known by mobile supervision
0 Order buses 1 3Controller
OEmergency reroute 4 Mobile supervisor
0 Coordinate schedules 1 Mobile supervisor
OSee also: bus standing / service gap

Table A-8.15: Congestion / Weather I Routewide Crowding
Frequency Step Step detail Channel Actor

Congestion / Weather Routewide crowding
2Awareness Bus operator
2Reports to C/PCC 3Bus operator
2C/PCC asks for detail 2 3Controller
2Reports to supervision 1 3Controller
2Known by supervision 6Point supervisor
2Reschedule street Needed 6 Point supervisor
2Reschedule street Needed and unknown 6Point supervisor
2Reschedule street instructs 4 6 Point supervisor
2 Reschedule street Announces 1 6 Point supervisor

Table A-8.16: Late Pull-out

Frequency Step Step detail Channel # Actor

Late pull-out
4 Awareness Garage
4 Reports to supervision 1
4 Known by supervision
4Un-spread the terminal Needed
4Un-spread the terminal Needed and unknown
4 Un-spread the terminal Instruct 4
4Un-spread the tenninal Announces 1
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Table A-9: Full Detail: Bus Late (Short Headway)
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12 Bus late (short head)
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1 hat response is least disruptive? Needed d w0 0 0 1 0 0 10 0 0 0 0
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Table A-10: Resulting Demand

00 0

-0 0 0
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Bus 83.6 5014.3 _01 01 01 0 C 01 01 01 0o 112.51 72 01 550 q_ 5511 0, 0 0 22 3508.8,

Demand Supply % used
Sup 3476.3 4752 97%
Bus 5014.3 8433 59%

Table A-11: Summary of Results from Different Scenarios

8-9AM 3-4PM
Observed about 100% 87%
Initial prediction 116% 101%
Adjusted prediction 97% 89%
PDA with announcements 78% 71%
PDA without announcements 52% 50%
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Figure A-1: Use of Communication: Simulated, Supervisor Channels, 8-9AM

Figure A-2: Use of Communication: Simulated, Supervisor Channels, 3-4PM
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B.1: Data from the CTA BECS Database

Figures 1 through 5 are representations of data from the Chicago Transit Authority's

BECS database, and were derived from using Microsoft Excel to manipulate and make

graphs from the result of SQL (Structured Query Language) queries. Figures 1, 2 and 3

are from data that is permanently archived. Figures 4 and 5 are from data that is archived

for 1 to 2 months.
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Figure B-1: Disruption Volume Throughout Year

The three axes are week of the year (X), day of the week (Y), and disruptions in the day

(Z.) The data is from September 1, 2000 to September 1, 2001. The two peaks next to

each other are snowstorms December 11 and 13, 2000, while the third peak was a major

flood on August 2, 2001.
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Figure B-2: Disruption Volume Throughout Week
The two axes show the hour of the week (X) and the average number of disruptions per

hour (Y.) This data is average from September 1, 2000 to September 1, 2001.
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Figure B-3: Disruption Volume Throughout Day
The two axes show the hour of the day (X) and the average number of disruptions per

hour (Y.) This data is average from Wednesdays between September 1, 2000 and

September 1, 2001.

Some events are listed within the database under the generic heading of talk request or

priority talk request. This occurs when a driver chooses to push the "Request to talk" or

the "Priority request to talk" button instead of sending a digital message, usually because

of unfamiliarity with the mobile data terminal's menus. To rectify this, talk request time

was distributed among bus delay, mechanical problem, emergency, accident, missed

relief, blockage, and congestion according to the existing proportion of those conditions.

Priority talk requests were distributed between emergency and accident according to the

existing proportion of those conditions.
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Figure B-4: Average Control Center Response Time to Delays
The lower bound is the time it takes the controller who receives the message to send it to

the Cl controller, who will announce it to supervisors. The upper bound is the time it

takes the Cl controller to delete the message from his computer after he has announced it.

A small number of outliers may be included in the lower bound, specifically duplicate

delay reports that are not announced over the air at all; however this data is corroborated

by extensive personal observation. This data is averaged from Monday, November 19,

through Thursday, November 22, 2001.
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Figure B-5: Average Control Center Response Time to Equipment
Defects

This graph shows only a lower bound, the time it takes the controller who receives the

message to send it to the Cl controller, who will announce it to supervisors. No upper

bound is available. This data is averaged from Monday, November 19, through

Thursday, November 22, 2001.
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B.2: Data Gathering from CTA Radio Recordings
The author listened to recordings of CTA's two supervisor channels and bus channels

with audio editing software. He divided the conversations into individual pieces of

information being relayed and recorded their start and ending time. The recordings were

from September 10, 2001, including 8 to 8:30AM, 11 to 11:30 AM, and 3 to 3:30 PM.

Figure B-6: Time spent per Aspect of Communication
The data is from 3 to 3:30PM, Monday, September 10, 2001, on CTA's primary

supervisory radio channel.
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Table B-1: Average Time to Make Statements
The data is from supervisory channel recordings. Only statements that were made three

or more times and were relatively consistent in length are shown.

Statement Length (seconds)
Bus schedule 5
Supervisor & truck shifts 7
Bus location @ 5
Location of blockage 5
Nature & severity of issue 6.5
asking for Bus schedule 5.5
asking for Route schedule 5.5
asking for Supervisor & truck shifts 2
asking for Bus location 4 3.6
asking for Existence of problem 3
asking for Location of blockage 3.6
asking for Nature & severity of issue 3
RTT 2.7
Go with message 3.3
Ten sixty-five 3.2
Asking situation 3
Giving instructions 9.8
Your attention 3.6

190



Table B-2: Sample of Communication
The following table shows the content of conversations
10, 2001.

on CTA's primary supervisor radio channel from 3:00 to 3:10PM, September

Time (seconds) Sender and receivers Contents of message

Start End Length Speaker Listener FYi Disruption Intervention Message

13 17 4 1 Control 10-4

17 20 3 2 Control 10-4

20 31 11 Control 3 See street supervision Instructing street supervisor to see bus as it passes

31 39 8 3 Control See street supervision 10-4

39 44 5 3 Control See street supervision Gives schedule information

44 45 1 Control 3 See street supervision 10-4

45 52 7 Control 4 5, Pull in/out Informs supervision: run will pull in/out
52 55 3 4 Control Pull in/out 10-4
55 58 3 5 Control Pull in/out 10-4

58 62 4 6 Control Pull in/out 10-4

62 66 4 6 Control Spread interval Informs control: he is spreading the interval
66 67 1 Control 6 Spread interval 10-4

67 83 16 Silence

83 86 3 7 Control Bus alarm Intercept with mobile supervision Requests to talk

86 90 4 Control 7 Bus alarm Intercept with mobile supervision Go with message
90 98 8 7 Control Bus alarm Intercept with mobile supervision Corrects run number given by control

98 105 7 Control 7 Bus alarm Intercept with mobile supervision Confirms correction

105 106 1 7 Control Bus alarm Intercept with mobile supervision 10-4
106 113 7 7 8 Bus alarm Intercept with mobile supervision Asks to switch to alternate radio channel

113 119 6 8 7 Bus alarm Intercept with mobile supervision 10-4

119 124 5 Control 9 10, 11, 12 Mechanical defect Repair on-site Requests to talk

124 133 9 Control 9 10,_11,12 Mechanical defect Repair on-site Instructing street supervisor to see bus as it passes
133 135 2 9 Control Mechanical defect Repair on-site 10-4
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Table B-2 continued
Time (seconds) Senders and receivers Contents of message

Start End Length Speaker Listener FYI Disruption Intervention Message

135 140 5 _?_______ Control Mechanical defect Repair on-site 10-4
140 149 9 13 Control [Unintelligible]
149 152 3 Control 13 10-4
152 161 9 14 15 Requests to talk
161 181 20 14 15 Repeating
181 191 10 Control 16 17 Mechanical defect Bus trade & Repair on-site Requests to talk
191 204 13 Control 16 17 Mechanical defect Bus trade & Repair on-site Informs supervision of intervention
204 207 3 51 Control Mechanical defect Bus trade & Repair on-site 10-4
207 209 2 16 Control Mechanical defect Bus trade & Repair on-site 10-4
209 217 8 Control 17, 16, 18, 19, 20 Mechanical defect Route management Instructs supervision to manage route
217 222 5 ? Control Mechanical defect Route management 10-4
222 249 27 Control ? Mechanical defect Route management Repeating

249 255 6 21 20 Mechanical defect Route management Asks to switch to alternate radio channel
255 278 23 Silence
278 284 6 109 3 Requests to talk

284 288 4 3 109 Asks to switch to alternate radio channel
288 296 8 ? 7 Asks to switch to alternate radio channel

296 302 6 7 1? F 110-4.
302 312 10 Silence
312 313 1 Control 5 Accident (supervisor car) Reporting Requests to talk

313 316 3 Control 5 Accident (supervisor car) Reporting Gives time and place of incident

316 322 6 Control 5 Accident (supervisor car) Reporting Gives nature of incident
322 326 4 5 Control Accident (supervisor car) Reporting 10-4

326 340 14 Silence

340 342 2 5 22 Requests to talk
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Table B-2 continued

Time (seconds) Sender and receivers Contens of message

Start End Length Speaker Listener FYI Disruption Intervention Message

342 354 12 21 23 Asks to switch to alternate radio channel

354 363 9 5 22 Repeating

363 370 7 Control 24 Unexplained bus message See street supervision Requests to talk

370 376 6 Control 24 Unexplained bus message See street supervision Instructs supervisor to see bus as it passes

376 382 6 Control 24 Unexplained bus message See street supervision Detailing situation

382 396 14 Control 24 Unexplained bus message See street supervision Repeating

396 397 1 Control 3 Unexplained bus message See street supervision Requests to talk

397 406 9 ? Control Unexplained bus message See street supervision Repeating

406 414 8 11 Control Delay / missed relief Relief management Requests to talk

414 416 2 Control 11 Delay / missed relief Relief management Go with message

416 422 6 Control 11 Delay / missed relief Relief management Repeating

422 431 9 11 Control Delay / missed relief Relief management Detailing relief management

431 432 1 Control 18 Delay / missed relief Relief management Your attention

432 445 13 Control 11 Delay / missed relief Relief management Repeating

445 447 2 11 Control Delay / missed relief Relief management 10-4

447 452 5 11 Control Delay / missed relief Relief management Detailing relief management

452 455 3 Control 11 Delay / missed relief Relief management 10-4

455 457 2 25 Control Requests to talk

457 462 5 Control 20 Mechanical defect Bus trade & pull-in Requests to talk

462 468 6 Control 20 Mechanical defect Bus trade & pull-in Describes situation

468 473 5 Control Control Mechanical defect Bus trade & pull-in Instructs supervisor to instruct operator to trade busses

473 480 7 Control Control Mechanical defect Bus trade & pull-in Repeating

480 482 2 20? Control Mechanical defect Bus trade & pull-in 10-4

482 485 3 Control 9 Schedule adherence Follow-up Go with message

485 490 5 9 Control Schedule adherence Follow-up No message

490 492 2 25 Control Schedule adherence Follow-up Requests to talk
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Table B-2 continued
Time (seconds) Sender and receivers Contents of message

Start End Length Speaker Listener FYI Disruption Intervention Message

492 497 5 Control 25 Schedule adherence Follow-up Go with message

497 503 6 25 Control Schedule adherence Follow-up Asks if service restoration action has occurred
503 513 10 25 Control Schedule adherence Follow-up Repeating
513 515 2 Control 25 Schedule adherence Follow-up Has no information

515 519 4 26 25 Schedule adherence Follow-up Asks to switch to alternate radio channel

519 522 3 25 26 Schedule adherence Follow-up 10-4

522 525 3 ? 24 Requests to talk

525 530 5 27 3 Asks to switch to alternate radio channel

530 531 1 3 27 10-4

531 534 3 16 Control Reporting COA Requests to talk

534 536 2 Control 16 Reporting COA Go with message

536 542 6 16 Control Reporting COA Reports that problem was clear on arrival

542 544 2 Control 16 Reporting COA 10-4

544 546 2 Control 29 Reporting COA Your attention

546 561 15 Silence

561 564 3 28 Control Reports that he is now on duty

564 566 2 Control 28 10-4

566 570 4 ? Control Requests to talk

570 573 3 ? 30 Asks to switch to alternate radio channel

573 579 6 Control 31 Mechanical defect Bus trade Requests to talk

579 584 5 Control 31 Mechanical defect Bus trade Describes situation

584 586 2 Control 31 Mechanical defect Bus trade Instructs supervisor to instruct operator to trade busses

586 589 3 31 Control Mechanical defect Bus trade 10-4

589 592 3 32 33 Asks to switch to alternate radio channel

592 598 6 33 32 10-4
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