
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2014-001 January 9, 2014

Reliability-Aware Optimization of
Approximate Computational Kernels with Rely
Sasa Misailovic, Michael Carbin, Sara Achour,
Zichao Qi, and Martin Rinard

Reliability-Aware Optimization of
Approximate Computational Kernels with Rely

Sasa Misailovic Michael Carbin Sara Achour Zichao Qi Martin Rinard
MIT CSAIL

{misailo,mcarbin,sachour,zichaoqi,rinard}@csail.mit.edu

Abstract
Emerging high-performance architectures are anticipated to contain
unreliable components (e.g., ALUs) that offer low power consump-
tion at the expense of soft errors. Some applications (such as mul-
timedia processing, machine learning, and big data analytics) can
often naturally tolerate soft errors and can therefore trade accuracy
of their results for reduced energy consumption by utilizing these
unreliable hardware components.

We present and evaluate a technique for reliability-aware op-
timization of approximate computational kernel implementations.
Our technique takes a standard implementation of a computation and
automatically replaces some of its arithmetic operations with unreli-
able versions that consume less power, but may produce incorrect
results with some probability.

Our technique works with a developer-provided specification of
the required reliability of a computation – the probability that it re-
turns the correct result – and produces an unreliable implementation
that satisfies that specification.

We evaluate our approach on five applications from the image
processing, numerical analysis, and financial analysis domains
and demonstrate how our technique enables automatic exploration
of the trade-off between the reliability of a computation and its
performance.

1. Introduction
Researchers anticipate that the aggressive scaling of hardware
feature sizes in the search for better performance will produce
systems that are increasingly susceptible to soft errors [2, 25].
While many researchers have developed techniques for detecting
and masking soft errors [5, 6, 19–21] (which typically incur time or
energy overhead), some researchers have seen this development
as an opportunity to develop tools and techniques that enable
applications that are naturally tolerant to soft errors to execute on
unreliable hardware with increased performance and reduced power-
consumption [3, 4, 12, 22, 24].

Carbin et al. have proposed a language and analysis system, Rely,
that enables developers to manually adapt their application to use
unreliable hardware operations, write a specification for the desired
reliability of their application (the probability that it produces the
same result as if executed on reliable hardware), and then verify that
the unreliable implementation of their application provably satisfies
its reliability specification using the system’s static analysis [3].

Rely is designed to work with a hardware platform that provides
reliable and unreliable versions of standard arithmetic and logical
operations as well as reliable and unreliable memories. In the
previous Rely model of computation, the developer is responsible for
identifying which operations must execute reliably and which may
execute unreliably. The developer is also responsible for identifying
which variables must be allocated in reliable memory and which
operations may be allocated in unreliable memory. The Rely analysis

system then verifies that the program satisfies the desired reliability
specification.

While Rely provides a sound analysis for reasoning about the
reliability of an unreliable implementation of a program, it presents a
burden on the developer in that he or she needs to manually identify
the reliable and unreliable operations in the program.

We present a new system that removes this burden from the
developer. Starting with a computational kernel of an application
and a specification of the desired reliability of this kernel, this
new system automatically selects which operations in this kernel
can execute unreliably. The resulting program maximizes energy
savings or performance while still satisfying the desired reliability
specification:

Optimization Algorithm. We present an optimization algorithm
that casts the unreliable operation placement problem as an integer
linear program. The integer linear program uses 1) a unique zero-one
valued variable for each operation in a computational kernel that
indicates whether the operation is reliable (zero) or unreliable (one)
and 2) an objective function that minimizes the energy consumption
of the program over a set of profiled execution traces given a setting
of the variables then determine if an operation is unreliable.

Machine Model. We present an abstract machine model for
programs that execute on unreliable hardware. The model uses
a specification of the reliability and power consumption of each
operation to give a precise definition of both the semantics and
power consumption of an execution of an unreliable machine.

The machine model is also failure-oblivious [23] in that programs
cannot halt due to error (e.g., invalid memory accesses). This
semantics enables our optimization algorithm to make operations
such as array index calculations unreliable without fear of halting
the execution of the program.

Power Model for Optimization. We formalize a power model
for our optimization algorithm that takes as input specifications
of the reliability of each instruction class (integer, floating-point,
and other non-arithmetic instructions), along with specifications
of the relative power consumption of each instruction class and
the savings associated when an instruction is selected to run in an
unreliable mode. This power model provides a precise description of
the architectural parameters that our optimization algorithm needs
to operate.

Experimental Results. We have implemented our optimization
algorithm within the Rely compiler [3]. We use this modified Rely
compiler to automatically optimize versions of a set of benchmark
computational kernels to run on unreliable hardware. The Rely
compiler can work with two different scenarios for reasoning
about soft errors: 1) selective fault tolerance in systems that use
dual-modular redundancy [20] to achieve high-reliability and 2)
approximate hardware designs that provide unreliable but more

power efficient versions of standard arithmetic operations and
memories.

Our experimental results show that our implemented optimiza-
tion algorithm enables the modified Rely compiler to successfully
optimize our set of benchmark kernels to profitably exploit unre-
liable hardware platforms while preserving important reliability
guarantees.

2. Example
Next, we present an example of how to apply our optimization
algorithm to produce an approximate image scaling implementation.

2.1 Image Scaling
Figure 1 presents an implementation of the core part of an algorithm
to scale an image to a larger size. The function scale takes as input
the scaling factor f (a scaling factor of two doubles the image size
in both dimensions), along with an integer array src that represents
the contents of the image to be scaled and another integer array
dest that represents the contents of the final scaled result.

The algorithm calculates the value of each pixel in the final
result by mapping the pixel’s location back to the original source
image and then taking a weighted average of the neighboring
pixels. The code for scale implements the outside portion of the
algorithm where it enumerates over the height (d_height) and
width (d_width) of the destination image. For each pixel accessed
by i and j in the destination image, the algorithm keeps track of the
corresponding location in the source image with the variables si
and sj.

The function scale_kernel implements the core kernel of
the scaling algorithm. On Lines 5-8, the algorithm computes a
neighborhood of four nearby pixels and then fetches their pixels
values on Lines 10-13. To average the pixel values together, the
algorithm uses bilinear interpolation. Bilinear interpolation takes the
weighted average of the each of the four neighboring pixels where
the weight is given by the distance from the source coordinates si
and sj to the location of each of the pixels. The algorithm computes
these weights on Lines 15-18.

In the last step, the algorithm extracts each RGB color component
of the pixel, computes the weighted average, and then returns the
result (Lines 20-35).

2.2 Profiling and Specification.
The first step in the Rely workflow is to write reliability specifi-
cations for computations that are amenable to approximation and
profitable to exploit. One way to achieve this is by taking the follow-
ing steps:

Time Profiling. A developer will first profile his or her application
using standard techniques to identify the regions of code in which
his or her application spends the most time [17]. The full image
scaling program consists of the code presented in Figure 1 along
with the additional code to handle command line parameters and
read/write images files. However, the program spends the majority
of its time within scale’s inner loop.

Reliability Profiling. The developer will next extract a computa-
tion into its own function or functions. This extraction allows the
developer to 1) define an interface for the computation and 2) per-
form fault injection at the interface boundary to determine if the rest
of the application is resilient to inaccuracies that could result from
running the computation with approximation. For scale, we have
already extracted its kernel into the function scale_kernel.

Given an extracted computation, a developer can then directly
test if the full application is resilient to errors in the extracted com-
putation. For example, we can implement this for scale_kernel
with the following straightforward strategy:

i

1 int scale_kernel(
2 float i, float j,
3 int[] src , int s_width)
4 {
5 int previ = floor(si);
6 int nexti = ceil(si);
7 int prevj = floor(sj);
8 int nextj = ceil(sj);
9

10 int ul = src[IDX(nexti , nextj , s_width)];
11 int ul = src[IDX(nexti , prevj , s_width)];
12 int lr = src[IDX(previ , prevj , s_width)];
13 int ll = src[IDX(previ , nextj , s_width)];
14
15 float ul_w = (cj - prevj) * (ci - previ);
16 float ur_w = (nextj - cj) * (ci - previ);
17 float lr_w = (nextj - cj) * (nexti - ci);
18 float ll_w = (cj - prevj) * (nexti - ci);
19
20 float coeff = 1.0/((nexti - previ) *
21 (nextj - prevj));
22
23 int r = (int) coeff*
24 (ul_w * R(ul) + ur_w * R(ur) +
25 lr_w * R(lr) + ll_w * R(ll));
26
27 int g = (int) coeff *
28 (ul_w * G(ul) + ur_w * G(ur) +
29 lr_w * G(lr) + ll_w * G(ll));
30
31 int b = (int) coeff *
32 (ul_w * B(ul) + ur_w * B(ur) +
33 lr_w * B(lr) + ll_w * B(ll));
34
35 return COMBINE(r, g, b);
36 }
37
38 void
39 scale(
40 float f,
41 int[] src , int s_width ,
42 int[] dest , int d_height , int d_width)
43 {
44 float delta = 1 / f;
45 float si = 0;
46
47 for (int i = 0; i < d_height; ++i) {
48 float sj = 0;
49 for (int j = 0; j < d_width; ++j) {
50
51 dest[IDX(i, j, d_width)] =
52 scale_kernel(si , sj, src , s_width);
53
54 sj += delta;
55 }
56 si += delta;
57 }
58 }

Figure 1: Rely Code for Image Scaling Kernel

#define R ...
int scale_kernel_with_faults(

float i, float j, int[] src, int s_width)
{

if (bernoulli(R)) {
return scale_kernel(i, j, src, s_width);

} else {
return rand_int();

}
}

(a) 0.20 (b) 0.40 (c) 0.60 (d) 0.80 (e) 0.90 (f) 0.99 (g) 0.999

Figure 2: Reliability Profiling for Image Scaling for Different Values of R

The function scale_kernel_with_faults uses a Bernoulli
variable (as implemented by bernoulli) to return the correct result
with probability R and return an incorrect result with probability 1−
R. Using this implementation, a developer can use a representative
test suite to plot the quality of the whole program’s result as a
function of R.

Figure 2 presents a visual depiction of the results of scaling for
different values of R. Note that very unreliable implementations
(0.20-0.90) do not produce high quality results. However, as R
reaches values in the range of 0.999 and above, the results may
be an acceptable approximation of the result of a fully reliable
implementation (with R = 1).

A developer can also provide a quantitative evaluation of the
quality of the results via domain-specific quality metrics that com-
pare the quality of an approximate output versus the intended output.
For scale we use Peak-Signal-to-Noise Ratio (PSNR), which is a
common quality metric in the image processing domain.

Using the quality metric and the plot, the developer can then
set an appropriate reliability target for scale_kernel. For the
remainder of this section, we use 0.99 as scale_kernel’s target
reliability, which yields an image with a PSNR of 32dB when
compared to the reference image.1

Reliability Specification. Given a reliability target, the developer
next provides a reliability specification for the kernel. Using the
reliability target of 0.99 for scale_kernel yields the following
new signature for the function:

int<0.99 * R(i, j, src, s_width)>
scale_kernel
(float i, float j, int[] src, int s_width);

The additional annotation 0.99 * R(i, j, src, s_width)
on the return value specifies the reliability of the result. This
annotation specifies two components:
• Input Dependencies. The reliability of the output of a function

is a function of the reliability of the function’s inputs. The term
R(i, j, src, s_width) abstracts the joint reliability of the
inputs on entry to the function, which is the probability that they
all together contain the correct result.

• Reliability Degradation. The coefficient 0.99 expresses the
reliability degradation of the function. Specifically, given a value
for the joint reliability of the function’s inputs, the coefficient
expresses with what fraction of that probability that the return
value is correct.
These two components together give a sound specification for

the probability that the result of scale_kernel is correct.

Arrays. Rely also supports allocating arrays in unreliable memory.
For example, the developer may place the pixel array src in an
unreliable memory region named urel using the following signature
for scale_kernel:

int<0.99 * R(i, j, src, s_width)>
scale_kernel
(float i, float j, int[] in urel src, int s_width);

1 A PSNR of greater than 30dB is typically considered of acceptable quality.

Our optimization algorithm factors in the possibility of error in
the reads of src when optimization the program. Specifically, the
optimization algorithm will consider both the scenario when src is
allocated in reliable memory and the case when src is allocated in
unreliable memory. It will then report to the developer, if there is
a different allocation strategy that gives better energy savings for
the kernel. Specifically, it may be more profitable to allocate src in
reliable memory and make additional arithmetic operations in the
kernel unreliable.

2.3 Hardware Specification
Given the implementation of a computational kernel and the de-
veloper’s reliability specification, our optimization algorithm will
next automatically optimize the implementation by replacing some
(or all) of the arithmetic operations in the kernel with unreliable
versions. To do this, the optimization algorithm requires a hardware
specification that provides the following:

Operation Reliability. The hardware specification specifies for
which arithmetic operations the hardware exposes unreliable ver-
sions of an operation, along with their reliability.

Memory Reliability. The hardware specification specifies a list
of unreliable memory regions in which a developer may allocate
data, along with the reliability of reads and writes to each region.

Power Model Parameters. To build an power model for the
program, the optimization algorithm needs 1) a specification of
the relative portion of system energy consumed by the CPU versus
memory, 2) the relative portion of the CPU energy consumed by
the arithmetic-processing unit versus other, on-chip resources (e.g.,
registers and cache), and 3) the ratio in average power consumption
of floating-point instructions and other non-arithmetic instructions
relative to integer instructions.

Further, to compute the savings associated with selecting unreli-
able versions of an arithmetic operation, the optimization problem
requires specifications of the expected power savings of executing
an unreliable version of an operation as a percentage of the energy
of a reliable version.

2.4 Reliability-Aware Optimization Algorithm
Our optimization algorithm casts the unreliable operation placement
problem as an integer linear program. The integer linear program
uses 1) a unique zero-one valued variable for each arithmetic oper-
ation in a kernel that indicates whether the operation is reliable or
unreliable and 2) an objective function that characterizes the energy
consumption of the kernel over a set of profiled execution traces.
We use an integer linear program solver to find a configuration of
the variables that minimizes the kernel’s energy consumption.

Our algorithm additionally adapts Rely’s reliability analysis to
add an additional reliability constraint to the optimization problem
such that all valid solutions to the integer linear program give a
configuration of operations that ensures that the kernel satisfies the
kernel’s reliability specification.

Results. If we instantiate the optimization algorithm on the hard-
ware specification given in Section 5.3, then the optimization algo-
rithm achieves 23.9% power savings in the ALU. Though we do not
present the resulting code here, the optimization algorithm sets the

r ∈R∪{pc,bp,pw} n ∈ IntN
a ∈ A⊆ IntN κ ∈ K = {0,1}

op ∈ O ::= add | fadd | mul | fmul | cmp | fcmp | . . .
i ∈ I ::= r = opκ r r | jmp r r |

r = load n | store n r |
r = loada r r | storea r r r

Figure 3: Assembly Language Syntax

vast majority of the arithmetic operations in scale_kernel to be
unreliable – including the array index calculations on Lines 10-13.

Failure-Oblivious. A key aspect of our optimization approach
is the realization that computations that are typically considered
critical to the correctness of the program (such as array index
calculations) may dominate a large portion of the computation.
Specifically, 79% of all integer instructions in scale_kernel are
used to compute the indices on lines 10-13.

Our hardware and compilation model therefore makes approxi-
mate computations failure-oblivious [23], meaning that they never
fail due an invalid memory access, so that one can still approximate
those computations. Instead, such invalid operations simply return a
non-deterministic result and then continue executing.

3. Compilation and Semantics
The code of scale in Section 2 shows the syntax of Rely’s language,
which is a pointer-less C-like language with first-class single dimen-
sion arrays and reliability specifications. In this section, we present
a machine model and a compilation model for Rely that captures the
basic properties of unreliable hardware. We then present the hard-
ware specifications required to do reliability-aware optimization.

3.1 Machine Model
Figure 3 presents the abbreviated syntax of the assembly language
of a simple load/store machine. The instructions consist of ALU and
FPU operations (such as add, multiply and compare), conditional
branches, loads and stores from stack offsets (load and store)
and also loads and stores from heap allocated arrays (loada and
storea). Each operand of an instruction is stored in a register r ∈R
or – in the case for loads and stores – is a fixed N-bit (e.g., 32-bit or
64-bit) integer n ∈ IntN.

Each arithmetic instruction is also affixed with a kind κ ∈ K =
{0,1} – such as r = addκ r1 r2 – that indicates that the instruction
is either reliable (κ = 0) – and always produces the correct result
– or unreliable (κ = 1) – and may therefore produce an incorrect
result with some probability.

3.2 Compilation
Rely has a straightforward mapping from its source code to our
target machine.

Expressions. Compilation of expressions proceeds in a standard
way; we flatten expressions and store intermediate results in registers.
We assume the register file is the same size as the maximum number
of concurrently live intermediate values in the program.

Local Variables. We allocate local variables in a stack that we
place in a reliable region of main system memory. Local variables
are accessed via load and store instructions, which are allocated at
fixed offsets from a frame base pointer, bp.

Arrays. We allocate arrays in main system memory. Given a
hardware specification, main system memory may export multiple
memory regions of different reliability. We allocate each array in
the memory region specified by the developer.

To support bounds-checking, arrays include an additional header
that specifies the length of the array in memory. Specifically, the
address associated with an array points to a two-word structure that
contains the address of the array’s data and its length. This allocation
strategy allows us to separate the reliability of the data stored in the
array from the reliability of its metadata and, therefore, the contents
of an array can be stored in unreliable memory.

3.3 Machine Semantics
Before we present the semantics of the machine’s instructions, we
first present several preliminary definitions.

Register Files, Memories, Programs, and Environments. A
register file σ ∈ Σ = R→ IntN is a finite map from registers to
machine integers. A memory h ∈H = A→ IntN is a finite map from
addresses to machine integers. A program γ ∈ Γ = A→ I is a finite
map from addresses to instructions. An environment ε ∈ E = Σ×H
is a pair of a register file and a memory.

Arrays. Given the address of an array’s metadata a, the function
len ∈ A→ IntN returns the address of the length field in the array’s
metadata.

Ready Instructions and Configurations. A ready instruction is
either an instruction i ∈ I or the distinguished element “·” that
indicates that no instruction is ready to execute. A configuration is a
ready instruction and environment pair.

Hardware Model. A hardware model ψ ∈ (O → R)× (A×
Mop→ R×R)× (I→ IntN)) is a triple of finite maps.

The projection πop selects the first element of the hardware
model, which is a finite map from operations to reliabilities. The
reliability of an operation is the probability that the operation
executes correctly (as given by a hardware specification).

The projection πmem selects the second element of the hardware
model, which is a finite map from address-memory operation pairs
to reliabilities. A memory operation mop ∈Mop = {ld,st} is either a
load (ld) or a store (st). A function call πmem(ψ)(a,mop) therefore
gives the reliability of performing the memory operation mop on the
address a.

The projection πpwr selects the third element of the hardware
model, which is a finite map from instructions to power consump-
tions as quantified by an integer unit value. This map therefore
describes the power consumption of each individual operation.

Auxiliary Probability Distributions. The discrete probability
distribution Pf (n f | op,n1, ...,nk) models the manifestation of a soft
error during an incorrect execution of an operation. Specifically, it
gives the probability that an incorrect execution of an operation op
on operands n1, . . . ,nk produces a value n f that is different from the
correct result of the operation. While this distribution is inherently
tied to the properties of the underlying hardware, we define this
distribution only to support a precise formalization of the dynamic
semantics of a program; it does not need to be specified for a given
hardware platform.

3.3.1 Rules
Figure 4 presents the semantics of our machine model. The small-

step judgment 〈î,ε〉 λ ,p−→
γ,ψ
〈î′,ε ′〉means that execution of the program

γ from the configuration 〈î,ε〉 takes a transition with label λ with
probability p under a hardware model ψ and yields a configuration
〈î,ε ′〉.

A transition label λ ∈ {C,〈F,n〉} characterizes whether the
transition executed correctly (C) or experienced a fault (〈F,n〉). The
value n that accompanies a faulty transition records the value that
the fault inserted into the semantics of the program.

ALU/FPU-C
p = ψ(op)κ

〈r = opκ r1 r2,〈σ ,h〉〉 C,p−→
γ,ψ
〈 · ,〈σ [r 7→ op(σ(r1),σ(r2))],h〉〉

ALU/FPU-F
p = (1−πop(ψ)(op)) ·Pf (n | op,n1,n2)

〈r = op1 r1 r2,〈σ ,h〉〉 〈F,n〉,p−→
γ,ψ
〈 · ,〈σ [r 7→ op(σ(r1),σ(r2))],h〉〉

LOAD-C
a = σ(bp)+n

〈r = load n,〈σ ,h〉〉 C,1−→
γ,ψ
〈 · ,〈σ [r 7→ h(a)],h〉〉

STORE-C
a = σ(bp)+n

〈store n r,〈σ ,h〉〉 C,1−→
γ,ψ
〈 · ,〈σ ,h[a 7→ σ(r)]〉〉

LOAD-ARR1
a = h(σ(rarr))+ ridx a ∈ dom(h) p = πmem(ψ)(a, ld)

〈r = loada rarr ridx,〈σ ,h〉〉 C,p−→
γ,ψ
〈 · ,〈σ [r 7→ h(a)],h〉〉

LOAD-ARR2
a = h(σ(rarr))+ ridx a 6∈ dom(h)

〈r = loada rarr ridx,〈σ ,h〉〉 C,1−→
γ,ψ
〈 · ,〈σ [r 7→ n],h〉〉

STORE-ARR1
n = h(len(σ(rarr))) 0≤ σ(ridx) < n a = h(σ(rarr))+ ridx p = πmem(ψ)(a,st)

〈storea rarr ridx r,〈σ ,h〉〉 C,p−→
γ,ψ
〈 · ,〈σ ,h[a 7→ σ(r)]〉〉

STORE-ARR2
n = h(len(σ(rarr))) ¬(0≤ σ(ridx) < n)

〈storea rarr ridx r,〈σ ,h〉〉 C,1−→
γ,ψ
〈 · ,〈σ ,h〉〉

JMP-TRUE
σ(rc) 6= 0

〈jmp rc r,〈σ ,h〉〉 C,1−→
γ,ψ
〈 · ,〈σ [pc 7→ σ(r)],h〉〉

JMP-FALSE
σ(rc) = 0

〈jmp rc r,〈σ ,h〉〉 C,1−→
γ,ψ
〈 · ,〈σ ,h〉〉

FETCH
i = γ(σ(pc)) σ ′ = σ [pc 7→ σ(pc)+1][pw 7→ σ(pw)+πpwr(ψ)(i)]

〈 · ,〈σ ,h〉〉 C,1−→
γ,ψ
〈i,〈σ ′,h〉〉

Figure 4: Machine Semantics (Abbreviated)

ALU/FPU. The semantics of an integer or floating-point operation
r = opκ r1 r2 takes one of two possibilities:
• Correct execution. An operation executes correctly with proba-

bility πop(ψ)(op)κ . Therefore, if the operation is reliable (κ = 0)
it executes correctly with probability 1. If it is unreliable (κ = 1),
then it executes correctly with probability πop(ψ)(op).
A correct execution proceeds with the rule [ALU/FPU-C]
wherein the instruction reads its two registers r1 and r2 from the
register file, performs the operation and stores the result back in
register r.

• Faulty execution. An unreliable operation (where κ = 1) expe-
riences a fault with probability πop(ψ)(op). A faulty execution
stores into the destination register r a value n that is given by
the errant result distribution for the operation, Pf . An important
note here is that while the instruction may experience a fault, its
faulty execution does not modify any state besides the provided
destination register.

Load/Stores. The semantics of stack loads and stores is fully
reliable because the stack is allocated in a reliable memory region.

Array Loads/Stores. The semantics of loads and stores of arrays
is failure oblivious in that an out-of-bounds array access never forces
the program to halt. These checks are implemented differently for
loads and stores.

• Loads. Array loads to do not include an explicit bounds check.
The rule [LOAD-Arr1] uses the pointer to the array’s data σ(rarr)
and the index value passed in as an index (ridx) to compute the
address of the data (a). If that address is a valid memory location
(a ∈ dom(h)) then the rule loads the value of the address with
probability πmem(ψ)(a, ld). We elide the rule where the read
from memory fails.
The rule [Load-Arr2] reasons about the case when a is not a valid
memory address (a 6∈ dom(h)). In this case, the semantics is free
to place any value n into the destination register r. This semantic
approach minimizes the overhead incurred on array reads by
only requiring an implementation to check if the address is valid.
On a modern architecture with virtual memory, this corresponds

to modifying the application’s page fault handler to handle traps
on accesses to invalid addresses.

• Stores. Array stores require an array bounds check so that our
analysis can perform modular reasoning in the presence of errant
array indices. Specifically, if array stores were to write outside of
the bounds of an array, then the frame condition for an analysis
would include the entire program state.

Branches and Fetch. The rules [Fetch], [Jmp-T], and [Jmp-F]
implement control flow transfers which all execute reliably. By
preserving the reliability of control flow transfers, an approximate
program always takes paths that exist in the static control flow of
the original program. Note that while the control flow transfers
themselves execute reliably, Rely allows the conditional expressions
of jmp instructions to depend on unreliable computation. Therefore,
an unreliable execution of the program may take a different path
than a reliable execution of the program.

3.3.2 Reliability
In this section we restate the semantic reliability definitions from
[3] for our machine semantics.

Definition 1 (Big-step Trace Semantics).

〈·,ε〉 τ, p
=⇒
γ,ψ

ε ′ ≡ 〈·,ε〉 λ1, p1−→
γ,ψ

. . .
λn, pn−→
γ,ψ
〈skip,ε ′〉

where τ = λ1, . . . ,λn and p = Π
i

pi

The big-step trace semantics is a reflexive transitive closure of the
small-step execution relation that records a trace of the execution. A
trace τ ∈ T ::= · | λ :: T is a sequence of small-step transition labels.
The probability of a trace, p, is the product of the probabilities of
each transition.

Definition 2 (Big-step Aggregate Semantics).

〈·,ε〉 p
=⇒
γ,ψ

ε ′ where p = ∑
τ∈T

pτ such that 〈·,ε〉 τ, pτ=⇒
γ,ψ

ε ′

The big-step aggregate semantics enumerates over the set of all
finite length traces and sums the aggregate probability that a program
γ starts in an environment ε and terminates in an environment ε ′
given a hardware model ψ .

Definition 3 (Paired Execution). ϕ ∈Φ = E→ R

〈 · ,〈ε,ϕ〉〉 ⇓γ,ψ 〈ε ′,ϕ ′〉 such that 〈 · ,ε〉 τ,pr=⇒
γ,1ψ

ε ′ and

ϕ ′(ε ′u) = ∑
εu∈E

ϕ(εu) · pu where 〈 · ,εu〉 pu=⇒
γ,ψ

ε ′u

The paired execution semantics pairs an execution of the program
γ given a fully reliable hardware model 1ψ (where the reliability of
each arithmetic and memory operation is 1.0) with its executions
given another potentially unreliable hardware model ψ . Specifically,
because the unreliable operations given by ψ introduce a proba-
bilistic semantics for the program, if the executions for the two
hardware models start in an environment ε , then if the reliable exe-
cution terminates in a ε , then the unreliable execution terminates in
a distribution of environments, which is given by ϕ .

The paired execution semantics enables us to give a semantics
to the reliability of a variable. Specifically, if we use the final
environment ε ′ for the reliable hardware model and the distribution
of final environments for the unreliable hardware model, then the
reliability of a variable allocated a memory address a is Σ

εu∈E(a)
ϕ(εu)

where E(a) = {εu | πheap(εu)(a) = πheap(ε ′)}.

4. Energy Optimization Algorithm
Given the semantics for the machine, we can now express the
optimization problem. To do this we first augment our assembly
language and provide an intermediate representation that includes
labels:

` ∈ L
i ∈ I ::= r = op` r r

In this intermediate representation we augment each arithmetic
instruction with a label ` ∈ L instead of a kind. The label of each
instruction in a program is unique. We then let a kind configuration
θ ∈Θ = `→ K be a finite map from instruction addresses to kinds,
which allows us to phrase the optimization problem as follows:

Definition 4. Semantic Optimization Problem.

min
θ

Σ
ε∈Eprf

Σ
ε ′

p ·πpwr(ε ′) where 〈 · ,ε〉 p
=⇒

γ[θ],ψ
〈 · ,ε ′〉

This definition states that we are searching for a kind config-
uration θ such that when we replace the label of each arithmetic
instruction with its corresponding kind (γ[θ]), we minimize the total
expected power consumption of the program over a set of profile
inputs Eprf. The projection πpwr returns the value of the pwr register
in an environment.

4.1 Absolute Energy Model
We next present a model for estimating the absolute power consump-
tion of a kind configuration of a program.

Average Power. Each instruction in the hardware specification
may have a different power consumption associated with it. However,
for the purposes of our model, let Ei, E f , Eo be the average power
of an ALU instruction, a FPU instruction, and other non-arithmetic
instructions, respectively.

Power of Trace Set. First consider the power consumption of a set
of instruction traces collected by profiling a set of inputs. Using the
integer arithmetic nint, floating-point nfp , and other non-arithmetic
no instruction counts, we characterize the total average power for
each of the instruction classes:

Eint = nint ·Eint

Efp = nfp ·Efp

Eo = no ·Eo

Together, these also characterize the total average ALU power:

EALU = Eint +Efp +Eo

Power with Kind Configurations. We next estimate the power
consumption given a kind configuration of the program by parame-
terizing our ALU power model over a given kind configuration.

We describe the set of traces by partitioning the set of instructions
into three subsets: IntInst (the set of labels of integer arithmetic
instructions) and FPInst (the set of labels of floating-point arithmetic
instructions). For each instruction with a label `, we also let na
denote the number of times the instruction executes for the set
of inputs. Finally, let αint and αfp be the average savings (i.e.,
percentage reduction in power consumption) from executing integer
and floating-point instructions unreliably, respectively.

Using these definitions, we then restate our ALU power defini-
tions as a function of a configuration θ as follows:

Eint(θ) = Σ
`∈IntInst

n` · (1−θ(`) ·αint) ·Eint

Efp(θ) = Σ
`∈FPInst

n` · (1−θ(`) ·αfp) ·Efp

EALU(θ) = Eint(θ)+Efp(θ)+Eo

CPU Energy. We model the energy consumption of the CPU
as the combined energy consumed by the ALU and the other
on-chip components, including the register file, cache, and other
communication devices:

ECPU = EALU +ESRAM
ECPU(θ) = EALU(θ)+ESRAM

The term ESRAM captures the power consumption of the other
on-chip components. Note that because we aren’t modeling savings
for other on-chip components, ESRAM need not be parameterized by
θ for our parameterized power consumption model.

Memory Energy. We model the energy consumption of system
memory (i.e., DRAM) using an estimate of the average power per
second per byte of memory, Emem. Given t (the execution time of
the kernel), αmem (the savings associated with allocating data in
unreliable memory), Sr and Su (the number of bytes allocated in the
reliable and unreliable memories, respectively), we model the power
consumption of memory as follows:

Emem = t ·Emem · (Sr +Su · (1−αmem))

System Energy. We model the energy consumed by the compute
system as the combined energy used by the CPU and memory.

Esys = ECPU +Emem

Esys(θ) = ECPU(θ)+Emem

4.2 Relative Energy Model
Next, we present the numerical optimization problem that we use
to optimize Rely programs. While the power model equations from
Section 4.1 factor in a number of the concerns for optimizing
the power consumption of the CPU, the models rely on several
hardware design specific parameters, such as the average power of
instructions.

However, we can use these equations to derive a numerical
optimization problem that instead uses cross-design parameters
(such as the relative power between instruction classes and the
average savings for each instruction) to optimize the relative energy

of a configuration of the program.

Esys(θ)
Esys

=
ECPU(θ)+Emem

ECPU +Emem
=

=
ECPU

ECPU
· ECPU(θ)

ECPU +Emem
+

Emem

ECPU +Emem
=

= µCPU
ECPU(θ)

ECPU
+(1−µCPU)

Because Emem is the same for both the reliable and the kind
configured program, the memory model simplifies to the value
1. Note that this simplification requires the assumption that the
kind configured program and the reliable program execute for
approximately the same amount of time.

CPU Relative Energy. We apply the same reasoning to model
the relative energy consumption of the CPU:

ECPU (θ)
ECPU

= µALU
EALU(θ)

EALU
+(1−µALU)

ALU Relative Energy. We also apply the same reasoning to
model the relative energy consumption of the ALU:

EALU(θ)
EALU

= µint · Eint(θ)
Eint

+ µfp ·
Efp

Efp
+ µo

The parameters µint, µfp, and µo are computed from the counts of the
instructions and the relative energy consumption of each class with
respect to that of integer instructions. For example, if we let wfp be
the ratio of power consumption between floating point instructions
and integer instructions (i.e, wfp = Efp

Eint
), then µfp = wfp·nfp

nint+wfp·nfp+wo·no
.

Final Parameters. The final machine parameters we need for this
problem are the relative portion of power consumed by the CPU
versus memory (µCPU), the relative power consumed by the ALU
versus the other components of the chip (µALU) and also the relative
power of each instruction class versus an integer instruction(µint,
µfp, and µo) .

4.3 Reliability-Aware Optimization Problem
Our model for relative power consumption leads naturally to a
numerical optimization problem that minimizes the relative power
consumption of the kind configured program, namely min

θ
(Esys(θ)

E).

By substituting our power model equations for relative savings and
removing terms that do not depend on the kind configuration, we
arrive at the optimization problem:

min
θ

(
µCPU ·µALU

(
µint · Eint(θ)

Eint
+ µfp · Eint(θ)

Efp

))
This is an unconstrained optimization problem, where the opti-

mal solution is a kind configuration where all operations are unreli-
able. However, setting all operations to be unreliable may violate
a computation’s reliability bound. We therefore add a reliability
constraint that constrains valid solutions to be only those that satisfy
the computation’s reliability bound.

4.3.1 Reliability Constraint
A reliability constraint is a predicate P of the following form:

R f := ρ | ρ` | R(V) | R f ·R f

P := R f ≤ R f | P∧P

Specifically, a predicate is either a conjunction of predicates
or a comparison between reliability factors. A reliability factor is
either a 1) real-number ρ , 2) a kinded reliability ρ` which expresses
the reliability of an operation labeled ` as a function of the kind

configuration θ and its reliability ρ , 3) the reliability of a set of
registers, stack offsets, and arraysR(V), or 4) a product of reliability
factors.

As in Section 3, the meaning of a reliability factor is given by
the final environment ε ∈ E of the reliable execution of the program
and the distribution of environments ϕ ∈ Φ that result from an
unreliable execution of the program – as specified by the paired
execution relation (Definition 3). Therefore, JPK ∈ P(E×Φ×Θ)
and JR f K ∈ (E×Φ×Θ)→ R.

For example, the denotation of R(V) is the total probability
that the unreliable execution halts in an environment where all the
registers, stack offsets, and arrays in V have the same value as
in the reliable execution of the program. For a kinded reliability,Jρ`K(ε,ϕ,θ) = ρθ(`), denotes that the reliability of the operation is
equal to 1 if θ(`) = 0 and ρ if θ(`) = 1.

4.3.2 Computing Reliability Constraints
We compute constraints using a precondition generation analysis
as is done in [3]. Below we present a selection of the rules for
an analyzer C ∈ I → P→ P that takes two inputs: an instruction
and a reliability constraint postcondition. The analyzer produces a
precondition that when satisfied, ensures the post condition holds
after the instruction terminates.

C(r = op` r1 r2,Q) = Q[(πop(ψ)(op)`·
R({r1,r2}∪X))/R(r∪X)] (1)

C(r = load n,Q) = Q[R(n∪X)/R({r}∪X)] (2)
C(store n r,Q) = Q[R(r∪X)/R({n}∪X)] (3)

ALU/FPU. Equation 1 presents the generator rule for ALU/FPU
operations. The rule works by substituting the reliability of the
destination register r with the reliability of its operands and the
reliability of the operation itself. The substitution R({r1,r2} ∪
X)/R(r∪X)] matches all occurrences of the destination register in
the set of values in a reliability term and replaces them with the input
registers, r1 and r2. The substitution additionally multiplies in the
factor πop(ψ)(op)`, which expresses the reliability of the operation
as a function of its kind, and its reliability πop(ψ)(op).

Load/Store. The rules for loads and stores are similar to that
for ALU/FPU instructions with the exception that the substitution
operates on both stack offsets and registers.

Array Load/Store. We elide the rules for array loads and stores,
but they are similar to standard loads and stores with the additional
modification that the substitution includes the reliability of the
array’s index calculation and the reliability of reading from the
array’s memory region.

Control Flow. We also elide the rules for control flow. Our anal-
ysis of if conditionals relies on the fact that the high-level Rely
language has structured control flow and therefore it is straight-
forward to use the structure of the high-level program to identify
the instructions that correspond to an if statement. As in [3], our
analysis includes the reliability of an if statement’s condition when
computing the reliability of variables modified under an if state-
ment. Our analysis of while statements also follows that from [3].

4.3.3 Optimization Problem with Reliability Constraint
For a given kernel, our reliability constraint analysis computes a
reliability constraint of the form

∧
i, j

ρi ·R(Vi) ≤ ν j ·R(Vi) where

ρi ·R(Vi) is a reliability factor for a developer-provided specification
of an output and ν j ·R(V j) is a lower bound on the reliability of
that output. Here each ρi is a real-valued constant whereas each ν j
is a product of real-valued constants and kinded reliabilities (i.e.,
quantities of the form ρ`).

If this constraint is valid for a given kind configuration, then that
kind configuration of the program satisfies the developer-provided
reliability specification.

Constraint Validity Intuition. To check the validity of this con-
straint, we can use the observation that the reliability of any subset
of the variables V j is greater than or equal to the reliability of V j as
a whole. Specifically,

Vi ⊆V j⇒R(V j)≤R(Vi)

With this observation we can then soundly check the validity of
each inequality in the constraint by checking ρi ≤ ν j and Vi ⊆V j.

Reliability-Aware Optimization Problem. We build the con-
straint for our reliability-aware numerical optimization problem
by preprocessing the reliability constraint and then encoding it into
the optimization problem. Specifically, for each inequality conjunct
ρi ·R(Vi)≤ ν j ·R(Vi) in the constraint, we can immediately check
if Vi ⊆V j. This leaves the additional constraint that ρi ≤ ν j.

The computed reliability expression ν j has the form Πkρ`k
k

(where k iterates over all instructions in the trace, computed by
the analysis). Therefore, if we take the logarithm of both sides of
the inequality, we obtain the expression

log(ρi)≤∑
k

`k log(ρk). (4)

We note that the expression on the right side is linear with respect
to all labels `k. Each label is an integer variable that can take a value
0 or 1. The reliabilities ρi are constants, and therefore one can
compute ahead of time their logarithms.

Final Optimization Problem Statement. We can state the opti-
mization problem given the previous reliability constraint:

Minimize:
(

µCPU ·µALU

(
µint · Eint(θ)

Eint
+ µfp · Eint(θ)

Efp

))
Constraints: log(ρi)≤ ∑k j

`k j log(ρk j) ∀i, j
Variables: `1, . . . , `n ∈ {0,1}

We note that since the variables `1, . . . , `n are integers, this
optimization problem is an instance of an integer linear program.
While in general, this problem is NP complete, the existing solvers
that can successfully solve many classes of integer linear programs.

Implementation. We have implemented the reliability-aware op-
timization framework using OCaml. The framework consists of
several passes. The translation pass produces an equivalent C pro-
gram for an input file with Rely functions. The instrumentation
pass instruments the C program to collect traces of instructions that
are used to compute the frequencies of instructions in the energy
expression, nint ,n f p,no. The analysis pass computes the objective
function and the reliability constraints. We use Gurobi mixed integer
programming solver to solve the generated optimization problem [8].
Finally, the transformation pass uses the solution of the optimiza-
tion program to generate the Rely program with inserted unreliable
instructions and specifications of the function’s parameters stored in
the unreliable memory.

5. Evaluation
We present an evaluation of Rely for two application scenarios:
selective fault tolerance for guarding against transient errors and
power optimization via compilation to unreliable hardware.

5.1 Benchmarks
To empirically test Rely’s effect on program accuracy and power
usage, we consider a set of benchmarks from several application

domains. The applications were selected because they either tolerate
some amount of error in the output or are robust to errors.

• Scale: It scales an image by a factor provided by the user. The
kernel computation in scale computes the output pixel value by
interpolating over neighboring source image pixels.

• Discrete Cosine Transform (DCT): DCT is a popular com-
pression algorithm that is used in various lossy image and audio
compression methods. The kernel computation performs the
conversion of an 8x8 image subregion into frequency domain
coefficients.

• Inverse Discrete Cosine Transform (IDCT): IDCT recon-
structs an image from the coefficients generated by the DCT.
The kernel computation reconstructs the 8x8 pixel grid from a
frequency domain grid.

• Newton: The Newton Benchmark finds the root of a function by
applying newton’s root-finding algorithm to a variety of different
initial guesses. The kernel computation finds a root for a single
initial point.

• Black-Scholes: The Black-Scholes benchmark computes the
price of European Put and Call options using the analytical
Black-Scholes formula. The kernel computation in Black-
Scholes computes the price of an option given its initial value.

Table 1 presents the overview of the benchmark computations.
For each computation, Column 2 (“Size”) presents the number of
lines of code of the benchmark computation. Column 3 (“Kernel”)
presents the number of lines of kernel computation that is a candidate
for optimization. Column 4 (“Instruction in Kernel %”) presents the
percentage of instructions that the execution spends in the kernel
computation. Column 5 (“Representative Input Number”) presents
the number of representative inputs collected for each computation.
Column 6 (“Accuracy Metric”) presents the accuracy metric of the
computation.

Representative Inputs. For each application, we have selected
several representative inputs. The analysis uses these inputs to obtain
the estimates of the instruction mixes and construct the objective
function of the optimization problem.

Accuracy Metrics. We have used standard accuracy metrics for
the benchmark computations. For the three image processing bench-
marks we have used peak signal to noise ratio between images that
two versions of the benchmark produce. For Newton benchmark
we have used absolute difference between the value that the two
versions of the computation produce. For Blackscholes benchmark
we have used the average of absolute differences of the computed
option prices.

Result Checkers. Two of the benchmark computations have built-
in checker computations that ensure that the intermediate results of
the computation are well formed. Checker computations typically
execute for only a small fraction of time of the benchmark. If the
checker computation fails, the unreliable computation needs to be
re-executed. The Newton checker checks whether the result that
the computation produces is a root of the candidate function. The
Blackscholes checker uses no-arbitrage bound on the price of each
option to filter out the executions that produce unrealistically large
or small option prices.

5.2 Reliability Specification Computation
We perform the time and reliability profiling to 1) determine the
amount of time that the computation spends in the computational
kernels and 2) assess the sensitivity of the output of the benchmark
computations to different tolerable reliability specifications of their
computational kernels.

Benchmark Size Kernel Instruction Representative Accuracy
(LoC) (LoC) in Kernel % Input Number Metric

scale 218 88 93.43% 13 Peak Signal-to-Noise Ratio
dct 532 50 99.20% 13 Peak Signal-to-Noise Ratio
idct 532 88 98.86% 9 Peak Signal-to-Noise Ratio
newton 169 38 88.54% 5 Absolute Difference
blackscholes 494 143 99.68% 5 Average of Abs. Diff.

Table 1: Benchmark Description

Benchmark Index Remaining Floating Load/Store % Other % Optimization Reliability
Integer % Integer % Point % Variables Constraints

scale 15.76% 4.30% 18.05% 46.99% 14.90% 147 4
dct 25.47% 4.09% 15.73% 41.29% 13.42% 121 1
idct 13.07% 3.11% 26.36% 40.97% 16.49% 104 1
newton 0.00% 8.69% 36.15% 46.47% 8.69% 22 1
blackscholes 0.00% 1.75% 39.77% 50.88% 7.60% 77 2

Table 2: Benchmark Profiling and Optimization Problem Statistics

Execution Profiling. We performed execution profiling of the
original computation to guide the search for computation kernels
using Callgrind [1]. Column 5 of Table 1 presents the percentage of
instructions that the computation spends in the kernel computation
relative to the execution time of the overall computation modulo the
functions that perform I/O operations on the input and output files.
For each benchmark, the kernel computations execute more than
88% of the instructions of the program.

Columns 2 to 6 in Table 2 present the percentages of executed
instruction types. We note that the significant portion of time the
programs execute arithmetic – integer and floating point – and
memory load/store operations. The majority of the other operations,
reported in Column 6, are branching and cast operations. The integer
operations are divided in those that compute array indices and the
operations that compute the kernel’s results. We note that in the three
benchmarks that operate on arrays, more than 79% of the integer
instructions are calculating array indices. Therefore, Rely’s support
for failure-oblivious computing makes a significant portion of the
integer instructions candidates for approximation.

Reliability Constraints. The Rely’s reliability analysis constructs
the constraints that ensure that the computation meets its reliability
specifications. Columns 7 and 8 in Table 2 present the number of
binary variables in the generated constraints and the total number
of constraints. The number of variables is smaller than 150 and the
number of constraints is at most 4. Solving each of the generated
optimization problems with Gurobi takes less than a second on an
Intel Xeon desktop machine.

Reliability Specifications. To find acceptable reliability specifi-
cations, we manually modified each benchmark to return the correct
value of the kernel computation with probability equal to the reli-
ability specification and otherwise produce random output values
(scalar variables or arrays). The results for the image processing
benchmarks are presented in Table 3. The acceptable PSNR rates
for image and video compressions are 30 dB and above. Therefore,
the developer can select reliability 0.99 as the (acceptable) relia-
bility specification of the kernel computations in IDCT and Scale.
Likewise, the developer can select reliability 0.999 as the reliability
specification of DCT.

We performed the same experiment for computations with
checkers. For 1000 runs of BlackScholes (on an input with 64000
options) and Newton computations we have not observed any error
that propagated to the output of the program. However, to offset for
the additional execution time of the computation, a developer may
select higher reliability specifications.

Benchmark Reliability Experimental PSNR
0.99 32.17

scale 0.999 42.22
0.9999 52.16
0.99 27.58

dct 0.999 32.94
0.9999 38.54
0.99 32.54

idct 0.999 44.43
0.9999 49.10

Table 3: Software Specification SNR

5.3 Selective Fault Tolerance
Researchers have investigated a number of techniques for building
fault tolerant systems that include both hardware and software
techniques [14, 19–21]. Specifically, replication at the instruction
level executes the instruction on two redundant functional units and
compares the results of the computation. If these results differ, the
computation is repeated.

One additional way to improve on the performance of instruction-
level replication approach is through dereplication where operations
that are less critical to the behavior of the program are not replicated
so as to trade accuracy of the program’s result for increased perfor-
mance. In this section, we consider selective dereplication to reduce
the power consumption of a computation.

Architectural Model. To perform this experiment we consider
the modified superscalar design based on the Alpha microprocessor
proposed by Ray, et al. [20]. In this design, a single instruction
is duplicated in the instruction fetch and decode stage such that
two copies of the instruction are placed in the reorder buffer. The
execute stage of the design then schedules each instruction on two
of the CPUs available functional units. The CPU compares the
results of the two functional units; if they are not the same, then the
CPU re-executes the original instruction.

Power Specifications. To derive the expressions for power sav-
ings of the architecture, we have used the power numbers from
[16] to assign costs to each of the stages of executing a standard
non-replicated instruction versus replicated instruction. By doubling
the energy consumption of the Execute stage in the pipeline we
obtain the savings of non-replicated instruction execution of 40%
for integer and 37% for floating point arithmetic instructions.

Operation Reliability Specifications. In [13, Figure 1], Mukher-
jee at al. provide an estimate of 200 to 2000 soft faults caused by
radiation per 106 hours of operation of an Alpha family microproces-
sor. Given the frequency of the target CPU of 1 GHz, the probability

Benchmark Kernel Reliability ALU Savings

1−10−6 23.8%
scale 1−10−7 17.9 %

1−10−8 1.8 %
1−10−3 27.0 %

dct 1−10−4 11.4 %
1−10−5 3.1 %
1−10−3 23.3%

idct 1−10−4 18.8%
1−10−5 10.9%

1−10−5 25.2%
newton 1−10−6 14.8%

1−10−7 13.9%

1−10−6 24.1 %
blackscholes 1−10−7 3.5 %

1−10−8 0.4 %

Table 4: Dereplication Results

of a failure per cycle is approximately equal to r0 = 10−18. We take
this probability as the baseline tolerable soft fault rate.

Further, we assume that the replicated components in the mi-
croprocessor are designed to satisfy this specification on tolerable
fault rate. Since the fault is observed in the replicated execution only
if both executions fail simultaneously, the probability of failure is
equal to r0 = r2, where r is the fault rate of individual replicated
component. Therefore, we will use the fault rate r = 10−9 for a
reliability of a non-replicated ALU instruction. All memory opera-
tions are fully reliable – the computation of the memory addresses
is always performed on both functional units.

Optimization. We evaluate the savings of the processor’s func-
tional unit for varying tolerable reliability of the computation’s
kernel. For each specification of the tolerable reliability degradation
introduced by the kernel computation, we execute the optimization
algorithm presented in Section 4 and estimate the overall savings
of the processor’s functional unit. Since we are interested in the
arithmetic unit computation, we set the architectural factor µCPU
and µALU to 1.

Table 4 presents the summary of savings we obtain for the bench-
mark computations. Column 2 (“Reliability”) presents the tolerable
reliability of the kernel computation. For each computational kernel
we have used three reliability specifications that correspond to the
mild, medium, and aggressive reliability goal optimizations (relative
to the base reliability rate r. Column 3 (“ALU Savings”) presents
the ALU savings that the framework finds.

The overall savings of the computations for the aggressive
reliability specifications range from 23.3% (idct) to 27% (dct). For
this case, the optimization algorithm generates alternative Rely
programs in which most arithmetic operations (integer and floating
point) are unreliable, i.e., they require only a single functional
unit. The numbers in the first row for each benchmark present
the maximum savings that the optimization algorithm produces
for our computations. For the remaining two (stricter) tolerable
reliability bounds, the optimization algorithm generates versions of
the computation with fewer unreliable instructions, but always finds
the instructions that can be made unreliable.

5.4 Approximate Hardware Configuration Selection
Researchers have previously investigated approximate hardware
architectures that can trade reliability or accuracy of the computation
for additional energy savings. In this section we focus on the model
of approximate hardware proposed by EnerJ [7, 24], which defines
an approximate ISA that makes it possible to control unreliable and
reliable execution of the computation at the granularity of individual
instructions.

Benchmark Rel. Mm mM MM mm
scale 0.99 10.44 % 9.01 % 11.26 % 8.73 %
dct 0.999 9.97 % 9.58 % 11.82 % 8.83 %
idct 0.99 10.4 % 8.48 % 10.73 % 8.2 %
newton 0.999 1.19% 1.95% 1.95 % 1.19%
blackscholes 0.999 1.1 % 0.27 % 0.27 % 1.1 %

Table 5: Approximate Hardware Results

Power and Reliability Specifications. We evaluate the expected
savings of the computations generated by Rely’s optimization
algorithm that execute on several hardware configurations presented
in [24, Table 2]. This table contains several configurations of
unreliable operations and memories (denoted as mild, medium and
aggressive) that can potentially trade reliability for energy savings.

We evaluate the analysis on four configurations of the system,
which consists of the combination of mild (which we denote as “m”)
and medium (which we denote as “M”) configurations for integer
and floating point instructions and memories from [24, Table 2]. To
compute the overall system savings, we use the server configuration
parameters specified in [24, Section 5.4].

Optimization. Table 5 presents the results of the optimization
of the programs using Rely’s optimization algorithm. Column
2 (“Rel.”) presents the target reliability that we set according
to the exploration in Section 5.2. The following four columns
present overall system savings for the combination of memories
and instructions: the first letter represents the configuration of the
memory (mild or Medium) and the second letter represents the
configuration of the arithmetic instructions (mild or Medium). For
instance, “Mm” denotes medium memory configuration (capital
“M”) and mild instruction configuration (“m”).

For three out of five benchmarks, the configuration that satisfies
the reliability constraints and delivers the maximum energy savings
is the one that sets the Medium configuration for both arithmetic
instructions and the memory stores. The Newton benchmark has the
maximum savings for the medium configuration of the arithmetic
instructions. The Blackscholes benchmark is more sensitive to the
reliability of the arithmetic instructions; therefore the algorithm finds
the mild arithmetic instruction configurations that deliver maximum
system savings. We note that for these hardware specifications the
majority of the system savings comes from storing data in unreliable
memories – the Blackscholes and Newton computations, which do
not have array parameters, have smaller overall energy savings.

6. Related Work
Programming Models for Approximate Hardware. Rely [3] is
a language that allows specification of computations that execute
on unreliable hardware and the analysis that ensures that the com-
putation that executes on unreliable hardware satisfies its reliability
specification. Flikker [11] is a set of C language extensions that
allows a developer to specify data that can be stored in approxi-
mate memories. EnerJ [24] is a language that allows the developer
to specify unreliable data that can be stored in unreliable memory
or computed using unreliable operations and the type system that
ensures the isolation of unreliable computations. Unlike these pre-
vious techniques, which are mainly manual, our technique allows
for automation of the part of the process of developing applications
for unreliable hardware platforms, while the guaranteeing that the
developer’s reliability specification is satisfied.

Unreliable Hardware Platforms. Researchers have previously
developed hardware platforms that explicitly improve the reliability
of the computations by trading off energy or performance, e.g., [14,
19, 20]. Researchers have previously proposed multiple hardware
architectures that improve the performance of processors [7, 9, 10,
15, 18, 24] or memories [11, 24] at the expense of the increased
error rates.

7. Conclusion
As the need for energy-efficient computing becomes more acute,
unreliable hardware platforms become an increasingly attractive
target for computationally intensive applications that must execute
efficiently. But successfully navigating the resulting accuracy versus
energy tradeoff space requires precise, detailed, and complex reason-
ing about how the unreliable hardware platform interacts with the
computation to generate these tradeoffs. We present a new system
that automatically maps the computation onto the underlying un-
reliable hardware platform, minimizing energy consumption while
ensuring that the computation executes accurately enough. This
system is capable of generating significant energy savings while
relieving developers of the need to manage the complex, low-level
details of assigning different parts of the computation to unreliable
hardware components. Such systems are clearly required if devel-
opers are to produce software that can effectively exploit modern
energy-efficient unreliable hardware platforms.

References
[1] Callgrind (Valgrind Tool). http://valgrind.org/.
[2] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir.

Toward exascale resilience. International Journal of High Performance
Computing Applications, 2009.

[3] M. Carbin, S. Misailovic, and M. Rinard. Verifying quantitative
reliability for programs that execute on unreliable hardware. OOPSLA,
2013.

[4] M. Carbin and M. Rinard. Automatically identifying critical input
regions and code in applications. ISSTA, 2010.

[5] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: an architectural
framework for software recovery of hardware faults. ISCA ’10.

[6] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. MICRO, 2003.

[7] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. ASPLOS, 2012.

[8] Gurobi. http://www.gurobi.com/.

[9] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian.
Mitigating soft error failures for multimedia applications by selective
data protection. CASES, 2006.

[10] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra. Ersa: error resilient
system architecture for probabilistic applications. DATE’10.

[11] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn. Flikker: saving
dram refresh-power through critical data partitioning. ASPLOS, 2011.

[12] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. ICSE, 2010.

[13] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin. A
systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor. In MICRO-36, 2003.

[14] S.S. Mukherjee, M. Kontz, and S.K. Reinhardt. Detailed design and
evaluation of redundant multi-threading alternatives. ISCA, 2002.

[15] S. Narayanan, J. Sartori, R. Kumar, and D. Jones. Scalable stochastic
processors. DATE, 2010.

[16] K. Natarajan, H. Hanson, S.W. Keckler, C.R. Moore, and D. Burger.
Microprocessor pipeline energy analysis. IPSLED, 2003.

[17] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. PLDI, 2007.

[18] K. Palem. Energy aware computing through probabilistic switching: A
study of limits. IEEE Transactions on Computers, 2005.

[19] F. Perry, L. Mackey, G.A. Reis, J. Ligatti, D.I. August, and D. Walker.
Fault-tolerant typed assembly language. PLDI, 2007.

[20] J. Ray, J. Hoe, and B. Falsafi. Dual use of superscalar datapath for
transient-fault detection and recovery. MICRO, 2001.

[21] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August. Swift:
Software implemented fault tolerance. CGO 05, 2005.

[22] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks. ICS, 2006.

[23] M. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, and W.S.
Beebee Jr. Enhancing server availability and security through failure-
oblivious computing. OSDI, 2004.

[24] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Enerj: Approximate data types for safe and general
low-power computation. PLDI, 2011.

[25] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi.
Modeling the effect of technology trends on the soft error rate of
combinational logic. DSN, 2002.

