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Abstract

An algorithm is given to find a prefix condition code that minimizes

the value of the moment generating function of its codeword length

distribution for a given positive argument. This algorithm is used in

an iterative way to yield a code that maximizes the rate of decay of

the probability of buffer overflow as the buffer length increases.
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I. Introduction

A source emits symbols drawn from the alphabet {1,2,... c}; symbol

i has probability p.. The source symbols are encoded into d-ary code-

words. The codeword corresponding to symbol i has length mi..

It is well known that Huffman's procedure [2] yields a prefix con-
c

dition code minimizing I Pi mi. We show in Section II that it can
i=l

be generalized to yield a prefix condition code minimizing the moment
c sm.

generating function Pi e 1 for a given s > 0.
i=l

A drawback of transmitting variable length codewords over a synchronous

line is the need for a buffer at the output of the encoder. This buffer

may overflow. The probability that a source symbol causes an overflow

is of the order of e , as can be shown by Wyner's results [6]. In

this formula B denotes the buffer size and s* is the largest s (possibly

a) such that

c sm.
A(s) Pi e < 1 (1)

i=l

where A(s) A E[exp(-st)] denotes the Laplace-Stieltjes transform of the

probability distribution of the source intermission times measured in units of

encoded digit transmission time. This result requires the mutual independence

of all source symbols and interemission times, and holds only if the mean

interemission time is greater than the average codeword length.

It is thus desirable to use a code with s* as large as possible when

the probability of buffer overflow is required to be small, so that the
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asymptotic approximation is good. The search for such a code is the subject

of Section III. We consider only the problem of symbol by symbol encoding,

asymptotic properties have been considered in [4], and variable length to

block coding in [5]. The use of s* as a criterion was first suggested by

Jelinek [4].
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c sm.
II. Minimization of p. e , s > 0.

i=l

Without loss of essential generality we can assume c = d + k(d-l) for

some integer k (so that c is the number of terminal nodes in some d-ary

trees) and Pi > Pi+l, i = 1,2,...c-1. As for every uniquely decodable code

there is a prefix condition code with the same set of codeword lengths
c sm.

[l,p.49], no gain can be achieved by minimizing p. e iover all
i=l

uniquely decodable codes, rather than only over the prefix condition codes.
sm.

Because s > 0, e increases with mi, thus, analogously to the

argument given by Huffman [2], there is an optimal prefix condition code

where the codewords corresponding to symbols c-d+l are the longest and

differ only in the last character. If c=d this observation specifies an

optimal code. If c > d this reduces the problem to finding a prefix con-

dition code of size c-d+l = d + (k-l)(d-l) minimizing

c-d sm. c smd
Smc-d+lp. e 1 + (es p , )e

i=l i=c-d+l 1

Thus the "merge" step in the Huffman construction is replaced here by

"merge and scale by e ".

Again we can make the same observation and continuing we will

eventually reach the point where the code is completely specified.

While this paper was being revised, the preceeding algorithm has

been obtained independently by [7].

For s close enough to 0, this algorithm yields a Huffman code, since
sm. c sm.

1.'X, 1.i euialn t mniizne l+sm., so that minimizing e is equivalent to minimizing

C 1 i=l 1

Pi min For s large enough, this algorithm assigns codewords of length
i=l
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r~ogd c7 -1 to symbols 1 toFlogd cl -l to symbols 1 to d , and codewords of lengthd-l

Flogd ci to the others; by definition we say that such a code is

generated by this algorithm for s=-.

One might wonder if "merge and scale" algorithms can be used to
c

minimize more general cost functions of the form I Pi g(mi) Un-
i=l

fortunately, the answer is no. For the algorithm to work, g must be

such that g(m+l) = a g(m)+b. This limits g to being linear or exponential.

Note however that the algorithm given here can also be used to find a
c sm.

code maximizing Pi e , s < 0.
i=l
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III. Finding A Prefix Condition Code With Largest s*.

Following [4] we first note that it is possible to upperbound s*

over all uniquely decodable codes. By Holder's inequality, for s > 0,

ln d s iln d
c sm. ln d+s c -m. In d+s c In d+s

Pil ei d > i
i=l i=l

c -m.

For a uniquely decodable code, X d < 1 [1, p. 47]; thus
i=l

in i ln d+s
c sm. c In d ln. d

A(s) p ie > A(s) i Pi (2)
i=l /

Consequently the s* corresponding to a uniquely decodable code is not

greater than s , defined as the largest s such that the right

member of (2) is less than or equal to 1. In general s is not achievable
u

because the m.'s must take integer values. The right imember of

(2) is a convex function of s; at s=O, its value is 1, while the value

of its derivative is equal to the entropy (base d) of the source alphabet
latter

minus the mean intermission time. Thus if this quantity is negative then

s is positive, and conversely except in the degenerate case where the

right member of (2) is identical to 1.
c sm.

For a given code, C, we denote the corresponding A(s) 7 pi e
i=l

by f(C,s). f(C,s) is the Laplace-Stieltjes transform of the probability
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distribution of an intermission time minus a codeword length, thus it

is convex in s and f(C,Q) = 1.

The iterative algorithm to find a prefix condition code with largest

s* is as follows (see also Figure 1).

1. Choose any so in [0,0] (a good choice is so = s )

2. j +O0

3. j + j+l

4. Use the algorithm of Section II to find a code C. minimizing
c sm. 3

p . e 1 for s = sj_1.
i=l

5. Compute the s* corresponding to C.. Denote it by s..

6. If sj f sj_ 1 then go to 3, else stop

Of course we must show that this algorithm terminates and that

the last code generated is optimal.

First we note that s > sj, j > 1, because
j+l , j

(line 5) f(C., Sj.) < 1 and
3 J -

(line 4) f(Cj+l, sj) < f(Cj, sj)

and the definition of sj+l. Secondly, we observe that the number of codes

that can possibily be generated by the algorithm of Section II is finite,

if only because all codeword lengths must be smaller than c. These two

remarks insure that the algorithm will terminate in a finite time.

Let CZ and sP denote respectively the last generated code and its

s*, while S denotes the largest achievable s*. We must show that sZ = s.
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For the sake of brevity (the complete proof appears in [3]) we assume here

that f(C,s) is not identical to 1 when C is an optimal code; this happens

when the intermission times are equal with probability one to an integer t,

and when the number of source symbols with non zero probabilities lies

between d - d + 2 and d . With this restriction f(C,s) is strictly

convex, f(C,0) = 1 and f(C,3) < 1 when C is an optimal code. If s, = ,

then Ck is optimal. If s Z < a, then f(CQ,sR) = 1. If sk > 0 and

SZ < 'S then by strict convexity f(C,sz) < 1 when C is an optimal code,

and C. may not be the last generated code. If sQ = 0 then d f(C , s) s= > 0

and, as we have seen in Section II, C, is a Huffman code and therefore

uniquely d
minimizes d f(C,s) s=0 over allAdecodable codes. Thus f(C,s) s=> 0

for all uniquely decodable codes, and by the strict convexity argument

s = 0.

This algorithm was tested on a typical 128 symbol alphabet, for Poisson

and deterministic interemisS$on - processes, with so = s . Convergence
u

was fast (1-2 iterations) in the Poisson case, slower (3-10 iterations)

in the deterministic case. The relative difference between s and s*
an ordinary

corresponding to A Huffman code ranges from -(deterministic, light

traffic) to 10% (Poisson, light traffic), to 0 (heavy traffic).
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FIGURE 1 

Iterative Procedure to Find

a Code with Maximal s

f(C,s)
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