Motivation
This study focuses on inter-organizational interactions in large complex system engineering programs. The aim is to identify and provide ways to reduce disconnects that occur at organizational boundaries by effectively using and representing knowledge and information in boundary objects.

Programs and projects suffering from “organizational” disconnects due to unclear documentation, failure to communicate, etc, will often result in rework and additional resources.

Systems Integrators
Systems Integrators become the translators and interpreters at these interfaces, managing and regulating the follow of boundary objects between the communities.

Boundary Objects
Boundary objects are objects that are flexible enough to adapt to local needs yet specific enough to maintain a common identity across different interpretations (Star and Griesemer, 1989)

• Medium
• Granularity
• Staleness Factor
• Malleability
• Inclusivity
• Synchronization
• Importance
• Layers
• Context Type
• Traceability

Boundary Object Attributes

Boundary objects evolve as interfaces changes

Implications
• Identify common sources of organizational disconnects
• Categorize successful boundary objects and their attributes
• Provide suggestions and recommendations to reduce disconnects

Methodology
• Map organizational interactions, Design Structure Matrix
• Identify key areas of interests
• Correlate boundary object usage and social interactions

Case Studies
• Future Combat System
• Transformation Communications Satellite (TSAT) system

Contact: Allan Fong | afong05@mit.edu | 516.984.3072 | Massachusetts Institute of Technology | Master of Science candidate | Department of Aeronautics and Astronautics
Research Advisors: Ricardo Valerdi and Jayakanth Srinivasan | This research is sponsored by members of the LAI Consortium and The Aerospace Corporation