Practical Software and Systems Measurement

A foundation for objective project management

COSYSMO Requirements Volatility Workshop
July 27 2010
Dr. Ricardo Valerdi
Mauricio Peña

PSM Users Group Conference
26-30 July 2010
New Orleans, LA
Practical Software and Systems Measurement

Workshop Agenda

- Introductions & Objectives 1:30 – 1:45 pm
- COSYSMO Overview & Reuse Research Results 1:45 – 2:00 pm
- SE Leading Indicators & Requirements Volatility Background 2:00 – 2:15 pm
- Causal Model and Feedback 2:15 – 2:30 pm
- Survey Results 2:45 – 3:00 pm
- Break 3:00 – 3:30 pm
- Implications to COSYSMO 3:30 – 3:45 pm
- Survey Exercise 3:45 – 4:30 pm
- Outbrief and Discussion 4:45 – 5:00 pm
Objectives of the Workshop

• Learn about COSYSMO and the latest research results in systems engineering reuse
• Provide a forum to discuss requirements volatility thresholds and metrics
• Present an overview of the causes of requirements volatility and its impact on systems engineering effort
• Obtain feedback on a proposed extension to COSYSMO to incorporate a requirements volatility cost factor
• Provide an opportunity for participants to exchange lessons learned on requirements volatility and influence the direction of future research
Intended Outputs

• Feedback on a causal model that relates technical, organizational and contextual project factors to requirements volatility
• Profile of the expected level of requirements volatility as a function of system type and lifecycle phase
• Validation of the “ease of change” curve over the system lifecycle
• Feedback on the COSYSMO requirements volatility extension
Practical Software and Systems Measurement

Bottom Line Up Front

- 200 easy, 200 nominal, 50 difficult
- Requirements
- 2 easy, 3 difficult
- Interfaces
- 5 difficult
- Algorithms

- High Requirements Understanding
- High Technology Risk
- High Process Capability

Size Drivers
Effort Multipliers

COSYSMO Calibration

195 Person Months of systems engineering effort
## Cost Driver Rating Scales

<table>
<thead>
<tr>
<th>Cost Driver</th>
<th>Very Low</th>
<th>Low</th>
<th>Nominal</th>
<th>High</th>
<th>Very High</th>
<th>Extra High</th>
<th>EMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements Understanding</td>
<td>1.87</td>
<td>1.37</td>
<td>1.00</td>
<td>0.77</td>
<td>0.60</td>
<td></td>
<td>3.12</td>
</tr>
<tr>
<td>Architecture Understanding</td>
<td>1.64</td>
<td>1.28</td>
<td>1.00</td>
<td>0.81</td>
<td>0.65</td>
<td></td>
<td>2.52</td>
</tr>
<tr>
<td>Level of Service Requirements</td>
<td>0.62</td>
<td>0.79</td>
<td>1.00</td>
<td>1.36</td>
<td>1.85</td>
<td></td>
<td>2.98</td>
</tr>
<tr>
<td>Migration Complexity</td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.25</td>
<td>1.55</td>
<td>1.93</td>
<td>1.93</td>
</tr>
<tr>
<td>Technology Risk</td>
<td>0.67</td>
<td>0.82</td>
<td>1.00</td>
<td>1.32</td>
<td>1.75</td>
<td></td>
<td>2.61</td>
</tr>
<tr>
<td>Documentation</td>
<td>0.78</td>
<td>0.88</td>
<td>1.00</td>
<td>1.13</td>
<td>1.28</td>
<td></td>
<td>1.64</td>
</tr>
<tr>
<td># and diversity of installations/platforms</td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.23</td>
<td>1.52</td>
<td>1.87</td>
<td>1.87</td>
</tr>
<tr>
<td># of recursive levels in the design</td>
<td>0.76</td>
<td>0.87</td>
<td>1.00</td>
<td>1.21</td>
<td>1.47</td>
<td></td>
<td>1.93</td>
</tr>
<tr>
<td>Stakeholder team cohesion</td>
<td>1.50</td>
<td>1.22</td>
<td>1.00</td>
<td>0.81</td>
<td>0.65</td>
<td></td>
<td>2.31</td>
</tr>
<tr>
<td>Personnel/team capability</td>
<td>1.50</td>
<td>1.22</td>
<td>1.00</td>
<td>0.81</td>
<td>0.65</td>
<td></td>
<td>2.31</td>
</tr>
<tr>
<td>Personnel experience/continuity</td>
<td>1.48</td>
<td>1.22</td>
<td>1.00</td>
<td>0.82</td>
<td>0.67</td>
<td></td>
<td>2.21</td>
</tr>
<tr>
<td>Process capability</td>
<td>1.47</td>
<td>1.21</td>
<td>1.00</td>
<td>0.88</td>
<td>0.77</td>
<td>0.68</td>
<td>2.16</td>
</tr>
<tr>
<td>Multisite coordination</td>
<td>1.39</td>
<td>1.18</td>
<td>1.00</td>
<td>0.90</td>
<td>0.80</td>
<td>0.72</td>
<td>1.93</td>
</tr>
<tr>
<td>Tool support</td>
<td>1.39</td>
<td>1.18</td>
<td>1.00</td>
<td>0.85</td>
<td>0.72</td>
<td></td>
<td>1.93</td>
</tr>
</tbody>
</table>
Practical Software and Systems Measurement

Systems Engineering Effort Profile

ISO/IEC 15288

Conceptualize  Develop  Operational Test & Evaluation  Transition to Operation

Acquisition & Supply

Technical Management

System Design

Product Realization

Technical Evaluation

ANSI/EIA 632
**Practical Software and Systems Measurement**

**CO SYM MO 1.0**  
*© Ricardo Valerdi, University of Southern California*

**ENTER SIZE PARAMETERS FOR SYSTEM OF INTEREST**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Easy</th>
<th>Nominal</th>
<th>Difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td># of System Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of System Interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Algorithms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Operational Scenarios</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**SELECT COST PARAMETERS FOR SYSTEM OF INTEREST**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements Understanding</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Architecture Understanding</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Level of Service Requirements</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Migration Complexity</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Technology Risk</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Documentation</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td># and diversity of installations/platforms</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td># of recursive levels in the design</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Stakeholder team cohesion</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Personnel/team capability</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Personnel experience/continuity</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Process capability</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Multisite coordination</td>
<td>N</td>
<td>1.00</td>
</tr>
<tr>
<td>Tool support</td>
<td>N</td>
<td>1.00</td>
</tr>
</tbody>
</table>

**composite effort multiplier**  

**SYSTEMS ENGINEERING PERSON MONTHS**  

0.0
Practical Software and Systems Measurement

COSYSMO 2.0 Operational Concept

Based on 2009 dissertation by Dr. Jared Fortune
Model Form

\[ PM_{NS} = A \cdot \left[ \sum_k \left( \sum_r w_r (w_{e,k} \Phi_{e,k} + w_{n,k} \Phi_{n,k} + w_{d,k} \Phi_{d,k}) \right) \right]^E \cdot \prod_{j=1}^{14} EM_j \]

PM_{NS} = effort in Person Months (Nominal Schedule)

A = calibration constant derived from historical project data

k = \{Requirements, Interfaces, Algorithms, Scenarios\}

w_x = weight for “easy”, “nominal”, or “difficult” size driver

r = \{New, Design for Reuse, Modified, Deleted, Adopted, Managed\}

w_r = weight for reuse category

\Phi_x = quantity of “k” size driver

E = represents (dis)economies of scale

EM = effort multiplier for the j^{th} cost driver.
Practical Software and Systems Measurement

Reuse Category Weights

Design for Reuse

New

Modified

Deleted

Adopted

Managed
COSYSMO 2.0 Implementation Results

- Across 44 projects at 1 diversified organization

- Using COSYSMO:
  - PRED(.30) = 14%
  - PRED(.40) = 20%
  - PRED(.50) = 20%
  - $R^2 = 0.50$

- Using COSYSMO 2.0:
  - PRED(.30) = 34%
  - PRED(.40) = 50%
  - PRED(.50) = 57%
  - $R^2 = 0.72$

- Result: 36 of 44 (82%) estimates improved
Practical Software and Systems Measurement

Reuse Framework

1) Decide on Reuse
   - Assess Available Products
   - Evaluate Cost/Benefit/Risk
   - Make Decision on Reuse
   - Validate Reuse Concept

2) Execute on Reuse
   - Invest in Design for Reuse*
   - Utilize Products
   - Validate Reuse Result

3) Archive Reuse
   - Document Reused Products
   - Populate Reuse Repository

Incorporate Reuse Considerations

Conceptualization | Development | Evaluation
Leading Indicators are defined as “measures for evaluating the effectiveness of the systems engineering activities on a program in a manner that provides information about impacts that are likely to affect the system or program performance objectives.”

SE Leading Indicators

1. Requirements Trends
2. System Definition Change Backlog
3. Interface Trends
4. Requirements Validation Trends
5. Requirements Verification Trends
6. Work Product Approval Trends
7. Review Action Item Closure Trends
8. Risk Exposure Trends
9. Risk Treatment Trends
10. Technology Maturity Trends
11. Technology Measurement Trends
12. SE Staffing and Skills Trends
13. Process Compliance Trends
14. Facility and Equipment Availability Trends
15. Defect/Error Trends
16. System Affordability Trends
17. Architecture Trends
18. Schedule and Cost Pressure
Practical Software and Systems Measurement

Requirements Trends Leading Indicator

- Evaluates trends in the growth, change, completeness and correctness of the system requirements.

- It helps to determine the stability and completeness of the system requirements which could potentially impact project performance.

This graph depicts the rate of change of requirements over time as compared to the projected trend and can be used to predict readiness for the Systems Requirements Review (SRR).
Requirements volatility is the change in requirements (added, deleted, and modified) over a given time interval

Also known as:

Requirements creep: An increase in scope and/or number of system requirements

Requirements churn: Instability in the requirements set – requirements are frequently modified or reworked without necessarily resulting in an increase in the total number of requirements

Notional Example
Change in Requirements Over Time

# of Requirements

Time (months)

New

Modified

Deleted

Notional Example
**Practical Software and Systems Measurement**

**Importance of Understanding Requirements Volatility**

- Requirements volatility has been identified by numerous research studies as a *risk factor and cost-driver of systems engineering projects* [Boehm 1991]

- **Requirements changes are costly, particularly in the later stages of the lifecycle process** because the change may require rework of the design, verification and deployment plans [Kotonya and Sommerville, 1995]

- The Government Accountability Office (GAO) concluded in a 2004 report on the DoD’s acquisition of software-intensive weapons systems that *missing, vague, or changing requirements are a major cause of project failure*

- System developers often lack effective methods and tools to account for and manage requirements volatility
Practical Software and Systems Measurement

Principal Research Question

What technical, organizational, and contextual factors drive the amount of systems engineering effort added or reduced due to the volatility of system requirements?
Literature Background

- Most of the requirements volatility research to date has been focused on software systems.
- Various research methods have been utilized to investigate the causes and effects of requirement volatility – a methodological breakdown of the studies reviewed to date is below.

![Pie chart showing the distribution of research methods.]

- However, there still a lack of empirical data to determine the quantitative impact of requirements volatility on systems engineering effort for a broader base of engineering projects.
Observations from the literature

1. Requirements volatility is correlated with an increase in project size and systems engineering effort
2. Requirements added after SRR have a greater impact on effort than requirements of comparable complexity captured in the initial baseline
3. The level of volatility in the requirements set is a function of the system life cycle phase
4. The impact of adding, modifying, or deleting a requirement increases the later the change occurs in the system lifecycle
5. Removing a requirement may not necessarily result in a net decrease in systems engineering effort
6. Based on the literature, a causal model was developed that relates technical, organizational and contextual project factors to requirements volatility
Practical Software and Systems Measurement

Moderating impact of expected volatility & thresholds

![Diagram showing relationships between experienced staff, SE process maturity, requirements volatility, number of system requirements, SE project effort, SE cost, project schedule, and volatility metrics thresholds.]
Questions for discussion

1. Are there other important causes of volatility missing in the model?
2. Do you agree with the polarity of the relationships?
3. In what cases is the relationship between volatility and # of systems requirements a positive one, and in what cases is it a negative one?
4. Should the impact of requirements volatility be adjusted based on the criticality/coupling of the requirements?
5. Does volatility have an impact on productivity?
6. Should volatility thresholds vary depending on the size and duration of a project?
An exploratory survey was developed to gather the perspectives of subject matter experts on the causes, impacts, and expected level of requirements volatility for a given system of interest.

The survey was piloted during the 2010 USC-CSSE Annual Research Review.

Version 2.0 of the survey was administered at the 2010 LAI Knowledge Exchange Event.

Organizations represented included:
- The Aerospace Corporation, Northrop Grumman Corporation
- The Boeing Company, Softstar Systems, Raytheon
- United Launch Alliance, Massachusetts Institute of Technology, University of Southern California, and
- Representatives from the United States Army and Navy
Practical Software and Systems Measurement

USC-CSSE Annual Research Review

Participants Background

System Application Domain

- Space Systems: 26%
- Scientific / Research: 4%
- Military / Defense: 40%
- Infrastructure: 4%
- Aircraft / Avionics: 13%
- Data Systems / IT: 4%
- Other: 9%
- No response: 1%

Project H/W to S/W breakdown

- 100% Software, 2
- 25% Hardware, 75% Software, 3
- 50% Hardware, 50% Software, 4
- 75% Hardware, 25% Software, 3

24 years average industry experience

Primarily from a Military/Defense and Space Systems Background

Experienced on Systems with a fairly balanced H/W and S/W work content
Practical Software and Systems Measurement
LAI Knowledge Exchange Event
Participants Background

22 years average industry experience

Primarily from a Military/Defense and Space Systems Background

Experienced on Systems with a fairly balanced H/W and S/W work content
Practical Software and Systems Measurement

Summary of Survey Results:
Use of Requirements Volatility Metrics

• Most participants either agreed or strongly agreed that requirements volatility metrics enable them to monitor and improve the performance of their project (46% USC ARR, 82% LAI)

• However, a sizeable percentage responded that their organizations do not use requirements volatility metrics (36% USC ARR, 63% LAI)

• There seems to be a disconnect between individual contributors’ perspectives and organizational adoption of requirements volatility metrics
Summary of Survey Results: Expected Levels of Volatility

• Most respondents expect >10% volatility during the conceptualize and development phase of the project, and <10% volatility for the rest of the system life cycle.

• Participants who work on software-intensive systems expect a higher level of volatility in the later stages of the project than respondents from hardware-oriented systems.

• Most survey participants stated that the type of project (experimental, development, production, etc.) has a high to very high influence on the expected level of requirements volatility.
Expected Volatility: USC-CSSE ARR Survey

Please provide your best estimate of the requirements volatility expected during each of following life cycle phases of your organization’s typical products/systems.
Practical Software and Systems Measurement

Expected Volatility: LAI Knowledge Exchange Survey

Please provide your best estimate of the requirements volatility expected during each of the following life cycle phases (as defined by ISO/IEC 15288 and EIA/ANSI 632) of your organization's typical products/systems (assume stabilized evolutionary development, not agile development).

Requirements volatility is defined as the percentage of the project's total number of requirements that are added, modified or deleted over a specified period of time.

- Conceptualize
- Development
- Transition to Operation
- Operate, maintain or enhance
- Replace or dismantle

- Green: don't know
- Red: >20%
- Purple: 10-20%
- Blue: 5-10%
- Orange: <5%
Respondents that work on projects with 75% S/W content expect a higher level of requirements volatility in the test through operational life cycle phases than respondents with projects with 75% H/W content.
Practical Software and Systems Measurement

Summary of Survey Results: Causes and Impacts of Volatility

• In general, preliminary results of the survey support observations from the literature and causal model
  - Most respondents stated that requirements volatility will cause a moderate to large increase in the number of system requirements and the amount of rework

• There were additional findings with respect to the strength of the relationship between variables:
  - All respondents either agreed or strongly agreed that “Poor initial understanding of system requirements or customer needs” is a cause of requirements volatility
  - “Changes in organizational structure and policies” had the lowest level of agreement as a cause of requirements volatility
Causes of Volatility

USC-CSSE ARR Survey

Please state your assessment of the following potential causes on a scale of 1-5; from 1: strongly disagree; to 5: strongly agree.

- Poor initial understanding of the system and customer needs
- Lack of SE process maturity
- Inexperienced staff
- Customer-requested scope change
- Immature technology
- Changes in external environment (political/business climate)
- Internal factors: Change in policies, organizational structure

Legend:
- Orange: Strongly Disagree
- Blue: Disagree
- Purple: Neither agree nor disagree
- Red: Agree
- Green: Strongly Agree
Practical Software and Systems Measurement

Causes of Volatility

LAI Knowledge Exchange Survey

Please state your assessment of the following potential causes on a scale of 1-5; from 1: strongly disagree; to 5: strongly agree:

- Poor initial understanding of the system and customer needs
- Lack of SE process maturity
- Inexperienced staff
- Customer-requested scope change
- Immature technology
- Changes in external environment (political/business climate)
- Changes in COTS products
- Changes in co-dependent systems
- Internal factors: Change in policies, organizational structure

Legend:
- Orange: Strongly Disagree
- Blue: Disagree
- Pink: Neither agree nor disagree
- Green: Agree
- Red: Strongly Agree
Practical Software and Systems Measurement

Impacts of Volatility

USC-CSSE ARR Survey

Based on your experience, how would you rate the impact of requirements volatility (post requirements baseline) on the following (from large increase to large decrease)?

- Re-work of work products
- Project size (Total # of requirements)
- Project duration
- Project cost

Legend:
- Large Increase
- Moderate Increase
- No impact
- Moderate Decrease
- Large Decrease
Impacts of Volatility
LAI Knowledge Exchange Survey

This question deals with the impact of requirements volatility on a project when the volatility occurs after the requirements have been baselined (post systems requirements review).

Based on your experience, how would you rate the impact of requirements volatility (post requirements baseline) on the following (from large increase to large decrease)?

- Large Increase
- Moderate Increase
- No impact
- Moderate Decrease
- Large Decrease
Implications to COSYSMO

- Application factors: 8 factors
- Team factors: 6 factors

Reuse Categories:
- # Requirements
- # Interfaces
- # Scenarios
- # Algorithms

Volatility Factor:

Size Drivers:

Effort Multipliers:

COSYSMO

Effort

Calibration
Proposed COSYSMO Extension

- During the development of COSYSMO, volatility was identified as a relevant adjustment factor to the model’s size drivers.
- However, there was insufficient data to incorporate volatility effects into the model.
- One of the objectives of the research is to complete the requirements volatility extension to COSYSMO within the existing structure and scope of the model.
- The proposed extension builds upon the COCOMO II method of using a size adjustment factor to account for Requirements Evolution and Volatility (REVL).

**Practical Software and Systems Measurement**

**Volutility Adjustment Factor (1 of 3)**

REVL is defined as the percentage of the baseline set of requirements that is likely to change due to the technical and organizational factors captured in the causal model. This relationship is expressed through the following equation:

\[
R_{\text{eff}} = \left(1 + \frac{REVL}{100}\right) \times R_0
\]

Where,
- \(R_0\) = Baseline number of requirements
- \(R_{\text{eff}}\) = Effective number of requirements at the end of the project

The effective increase in the number of requirements would result in an associated increase in systems engineering effort.

Volatility Adjustment Factor (2 of 3)

In COSYSMO, the requirements are categorized by level of complexity as “easy,” “nominal,” and “difficult.”

Applying the three categories to the equation below results in the following relationship

\[ R_{\text{eff}} = \left(1 + \frac{\text{REVL}}{100}\right) \times R_{e,r} + R_{n,r} + R_{d,r} \]

Where,

- \( R_{e,r} \) = Initial number of requirements classified as “easy”
- \( R_{n,r} \) = Initial number of requirements classified as “nominal”
- \( R_{d,r} \) = Initial number of requirements classified as “difficult”
Observations from the literature indicate that requirements added post-SRR carry an effort penalty due to the potential rework and collateral impact to other engineering products.

A weighting factor is added to account for this additional effort by increasing the effective functional size of the project.

\[
R_{\text{eff}''} = w_v \left( 1 + \frac{REVL}{100} \right) \times \left( e_r + n_r + d_r \right)
\]

Where,

\[w_v = \text{Requirements volatility weighting factor}\]
Proposed Revised Algorithm

$$
\Phi_r = \left( \sum_v w_v \cdot \left( 1 + \frac{\text{REVL}}{100} \right) \right) \left( \sum_r w_r \left( v_{e,r} \Phi_{e,r} + w_{n,r} \Phi_{n,r} + w_{d,r} \Phi_{d,r} \right) \right)
$$

Where,

- $\Phi_r = \text{total quantity of the requirements size driver}$
- $\text{REVL} = \text{Requirements Volatility and Evolution Factor}$
- $w_{x,r} = \text{weight for “Easy”, “Nominal”, or “Difficult” size driver}$
- $r = \{\text{New, Design for Reuse, Modified, Deleted, Adopted, Managed}\}$
- $w_r = \text{weight for reuse category}$
- $w_v = \text{Requirements volatility weighting factor}$
Use Case: Accounting for Requirements Volatility

- **Goal:** Account for the impact of requirements volatility on systems engineering effort for a given system of interest
- **Summary:** Changes the requirements set are expected to increase the functional size of the project and cause rework, which has an impact on systems engineering effort
- **Actors:** Systems Engineer, project manager
- **Components:** Original COSYSMO algorithm, proposed algorithm extension, REVL estimate, requirements volatility weighting factor
- **Normal Flow:**
  1. Enter size parameters for the system of interest
  2. Enter reuse information if applicable
  3. Enter Requirements Evolution and Volatility (REVL) factor
  4. Select cost parameters for system of interest
  5. COSYSMO Extension Outputs
     - Systems Engineering Person Months
COSYSMO Systems Engineering Effort Profile

Conceptualize

Develop

Operational Test & Evaluation

Transition to Operation

ISO/IEC 15288

Acquisition & Supply

Technical Management

System Design

Product Realization

Technical Evaluation

ANSI/EIA 632
Life Cycle Phase Definition

- **Conceptualize stage** focuses on identifying stakeholder needs, exploring different solution concepts, and proposing candidate solutions.
- **The Development stage** involves refining the system requirements, creating a solution description, and building a system.
- **The Operational Test & Evaluation stage** involves verifying/validating the system and performing the appropriate inspections before it is delivered to the user.
- **The Transition to Operation stage** involves the transition to utilization of the system to satisfy the users’ needs.

Practical Software and Systems Measurement

Determine Expected Requirements Volatility Profile

Notional Example
Practical Software and Systems Measurement

Cost Commitment on Projects

Practical Software and Systems Measurement

Aggregated SE Effort Profile

Requirements volatility weighting factor

= 1 / ease of change
Survey Exercise

1. **Draw requirements volatility profile across the lifecycle phases covered by COSYSMO**
2. **Draw the “ease of change” profile across the same life cycle phases to determine the volatility weighting factor**
3. **Discuss variation in 1 and 2 above for**
   1. Large and Small Projects
   2. Hardware and Software Projects
   3. Development and Recurring Projects
Practical Software and Systems Measurement

Determine Expected Requirements
Volatility Profile

<table>
<thead>
<tr>
<th>% of Requirements, Added, Deleted or Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptualize</td>
</tr>
</tbody>
</table>

July 2010
Determine Volatility Weighting Factor

Requirements volatility weighting factor = \( 1 / \text{ease of change} \)
References

- GAO-04-393 (2004). Report to the Committee on Armed