
Neural Networks and Their Application for
Structural Self-Diagnosis

by

Tung-Ju Hsieh

Bachelor of Science in Civil Engineering
June 1997

National Chiao Tung University
Hsinchu, Taiwan

Submitted to the Department of Civil and Environmental Engineering in partial
fulfillment of the requirements for the degree of

Master of Science in Civil and Environmental Engineering
at the

Massachusetts Institute of Technology

February 2001

© 2001 Tung-Ju Hsieh. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper and
electronic copies of this thesis document in whole or in part.

Signature of Author.......

Certified by............

Accepted by.........

Department of Civil and Environmental Engineering
January 10, 2001

.............

Jerome J. Connor
Professor, Department of Civil and Environmental Engineering

Thesis Supervisor

- : . :
Oral Buyukozturk

Chairman, Department of Committee on Graduate Studies

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

FEB 2 2 2001

LIBRARIES

4

............

Neural Networks and Their Application for
Structural Self-Diagnosis

by

Tung-Ju Hsieh

Submitted to the Department of Civil and Environmental Engineering on
January 1, 2001 in partial fulfillment of the requirements for the degree of

Master of Science in Civil and Environmental Engineering.

ABSTRACT

The objective of this study is to design a neural network based Java program to estimate
the location and size of cracks in a beam. This study also explores the potential of
artificial neural networks for structural self-diagnosis. A neural network architecture for
structural self-diagnosis is formulated to achieve this objective. There are three
components of the architecture: the physical system model, data preprocessing units, and
neural networks that are trained to predict the location and the magnitude of the damage.
Important design issues include choosing variables to be observed, the architecture of the
neural networks, and the training algorithm. These design issues are examined for the
case of a cantilever beam. First, a single-point damage diagnosis system model is
developed and evaluated. The approach is then extended to handle a two-point damage.
Numerical modeling of the cantilever beam vertical displacements is calculated with
SAP-2000. The cantilever beam is divided to 21 equal length sections, and damage is
introduced by reducing the moment of inertia at a specific damage location. The results
of this work can be used for the inspection of structural elements such as cantilever
beams. The proposed method solves efficiently the inverse problem of estimating damage
size and location from the beam displacement information for this restricted scenario.
The neural network also performs adequately for data contaminated by measurement
errors.

Thesis Supervisor: Professor Jerome J. Connor
Title: Professor of Civil and Environmental Engineering

ACKNOWLEDGEMENTS

I would like to sincerely thank Professor Jerome J. Connor, my thesis advisor, for his
encouragement and guidance. This work would not have been accomplished without his
encouragement and suggestion.

Meanwhile, wholeheartedly thanks for Yi-Mei Maria Chow, Yi-San Lai, Tai-Lin Tung,
and Ji-Yong Wang for their help and encouragement during my graduate study at the
Institute. Thanks to all those friends at MIT who shared their experience with me.

I would like to express my gratitude to Professor Shih-Lin Hung for his recommendation
and encouragement my graduate study in this country.

I want to like to thank my aunt Han-Yee Chen, who encouraged me and gave me advises
toward my future.

I would also like to thank my aunt Sue H Lin, whose phone calls and e-mails brightened
my hardest days at the Institute.

Finally, I would like to send my deepest thanks to my family. This thesis is dedicated to
my parents, whose love and support have been the main source of my strength throughout
my life.

3

TABLE OF CONTENTS

A b stract.. . . 2

A cknow ledgem ents.. 3

T able of C ontents.. 4

L ist of F igures.. . ..7

1 Introduction...9

1.1 Neural Network-Based Structural Damage Diagnosis..................................9

1.2 Object and Scope of the Research..11

1.3 O rganization .. 12

2 Foundations of Artificial Neural Networks...14

2.1 Background History of Artificial Neural Networks.................................16

2.2 Definition of Artificial Neural Networks...16

2.3 M odels of a N euron..16

2.4 Types of Neural Network Architectures...18

2.5 Neural Network Learning Algorithms...21

2.5.1 Supervised Learning...22

2.5.2 Unsupervised Learning...23

2.6 Application of Neural Networks in Structural Engineering........................24

3 Design and Training of Neural Networks... 25

3.1 Back-Propagation Algorithm..25

3.1.1 History of Back-Propagation Algorithm...................................... 25

3.1.2 Introduction of Multilayer Perceptrons..26

3.1.3 Preliminaries of Multilayer Neural Networks.................................26

3.1.4 Concept of Back-Propagation Algorithm......................................28

3.1.5 Explanation of the Back-Propagation Algorithm.............................29

3.1.6 Procedure of the Back-Propagation Algorithm...................................38

3.1.7 Improve the Performance of Back-Propagation Algorithm..................40

4

3.2 Conjugate Gradient Learning Algorithm..42

3.2.1 Concept of Conjugate Gradient Algorithm.....................................42

3.2.2 Explanation of the Conjugate Gradient Algorithm............................43

3.2.3 Procedure of the Conjugate Gradient Algorithm..............................44

3.2.4 An Adaptive Conjugate Gradient Algorithm.....................................45

3.2.5 Procedure of the Adaptive Conjugate Gradient Algorithm..................46

3.3 Optimum Design of Neural Networks...50

4 Architecture of a Structural Self-Diagnosis Java Program.........................54

4.1 Object-Oriented Software Design by using Java...54

4.1.1 Procedural Programming Approach...54

4.1.2 Object-Oriented Programming Approach...54

4.1.3 Object Orient Analysis and Design...58

4.2 D ata Structures in Java.. 59

4.2.1 Reference in Java.. 59

4.2.2 Array and Linked Lists in Java...60

4.2.3 Binary Trees in Java...60

4.2.4 Binary Trees Operations in Java...61

4.3 Architecture of Cantilever Beam Damage Self-Diagnosis Java Program...........64

5 Case Study: Crack Self-Diagnosis of a Cantilever Beam............................68

5.1 Neural Network Based Inverse Analyses...68

5.1.1 Introduction of Neural Network Based Inverse Analyses......................68

5.1.2 Fundamental Principle of Neural Network Based Inverse Analysis..... 69

5.2 Neural Network Systems for Structural Damage Self Diagnosis..................71

5.3 Formulation of Cantilever Beam Tip Displacement 73

5.4 Problem Statement of Single/Double Cracks Cantilever Beam......................75

5.4.1 Definition of Single Crack Cantilever Beam.................................76

5.4.2 Definition of Double Cracks Cantilever Beam...................................78

5.5 Neural Network Design for Crack Self-Diagnosis Cantilever Beam.............78

5

5.5.1 Neural Network Architecture of Single Crack Cantilever Beam...............78

5.5.2 Neural Network Architecture of Double Cracks Cantilever Beam...... 79

5.6 D iscussions and Sum m ary...82

Reference..85

Appendices

Appendix A: Neural Network Analysis Java Program Codes 88

6

LIST OF FIGURES

Figure 1.1 Schematic diagram of damage detection using neural networks: Training of

Neural Network..11

Figure 1.2 Schematic diagram of damage detection using neural networks: Damage

D etection by the N eural N etw ork. ... 11

Figure 2.1 Nonlinear m odel of a neuron. .. 17

Figure 2.2 Common Activation Functions..18

Figure 2.3 Feedforward network with a single layer on neurons. 19

Figure 2.4 Feedforward network with one hidden layer and one output layer. 20

Figure 2.5 Recurrent Neural Network.. 21

Figure 2.6 Block diagram of learning with a teacher...22

Figure 2.7 Block diagram of reinforcement learning..23

Figure 2.8 Block diagram of unsupervised learning..24

Figure 3.1 Architectural graph of a multiplyer perceptron with two hidden layers.......27

Figure 3.2 Illustration of the directions of two basic signal flows in a multilayer

perceptron forward propagation of function signals and back-propagation of error

sign als... . . 2 8

Figure 3.3 Signal-flow graph highlighting the details of output neuron j................30

Figure 3.4 Signal-flow graph highlighting the details of output neuron k connected to

hidden neuron j... 33

Figure 3.5 Signal-flow graph of a part of the adjoint system pertaining to back-

propagation of error signals..36

Figure 3.6 Neural-network training paradigm...53

Figure 4.1 Problem and solution domain objects and classes..............................59

Figure 4.2 Flow chart of the Structural Self-Diagnosis Java Program....................65

Figure 4.3 Class Relationship of the Structural Self-Diagnosis Java Program..............66

Figure 4.4 Screen Shot of the Structural Self-Diagnosis Java Program.....................67

Figure 5.1 Flow of the inverse analysis approach...70

Figure 5.2 Neural Network Based Diagnosis System..71

Figure 5.3 The Training Process of Neural Network for Detecting Location of Damage.72

7

Figure 5.4 The Training Process of Neural Network for Recognizing of Damage.........72

Figure 5.5 M odel of a cracked beam ... 73

Figure 5.6 Single Crack Cantilever Beam..76

Figure 5.7 Single Crack Cantilever Beam Reduction of Moment of Inertia.............76

Figure 5.8 Double Cracks Cantilever Beam...77

Figure 5.9 Double Cracks Cantilever Beam Reduction of Moment of Inertia..............77

Figure 5.10 Single Crack Neural Network Architecture...................................79

Figure 5.11 Double Cracks Neural Network Architecture.................................80

Figure 5.12 Screen Shot of SAP-2000 Nonlinear Analysis Program....................81

Figure 5.13 Percentage Errors for Neural Network Solution..............................83

Figure 5.14 Percentage Errors for Neural Network Solution..............................83

Figure 5.15 Percentage Errors for Neural Network Solution..............................84

8

Chapter 1

Introduction

1.1 Neural Network-Based Structural Damage Diagnosis

Structural identification has become increasingly an important research topic in

connection with damage assessment and safety evaluation of existing structures.

Structural identification is a process for constructing a mathematical description of a

physical system when both the input and the corresponding output are known. In

structural applications, the input is usually a forcing function and the output could be the

displacement, or any other structural response such as strain or vibration signals. The

primary objective of structural self-diagnosis is to estimate a set of behavioral parameters

from the measured response of the real structure due to a known disturbance. The

principle of structural self-diagnosis is based on the fact that when a structure experiences

various degrees of damage, certain characteristics undergo changes. To identify those

changes, a sequence of tests is conducted during inspection, and the resulting parameters

are measured. This is an inverse problem and can be dealt with by standard system

identification techniques. The application of artificial neural networks is demonstrated as

an efficient tool for structural identification, especially when the measured data is limited

or imprecise. Recent developments in this area have been made possible by rapid

advances in computer technology for data acquisition, signal processing, and analysis.

Pattern-matching techniques using neural networks have drawn considerable attention in

the field of damage assessment and structural identification.

9

Structural self-diagnosis techniques may be classified as global or local. Global methods

attempt to simultaneously assess the condition of the whole structure, whereas local

methods focus non-destructive evaluation tools on specific structural components.

However, the universe of damage detection scenarios likely to be encountered in realistic

applications to all candidate physical systems is very broad and encompassing. Structural

self-diagnosis techniques that rely on non-parametric system identification approaches,

for which a priori information about the nature of the model is not needed, have a

significant advantage when dealing with real-world situations where the selection of a

suitable class of parametric models to be used for identification purpose is quite often a

demanding task.

Figure 1.1 shows the schematic diagram of the neural network based approach of this

thesis for the damage detection methodology. The overall procedure is divided into two

parts: the training stage and the detection stage. In the training stage, as depicted in the

Figure 1.1, a neural network is trained by the data obtained from the undamaged system

using an appropriate training method. In the detection stage, as shown in Figure 1.2, the

trained network is fed input data that is the same input to the system. Then, the output

from the network and the output from the system are compared to each other. If the

network has been well trained, and if the system characteristics have not changed, both

the system and the network will have matching outputs. On the other hand, if the system

has changed, the output from the system will not correspond any more to the output of

the trained network. Consequently, the network will yield an output error. Therefore, the

deviation between the output from the system and the output from the network provides a

quantitative measure of the changes in the physical system relative to its undamaged

condition.

10

structure
(undamaged)

interstory restoring force

interstory displacement & velocity

input ne rk output

ambient
vibration

Figure 1.1 Schematic diagram of damage detection using neural networks: Training of

Neural Network.

structure
(damaged)

interstory restoring force

I prediction error
interstory displacement & velocity (damage of the structure)

neural
network output from the

neural network

ambient
vibration

Figure 1.2 Schematic diagram of damage detection using neural networks: Damage

Detection by the Neural Network.

1.2 Objects and Scope of the Research

The objective of this study is to design a neural network based Java program to estimate

the location and size of cracks in a beam. This study also explores the potential of

artificial neural networks for structure self-diagnosis. A neural network architecture for

structural self-diagnosis is formulated to achieve this objective. There are three main

components of the architecture: the physical system model, data preprocessing units, and

neural networks that are trained to predict the location and the magnitude of the damage.

Important design issues include choosing variables to be observed, the architecture of the

11

neural networks, and the training algorithm. These design issues are examined for the

case of a cantilever beam.

The main part of this thesis work is to develop a neural network based Java program to

evaluate the crack size and location in a cantilever steel beam. This Java program has

three main functions. Firstly, it can learn from the environment. Secondly, it could

performance the analysis of the training result. Finally, it can do graphical display of the

crack size and location in a cantilever beam.

A multi-layer feedforward neural network is used in this thesis research. The back-

propagation learning model is appropriate for pattern classification. First, a single-point

damage diagnosis system model is developed and evaluated. The approach is then

extended to handle a two-point damage. Numerical modeling of the cantilever beam

vertical displacements is calculated with SAP-2000. The cantilever beam is first divided

into 21 equal length sections, and then damage is introduced by reducing the moment of

inertia at a specific damage location. The proposed method solves efficiently the inverse

problem of estimating damage size and location from the cantilever beam displacement

information. The neural network also performs adequately for data contaminated by

measurement errors.

1.3 Organization

Chapter 2 contains an introduction to the basic concepts and definitions of artificial

neural networks. It introduces several different kinds of neural network architectures and

training paradigms.

Chapter 3 gives a more detail description of the neural network learning algorithms. The

back-propagation algorithm and conjugate-gradient algorithm are discussed in this

chapter. The last part of this chapter has a discussion in the optimum design of a neural

network.

12

Chapter 4 discusses the design and implementation of a Java based Neural Networks

system. There are two key software issues; data structure and object-oriented

programming. The architecture of the neural network-based Java program is illustrated.

The class hierarchy and member functions are also demonstrated.

Chapter 5 is concerned with the application of neural networks to structural damage self-

diagnosis. A neural network architecture is presented. Two cases are studied; single-point

damage and two-point damage. The neural network-based Java problem is used to

evaluate these two cases. The neural network-based program performs adequately for

data contaminated by measurement errors.

13

Chapter 2

Foundations of Artificial Neural Networks

2.1 Background History of Artificial Neural Networks

The modern era of neural networks began with the pioneering work of McCulloch and

Pitts (1943). In their classic paper, McCulloch and Pitts describe a logical calculus of

neural networks that united the studies of neurophysiology and mathematical logic. They

showed that a network so constituted would, in principle, compute any computable

function. It is generally agreed that the disciplines of neural networks and of artificial

intelligence were born.

In 1948, Wiener wrote a book Cybernetics, describing some important concepts for

control, communications, and statistical signal processing. Wiener appears to grasp the

physical significance of statistical mechanics in the context of the subject matter, but it

was left to Hopfield to bring the linkage between statistical mechanics and learning

systems to full fruition.

The next major development in neural networks came in 1949 with the publication of

Hebb's book The Organization of Behavior, in which an explicit statement of a

physiological learning rule for synaptic modification was presented for the first time.

Hebb's book has been a source of inspiration for the development of computational

models of learning and adaptive systems. In 1967, Minsky's book, Computational Finite

and Infinite Machines, was published. This clearly written book extended the 1943 results

14

of McCulloch and Pitts and put them in the context of automata theory and the theory of

computation. In 1958, a new approach to the pattern recognition problem was introduced

by Rosenblatt in his work on the perceptron, a novel method of supervised learning. In

1969, Minsky and Papert used mathematics to demonstrate that there are fundamental

limits on what single-layer perceptrons can compute. They stated that there was noreason

to assume that any of the limitations of single-layer perceptrons could be overcome in the

multilayer version. And then the development of neural network had a lag for more than

10 years.

In 1982, Hopfield used the idea of an energy function to formulate a new way of

understanding the computation performed by recurrent networks with symmetric synaptic

connections. This particular class of neural networks with feedback attracted a great deal

of attention in the 1980s. Moreover, Hopfield showed that he had the insight from the

spin-glass model in statistical mechanics to examine the special case of recurrent

networks with symmetric connectivity, thereby guaranteeing their convergence to a stable

condition.

In 1986, the development of the back-propagation algorithm was reported by Rumelhart,

Hilton, and Williams. In the same year, the celebrated book, Parallel Distributed

Processing: Explorations in the Microstructures of Cognition, was published. This book

has been a major influence in the use of back-propagation learning, which has emerged as

the most popular learning algorithm for the training of multilayer perceptrons. IN 1988,

Broomhead and Lowe described a procedure for the design of layered feedforward

networks using radial basis functions, which provide an alternative to multilayer

perceptrons. In the early 1990s, Vapnik invented a computationally powerful class of

supervised learning networks, called support vector machines, for solving pattern

recognition, regression, and density estimation problems.

Neural networks have certainly come a long way from the early days of McCulloch and

Pitts. They have established themselves as an interdisciplinary subject with deep roots in

the neurosciences, psychology, mathematics, the physical sciences, and engineering.

15

2.2 Definition of Artificial Neural Networks

A neural network is a massive parallel-distributed processor made up of simple

processing units, which has a natural propensity for storing experiential knowledge and

making it available for use. It resembles the brain in two respects: First, knowledge is

acquired by the network from its environment through a learning process. Second, inter-

neuron connection strengths, known as synaptic weights, are used to store the acquired

knowledge. The modification of synaptic weights provides the traditional method for the

design of neural networks. Such an approach is the closest to linear adaptive filter theory,

which is already well established and successfully applied in many diverse fields. Neural

networks are also referred to in literature as neurocomputers, connectionist networks,

parallel-distributed processors, etc.

2.3 Models of a Neuron

A neuron is an information-processing unit that is fundamental to the operation of a

neural network. Figure 2.1 shows the model of a neuron, which forms the basis for

designing neural networks. In mathematical terms, we may describe a neuron k by

writing the following pair of equations:

U k- I WkjX (2.1)
j=1

and

Yk = (uk+bk) (2.2)

where xM is the input signal; wkn is the synaptic weights of neuron k; uk is the linear

combiner output signal of the neuron. The use of bias bk has the effect of applying a

transformation to the output uk of the linear combiner in the model of Figure 2.1, as

shown by

Vk =Uk +bk (2.3)

16

The bias bk is an external parameter of artificial neuron k. We may account for its

presence as in Equation (2.2). Equivalently, we may formulate the combination of

Equations (2.1) to (2.3) as follows:

m

Vk = I Wkj X
j=0

Yk = (k)

(2.4)

(2.5)

In Equation (2.4) we have added a new synapse. Its input is x = +1, and its weight is

WkO= bk. The activation function, denoted by qp(v), defines the output of a neuron in

terms of the induced local field v.

Input
signals

Bias
b,

X2 Wki Avtivation
Sfunction Output

Summing
junction

X", Wki

Synaptic
weights

Figure 2.1 Nonlinear model of a neuron.

17

and

Figure 2.2 Common Activation Functions

2.4 Types of Neural Network Architectures

The manner in which the neurons of a neural network are structured is intimately linked

with the learning algorithm used to train the network. We may therefore speak of learning

algorithms used in the design of neural networks as being structured. In general, there are

three fundamentally different classes of network architectures:

18

Step Symmetrical Step

1 1

x 10 x

Linear Saturating Linear
y y A

1 1

)0 x 10 x

Symmetric Saturating Linear Log-Sigmoid
y y

Hyperbolic Tangent Sigmoid Positive Linear
yy

1 1 {

Single-Layer Feedforward Networks

In a layered neural network the neurons are organized in the form of layers. In the

simplest form of a layered network, we have an input layer of source nodes that project

onto an output layer of neurons. Figure 2.3 shows the architecture of a single-layered

neural network.

Input Output
layer Layer

Figure 2.3 Feedforward network with a single layer on neurons.

Multilayer Feedforward Networks

Multilayer feedforward neural networks have one or more hidden layers, whose

computation nodes are correspondingly called hidden neurons or hidden units. The

function of hidden neurons is to intervene between the external input and the network

output in some useful manner. By adding one or more hidden layers, the network is

enabled to extract higher-order statistics. The ability if hidden neurons to extract higher-

order statistics is particularly valuable when the size if the input layer is large. The output

signals of the second layer are used as inputs to the third layer of the network, and so on

for the rest of the network. Figure 2.4 illustrates the layout of a multilayer feedforward

neural network for the case of a single hidden layer.

19

Output
Input Layer
layer Hidden

layer

Figure 2.4 Feedforward network with one hidden layer and one output layer.

Recurrent Network

A recurrent neural network distinguishes itself from a feedforward neural network in that

it has at least one feedback loop. A recurrent network may consist of a single layer of

neurons with each neuron feeding its output signal back to the inputs of all the other

neurons. Figure 2.5 shows a recurrent network. In the structure depicted in this figure

there are no self-feedback loops in the network; self-feedback refers to a situation where

the output of a neuron is fed back into its own input. The presence of feedback loop has a

profound impact on the learning capability of the network and on its performance.

Moreover, the feedback loops involve the use of particular branches composed of unit-

delay elements. Which result in a nonlinear dynamical behavior, assuming that the neural

network contains nonlinear units.

20

Feedback to the
neuron itself

Feedback to the
previous layer

Figure 2.5 Recurrent Neural Networks.

2.5 Neural Network Learning Algorithms

Learning is one of the important features of artificial neural networks. A neural network

learns from its environment through an interactive process of adjustments to its weights

and bias values. Theoretically, the network becomes more knowledgeable after each

iteration of the training process. During the learning process, the following events occur

in sequence: First, the neural network is stimulated by the environment inputs. Second,

the neural network changes its parameters as a result of its environmental stimulation.

Finally, the neural network responds in a new way to the environment because of the

changes that have occurred in its internal structure.

A learning algorithm is a prescribed set of well-defined rules for the solution of a

learning problem. Learning algorithms differ from each other in the way in which the

adjustment to a synaptic weight of a neuron is formulated. Another factor to be

considered is the manner in which a neural network made up of a set of inter-connected

neurons, relates to its environment.

21

2.5.1 Supervised Learning

Figure 2.6 shows the block diagram that illustrates unsupervised learning. The knowledge

was being represented by a set of input-output examples. The teacher is able to provide

the neural network with a desired response for that training vector. The desired response

represents the optimum action to be performed by the neural network. The network

parameters are adjusted under the combined influence of the training vector and the error

signal. This adjustment is carried out iteratively in a step-by-step fashion with the aim of

eventually making the neural network emulate the teacher. The form of supervised

learning is the error-correction learning. It is a closed-loop feedback system, but the

unknown environment is not in the loop. As a performance measure for the system we

may think in terms of the mean-square error or the sum of squared errors over the training

sample, defined as a function of the free parameters of the system. This function may be

visualized as a multidimensional error-performance surface. The true error surface is

averaged over all possible input-output examples. Any given operation of the system

under the teacher's supervision id represented as a point as a point on the error surface.

For the system to improve performance over time and therefore learn from the teacher,

the operating point has to move down successively toward a minimum point of the error

surface. Nevertheless, given an algorithm designed to minimize the cost function, an

adequate set of input-output examples, and enough time permitted to do the training, a

supervised learning system is usually able to perform such tasks as pattern classification

and function approximation.

Vector
describing state

of the
environment

Environment Teacher

Actual+

Learning response

system

Figure 2.6 Block diagram of learning with a teacher.

22

2.5.2 Unsupervised Learning

There is no teacher to oversee the learning process when it comes to unsupervised

learning. There are no labeled examples of the function to be learned by the network.

Figure 2.7 shows the block diagram of one form of a reinforcement learning system built

around a critic that converts a primary reinforcement signal received from the

environment into a higher quality reinforcement signal called the heuristic reinforcement

signal, both of which are scalar input. Delayed-reinforcement learning is very appealing

provides the basis for the system to interact with its environment, thereby developing the

ability to learn to perform a prescribed task solely on the basis of the outcomes of its

experience that result form the interaction.

Primary

Inureinforcement
vector

Environment Critic

Heuristic
reinforcement

system

Figure 2.7 Block diagram of reinforcement learning.

In unsupervised learning there is no external teacher to oversee the learning process.

Rather, provision is made for a task-independent measure of the quality of representation

that the network is required to learn, and the free parameters of the network are optimized

with respect to that measure. Once the network has become tuned to the statistical

regularities of the input data, it develops the ability to form internal representations for

encoding features of the input and thereby to create new classes automatically.

23

Vector
describing
state of the

Environment Learning
Envronentn4s

Figure 2.8 Block diagram of unsupervised learning.

2.6 Application of Neural Networks in Structural Engineering

Artificial Neural Networks have been applied in many fields. Here are some lists of the

neural network applications: aerospace, automotives, banking, defense, electronics,

entertainment, financial, insurance, manufacturing, medical, exploration in oil and gas,

robotics, speech recognition, market securities, telecommunications, and transportation.

There are also some applications in the field of structural engineering. Neural networks

can be trained based on observed information. The pattern recognition problem

demonstrates a solution, which would otherwise be difficult to code in a conventional

program. Neural networks have been applied to the field of structural engineering. These

applications have demonstrated that neural networks may be successfully applied to solve

many structural engineering problems. These networks are capable of simulating learning

of the type of knowledge used by structural engineers. While in appears that neural

networks may be built to solve almost any problem in which sufficient training data exit,

their use should be limited to problems that are presently difficult or time-consuming to

solve. For example, many finite-element solutions fall into the time-consuming category.

Several problems in which algorithmic solutions are difficult to develop are summarized

here: Combining software with traditional rule-based expert systems to give an expert

system the power to treat new problems including automatic learning. Studying the use if

neural networks in solving civil engineering optimization problems. Using programs with

pattern recognition capabilities to help identify code and design inadequacies. Past

acceptable designs would be used for training purposes. Continued study involving

training methods to reduce required training time and improve developed system

accuracy.

24

Chapter 3

Design and Training of Neural Networks

3.1 Back-Propagation Algorithm

3.1.1 History of Back-Propagation Algorithm

The back-propagation algorithm is the most commonly used method for training multi-

layer feedforward neural networks. D.E. Rumelhart, G.E. Hilton, and R.J. Williams

popularized the back-propagation algorithm in 1986. The book, Parallel Distributed

Processing: Explorations in the Microstructures of Cognition, edited by Rumelhart and

McClelland, was published. This book has been a major influence in the use of back-

propagation for the training of multi-layer perceptrons. After the back-propagation

algorithm was discovered by D.E. Rumelhart, G.E. Hilton, and R.J. Willaims in mid-

1980s, it was found that the algorithm had been mentioned by Werbos. Werbos's Ph.D.

thesis at Harvard University in 1974 was the first documented description of efficient

reverse-mode gradient computation that was applied to neural network models. The basic

idea of back-propagation can be traced further back to the book, Applied Optimal

Control, edited by Bryson and Ho in 1969. In Section 2.2, a derivation of back

propagation using a Lagrangian formalism is mentioned. However, most of the credit for

the back-propagation algorithm was given to D.E. Rumelhart, G.E. Hilton, and R.J.

Williams for proposing its use for machine learning.

25

3.1.2 Introduction of Multilayer Perceptrons

In general, a network consists one input layer, one or more hidden layers of computation

nodes, and an output layer of computation nodes. The input signal propagates through the

network in a forward direction. This kind of neural network is commonly known as

multilayer perceptrons (MLPs).

Mulrilayer perceptrons have been applied successfully to solve problems by training

them in a supervised manner with error-correction learning rule. Back-propagation

learning consists two passes through the different layers of the network: a forward pass

and a backward pass. In the forward pass, an input vector is applied to the sensory nodes,

and its effect propagates through the network layer by layer. Finally, a set of output is

produced. The weights of the networks are fixed during the forward pass. However, the

weights are adjusted with an error-correction rule during the backward pass. The

response of the network is subtracted from a target response to produce an error signal.

This error signal is then propagated backward through the network against the direction

of synaptic connections. The synaptic weights are adjusted to make the actual response of

the network move closer to the desired response in a statistical sense.

The development of the back-propagation algorithm represents a landmark that it

provides an efficient method for the training of multilayer perceptrons. Although the

back-propagation algorithm is not the optimal solution for all solvable problems, it has

put to rest the pessimism about learning in multilayer machines.

3.1.3 Preliminaries of Multilayer Neural Networks

Figure 3.1 shows the architectural of a multilayer perceptron with one input layer, two

hidden layers, and an output layer. A neuron in any layer of the network is connected to

all the neurons in the previous layer. Figure 3.2 shows a portion of the multilayer

perceptron. There are two kinds of signals propagate in the network.

26

Function Signals

It is an input signal that comes in at the input end of the network propagates forward

through the network, and produces an output signal at the output end of the network. It is

presumed to perform a useful function at the output of the network. At each neuron of the

network through which a function signal passes, the signal calculated as a function of the

inputs and associated weights applied to that neuron.

Error Signals

An error signal originates at an output neuron of the network, and propagates backward

through network. Its computation by every neuron of the network involves an error-

dependent function.

Each hidden and output neuron of a multilayer perceptron is designed to perform two

computations: The computation of the function signal appearing at the output of a neuron,

which is expressed as a continuous nonlinear function of the input signal and synaptic

weights associated with that neuron. The computation of an estimate of the gradient

vector, which is needed for the backward pass through the network.

Input Output

Signal Signal

Input First Second Output
Layer Hidden Hidden Layer

Layer Layer

Figure 3.1 Architectural graph of a multilayer perceptron with two hidden layers.

27

) Function signals

Error signals

Figure 3.2 Illustration of the directions of two basic signal flows in a multilayer

perceptron: forward propagation of function signals and back-propagation of error signals

3.1.4 Concept of Back-Propagation Algorithm

The back-propagation algorithm is an error-correcting learning procedure that generalizes

the delta rule to multi-layer feedforward neural networks with hidden units between the

input and output units. The feedforward net with back-propagation of error has been

found to be an effective learning procedure for classification problems. (Rumelhart,

Hilton, and Williams, 1986). Standard back-propagation algorithm is a gradient descent

algorithm, as is the Widrow-Hoff learning rule. Properly trained back-propagation

networks will give reasonable response answers when the inputs have never seen. A new

input will lead to an output similar to the correct output for input vectors used in training

that are similar to the new input. This property makes it possible to train a network on a

representative set of input/target pairs and get good results without training the network

on all input/target pairs.

The purpose of back-propagation is to adjust the network weights so the network

produces the desired output in response to every input pattern in a predetermined set of

training patterns. It is a supervised algorithm, for every input pattern, there is an

externally corresponding specified correct output, which acts as a target for the network

to imitate. The difference between the output value and the desired target value is called

as an error. It is necessary to minimize the errors. The Learning with a teacher model

28

must decide which patterns to include in the training set and specify the correct output for

each. It is an off-line algorithm in the sense that training and normal operation occur at

different times. In the usual case, training could be considered part of the producing

process wherein the network is trained once for a particular function, then frozen and put

into operation. No further learning occurs after the initial phase.

In order to train a back-propagation neural network, it is necessary to have a set of input

patterns and corresponding desired output, and an error function that measures the cost of

differences between network output and the desired values. This is the basic step to

implement a back-propagation neural network.

1. Present a training pattern and propagate it through the network to obtain the

desired outputs.

2. Compare the network outputs with the desired target values and then calculate the

error.

3. Calculate the derivatives aE / aw of the error with respect to the weights.

4. Adjust the weights to minimize the error.

5. Repeat the above procedure until the error is acceptably small or the limit of

iteration is reached.

3.1.5 Explanation of the Back-Propagation Algorithm

The error at the output of neuron j at the presentation of the nth training example is

defined by

e (n) = d (n) - y, (n) (3.1)

Define the instantaneous value of the error energy for neuron j as -- e 1(n). The
2

1
instantaneous value 4(n) of the total error energy is obtained by summing --e (n) over

2

all neurons in the output layer; these are neurons for which error signals can be calculated

directly. The total error energy can be written as

29

(n) = 1 'e (n) (3.2)
2 jeC

where the set C includes all the neurons in the output layer of the network. Let N denote

the total number of training set. The average squared error energy can be written as

I N

N1av = -I (n) (3.3)

The instantaneous error energy 4 (n), and the average error energy 4a,, is a function of

all the free parameters of the network. For a given training set, 4av represents the cost

function as a measure of learning performance. The objective of the learning process is to

adjust the free parameters of the network to minimize av. Consider a method of training

in which the weights are updated on a pattern-by-pattern basis until one complete

presentation of the entire training set has been dealt with. The adjustments to the weights

are made in accordance with the respective errors computed for each pattern presented to

the network.

The average of these individual weight changes over the training set is an estimate of the

true change that would result from modifying the weights based on minimizing the cost

function 44a over the entire training set.

Neuron j

=1 dj(n)

vi 0(n) = b, (n)()

w,(n) vj(n) Tp (.) yj(n) -1
y,(n)) ej(n)

Figure 3.3 Signal-flow graph highlighting the details of output neuron j.

30

From Figure 3.3, neuron j being fed by a set of function signals produced by a layer of

neurons to its left. The induced local field v1 (n) produced at the input of the activation

function associated with neuron j is therefore

m

vj (n) =I j ny()
i=O

(3.4)

where m is the total number of inputs fed to neuron j. The synaptic weight wj0 equals the

bias b. applied to neuron j. The function signal y1 (n) appearing at the output of neuron j

at iteration n is

yj(n) = qp (vj(n))

The back-propagation algorithm applies a correction Awl, (n) to the synaptic weight

Awi (n), which is proportional to the partial derivation a4 (n) / aw1, (n). This gradient can

be expressed as:

a (n) D&(n) De1 (n) ay (n) av (n)

awj ,(n) aej (n) ayj (n) avj (n) awji (n)
(3.6)

The partial derivative a (n) / w1, (n) determines the direction of search in weight space

for the synaptic weight w, . Differentiating both sides of Equation (3.2) with respect to

e (n)

(3.7)V fe (n)

Differentiating both sides of Equation (3.1) with respect to y. (n),

ae (n)

ay (n)

Differentiating Equation (3.5) with respect to v1 (n)

ay (n)
= yp (v (n))

av (n)

Finally, differentiating Equation (3.4) with respect to w.# (n) yields

av (n)
= yj (n)

Dw 1(n)

(3.8)

(3.9)

(3.10)

31

(3.5)

Substitute Equations (3.7) to (3.10) in (3.6) yields

=-ej (n)pj(vj (n))yi (n) (3.11)
awfl (n)

The correction Awji (n) applied to wj1 (n) is defined by the delta rule:

Awi (n) = -)7 a(n) (3.12)
awi (n)

Where q is the learning-rate parameter of the back-propagation algorithm. The use of the

minus sign in Equation (3.12) accounts for gradient descent in weight space 4(n).

Substitute Equation (3.11) in (3.12) yields

Aw1 (n) = 76 (n)y (n) (3.13)

where the local gradient 6 j(n) is defined by

- a(n) _a (n) ae (n) ayj (n)

av- (n) - e (n) ay (n) av,(n) = (n)(pj (vj (n)) (3.14)

The local gradient points to required changes in synaptic weights. According to Equation

(3.14), the local gradient 6(n) for output neuron j is equal to the product of the

corresponding error signal ej (n) for that neuron and the derivative yo (vj (n)) of the

associated activation function.

The key factor involved in the calculation of the weight adjustment Awl, (n) is the error

signal e1 (n) at the output of neuron j. There are two cases, depending on where in the

network neuron j is located. In the first case, neuron j is an output node. Each output node

of the network is supplied with a desired response of its own, making it a straightforward

matter to calculate the associated error signal. In the second case, neuron j is a hidden

node. Even though hidden neurons are not directly accessible, they share responsibility

for any error made at the output of the network. The question is to know how to penalize

or reward hidden neurons for their share of the responsibility. This problem is the credit-

assignment problem. It is solved in an elegant fashion by back-propagation the error

signals through the network.

32

Neuron k

dk(n)

wv0(n) = b1(n)

vk) yk1n
y (n) W , j(n) vj (n) (.) yj (n) ,i() v n P G y n 1ek)

Figure 3.4 Signal-flow graph highlighting the details of output neuron k connected to

hidden neuron j.

Neuron j is an Output Node

When neuron j is located in the output layer of the network, which means j = 0. It is

supplied with a desired response of its own. The error signal e. (n) associated with this

neuron is eJ (n) = d, (n) - y, (n). Having determined ej (n), it is a straightforward matter

to compute the local gradient 5 j(n) using Equation (3.14). The expression of the local

gradient for neuron x in layer 0 is 5 = e .f 0 (n0).

Neuron j Is a Hidden Node

When neuron j is located in a hidden layer of the network, there is no specified desired

response for that neuron. The error signal for a hidden neuron would have to be

determined recursively in terms of the error signals of all the neurons to which that

hidden neuron is directly connected; this is where the development of the back-

propagation algorithm gets complicated. Consider the situation depicted in Fig. 3.4,

which depicts neuron j as a hidden node of the network. According to Equation (3.14), it

may redefine the local gradient 5, (n) for hidden neuron j as

33

Neuron j

___n)__y_(n _ aJg(n) /(n) = -(n)- - 'p (v (n)) (3.15)
ayj (n) avj (n) ay j(n) '

Use Equation (3.9) to calculate the partial derivative a4(n)/ayj(n),

I
((n) -- e2(n) (3.16)

2 keC

Equation (3.2) with index k used in place of index j. Differentiating Equation (3.16) with

respect to the function signal y, (n)

=1n)- e, ae~)(3.17)
ayij(n) k ay.,(n)

Use the chain rule for the partial derivative aek (n) ayj (n) , and rewrite Equation (3.17)

in the equivalent form

___n_ Bekgn h Vkf
=Iek) ae(3.18)

ay 9n) k avk(fl)yjY(n)

From Figure 4.4, it can be found that

ek (n) - dk (n) -Yk (n) dk (n) - Pk (vk(n)) (3.19)

Therefore

aek(n)

a = -(P (vk (n)) (3.20)

From Figure 3.4 that for neuron k the induced local field is

Vk (n) = Xwkj (f)yj(n) (3.21)
j=0

where m is the total number of inputs applied to neuron k. The synaptic weight Wko(n) is

equal to the bias bk (n) applied to neuron k, and the corresponding input is fixed at the

value +1. Differentiating Equation (3.21) with respect to y1 (n) yields

aVk(n) = wkI(n) (3.22)
ay j(n)

Using Equations (3.20) and (3.22) in (3.18) we get the desired partial derivative:

34

ay4(n)
(3.22)- e, (n)(pk (v, (n))wl (n)

k

Using Equations (3.20) and (3.22) in (3.18) the desired partial derivative:

y (n)
=-Y, ek (n)qk, (v, (n))wj (n) 15-,6 (n)w] (n) (3.23)

The definition of the local gradient k (n) given in Equation (3.14) with the index k

substituted for j. Using Equations (3.20) and (3.22) in (3.18) we get the desired partial

derivative:

45 (n) = 'p, (vj (n))X 5 (n)wkj (n) (3.24)

Figure 4.5 shows the signal-flow graph representation of Equation (3.24), assuming that

the output layer consists of mL neurons.

The factor qp (v(n)) involved in the computation of the local gradient

Equation (3.24) depends solely on the activation function associated with hidden neuron

j. The remaining factor involved in this computation, namely the summation over k,

depends on two sets of terms. The first set of terms, the 6k(n), requires knowledge of the

error signals ek (n), for all neurons that lie in the layer to the immediate right of hidden

neuron j, and that are directly connected to neuron j: see Figure 3.4. The second set of

terms, the wkj (n), consists of the synaptic weights associated with these connections.

This is the relation for back-propagation algorithm. Firstly, the correction Awi (n)

applied to the synaptic weight connecting neuron I to neuron j is defined by the delta rule:

(3.25)

Which weight correction = learning-rate parameter times local gradient times input signal

of neuron j. Secondly, the local gradient 5 1(n) depends on whether neuron j is an output

node or a hidden node:

35

Sj(n) in

(AW;;n) (r) y()- (yj (n))

N (n) (ej(n)

i8j(n) wk (n) O V(n))

W.L() A (n) ek(n)

plV,nL(,,(n))

emL(n)

Figure 3.5 Signal-flow graph of a part of the adjoint system pertaining to back-

propagation of error signals

Neuron i is an Output Node:

£5 .(n) equals the product of the derivative (p (vj (n)) and the error signal ej (n), both of

which are associated with neuron j.

Neuron i is a Hidden Node:

6 j (n) equals the product of the associated derivative p (vj (n)) and the weighted sum

of the 6s computed for the neurons in the next hidden or output layer that are connected

to neuron j.

The application of the back-propagation algorithm consists two distinguish passes of

computation, forward pass and backward pass.

Forward Pass

In the forward pass, the weights remain unaltered throughout the network. The function

signals appearing at the output of neuron j is

yj(n) = (p(vj (n)) (3.26)

where v j(n) is the induced local field of neuron j

v1 (n) = wj,(n)y (n) (3.27)
i=O

36

where m is the total number of inputs applied to neuron j, and w1 (n) is the synaptic

weight connecting neuron i to neuron j, and y (n) is the input signal of neuron j. If

neuron j is in the first hidden layer

yi(n) = xi(n) (3.28)

where xi (n) is the ith element of the input vector. If neuron j is the output layer of the

network

y,(n) = o,(n) (3.29)

where oi (n) is the jth element of the input vector. This output is compared with the

desired response dj (n), obtaining the error signal ej (n) for the jth output neuron. Thus

the forward pass begins at the first hidden layer by presenting it with the input vector, and

terminates at the output layer by computing the error signal for each neuron of this layer.

Backward Pass

Backward pass, starts at the output layer by passing the error signals through the network,

and recursively computing the local gradient for each neuron. This process permits the

synaptic weights of the network to undergo changes in accordance with the delta rule of

Equation (3.25). First, use Equation (3.25) to compute the changes to the weights of all

the connections feeding into the output layer. Second, use Equation (3.24) to compute 6

for all neurons in the penultimate layer. This recursive computation is continued, layer by

layer, by propagating the changes to all synaptic weights in the network.

Learning Rate

The back-propagation algorithm provides an approximation in weight space computed by

the method of steepest descent. From one iteration, the smaller the learning-rate 77, the

smaller the changes to the synaptic weights will be, and the smoother will be in weight

space. However it will have a slower rate of learning. If the learning-rate 77 is too large,

the large changes in the synaptic weights may become unstable.

37

It was assumed that the learning-rate parameter is a constant. In fact, the learning-rate

parameter should be connection-dependent. In the application of the back-propagation

algorithm, the synaptic weights may be adjustable, or weights can be fixed during the

adaptation.

3.1.6 Procedure of the Back-Propagation Algorithm

The algorithm cycles through the training sample as follows:

1. Initialization.

Pick the synaptic weights and thresholds from a uniform distribution whose mean is zero

and whose variance is chosen to make the standard deviation of the induced local fields

of the neurons lie at the transition between the linear and saturated parts of the sigmoid

activation function.

2. Presentations of Training Examples.

Present the network with training examples. For each example set, ordered it, perform the

sequence of forward and backward computations respectively.

3. Forward Computation.

With the input vector x(n) applied to the input layer of sensory nodes and the desired

response vector d(n) presented to the output layer of computation nodes. Compute the

induced local fields and function signals of the network by proceeding forward through

the network. The induced local field v)(n) for neuron j in layer 1 is

Mo
v ' (n) = w () (n) y,!~ (n) (3.30)

i=O '

where y, (n) is the output signal of neuron i in the previous layer 1-1 at iteration n and

W(! (n) is the synaptic weight of neuron j in layer 1 that is fed from neuron i in layer 1-1.

38

For i=O, y-1(n) = +1 and w') (n) = bV (n) is the bias applied to neuron j in layer 1. Use

a sigmoid function, the output signal of neuron j in layer 1 is

y1 = p (v (n)) (3.31)

If neuron j is in the first hidden layer

yj() (n) = x, (n) (3.32)

where xj (n) is the jth element of the input vector x(n) . If neuron] is in the output layer

(L) = 0 (n) (3.33)

Compute the error signal

ej (n) = d j (n) - o (n) (3.34)

where d (n) is the jth element of the desired response vector d(n) .

4. Backward Computation.

Compute the 5 of the network, for neuron j in output layer L

S(I (n) = e(L) (n)p'v ()

For neuron j in hidden layer I

5j) (n) = ' (v) (n))J 9(1+1) (n)w('+' (n) (3.36)
k

where the prime in p1 (.) denotes differentiation with respect to the argument. Adjust the

synaptic weights of the network in layer 1 according to the generalized delta rule:

w(1 (n + 1) = w (n) + a[w() (n - 1)] + rj31) (n)yl (n) (3.37)

where 17 is the learning-rate parameter and a is the momentum constant.

5. Iteration

Iterate the forward and backward computations under previous two procedures by

presenting new epochs of training examples to the network until the stopping criterion is

met.

39

3.1.7 Improve the Performance of Back-Propagation Algorithm

There are some methods that will significantly improve the back-propagation algorithm's

performance:

1. Sequential or Batch Update

The sequential mode of back-propagation learning is computationally faster than the

batch mode. Especially when the training data set is large and highly redundant.

2. Maximizing Information Content

Every training example should be chosen on the basis that its information content is the

largest possible for the task at hand. There are two ways to approach. First, use an

example that results in the largest training error. Second, use of an example that is

radically different from all those previous used. One technique is to randomize the order

in which the examples are presented to the multilayer perceptron from one epoch to the

next.

3. Activation Function

A multilayer perceptron trained with back-propagation algorithm can learn faster when

the sigmoid activation function built into the neuron model of the network is

antisymmetric than when it is nonsymmetric. A popular example of an antisymmetric

activation function is a sigmoid nonlinearity in the form of a hyperbolic tangent,

((v) = 1.7159 tanh(O.6667v), (LeCun, 1989, 1993).

4. Target Values

The target value should be chosen within the range of the sigmoid activation function.

The desired response di for neuron j in the output layer of the multilayer perceptron

should be offset by some amount away from the limiting value of the sigmoid activation

function, depending on whether the limiting value.

5. Normalizing the Inputs

40

Each input variable should be preprocessed so that its mean value is close to zero. There

are two measures can accelerate the back-propagation learning process. The input

variables contained in the training set should be uncorrelated. The decorrelated input

variables should be scaled so that their covariances are approximately equal, ensuring

that the different synaptic weights in the network learn at approximately the same speed.

6. Initialization

It is important to choose good initial values of the synaptic weights and thresholds of the

network. It is desirable for the uniform distribution, from which the synaptic weights are

selected, to have a mean of zero and a variance equal to the reciprocal of the number of

synaptic connections of a neuron.

7. Learning from Hints

Learning from a set of training examples deals with an unknown input-output mapping

function. The process of learning from examples may be generalized to include learning

from hints, which is achieved by allowing prior information that we may about the

function to be included in the learning process.

8. Learning Rates

All neurons in the multilayer perceptron should ideally learn at the same rate. The last

layers usually have larger local gradients than the layers at the front end of the network.

The learning-rate should be assigned a smaller value in the last layers than in the front

layers. Neurons with many inputs should have a similar learning time for all neurons in

the network. For a given neuron, the learning rate should be inversely proportional to the

square root of synaptic connections made to that neuron.

41

3.2 Conjugate Gradient Learning Algorithm

The back-propagation learning algorithm is widely used for training multilayer neural

networks. However, back-propagation has a slow rate of learning. Some more effective

neural network learning algorithms have to be developed. These learning algorithms

improve the convergence rate and reduce the total number of iterations and the execution

time. Kollias and Anastassiou (1989) developed an adaptive least squares learning

algorithm for multilayer neural networks. Douglas and Meng (1991) developed an

adaptive linearized least squares learning algorithm for training of multilayer feedforward

neural networks. These two algorithms achieved better convergence rate than the

momentum back-propagation learning algorithm by using second order derivatives of the

error function with respect to the network weights. However, in both algorithms the

Hessian matrix containing the second order derivatives of the network weights, requiring

a large amount of memory storage and additional computations. These two algorithms are

efficient only when the input data set is small.

The conjugate gradient method, originally proposed by Fletcher and Reeves (1964), has

been recognized as one practical method for solving large optimization problems,

because it does not require any large matrix storage and its iteration cost is relatively low.

3.2.1 Concept of Conjugate Gradient Algorithm

The basic back-propagation algorithm adjusts the weights (step size) in the steepest

descent direction. This is the direction in which the performance function is decreasing

most rapidly. This causes a problem, although the function decreases most rapidly along

the negative of the gradient, this does not necessarily produce the fastest convergence.

However, in the conjugate gradient algorithms a search is performed along conjugate

directions, which produces generally faster convergence than steepest descent directions.

42

In back-propagation algorithm, a learning rate is used to determine the length of the

weight update. In conjugate gradient algorithms the weight update size is adjusted at each

iteration. A search is made along the conjugate gradient direction to determine the step

size, which will minimize the performance function along that line.

3.2.2 Explanation of the Conjugate Gradient Algorithm

The conjugate gradient method belongs to a class of second-order optimization methods

known collectively as conjugate direction methods. Considering the minimization

quadratic function

f (x)=-xT Ax-b T x+c (3.38)
2

where x is a W-by- 1 vector, A is a W-by-W matrix, b is a W-by- 1 vector, and c is a

scalar. Minimization of the quadratic function f(x) is achieved by assigning to x the

unique value

x* = A 'b (3.39)

Thus minimizing f(x) and solving the linear system of equations Ax* = b are equivalent

problems. Given the matrix A, a set of nonzero vectors s(O), s(]),... s(W-1) is A -

conjugate if the following condition is satisfied:

ST (n)As(j) = 0 (3.40)

for all n and j such that n # j. If A is equal to the identity matrix, conjugacy is

equivalent to the usual notion of orthogonality.

43

3.2.3 Procedure of the Conjugate Gradient Algorithm

Initialization

Choose the initial value w(O) using a procedure similar to that described for the back-

propagation algorithm.

Computation

1. For w(O), use back-propagation to compute the gradient vector g(0).

2. Set s() = r(0) - g (0).

3. At time step n, use a line search to find u(n) that minimize 4,a,(77) sufficiently,

representing the cost function ai expressed as a function of 77 for fixed values of

w and s.

4. Test to determine if the Euclidean norm of the residual r(n) has fallen below a

specified value |1r(0)II.

5. Update the weight vector: w(n +1) = w(n) + 17(n)s(n)

6. For w(n +1) , use back-propagation to compute the updated gradient vector

g(n +1).

7. Set r(n+l)= -g(n+1)

8. Use the Polak-Ribiere method to calculate / (n + 1):

#(n 1) maxr T(n + 1)(r(n + 1) - r(n)) 0(.1
rT (n)r(n)

9. Update the direction vector:

s(n + 1) = r(n + 1) + /i(n + 1)s(n) (3.42)

10. Set n =n+1, andgobackto step 3.

Stopping Criterion

Terminate the algorithm when the following condition is satisfied:

r(n)[;e8r(O)I| (3.43)

where E is a prescribed small number.

44

3.2.4 An Adaptive Conjugate Gradient Algorithm

The conjugate gradient method is an effective modification of the steepest descent

method proposed by Fletcher and Reeves (1964) and modified by Polak and

Ribiere(1969). In 1986, Powell showed that the unrestarted Polak-Ribiere method with

exact line search may fail to converge for non-convex problems, and proposed a more

robust algorithm to ensure convergence. By using the Powell's modified conjugate

gradient algorithm for minimizing the system error in neural networks with the inexact

line search algorithm, here is an adaptive conjugate gradient neural network-learning

algorithm.

Inexact Line Search Algorithm

The step size determination has a great effect on the efficiency of the mathematical

optimization algorithm. An inexact line search algorithm can determine the search step

size A within a small percentage of its true value. In order to ensure that the selected step

size A is not too large, it has to satisfy the following condition:

E(W (k) + Adj")) : E(W(k))+ #5A(VE(W (k)) T d (k) (3.44)

A e (0,1), A > 0 , In order to ensure that the selected step size A is not too small, it has to

satisfy the following condition:

VE(W (k) + kI(k))T d (k) > 0(VE(W ())T d (k) (3.45)

6 e (/,l),A > 0, the condition 1 >6 > k >0, guarantees the above two condition can be

satisfied simultaneously. However, the above two conditions do not guarantee that

descent directions are always generated. The following condition ensures that the selected

step size satisfies the descent condition (Nocedal, 1990).

VE(W (k) + A (k)) T d (k+) < 0 (3.46)

The acceptable step size, A, is located in a region that satisfies the three conditions. This

inexact line search algorithm is based on the above three conditions and backtracking by

successive parabolic and cubic interpolations.

45

3.2.5 Procedure of the Adaptive Conjugate Gradient Algorithm

There are L decision variables.

1. Generate initial weight vector We RL randomly. Set the iteration counter n=1,

set the convergence parameter E = 10-6, maximum number of iterations, and the

minimum system error. Set the initial search direction d'' - {0}. Set STOP1=0.

Set the acceptable minimum and maximum step size as minlen and maxlen. Set

A,6 .

2. For k=] to p, perform the following for the kth training instance:

2.1 Perform feedforward procedure of the neural network

Xk
Set 0 "' = L

For i=J to N-], calculate the output vector in (i+1)st layer:

OU+l) = LG(W(K k 2
k, -

1
nj +1

1+e

nj +1I+ e

ni+l

e 2,]j kj

l+e]=1

1i~
n W~i +1i

2.2 Calculate the system error for the kth training instance:

E ~~nN -Om)

Ek(Xk,W)= (Yk -O 2

mn=1

2.3 Calculate the deltas in the output layer for the kth training instance:

5 rN) (k oN) (N) N) ''
2. F r= - d t , ra2,..t (Ykte d ikr N

2.4 For r=N-]I down to 1, calculate the deltas in the hidden layers:

46

G(WN -0(')=k

2.5 For i=1 to N-1, calculate the gradient vector for the kth training instance:

VEk (W ("))
BE(W)

= = 15 o , q =1,2,..., n(i+1).and.r = 1,2,..., n, + I

3. Calculate the total system error:

E(Xk ,W)= Ek(Xk,W)
2P k =1

If E(Xk ,W) <miner, set STOPl=1 and go to step 19, Otherwise, go to next step.

4. Calculate the gradient vector of the total neural network system error:

VE(W"n) = XVEk (WC")
k=1

Assign the search direction as d(")=-VE(W "n). If VE(W("))<e,

STOP1=1 and go to step 19. In this case, is the optimum solution.

Otherwise, continue.

5. Ste iter=iter+]. If iter>L, set iter=O. If iter=], set a, = 0 and go to the next step.

Otherwise, calculate the new conjugate direction as:

d (") = -V E(W (n)) +an d ("-1)

where an = max 0, 2E(W }
a VE(W n1))

and v ("-1) = VE(W C")- VE(W ("-1))

6. Perform the inexact line search algorithm to calculate

criterion STOP2=0. Initialize 2=1.

A . Set the stopping

47

set

g(rN) _ 7k O N))(_N))o ,N)

and E(WI))+ BA(VE(W n))T d (n)) . f

E(W I") +Ad") E(W n))+#A(VE(W (n))Td(n), go to the next step. Otherwise,

go to step 15.

8. Calculate VE(W I") + Id(")T d(")) and O(VE(W I")T d ")) If

VE(W I") + Ad(n))Td(n) <6(VE(W n))Td(n)) go to the next step. Otherwise, go to

step 13.

9. If A =1, go to step 10. Otherwise, go to step 11.

10. Set A =min(2 A, maxlen).

Calculate the new search direction d

Calculate VE(W (n) + Id(n))T d (n+1)

If (VE(W I") + 1d("))Td("+])<0

Calculate VE(W I") + Ad(n))Td(n) and 6(VE(W(n ")Td(n).

If (VE(W (n) + Ad (n))T d("+')) > 0

Or (VE(W I") + ld(")Td(")) O(VE(WIn))Td(n), or 1>maxlen, go to step 11.

Otherwise, go to step 10.

11. If A<1 or (A >1 and (VE(W I") + Ad 0))Td("+1) 0), go to step 12. Otherwise, go

to step 17.

12. Perform backtracking using parabolic interpolation to find a new A.

Calculate VE(W I") + d(n))Td(n) and 6(VE(W In))Td(".

Calculate the new search direction d ("1

Calculate VE(W ") + Ad (n))T d (n+)

48

7. Calculate E(W 1"1 + Ad n") if

If both conditions, (VE(W ("1 + Ad (n)T d (n)) >!6(VE(W n))T d (n)) and

VE(W I") + Ad(n))Td(("+) <0 hold simultaneously, set STOP2=1 and go to step

17. Otherwise, go to the beginning of this step.

13. Calculate the new search direction d

Calculate VE(W n) + Ad (n))T d (n+).

If VE(W I") + Ad(n))Td(n+ > 0, go to step 14. Otherwise, set STOP2=1 and go to

step 17.

14. Perform backtracking using parabolic interpolation to find a new A.

Calculate the new search direction d

Calculate VE(W(") +Ad(n))Td(n+).

VE(WC") + Ad (n))Td(n+) < 0, set STOP2=1 and go to step 17. Otherwise, go to

the beginning of this step.

15. If A <minlen, then set A =0, set STOP2=1 and go to step 17. Otherwise, go to

the next step.

16. If A =1, perform backtracking using parabolic interpolation to find a new A.

Otherwise, perform backtracking using cubic interpolation to find a new A. Go to

the next step.

17. If STOP2=1, set An = 1, stop the iterations of inexact line search algorithm, and

go to the next step. Otherwise, go to step 7.

18. Update the weight vector as

w ("n+] =W n) + And ("x

Set n=n+]. If n>i, set STOPl=l and go to next step.

49

19. If STOPI=1, stop the iteration of the adaptive conjugate gradient learning

algorithm; W(") is the optimum weight vector. Otherwise, go to step 2.

The algorithm is restarted every L iterations by setting ak = 0.

The performance of the algorithm was evaluated as following. The problem of arbitrary

trial-and-error selection of the learning ratio A and momentum ratio a encountered in

the back-propagation algorithm is circumvented in the new adaptive algorithm. Instead of

constant learning and momentum ratios, the step size in the inexact line search is adapted

during the learning process through a mathematical approach. The adaptive algorithm

provides a more solid mathematical foundation for neural network learning. Also, this

algorithm converges much faster than the back-propagation algorithm.

3.3 Optimum Design of Neural Networks

Barai and Pandey (1994) proposed a conclusion that issues will affect the design

performance of a neural network. Figure 3.6 is their proposed neural network design

paradigm. Selecting an optimal neural network architecture depends on the application

domain. The successful application of neural networks to a specific problem depends

mainly on two factors, representation and learning. Choosing a topology (input/output

units, number of hidden units per layer, number of hidden layers, etc) and training

parameters (learning parameters u, momentum parameter a, error tolerance, etc) are

very much context-dependent and usually arrived at by trial-and-error. There are some

issues will effect the performance of a neural network.

1. Choosing Input/Output nodes

Every training example will decide the number of input nodes, and the corresponding

desired output parameter gives the number of nodes in the output layer.

50

2. Training Patterns

It is very important to present a good training set in network learning and the decision is

very critical. If a small percentage of the resulting generalization may be poor, while in

the opposite case it is likely that higher oscillation would make it impossible to reach a

state of global minima.

3. Normalization of the Training Set

The input patterns must be normalized before being given to the network. This gives an

advantage over the size of the network.

4. Number of Hidden Layers in the Network

It has been mentioned that two to three layers are sufficient for most problems. However,

the optimal number of layers will dependent on different applications. It is suggested that

multilayer networks with linear neurons are equivalent to two-layer networks. Hence, the

various weight matrices can be combined into a single matrix, which serves the same

purpose as a multilayer network with linear neurons.

5. Number of Neurons in the Hidden Layers

How many hidden neurons should be used in a layer is arbitrary, and has been usually

decided by trail-and-error. It is good enough to use the average of the number of input

and output neurons. Another possibility is to make the hidden layer of the same size as

either the input or the output layer. The fewer hidden neurons the fewer connections, and

hence less training capacity. Generally the hidden layer should not be the smallest layer

in the network, nor should it be the largest.

6. Choosing Training Parameters

The training parameters are arrived at by investigating the application domain. Though

these parameters have generally been frozen in several investigations, it would be

desirable to carry out a further study of these parameters in order to see their influence in

the context of the application.

51

7. Choosing the Activation Function

There are several types of activation functions, linear, linear threshold, step, sigmoid, and

Gaussian activation functions. With the exception of the linear activation functions, all

these functions introduce a nonlinear in the network dynamics by bounding the output

values within fixed ranges. The sigmoid function (S-shaped semi-linear or squashing

function) has been recommended in most of the back-propagation applications. In a

sigmoid function the output is a continuous, monotonic function of the input. The

function itself and its derivatives are continuous everywhere.

8. Choosing the Average System Error

The acceptable average system error depends upon the amount of accuracy required for

training and testing the network. The acceptable error plays an important role in

determining the number of training cycles, and finally it has an impact on the training

time. The best way to choose the average system error is to start with a large value of the

average system error and watch the performance of the network. Then, depending upon

the accuracy required from the network, reduce the value of average system error. The

initial large value of average system error also helps in determining the possibility of the

network's convergence for a small value of the average system error.

52

Learning Momentum Activation Modifications Number of Hidden nodes Number of
rate rate function in algorithm Input/output per layer hidden layers

Training algorithm Num r of neur ons
(Back- Propagation algorithm) and connectivity

ofConvgence trainng patterns

AccptaleerrrsNumber of -> Processing per
Acceptable errors training cycles training cycle

Computing
systems used for Training time
implementation

Figure 3.6 Neural-network training paradigm.

53

Chapter 4

Architecture of a Structural Self-Diagnosis Java Program

4.1 Object-Oriented Software Design by using Java

4.1.1 Procedural Programming Approach

The conventional software development method is called procedure programming. This

kind of software system is treated as a set of data representing information and

procedures that manipulate the data. The process to solve the problems is formulated

using a sequence of commands. Data and procedures are tailored to fit each other but they

are independent entities. The programmers have to define the command procedures to

data and ensure that the procedure will work correctly on the used data types. As a result,
designing program in this way ends up with complexity, mess, and difficulty to maintain

software. Moreover, there is another disadvantage, this kind of software cannot be reused

by other programs.

4.1.2 Object-Oriented Programming Approach

In the conventional procedure programming design, computer code and data are treated

separately. However, in an object-oriented programming model, there is no separation of

code and data. Therefore, the programming code and data are integrated in a single entity,

which is called object. In a conventional programming design, the programmers have to

54

specify explicitly the inputs and outputs for the program. In contrast, in an object-orient

program, the programmer is concerned about the functions each object is expected to

perform.

An object-oriented programming model can be developed for the evaluation of

performance of structure damages. It can be implemented in the programming language

Java or C++. Java and C++ provide the object-oriented programming concepts such as

inheritance, encapsulation, and polymorphism.

The main concepts in an object-oriented programming model are "objects", "classes",

"encapsulation", "inheritance", and "polymorphism".

Classes

Classes are the blueprints that are used to create objects. A class defines the attributes and

behaviors that each object creates from the class will possess. Creating new classes

involves a two-part process: First, define the attributes that objects created from the class

will use to store the state. Second, define the messages to let the objects understand. For

each message, create a procedure, called a method that implements these steps. Class is a

user-defined data type in Java and C++. The class construct provides the basic foundation

for object-oriented programming. Each class may consist of not only primitive data types

such as integer, short, long, float, or double, but also user-defined data types such as

array, or inner class. Classes act as templates for objects with a particular set of properties

and methods. All instances of a given class have the same properties and methods, but the

value of each property may vary.

Objects

In the conventional procedure programming, procedures are used to build structured

programs. In contrast, in object-oriented programming, objects are used to build object-

oriented programs. An object-oriented program is a collection of objects that are

organized for, and cooperate toward, the accomplishment of some goal. Each object not

only contains data but also has a set of defined behaviors and an individual identity.

55

Objects are instances of a class. An object is a self-contained entity and consists of

properties and methods.

Encapsulation

Encapsulation is a concept that will let programmer create well- designed classes.

Encapsulation is the process of packaging the program, dividing each of its classes into

two distinct parts: the interface and the implementation. The objects are made of

attributes and methods. Some of these attributes and methods are publicly available,

visible from outside the object: These are the interface. Other attributes and methods are

reserved for the private use of the object itself: These are the implementation. Separating

the interface from the implementation is the most fundamental design decision when the

programmers design an object-oriented program. The private data of an object is not

accessible to any other object in the program. This concept is the key to object-oriented

programming. Unlike the conventional programming design concepts, where data and

procedures operating on the data have to be declared and represented separately, object-

oriented programming encapsulations the specific data with the procedures operating on

the data. Thus, based on this concept, the programmer can represent the real world by

objects, design operating procedures in each object, and describe the behavior of each

object. The procedures attached to a class are called methods in Java. Methods may be

declared in public in a class; they can operate on the data declared private in a class.

When a specific method is called, the object class searches its public methods and

executes the operation using the object's data as input. Since methods are mostly declared

in public in a class, they can be accessed by other object classes.

Inheritance

Encapsulation is necessary for creating robust classes that can be maintained and changed

easily. Inheritance is concerned with a group of classes and their relationships. Classes

can be created in a hierarchy with inheritance property. In Java, object classes can be

organized into a hierarchical taxonomy by using the two features of "base class" and

"derived class". A derived class inherits all the properties and methods of its base class.

56

In Java, a derived class can only inherit on base class. However, a derived class can

implement several interfaces.

Polymorphism

Polymorphism works together with encapsulation and inheritance to simplify the flow of

control in an object-oriented program. When a message is sent to an object, that object

must have a method defined to response to that message. When classes are connected in

an inheritance hierarchy, all the subclasses of a parent class automatically inherit their

parent's interface. Anything that a superclass object can do, a subclass object can also do.

Although a subclass object responds to the same messages that a superclass object does,

the message need not trigger the same behavior. It simply needs to be understood. Each

subclass can rely on the superclass to define the appropriate response or define a new,

specialized response. Therefore, each of the subclass is able to respond differently-

polymorphically or according to its nature, so to speak-to the same message. Another

important concept is late biding. Normally, when a compiler for a non- object-oriented

language comes across a method invocation, it determines exactly what target code

should be called and builds machine language to represent that call. In object-oriented

language, this is not possible since the proper code to invoke is determined based upon

the class of the object being used to make the call, not the type of the variable. Instead,

code is generated that will allow the decision to be made at runtime. Java's Virtual

Machine has been designed from the start to support an object-oriented programming

system, so there are machine-level instructions for making methods calls. The compiler

only needs to prepare the argument list and produce one method invocation instruction;

the job of identifying and calling the proper target code is performed by the Virtual

Machine. If the Virtual Machine is to be able to decide what actual code should be

invoked by a particular method call, it must be able to determine the class of the object

upon which the call is based. Unlike traditional languages or runtime environments, every

time the Java system allocates memory, it marks that memory with the type of the data

that it has been allocated to hold. This means that given any object, and without regard to

the type associated with the reference variable acting as a handle to that object, the

runtime system can determine the real class of that object by inspection.

57

4.1.3 Object Orient Analysis and Design

There are three components corresponding to analysis, design, and implementation/

programming. Analysis deals with the problem domain and design with the solution

domain. Object oriented analysis focuses on problem domain objects and object oriented

design on solution objects. Figure 4.1 shows the relationship between analysis and

design. The problem and solution domain representations are different and smaller than

the real world problem or in the case of engineering applications the mathematical model.

Moreover the solution domain includes everything in the problem domain plus any

additional constructs required by the solution.

Analysis involves problem definition and modeling. Object orient analysis models the

problem domain by identifying and specifying a set of semantic objects that interact and

behave according to system requirements. Problem domain objects represent things or

concepts used in describing the problem rather then its solution. They are called mantic

objects because they have meaning in the problem domain. During analysis the focus is

on representing the problem and identifying abstractions. The semantic classes may then

be extended if useful abstractions are discovered.

Design focuses on solution specification and modeling object oriented design transforms

the problem representation into a solution representation. The solution domain includes,

but is not only limited to, the semantic objects. During design the emphasis is on defining

a solution. Object oriented design models the solution domain, which includes semantic

classes with possible additions and interface, application and utility objects identified

during the design process. Interface objects are associated with user interface. They are

not directly part of the problem domain. They represent the user's view of the semantic

objects. In an object-oriented environment such objects are mainly part of graphical user

interface. Application objects can be thought of as the control mechanisms for the

system. They are mainly objects that start the application and perhaps control the

sequencing of high-level functions. These categories are also called design components.

Object-oriented design should be still language-independent. It precedes physical design.

58

Real World Problem

Mathematical Model

Problem Domain

SSemantic Objects)

Abstraction

Interface Interface Interface
Objects Objects Objects

Solution Domain

Figure 4.1 Problem and solution domain objects and classes.

4.2 Data Structures in Java

4.2.1 Reference in Java

All the types in Java are reference except primitive types. Reference types include

strings, arrays, and file streams. A reference in Java is a variable that stores the memory

address where an object resides. A reference will always store the memory address where

some object is residing, unless it is not currently referencing any object. In this case, it

will store the null reference, null. Java does not allow references to primitive variables.

There are two broad categories of operations that can be applied to reference variables.

One allows us to examine or manipulate the reference value. The other category of

operations applies to the object being referenced.

59

4.2.2 Array and Linked Lists in Java

An array is the basic mechanism for storing a collection of identically typed entities. In

Java the array is not a primitive type. Instead, it behaves very much like an object. A

linked list is a sequence of elements arranged one after another, with each element

connected to the next element by a link. A programming practice is to place each element

together with the link to the next element, resulting in a component called a node. There

are certain operations that are better performed by arrays and others where linked lists are

preferable. Arrays are better at random access. Linked lists are better at additions or

removals at a cursor. Doubly linked lists are better for a two-way cursor.

4.2.3 Binary Trees in Java

A binary tree is a finite set of nodes. The set might be empty, which is called empty tree.

It follows these rules. First, there is one special node, called the root. Each node may be

associated with up to two other different nodes, called its left child and its right child.

Second, Each node, except the root, has exactly one parent; the root has no parent. Third,
If starting at a node and move to the node's parent, then move again to that node's parent,
and keep moving upward to each node's parent, it will eventually reach the root. Here is

the Java code fragment of a binary tree node.

public class BbinaryTreeNode{
private Object data;
private BinaryTreeNode left;
private BinaryTreeNode right;

Here is a constructor for the BinaryTreeNode class. It has three arguments, which are the

initial values for the node's data and link variables:

60

4.2.4 Binary Trees Operations in Java

Here is a binary tree, the node index refer to the root node of this tree.

inde

M. I.T.]*

Harvard Stanford

Columbia Princeton Yale Cornell

If we remove the leftmost node in index's right subtree, which is the node containing

"Yale". Right now, index.getRighto is a reference to the "Stanford" node, therefore,

index.getRighto.removeLeftmosto will remove "Yale" and have a return value that is the

reference to the root of the new smaller subtree. We have to set index's right link to the

new smaller tree, so the complete statement to remove the leftmost node in index's right

subtree is index.setRight(index.getRighto.removeLeftmosto);. The resulting tree will

look like this:

61

public BbinaryTreeNode(
Object initialData;
BinaryTreeNode initialLeft;
BinaryTreeNode initialRight;

data = initialData;
left = initialLeft;
right = initialRight;

}M&

I

inde

M.I.T. K

Harvard Stanford

Columbia Princeton Cornell

Notice that the sets index's right link to the root of the new smaller subtree. This is

important because in some cases the root of the subtree might now be null or it could be a

different node. For example, we want to remove the leftmost node of index's right

subtree a second time. When we activate:

index.setRight(index.getRighto.removeLeftmost();

The leftmost node of the right subtree now contains "Stanford" itself, so the activation of

index.getRighto.removeLeftmost(will remove the "Stanford" node and return a

reference to the new smaller subtree, which contains only "Cornell". The right link of

index is set to refer to the new smaller tree, so we end up with this situation:

inde

M.I.T.

Han/ardCrnl

Columbia Princeton

The implementation of removeLeftmost has a simple case when the node that activates

removeLeftmost has no left child. This is the situation that we just saw, where the

"Stanford" node had no left child. In this case, the node that we simply return a reference

to the rest of the tree, which is on the right side. Thus, the implementation begins like

this:

62

public BbinaryTreeNode removeLeftmosto

if (left == null)
return right;

This code returns a reference to the node that contains "Cornell". However, in the case

that is a left child, we want to remove the leftmost node from the left subtree. For

example, suppose that the root of this tree activates removeLeftmost:

inde

M.I.T.]A*

Harvard Stanford

Columbia Princeton Yale Cornell

We must remove the leftmost node from the tree. Since the root has a left child, we can

accomplish our task by removing the leftmost node form the left subtree. This is a smaller

version of the very problem that we are trying to solve, and we can solve this smaller

problem by a recursive call of left.removeleftmostO. The recursive call will remove the

leftmost node from the left subtree. This new smaller left subtree may have a different

root than the original left subtree, so we need to remove the leftmost node from the left

subtree and set the left link to this new smaller tree is: left = left.removeLeftmostO; This

is a recursive call because we are using removeLeftmost to solve a smaller version of the

removeLeftmost problem. After the recursive call, the tree looks like this:

index

M. I.T.

Harvard Stanford

Princeton Yale Cornell

63

In this recursive solution, there is one last task. We must return a reference to the entire

tree. This entire tree is now smaller than the tree that we began with. The root to this

smaller tree is the very node that activated removeLeftmost in the first place. In Java, the

keyword "this" is always a reference to the object that activated the method. So,

removeLeftmost uses "this" as shown in the following complete implementation.

public BbinaryTreeNode removeLeftmosto

if (left == null)
return right;

else{
left = left.removeLeftmosto;
return this;

Notice the final line in the recursive case "return this" which returns a reference to the

original node that activated the method.

4.3 Architecture of Cantilever Beam Damage Self-Diagnosis Java Program

Figure 4.2 shows the running procedure of the structural self-diagnosis Java program.

There are two main performances in this program, neural network learning and neural

network analysis. This program consists two neural network learning algorithms, back-

propagation learning algorithm and conjugate gradient learning algorithm. When

learning, the program takes the training data set from the input file, and then it performs

the training procedure for the neural network. Finally, this program produces two output

files; they are weights of neurons and neural network architecture data. When analysis,

the program takes the analysis data set form the input file, and it produces the analysis

result to an output file, which contains the system errors.

64

There are three classes in this structural self-diagnosis Java program; they are class Ann,

class DiaplayListener, and class AnimationPanel. Class Ann consists all the neural

network performance functions. This class also contains the main function. Class

DisplayLister consists all the events handling functions. Class AnimationPanel consists

all the display routine functions. Figure 4.3 shows the relationship between the class and

the functions. Figure 4.4 shows the screen shot of the structural self-diagnosis Java

program.

Start

Learning Analysis

Read training Read analysis
data set from data set f rom
the in ut file the in ut file

Initialize Initialize
nrurons nrurons

Back Conjugate Iiilz
Propagation Gradient wihso

neurons

Output
Initilizeanalysis result

weights oftofe
neu rons

Output neural
netwrok

architecture t

Output
weighs to file

End

Figure 4.2 Flow chart of the Structural Self-Diagnosis Java Program

65

Class Ann7

main()

learning()

performance()

init domaino

init-neural

init-weight()

initjlearning-cg()

initjlearning-bp()

forward()

CalGrado

Modified-search()

parallelDoBP()

BPDoBP()

CGDoBP()

backpropagaionO

ONetArch()

OWeight()

Class DisplayListener

actionPerformed()

writedisplayjfile()

readDisplayo

class
MyPropOkListener

FClass AnimationPanelF

paintComponent()

actionPerformed()

Figure 4.3 Class Relationship of the Structural Self-Diagnosis Java Program

66

eam n=5 n=5 n=2
beam4.w

5

20
10

Il 09 1

Figure 4.4 Screen Shot of the Structural Self-Diagnosis Java Program

67

Chapter 5

Case Study: Crack Self-Diagnosis of a Cantilever Beam

5.1 Neural Network Based Inverse Analyses

5.1.1 Introduction of Neural Network Based Inverse Analyses

Computational mechanics has been developed dramatically. The use of distributed

systems and parallel computers have made it possible to analyze large-scale three-

dimensional structural problems over millions degree of freedom. In the field of

structural vibration analyses, it is difficult to perform accurate and reliable vibration

analyses of a whole complex structural system because of poor modeling techniques. In

the field of vibration analyses, "structural self-diagnosis" means a process to build a

mathematical model which well-describes vibration characteristics of actual mechanical

and structural components. This is a typical inverse problem. This modeling process

significantly influences numerical accuracy as well as computation time. Various

structure identification methods can be roughly classified into the following three

categories: theoretical methods, experimental methods, and hybrid theoretical and

experimental methods.

For the pas two decades, the neural networks analyses have been developed and applied

to the field of structural self-identification. Among various neural network architectures,

the multilayer neural networks have the following advantages:

68

1. It can automatically construct a non-linear mapping function from multiple input

data to multiple output data within the network in a distributed manner through a

training process with many training patterns.

2. The trained network has a generalization feature, that is, a kind of interpolation,

such that the well trained network estimates appropriate output data even for

untrained patterns.

3. The trained network operates quickly in an application process. Computational

resources required for operating the trained network may be equivalent to only

that of a personal computer.

The neural networks have been applied in various structural engineering problems. One

of the applications is to develop an inverse analysis approach using the multilayer neural

networks and the computational mechanics, and applied the approach to several inverse

problems. The present inverse analysis approach basically consists of the following three

subprocesses. First, parametrically varying model parameters of a system, their

corresponding responses of the system are calculated through computational mechanics

simulations, each of which is an ordinary direct analysis. Each data pair of model

parameters vs. system responses is called training pattern. Second, a neural network is

trained using a number of training patterns. Here the system responses are given to the

input units of the network, while the model parameters to be identified are shown to the

network as teacher data. Finally, some system responses measured are given to the

trained network, which immediately outputs appropriate model parameters even for

untrained patterns.

5.1.2 Fundamental Principle of Neural Network Based Inverse Analysis

The neural network based inverse analysis approach can be defined as follows:

Stage 1: Prepare a number of training patterns that are parameters like cantilever beam

vibration frequencies and tip displacement.

69

Stage 2: Train the neural network using the training patterns. When the back-propagation

algorithm is used, the network topology is determined a priori through trial-and-error.

Stage 3: Input a set of measured data to the input units of the well-trained network. Then

the network immediately estimates their corresponding crack parameters.

Figure 5.1 illustrates the analysis procedure. The most important and time-consuming

optimization process is invoked only once in the training process of the network at the

second stage, and the algorithm of training process is independent of a physical problem

to be solved. As the result, the present approach can be easily applied to any kinds of

inverse problems if a sufficient number of training patterns are available through

computational mechanics simulations. Another key feature of the present approach is that

once a training process finishes, one can solve quickly the inverse problems for various

combinations of crack parameters, which exist within a data space over all the training

patterns. The neural network approach looks like a database of finite element solutions

with an inverse analysis capability.

Preparation Phase

Preparation of Training Patterns
by Computational Mechanics Simulations

(Direct Analyses)

TrIainngi oJ urai Netwovr~

Utilization of Trained Neural Network a
Identification Tool
(Inverse Analyses)

'Pr

Model Parameters
to be Identified

System Responses

Figure 5.1 Flow of the inverse analysis approach

70

1

f N l k

5.2 Neural Network Systems for Structural Damage Self Diagnosis

Peetathawatchai (1996) proposed a neural network based diagnosis system in his Ph.D.

thesis. Figure 5.2 shows the architecture of a basic neural network based diagnosis

system. There are four major components: the numerical model, data processing unit, a

neural network for detecting the damage location (NNET1), and a neural network for

detecting the damage extent (NNET2). Network NNETI can define the location of the

damage in the structure. Network NNET2 can define the extent of damage at the given

damage location. The training procedure for NNET1 is shown on Figure 5.3. For each

training cycle, the time response of the model corresponding to each damage condition is

determined via simulation and is passed to the data preprocessing unit, which transforms

the time response data into a normalized input pattern. Figure 5.4 shows the training

procedure for NNET2. The output of NNET2 is used to predict the extent of damage at

the given damage location.

Damage
Condition

Monitored Structure Excitation

Response in time

Data Preprocessing

Nomalized Input Pattern

Network for detecting Network for detecting
location of damage extent of damage

Location of Damage Extent of Damage
as Numerical Array as Numerical Array

Figure 5.2 Neural Network Based Diagnosis System.

71

Damage
Condition

Simulated Model Excitation
Simulated Locatior

of Damage as
Binary Array Response in time

Data Preprocessing

Nomalized Input Pattern

Error Artificial Neural Networks
NNET1

Location of Damage
as Numerical Array

Figure 5.3 The Training Process of Neural Network for Detecting Location of Damage

Simulated
Damage

Condition

Simulated Model Excitation

Simulated Extent Response in time
of Damage as
Binary Array Data Preprocessing

I Nomalized Input Pattern

rror Artificial Neural Network

Exten of amag

Simulated Location
of Damage as
Binary Array

Extent of Damage
as Numerical Array

Figure 5.4 The Training Process of Neural Network for Recognizing of Damage

72

5.3 Formulation of Cantilever Beam Tip Displacement

The displacement models have been produced using a linear model of a cracked

cantilever beam based on previously published studies (Rizos, Aspragathos, and

Dimarogonas, 1990; Ostachowiez and Krawezuk, 1991). A crack is modeled as a linear

rotational spring, as shown in Figure 5.2. The equivalent torsional stiffness at the crack

location is calculated using stress intensity factors for an open single-sided crack

(Anifantis and Dimarogonas, 1983; Ostachowiez and Krawezuk, 1991).

L

rL

/
/

y1 (Z)
y2(Z)

Figure 5.5 Model of a cracked beam.

The displacement functions for both parts of the beam can be expressed as:

y (z) = a, cosh(kz) + a2 sinh(kz) + a3 cos(kz) + a4 sin(kz) (5.1)

where y, (z) is the displacement function from the root to the crack.

Y2 (z)= b, cosh(kz)+ b2 sinh(kz)+ b3 cos(kz)+ b4 sin(kz) (5.2)

where y2 (z) is the displacement function from the crack to the tip.

73

where

'p /4

k = L w pA (5.3)
EI

The following boundary conditions describe the investigated beam:

y, (0) = 0 (5.4)

dy, (0) 0 (5.5)
dz

y,(r) = y2(r) (5.6)

dy,(r) dy2 (r) d2y2 (
dz dz q dz2

d2 y,(r) d 2y2 (r)(

dZ 2 dZ 2(5.8)dz2 dz2

d3 y(r) d3y2(r)
dZ 3 dZ 3(5.9)dz3 dz3

d 2y2 (1) =0 (5.10)
dz 2

d y23 -0 (5.11)
dz 3

where

6H
q = (5.12)

L(y 2(72.21-117.ly+ 420.7y2 -585.5r' +854.2r4 -829.3r5 + (512

and

d
rH (5.13)

The fundamental frequencies and tip displacements corresponding to a given combination

of a nondimensional crack location r and crack size d can be obtained from equation

(5.4)-(5.11). The fundamental frequencies are found by equating the determinant of the

coefficient matrix to zero and solving the resulting characteristic equation for k. Tip

74

displacements are obtained as follows. Equations (5.11) is modified to account for the tip

driving force of magnitude F

day2(1) FL3
d3 El ()(5.14)
dZ 3 EI

and Equation (5.3) is modified to account for the excitation frequency oa

k = LjA (5.15)
(EI

The system of Equations (5.4)-(5.11) is solved for coefficients a and b. Tip displacements

are determined by computing the value of y2 at z=L.

5.4 Problem Statement of Single/Double Cracks Cantilever Beam

5.4.1 Definition of Single Crack Cantilever Beam

Assuming that the cantilever beam is modeled as an assemblage of equal section quality

elements, and the crack means changing the moment of inertia of specific element. The

moment of inertia is reduced in the crack area.

In the case of single point crack, the cantilever beam is 21 feet long, and it is divided to

21 equal length sections. Each section has the same length. The 10 th element from the left

is damaged. The moment of inertia, I, of this element is reduced to different levels.

Figure 5.3 shows the location of the damaged element. Figure 5.4 illustrates the different

reduction of moment of inertia in this damaged element.

75

L

0.5L

y 5 1 y2

Figure 5.6 Single Crack Cantilever Beam

99%
98%
97%
96%

50%

Figure 5.7 Single Crack Cantilever Beam Reduction of Moment of Inertia

5.4.2 Definition of Double Cracks Cantilever Beam

By definition, double-point damage refers to the case where cracks occur at two different

locations. As described before, the cantilever beam is modeled as an assemblage of equal

section quality elements, and the crack is simulated by the change of the mechanical

properties of specific elements.

76

D/
/
/
/
/

/

/

In the case of the double-point damage, the cantilever beam is 21 feet long, and it is

divided to 21 equal length sections. Each section has the same length. There are two

damaged elements in the cantilever beam. The second element from the left is damaged,

and the 10th element from the left is also damaged. The moment of inertia, I, of these two

elements is reduced to different levels. Figure 5.3 shows the location of the damaged

element. Figure 5.4 illustrates the reduction of moment of inertia in the damaged

elements.

L

LK 0.5L

y1 y2

y3 y4

Figure 5.8 Double Cracks Cantilever Beam

95%
90%
85%
80%
75%
70%
65%
60%
55%
50%

95%
90%
85%
80%
75%
70%
65%
60%
55%
50%

Figure 5.9 Double Cracks Cantilever Beam Reduction of Moment of Inertia

77

3/
/
/
/
/

/
/

5.5 Neural Network Design for Crack Self-Diagnosis Cantilever Beam

5.5.1 Neural Network Architecture of Single Crack Cantilever Beam

Fifty different reductions of moment of inertia are considered. Reductions range from one

percent to fifty percent. The damaged cantilever beam has been evaluated by using SAP-

2000 nonlinear analysis program. The following parameters have been assumed:

elasticity modulus E = 2.9E ib/in2 , cantilever beam length L = 21 feet, cross section

height H = 18 inch, cross section width B = 10 inch, steel yield stress f, = 36ksi, and

specific density p = 2.830E- ib/in3 .

Damage section displacements and tip displacement associated with the reduction

percentage are used to train the feedforward back-propagation neural network with five

neurons in the single hidden layer. That network has been designed as a function

approximator. This neural network has three inputs in input-layer. Two of them are the

displacements of the damaged section. The last input in the input-layer is the tip

displacement of the cantilever beam. The output layer with one linear neuron produces

the estimations of the reduction in the damaged section. The inputs to this neural network

have been scaled between 0.1 and 0.9 to avoid saturation of log-sigmoid activation

functions. The adaptive conjugate gradient algorithm was used in this neural network. A

schematic of this neural network is shown in Figure 5.7.

78

y1

y2 0 ri

Figure 5.10 Single Crack Neural Network Architecture.

5.5.2 Neural Network Architecture of Double Cracks Cantilever Beam

There are 100 different combinations of moment of inertia reductions of each damaged

section. Reductions of moment of inertia range from 95 percent reduction to 50 percent

reduction. The damaged cantilever beam has been evaluated by using SAP-2000

nonlinear analysis program. The following parameters have been assumed: elasticity

modulus E = 2.9E 6 ib/ in 2 , cantilever beam length L = 21 feet, cross section height H =

18 inch, cross section width B = 10 inch, steel yield stress fY = 36ksi, and specific

density p 2.830E-^ib/in3 .

Four displacements of damaged elements and one tip displacement associated with the

crack reduction percentage are used to train the feedforward back-propagation neural

network with five neurons in the single hidden layer. This neural network has been

designed as a function approximator. This neural network has five inputs. Four of them

are displacements of damaged element. The last one is the tip displacement. There are

two outputs in the output layer. These are the estimations of the reduction in the damaged

elements. The inputs to the network have been scaled between 0.1 and 0.9 to avoid

saturation of log-sigmoid activation functions. The adaptive conjugate gradient algorithm

79

was used in this neural network. The schematic of this neural network is shown in Figure

5.8.

y1

ri

r2

y4

y5

Figure 5.11 Double Cracks Neural Network Architecture.

80

Figure 5.12 Screen Shot of SAP-2000 Nonlinear Analysis Program.

81

5.6 Discussions and Summary

In the single damage case, the beam tip displacement and the displacements in damaged

element corresponding to the 50 different crack reduction have been created and used to

train the neural network. The role of the neural network is to find the coordinates of the

intersection of crack characteristics corresponding to a given cantilever beam

displacement. Figure 5.13 shows the sensitivity of network solution to measurement

errors in input data. The training of this feedforward back-propagation neural network

with 3 neurons in the single hidden layer was discontinued after 20 iterations when the

sum of squared errors reached 0.0098. The conjugate gradient algorithm was used to train

the neural network. Results presented in Figure 5.13 were obtained for network input

consisting of exact displacement data.

Next, in the double damage case, the beam tip displacement and the displacements in the

damaged elements corresponding to the 100 different crack reduction combinations have

been created and used to train the neural network. The training of this feedforward back-

propagation neural network with 5 neurons in the single hidden layer was discontinued

after 498 iterations when the sum of squared errors reached 0.0099. The conjugate

gradient algorithm was used to train the neural network. The performance of this network

is shown in Figure 5.14.

This work shows the feasibility of applying a neural network to predict the damage

location and the reduction of moment of inertia in a damaged element. It has been proved

that that the neural network performs adequately for data contaminated by measurement

errors.

82

Figure 5.13 Percentage Errors for Neural Network Solution.

Figure 5.14 Percentage Errors for Neural Network Solution.

83

Figure 5.15 Percentage Errors for Neural Network Solution.

84

REFERENCES

1. Nabil Kartam, Ian Flood, James H. Garrett, "Artificial Neural Networks for Civil
Engineers: Fundamentals and Applications", ASCE, New York, 1997.

2. Tomas Hrycej, "Neurocontrol: Towards an Industrial Control Methodology",
John Wiley & Sons, Inc., New York, 1997.

3. Rumelhart, McClelland, "Parallel Distributed Processing Volume 1:
Foundations", The MIT Press, Cambridge, 1986.

4. Simon Haykin, "Neural Networks: A Comprehensive Foundation", Prentice Hall,
New Jersey, 1999.

5. B. H. V. Topping, A.I. Khan, "Neural Networks and Combinatorial Optimization
in Civil and Structural Engineering", Civil-Comp Press, Edinburgh, 1993.

6. B. H. V. Topping, "Developments in Neural Networks and Evolutionary
Computing in Civil and Structural Engineering", Civil-Comp Press, Edinburgh,
1995.

7. Reed, Marks, "Neural Smithing ", The MIT Press, Cambridge, 1999.

8. Hojjat Adeli, Shin-Lin Hung, "Machine Learning: Neural Networks, Genetic
Algorithms, and Fuzzy Systems", John Wiley & Sons, Inc., New York, 1995.

9. Stephen Gilbert, Bill McCarty, "Object-Oriented Design In Java", White Group
Press, Corte Madera, CA, 1998.

10. Mark Allen Weiss, "Data Structures and Problem Solving Using Java ", Addison-
Wesley, Reading, MA, 1998.

11. Howard Demuth, Mark Beale, "Neural Network Toolbox: For Use with
MATLAB", The Math Works Inc., Natick, MA, 1998.

12. Kawiecki G, "Application of neural networks to detect detection in cantilever
beams with linearized damage behavior", Journal of Intelligent Material Systems
and Structures, 10(10), 797-801,1999.

13. C.B. Yun, E.Y. Bahng, "Substructural identification using neural networks",
Computers and Structures, 77, 41-52, 2000.

14. M.I. Friswell, J.E.T. Penny, S.D. Garvey, "A combined genetic and
eigensensitivity algorithm for the location of damage in structures", Computers
and Structures, 69, 547-556, 1998.

85

15. C.C. Chang, T.Y.P. Chang, Y.G.Xu, "Adaptive neural networks for model
updating of structures", Smart Mater. Struct., 9, 59-68, 2000.

16. Mitsuru Nakamura, Sami F. Masri, A.G. Chassiakos, T.K. Caughey, "Amethod
for non-parametric damage detection through the use of neural networks",
Earthquake engineering and structural dynamics, 27, 997-1010, 1998.

17. Tshilidzi Marwala, "Damage identification using committee of neural networks",
Journal of Engineering Mechanics, 216(1), 43-50, 2000.

18. S.V. Barai, P.C. Pandey, "Performance of the generalized delta rule in structural
damage detection", Engng Applic. Artif. Intell., 8(2), 211-221, 1995.

19. r. Ceravolo, A. De Stefano, D. Sabia, "Hierarchical use of neural techniques in
structural damage recognition", Smart Mater. Struct., 4, 270-280, 1995.

20. S. Yoshimura, A. Matsuda. G. Yagawa, "New regularization by transformation
for neural network based inverse analyses and its application to structure
identification", International Journal for Numerical Methods in Engineering, 39,
3953-3968, 1996.

21. K. Worden, A.D. Ball, G.R. Tomlinson, "Fault location in a framework structure
using neural networks", Smart Mater. Struct., 2, 189-200, 1993.

22. J.N. Kudva, N Munir, P.W. Tan, "Damage detection in smart structures using
neural networks and finite-element analyses", Smart Mater. Struct., 1, 108-112,
1992.

23. Z.P. Szewczyk, Prabhat Hajela, "Damage detection in structures based on feature-
sensitive neural networks", Journal of Computing in Civil Engineering, 8(2), 163-
178, 1994.

24. R.D. Vanluchene, Roufei Sun, "Neural networks in structural Engineering",
Microcomputers in Civil Engineering, 5, 207-215, 1990.

25. Hojjat Adeli, H.S. Park, "Counterpropagation neural networks in structural
engineering", Journal Struct. Engng., 121(8), 1205-1212, 1995.

26. H. Adeli, C. Yeh, "Perceptron learning in engineering design", Microcomputers
in Civil Engineering, 4, 247-256, 1989.

27. C. Peetathawatchai, "The applicability of neural network systems for structural
damage diagnosis", Ph.D. Thesis, Department of Civil and Environmental
Engineering, Massachusetts Institute of Technology.

86

28. Danny C.C. Poo, Derek B.K. Kiong, "Object-oriented programming", Springer,
New York, 1998.

29. Michael Main, "Data structures & other objects using Java", Addison-Wesley,
Reading, MA, 1999.

30. David Gries, F.B. Schneider, "Data structures and Algorithms", Springer, New
York, 1997.

31. R.R. Gajewski, "An object oriented approach to finite element programming",
Artificial Intelligence and Object Oriented Approaches for Structural
Engineering, Civil-Comp Press, Edinburgh, UK, 1994.

87

Appendices

Appendix A: Neural Network Analysis Java Program Codes

// Ann.java
import java.io.*;
import java.util.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

public class Ann

{
static
static
static
static
static
static
static
static

boolean isDisplay-res;
boolean isInput2;
boolean isNetwork;
boolean isDisplay;
boolean isDisplay2;
double displacement;
double displayreduction; // middle one
double displayreduction2; // left one

// Labels
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel
static JLabel

input-fileLabel;
weight-fileLabel;
algoLabel;
NIALabel;
NOALabel;
NSAMPLabel;
NHLLabel;
NUHlLabel;
NUH2_Label;
NUH3_Label;
NUH4_Label;
NUH5_Label;
LRInitLabel;
MR Label;
MSELabel;
MaxIterLabel;

// Text/fields
static JTextField inputjfileField;
static JTextField weightfile_Field;
static JTextField algoField;
static JTextField NIAField;
static JTextField NOAField;
static JTextField NSAMP_Field;
static JTextField NHLField;
static JTextField NUH1_Field;
static JTextField NUH2_Field;
static JTextField NUH3_Field;
static JTextField NUH4_Field;
static JTextField NUH5_Field;
static JTextField LRInitField;
static JTextField MRField;
static JTextField MSEField;
static JTextField MaxIterField;

88

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final

int RANDRANGE
int tasking
int PRERR
int MAXHL
int MAXOA
int MAXIA
int MAXSAMP
int MAXUNT
int MAXW
double Delta
double bt
double G1
double G2
double G3
double e
double gama
double Eplson
double minNSE
double alph
double beta
double M
double fmax

32;

1;
1;

5;
50;
50;
1000;
50;
(MAXHL+l) * MAXOA * MAXIA;

0.01;
0.2;
1.618;
0.382;
0.618;
0.0001;
0.2;
0.000001;
0.0000001;
0.0001;
0.9;
5;
5678;

/* Variables for learning domain */
static double[)[] Sample = new double[MAXSAMP][MAXIA];

samples
static double[][] Output = new double[MAXSAMP][MAXOA];
static double[][] Desired = new double[MAXSAMP][MAXOA];

output (tij)

/* Variables for cell of neural */
static int check;
static int[] WL = new int[MAXHL+2];
static double[] Weight = new double[MAXW];

links
static double[] Weightp = new double[MAXW];
static double ak,bk;

gradient method
static double[] d = new double[MAXW];

method
static double[] gl = new double[MAXW];
static double[] gO new double[MAXW];

method
static double[] H = new double[MAXW];

/* Vari
static
static
static
static
static
static

ables for BackPropagation */
int IsNew;
int IsShort;
int IsOld;
double NSE;
double MPE;
double LRFinal,LR_ChangeRate;

// Learning

// Output (oij)
// Desired

// jan

// Weights associated with

// ak and bk in conjugate

// dk in conjugate gradient

// gk in conjugate gradient

// Is a new iteration

//
//
//

Is an old iteration
Normalized system error
Max allowed pattern error

static double[][] Oij = new double[MAXHL+2][MAXOA]; // Input layer
iutput calculation

static double[][] Del = new double[MAXHL+2][MAXOA]; // Error pointer
static int Ll,L2,NoIter,again, Nokey;
static int task;
static int save-err,plot,save-w,savearc,saveres;
static int from, to;
static double ao, MiNSE=10;

89

static String fpt, f2, inf, farc, fw, ferr, fres, buffer;
static int step; // 1 2 3 4

/* Input file parameters */
static char select =''; // 1,L for learning, a, A for analysis
static int algo; // 0 - BP, 1 - CG
static int NIA; // Number of input attributes
static int NOA; // Number of output attributes
static int NSAMP; // Number of learning samples
static int NHL; // Number of the hiddern layers
static int[] NUH = new int[MAXHL+2];
static int ans = 1; /1:Initialize the weights ; else input

from file
static double LRInit;
static double MR;
static double MSE; // Max allowed system error
static double MaxIter; // Max allowed interations

static void initdomain()

System.out.println("Training instance File for learning/analysis
System.out.println("Number of training instances -- " + NSAMP);
System.out.println("Number of input/output nodes -- " + NIA + ""

" + fpt);

+ NOA);

try{
readSD(fpt)
System.out.println("readSD fpt " + fpt);

catch (IOException e) {

static void readSD(String fileName) throws IOException

Reader fileReader = new FileReader(fileName);
BufferedReader bufferedReader = new BufferedReader(fileReader);
String nextLine;

for (int i=0; i<NSAMP; i++)(

nextLine = bufferedReader.readLine();
StringTokenizer tokenizer = new StringTokenizer(nextLine);

for (int j=0; j<NIA; j++){
Sample[i][j] = Double.parseDouble(tokenizer.nextToken());

}
for (int j=0; j<NOA; j++)(

Desired[i][j] = Double.parseDouble(tokenizer.nextToken());
}

}
bufferedReader.close(;
fileReader.close();

static void initneural()
{

int i,j;
if(task==0)

{
/* learning */

System.out.println("Number of hidden layers (Max is 5) -- " + NHL);

for(i=O; i<NHL; i++)

{
/* NV */

90

}

System.out.println("Number of nodes in hidden layer -- + (i+l) +
+ NUH[i+l]);

}
}
if(task==l) /* analysis */

{
System.out.println("The *.top file for analysis -- " + fpt);
System.out.println("Number of hidden layers (Max is 5) -- + NHL);

for(i=O; i<NHL; i++) /* NV */

{
System.out.println("Number of nodes in hidden layer -- + (i+1) +

+ NUH[i+l]);

}
}

NUH[O]=NIA;
NUH[NHL+1]=NOA;
NUH[NHL+2]=0;

Ll=O;
for(i=O; i<NHL+2; i++) /* V */

{
WL[i]=(NUH[i]+l)*NUH[i+l];
Ll+= WL[i];

}
for(j=O; j<NHL+l; j++){ /* V */

Oij[j][NUH[j]]l=1.0;
}

}

static void initweight()

{
int i;
double temp;

if(task==O) // learning

{
if(ans==l) /* Initialize the weights */

{
for(i=O; i<Ll; i++) /* NV */

Weight[i]= Math.random() * Math.pow(2,14); /* 0 -- 2**15-1 */

for(i=0; i<Ll; i++)

Weight[i]=2*(Weight[i]/(Math.pow(2.0,(double)(RANDRANGE-1))))-l.0;
Weightp[i]=Weight[i];

}
}

else /* Input the weights from file */

{
}

}
else if(task==l) // analysis
{

System.out.println("Load the weights from file : + fw);
try{

readW(fw);

}
catch (IQException e){

}

}

91

static void readW(String fileName) throws IOException

Reader fileReader = new FileReader(fileName);
BufferedReader bufferedReader = new BufferedReader(fileReader);
String nextLine;
nextLine = bufferedReader.readLine(;

for(int i=0; i<Ll; i++) (
StringTokenizer tokenizer = new StringTokenizer(nextLine);
Weightp[i] = Weight[i] = Double.parseDouble(tokenizer.nextToken();

bufferedReader.close(;
//fileReader.close();

static void init-learningCG() /* 203 */

if(task==O) /* learning */

MSE=0.01;
MPE=0.001;
System.out.println("Maximum total system error -- + MSE);
System.out.println("Max pattern error -- default -- + 0.001);
System.out.println("Maximum number of iteration -- + MaxIter);

static void initlearningBP() /* 203 */

if(task==0) /* learning */

System.out.println("Learning rates -- + LRInit);
System.out.println("Momentum ratio -- + MR);
System.out.println("Maximum total system error -- default -- + MSE);
System.out.println("Maximum number of iteration -- + MaxIter);

}

static void forward(int i)

int p,q,r,more,morew;
double[] net = new double[MAXOA*MAXIA];

/* the input layer */
for(p=0; p<NIA; p++) /* V */

Oij [0] [p]=Sample[i] [p]

/* the hidden layers *7
morew=0;
for(p=l; p<NHL+2; p++)

for(q=0; q<NUH[p]; q++) /* V */

net[q]=0.0;
for(r=0; r<NUH[p-l]+l; r++)

for(q=0; q<NUH[p]; q++) /* V */
{
more= q*(NUH[p-1]+1)+r+morew;
net[q] += Weight[more]*Oij[p-1][r];

=}
morew += WL[p-l];

92

for(q=0; q<NUH[p]; q++) /* V */
Oij[p][q]=l/(1+ Math.exp((double)-net[q]));

}

static double Systemerror(double[] W, double[] delw, double a)
{

int i,p,q,r,more,morew;
double[] net = new double[MAXOA*MAXIA];
double xnse,xNSE;
double[] weight = new double[MAXW];

NSE=0;
for(i=0; i<Ll; i++) /* V *7
weight[i] = W[i] + a*(delw[i]);

xNSE=0;
for(i=O; i<NSAMP; i++) /* Tasked */

{
/* the input layer */
for(p=0; p<NIA; p++) /* V */

Oij[0] [p]=Sample[i] [p];

/* the hidden layers */
morew=0;

for(p=l; p<NHL+2; p++)

for(q=0; q<NUH[p]; q++) /* V */
net[q]=0.0;

for(r=0; r<NUH[p-1]+1; r++)

for(q=0; q<NUH[p]; q++) /* V */

more= q*(NUH[p-1]+1)+r+morew;
net[q] += weight[more]*Oij[p-1][r];

morew += WL[p-1];
for(q=0; q<NUH[p]; q++) /* V */

{
if(net[q] > fmax)

Oij [p] [q] = 5000.;
else if(net[q) < -fmax)

Oij[p][q]= -5000.;
else

Oij[p][q]=l/(l+ Math.exp(-net[q]));

}

for(p=0; p<NUH[NHL+1]; p++) /* V */
{
xnse=Desired[i][p]-Oij[NHL+1][p];
xNSE += (xnse*xnse);

NSE += xNSE;
NSE /= (2*NSAMP);
return(NSE);

}

static double CalGrad(double[] W, double[] d, double a)
{

int i,j,p,q,r,more,morew;
double[] net = new double[MAXOA*MAXIA];

93

double Oj,newslope;
double[] xDelW = new double[MAXW];

for(j=0; j<Ll; j++) /* V */

Weight[j] = W[j] + a*(d[j]);

gl[j]=0.0;

for(j=0; j<Ll; j++) /* V */
xDelW[j]=0.;

for(i=0; i<NSAMP; i++) /** tasked *
{

/** Forward process **/
for(p=0; p<NIA; p++) /* V */

Oij[0][p]=Sample[i][p];
morew=0;
for(p=1; p<NHL+2; p++)

for(q=0; q<NUH[p]; q++) /* V */

net[q]=0.0;
for(r=0; r<NUH[p-l]+l; r++)

{
for(q=0; q<NUH[p]; q++) /* V */

{
more= q*(NUH[p-l]+l)+r+morew;
net[q] += Weight[more]*Oij[p-1[r];

}

morew += WL[p-1];
for(q=0; q<NUH[p]; q++) /* V */

if(net[q] > fmax)
Oij [p] [q]= 5000.;
else if(net[q] < -fmax)
Oij[p][ql= -5000.;
else
Oij[p][q]=l/(l+ Math.exp(-net[q]));

/** Calculate system error **/

for(p=0; p<NUH[NHL+1]; p++) /* V */

Oj= Oij [NHL+l] [p];
Del[NHL+1][p]= (Desired[i][p]-j)*(1-j)*Oj;

}

for(p=NHL+l; p>=l; p--)

morew=0;
for(q=0; q<p-1; q++)

morew += WL[q];
for(q=0; q<(NUH[p-1]+1); q++)

Del[p-1[q]=0.0;

for(r=0; r<NUH[p]; r++) /* NV */

more=(NUH[p-1]+1)*r+q+morew;
xDelW[more] += (Del[p][r]*Oij[p-1][q]);

Del[p-1][q] += (Del[p][r]*Weight[more]);

94

}
Del [p-1 [q] *= ((1-Oij [p-1] [q]) *Oij [p-1] [q]

}
}

}

/ Update weight & total system error *
for(j=0; j<Ll; j++) /* V */

gl[j] += xDelW[j];

newslope=0;
for(j=0; j<Ll; j++)
newslope -= gl[j]*d[j];

return (newslope);
}

static void Modifiedsearch1 (double[] W, double[] delw)
{

int i,k,cnt,lmt,goon,ok;
double faG,fal,fa2,dt;
double aO,al,a2;
double p,q,r,t,ee,eps,fx,fv,fu,fw,u,v,w,x,c,a,b,d=O,tol,m,t2;

cnt=O;
lmt=0;
goon=l;
dt=Delta;

k=1;
aO=0;
al=dt;
a2=al+Gl*dt;
fa0=System error(W,delw,aO);
fal=Systemerror(W,delw,al);

if(fal > faG)
{
while((fal >fa0) && (lmt <=5))

{
dt *= 0.6;
al=dt;
fal=System error(W,delw,al);
lmt++;
cnt++;

}

a2=2*al;
fa2=Systemerror(W,delw,a2);

if((fa0<fal)&&(fa0<fa2))
ao=-0.0011;
NSE=Systemerror(W,delw,ao);
goon=0;

}
if((fa0<fal)&&(fa2<fa0))

ao=a2;
NSE=System error(W,delw,ao);
goon=0;

if(fa0>fal)

fa2=Systemerror(W,delw,a2);
dt*=100;

95

while((!((faO>=fal) && (fa2>fal)) && k<=20)

k++;
aO=al; al=a2; faO=fal; fal=fa2;
a2+= Math.pow(Gl,k)*dt;
fa2=System-error(W,delw,a2);
cnt++;

if(k==21) {
ao=a2; /* here!! error!! */
NSE=Systemerror(W,delw,ao);
goon=O;

if(goon==1)

{
t=.000001;
eps=e;
a=aO; b=a2;
c=0.381966;
v=w=x=a+c*(b-a);
ee=0;
fv=fw=fx=Systemerror(W,delw,x);
m=0.5*(a+b);
tol=eps*x+t;
t2=2*tol;
ok=1;
while((Math.abs(x-m) > (t2-0.5*(b-a))) && ok==1)

p=q=r=0;
if(Math.abs(ee) > tol)

r= (x-w)*(fx-fv);

q= (x-v)*(fx-fw);

p=(x-v)*q-(x-w)*r;
q=2*(q-r);
if (q > 0)

p =-P;
else

q =-q;
r=ee; ee=d;

if((Math.abs(p) < Math.abs(0.5*q*r)) && (p < q*(a-x)) && (p <q* (b-
x)))

d=p/q;
u=x+d;
if(((u-a) <
d= ((x < m)

else
{

ee=((x < m)

d=c*ee;

t2) 11 ((b-u) < t2))
? tol : (-tol));

? (b-x) : (a-x));

if(Math.abs(d) >= tol)
u=x+d;

else {
if (d > 0)

u = x+tol;
else

u = x-tol;

96

}

fu=Systemerror(W,delw,u);
if(fu <= fx)

if (u < x)

b x;
else

a x;

V=W;
W=X;
X=U;

}
else

fv=fw;
fw=fx;
fx=fu;

if (u < x
a = u;

else

if((fu <= fw) |

v=w; fv=fw;
w=u; fw=fu;

}
else if((fu <= fv)

v=u; fv=fu;

}

(w ==x))

C1 V==x) 11 V=w))

m=0.5*(a+b);
tol=eps*Math.abs(x)+t;
t2=2*tol;
cnt++;

}
if(x<=0.001) {

ao=0.001;
NSE=System error(W,delw,ao);

}
else

ao=x;
NSE=System error(W,delw,ao);

}
}

if(NSE<MiNSE) {
x=(MiNSE-NSE)*1000;
x=x*NSAMP*2;
if(x>0.001) {

for(i=0;i<Ll;i++)
Weightp[i]=Weight[i];

MiNSE=NSE;
Nokey=0;

}
}

}

static void parallelDoBP(int from ,int to) /*310*/

{
int i,j,p,q,r,more,morew;
int noksam; /* jan */
double ei; /* jan */

97

}

)

double[] net = new double[MAXOA*MAXIA];
double Oj;
double[] xDelW = new double[MAXW];
double xNSE,xnse;

for(j=0; j<Ll; j++) /* V */

gl[j=0.0;
NSE=0.;
for(j=0; j<Ll; j++) /* V
xDelW[j]=0.;

xNSE=0.;
check=0; /* jan */
noksam=0; /* jan */

for(i=from; i<to; i++) / tasked **/

/** Forward process **/
for(p=0; p<NIA; p++) /* V */

Oij [0] [p]=Sample[i] [p]
morew=0;
for(p=1; p<NHL+2; p++)

for(q=0; q<NUH[p]; q++) /* V */
net[q]=0.0;

for(r=0; r<NUH[p-l]+l; r++)

for(q=0; q<NUH[p]; q++) /* V */

more= q*(NUH[p-1]+1)+r+morew;
net[q] += Weight[more1*Oij[p-1][ri;

}
}

morew += WL[p-1];
for(q=0; q<NUH[p]; q++) /* V */

if(net[q] > fmax)
Oij [p] [q] = 5000.;

else if(net[q] < -fmax)
Oij [p] [q] = -5000.

else
Oij[p][q]=1/(1+ Math.exp((double)-net[q]));

}
}

/** Calculate system error **/
ei=0; /* jan */
for(p=0; p<NUH[NHL+1]; p++) /* V */

xnse=Math.abs(Desired[i][p]-Oij[NHL+1][p]);
xNSE += (xnse*xnse);

ei=ei+(xnse*xnse); /* jan */
Oj= Oij [NHL+l] [p];
Del[NHL+1][p]= (Desired[i][p]-Oj)*(1-Oj)*Oj;

}
if(ei>MPE*MPE) /* jan */

noksam=noksam+l; /* jan */
for(p=NHL+l; p>=l; p--)

{
morew=0;
for(q=0; q<p-1; q++)

morew += WL[q];

for(q=0; q<(NUH[p-1]+1); q++)

{
Del[p-l][q]=0.0;
for(r=0; r<NUH[p]; r++) /* NV */

98

{
more=(NUH[p-1]+1)*r+q+morew;
xDelW[more] += (Del[p][r]*Oij[p-i][q]);
Del[p-i][q] += (Del[p][r]*Weight[more]);

}
Del[p-1][q] *= ((l-Oij[p-i][q])*Oij[p-i][q]);

I}

if(noksam>0) /* jan */
check=l; /* jan */

/** Update weight & total system error **/
for(j=0; j<Ll; j++) /* V

gl[j] += xDelW[j];
NSE += xNSE;

static void BPDoBP(int from ,int to) /*310*/

int i,j,p,q,r,more,morew;
int noksam; /* jan */
double ei; /* jan */
double[] net = new double[MAXOA*MAXIA];
double Oj;
double[] xDelW = new double[MAXW];
double[] DelW = new double[MAXW];
double xnse,LR;

LR=LRInit;

for(j=0; j<Ll; j++) /* V */
DelW[j]=0.0;

do

for(j=0; j<Ll; j++) /* V */

xDelW[j]=0.;
NSE=0.;
check=0; /* jan */
noksam=0; /* jan */
for(i=from; i<to; i++) /** tasked **/

{
/** Forward process **/

for(p=0; p<NIA; p++) /* V */

Oij[0][p]=Sample[i][p];
morew=0;
for(p=l; p<NHL+2; p++)

for(q=0; q<NUH[p]; q++) /* V */

net[q]=0.0;
for(r=0; r<NUH[p-1]+1; r++)

for(q=0; q<NUH[p]; q++) /* V */

{
more= q*(NUH[p-1]+1)+r+morew;
net[q] += Weight[more]*Oij[p-1][r];

}

morew += WL[p-l];

for(q=0; q<NUH[p]; q++) /* V */

{
if(net[q] > fmax)

Oij [p] [q] = 5000.;

99

else if(net[q] < -fmax)
Oij[p][q]= -5000.;

else

oij[p][q]=l/(1+ Math.exp((double)-net[q]));

/** Calculate system error *
ei=0; /* jan */
for(p=0; p<NUH[NHL+1]; p++) /* V */

{
xnse=Math.abs(Desired[i][p]-Oij[NHL+1][p]);
NSE += (xnse*xnse);

ei=ei+(xnse*xnse); /* jan */
Oj= Oij [NHL+l] [p];
Del[NHL+1][p]= (Desired[i][p]-Oj)*(-Oj)*Oj;

if(ei>MPE*MPE) /* jan */
noksam=noksam+l; /* jan */

for(p=NHL+l; p>=l; p--)

morew=0;
for(q=0; q<p-1; q++)

morew += WL[q];
for(q=0; q<(NUH[p-l]+l); q++)
{

Del [p-1] [q]=0.0;
for(r=0; r<NUH[p]; r++) /* NV */

more=(NUH[p-1]+1)*r+q+morew;
xDelW[more] += (Del[p][r]*Oij[p-1][q]);
Del[p-1][q] += (Del[p][r]*Weight[more]);

Del[p-1][q] *= ((1-Oij[p-1][q])*Oij[p-1][q]);

}

if(noksam>0) /* jan */
check=l; /* jan */

** Update weight & total system error *
for(j=0; j<Ll; j++)
{

Weight[jI += (LR*xDelW[j]+MR*DelW[j]);
DelW[j]=xDelW[j];

NoIter++;
NSE /= (2*NSAMP);

if((plot==l) && ((NoIter % 10)==0)){

if(saveerr==l)(
try {

writeErr("beam.err");

catch(IOException e){

if((NoIter >= MaxIter) && (NSE > MSE))

100

MaxIter = 2 * MaxIter;

System.out.println(" MaxIter *= 2; ");
}

}while((NoIter <= MaxIter) && (NSE >= MSE));
}

static void writeErr(String fileName) throws IOException {
Writer writer = new FileWriter(fileName);
PrintWriter printWriter = new PrintWriter(writer);
printWriter.print(NoIter + " " + NSE + "

printWriter.flush();
printWriter.close(;

}

static void CGDoBP(int from ,int to) /*310*/
{

int j,iter,Stop;
double temp,templ,temp2;

NoIter=0;
for(j=0; j<Ll; j++)
gO[j]=0.0;

parallelDoBP(from,to);
if((plot==l) && ((NoIter % 10)==0)){

System.out.println(" NoIter= " + NoIter + " NSE= " + NSE);

if(save-err==l){

}
do

temp=0;
parallel DoBP(from,to);
Modifiedsearchjl(Weight,gl);
for(j=0; j<Ll; j++) /* V */

{
d[j]=gl[jl; /* -dW*/

g0[j]=gl[j];
Weight[j] += ao*d[j];

temp += gl[j]*gl[j];

}
NoIter++;

iter=0; Stop=0;
do{

parallelDoBP(from,to);
templ=0;
temp2=0;
for(j=0; j<Ll; j++) /* V */

{

templ += gl[j]*gl[j];
temp2 += gl[j]*g0[j];

gO[j]=gl[j];
}
if(Math.sqrt(templ) > Eplson)

bk= (templ-temp2)/temp;
bk=((bk > 0) ? bk : 0);
temp=templ;
for(j=0; j<Ll; j++) /* V */

d[j]= gl[j]+bk*d[j];
Modifiedsearch l(Weight,d);
for(j=0; j<Ll; j++) /* V */

Weight[j] += ao*d[j];

101

}
else Stop=l;
NoIter++;
iter++;

if((plot==l) && ((NoIter % 10)==0))
System.out.println(" NoIter= " + NoIter + " NSE= " + NSE);

}while((iter <= Li) && (NoIter <= MaxIter) && (NSE >= MSE) && (Stop !=l));

}while((NoIter <= MaxIter) && (NSE >= MSE) && (Stop !=l));

}

static int backpropagation(int from,int to)

int i,j,p;
double rel-error;
NoIter=0; /*400*/
step = 1;

switch(algo)

case 0:
System.out.println("Backpropagation (BP) Learning Algorithm. \n");
BPDoBP(from,to);
break;

case 1:
CGDoBP(from,to);
break;

case 2:
CGDoBP(from,to);
break;

default:
break;

}
System.out.println("finish!");
System.out.println("Total number of iteration is " + NoIter);
System.out.println("Normalized system error is " + NSE);

for(i=from; i<to; i++)
{

forward(i);
for(p=O; p<NUH[NHL+l]; p++)

Output[i][p]=Oij[NHL+1][p];

for(i=0; i<NSAMP; i++)
{

for(j=0; j<NOA; j++)

relerror=Math.abs((Output[i][j]-Desired[i][j])/Desired[i][j])*100;
}

return(step);
}

static void ONetArch(int save-arc)

if(savearc ==
try {

writeArc("beam.arc");

}
catch(IOException e) {
}

102

}
}

static void writeArc(String fileName) throws IOException {
Writer writer = new FileWriter(fileName);
PrintWriter printWriter = new PrintWriter(writer);

printWriter.print(NHL + "\n");
for(int i=1; i<NHL+l; i++){

printWriter.print(NUH[i] +
}

printWriter.flush();
printWriter.close();

}

static void OWeight(int savew)

{
if(save-w

try {

//writeWeight("beam.w");
writeWeight(fw);

catch(IOException e)(

}
}

}

static void writeWeight(String fileName) throws IOException {
Writer writer = new FileWriter(fileName);
PrintWriter printWriter = new PrintWriter(writer);

for(int i=0; i<Ll; i++){
printWriter.print(Weightp[i] +

}

printWriter.flush();
printWriter.close);

}

static void learning()

{
initdomain();
initneural();
if(algo==O)

initlearningBP);
else if((algo==1) 11 (algo==2))

initlearningCG);

init-weight();

/* save system error as a file */
save_err=l;
ferr = "beam.err";
System.out.println("Save system error in file: beam.err);

/* show system error on line */
plot=l;
System.out.println("on line show the learning process.");

/* save arc as a file */
savearc=1;
farc = "beam.arc";

103

System.out.println("Save the topology of the network in file: beam.arc");

/* asve weights as a file */
save-w=l;
System.out.println("Save the weights of the network in file: " + fw);
step=backpropagation(0,NSAMP);
if(step==2)
System.out.println("Max number of iteration reached -- failure to learn");
ONetArch(save-arc);
OWeight(save-w);

}

static void performance()

{
int i,j,p,save;
double relerror;

initdomain(;
initneural();
init weight();

/* save computed results as a file */
saveres=l;
if (isDisplay-res == false){

fres = "beam.res";
} else if (isDisplayres == true)(

fres = "display.res";

System.out.println("Display the analysis results!");

for(i=0; i<NSAMP; i++)
{

forward(i);
for(p=0; p<NUH[NHL+1]; p++)

Output[i] [p]=Oij [NHL+l] [p]

for(i=O; i<NSAMP; i++)
{

for(j=0; j<NOA; j++)
{

relerror=Math.abs((Output[i][j]-Desired[i][jI)/Desired[i][j1)*100;
System.out.println("Output " + (j+l) + " Computed= " + Output[i][j] +

Desired= " + Desired[i][j] + " Error= " +
rel-error);

}

if(save-res==l){
try (

writeRes(fres);

}
catch(IOException e)(

}

static void writeRes(String fileName) throws IOException {
Writer writer = new FileWriter(fileName);
PrintWriter printWriter = new PrintWriter(writer);

for(int i=0; i<NSAMP; i++){
for(int j=0; j<NOA; j++){

printWriter.print(Desired[i][j] + + Output[i][j] + "\n");

104

}

printWriter.flush();
printWriter.close(;

}

static void readdata()

{
algo = (int) new Double(algoField.getText()).doubleValue(;
NIA = (int) new Double(NIAField.getText()).doubleValue(;
NOA = (int) new Double(NOA Field.getText().doubleValue);
NSAMP = (int) new Double(NSAMPField.getText()).doubleValue);
NHL = (int) new Double(NHLField.getText()).doubleValue);
NUH[l] = (int) new Double(NUHlField.getText().doubleValue(;
NUH[2] = (int) new Double(NUH2_Field.getText()).doubleValue);
NUH[3] = (int) new Double(NUH3_Field.getText().doubleValue(;
NUH[4] = (int) new Double(NUH4_Field.getText().doubleValue);
NUH[5] = (int) new Double (NUH5_Field.getText()).doubleValue();
LRInit = new Double(LR_InitField.getText().doubleValue);
MR = new Double(MRField.getText()).doubleValue(;
MSE = new Double(MSEField.getText().doubleValue(;
MaxIter = new Double(MaxIterField.getText()).doubleValue(;

fpt = input-fileField.getText(;
fw = weight-fileField.getText(;

}

public static void main(String[l] args)
{

isDisplay-res = false;
isInput2 = false;
isNetwork true;
isDisplay = false;

AnimationPanel myAnimationPanel = new AnimationPanel();
myAnimationPanel.setBackground(Color.white);

// Create a window and set its layout manager to be BorderLayout.
JFrame frame = new JFrame("Neural Network Analysis Program");
frame.setSize(900,530);
Container cf = frame.getContentPane();
cf.setLayout(new BorderLayout());

// Create two panels and set its layout manager to be FlowLayout.
JPanel left-panel = new JPanel();
leftpanel. setLayout (new FlowLayout());
JPanel north-panel_1 = new JPanel();
north-panel-l. setLayout (new GridLayout (0,1));
JPanel north-panel_2 = new JPanel();
north-panel_2.setLayout(new GridLayout(0,1));

// Create two analysis buttons
JButton learningButton = new JButton("Learning");
JButton analysisButton = new JButton("Analysis");
JButton inputButton = new JButton("Input");
JButton displayButton = new JButton("Display");
JButton input2Button = new JButton("Input2");
JButton display2Button = new JButton("Display2");

// Add actionlistener to displayButton
DisplayListener displayListener = new DisplayListener("Display");
inputButton.addActionListener(displayListener);
displayButton.addActionListener(myAnimationPanel);

105

input2Button.addActionListener(displayListener);
display2Button.addActionListener(myAnimationPanel);

// Add actionlistener to buttons
learningButton.addActionListener(myAnimationPanel);
analysisButton.addActionListener(myAnimationPanel);

// Add Labels
input_fileLabel = new JLabel("Input file");
weight_fileLabel = new JLabel("Weight file");
algo_Label new JLabel("Algorithm");
NIALabel = new JLabel("Number of Input");
NOALabel = new JLabel("Number of Output");
NSAMPLabel = new JLabel("Number of samples");
NHLLabel = new JLabel("Number of hidden layers");
NUHlLabel = new JLabel("Nodes of 1st hidden layers");
NUH2_Label new JLabel("Nodes of 2nd hidden layers");
NUH3_Label new JLabel("Nodes of 3rd hidden layers");
NUH4_Label = new JLabel("Nodes of 4th hidden layers");
NUH5_Label new JLabel("Nodes of 5th hidden layers");
LRInitLabel = new JLabel("Learning rate");
MRLabel = new JLabel("Momentum ratio");
MSELabel new JLabel("Max allowed system error");
MaxIterLabel = new JLabel("Max allowed interations");

// Add TextFields
inputfileField = new JTextField("beam3.txt", 4);
weight_fileField new JTextField("beam3.w", 4);
algo_Field = new JTextField("1", 4);
NIAField = new JTextField("3", 4);
NOAField = new JTextField("l", 4);
NSAMPField = new JTextField("50", 4);
NHLField = new JTextField("l", 4);
NUHlField = new JTextField("5", 4);
NUH2_Field new JTextField("O", 4);
NUH3_Field new JTextField("O", 4);
NUH4_Field = new JTextField("O", 4);
NUH5_Field = new JTextField("O", 4);
LRInitField = new JTextField("0.9", 4);
MRField = new JTextField("0.95", 4);
MSEField = new JTextField("0.0001", 4);
MaxIterField = new JTextField("1000", 4);

// Add buttons to north-panel
north-panell.add(input_file_Label);
north-panel_2.add(input_file_Field);
north-panell.add(weightfileLabel);
north-panel_2.add(weightfileField);
north-panell.add(algoLabel);
north-panel_2.add(algoField);
north-panell .add(NIALabel);
north-panel_2.add(NIAField);
north-panell.add(NOALabel);
north-panel_2.add(NOA Field);
north-panell.add(NSAMPLabel);
north-panel_2.add(NSAMP Field);
north-panell.add(NHLLabel);
north-panel_2.add(NHL Field);
north-panell.add(NUH1_Label);
north-panel_2.add(NUHlField);
north-panell.add(NUH2_Label);

106

north-panel_2.add(NUH2_Field);
north-panell.add(NUH3_Label);
north-panel_2.add(NUH3_Field);
north-panell.add(NUH4_Label);
north-panel_2.add(NUH4_Field);
north-panel-l.add(LRInitLabel);
north-panel_2.add(LRInitField);
north-panel-l.add(MRLabel);
north-panel_2.add(MR_Field);
north-panell.add(MSELabel);
north-panel-2.add(MSE_Field);
north-panell.add(MaxIterLabel);
north-panel-2.add(MaxIterField);
north-panell.add(learningButton);
north-panel_2.add(analysisButton);
north-panel_1.add(inputButton);
north-panel_2.add(displayButton);
north-panell.add(input2Button);
north-panel_2.add(display2Button);

// Add to left-panel
left_panel.add(north-panel-l);
let tpanel.add(north-panel_2);

System.out.println("Artificial Neural Network (ANN) Learning Model)");

//Create MenuBar for the window frame
MenuBar menuBar = new MenuBar();
Menu menuFile = new Menu();
menuFile.setLabel("File");
MenuItem menuItemOpen = new MenuItem);
menuItemOpen.setLabel("Open Learning File");
menuFile.add(menuItemOpen);
menuBar.add(menuFile);
frame.setMenuBar(menuBar);

// Add panels to the frame
cf.add(left-panel, BorderLayout.WEST);
cf.add(myAnimationPanel, BorderLayout.CENTER);

frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);

}

// Make the frame visible after adding the components to it.
frame.setVisible(true);

} // end of main()
} // end of public class ANN

class DisplayListener extends JFrame implements ActionListener
{

JTextField massField;
JDialog dialog = new JDialog(this, "Input Dialog");

public DisplayListener(String title)
super(title);

public void actionPerformed(ActionEvent e)

if (e.getActionCommand().equals("Input"))
Ann.isInput2 = false;

107

// create three text fields
massField = new JTextField("0.39904", 10);

//Layout the text fields in a panel.
JPanel fieldPane = new JPanel();
fieldPane.setLayout(new GridLayout(0, 1));
fieldPane.add(massField);

//Create three labels.
JLabel massLabel = new JLabel("End displacement =

//Tell accessibility tools about label/textfield pairs.
massLabel.setLabelFor(massField);

//Layout the labels in a panel.
JPanel labelPane = new JPanel();
labelPane.setLayout(new GridLayout(0, 1));
labelPane.add(massLabel);

//create a ok button
JButton p_ok button = new JButton("OK");
p_ok button.setPreferredSize(new Dimension(50,40));
MyPropOkListener myPropOkListener = new MyPropOkListener(;
p-ok-button.addActionListener(myPropOkListener);

// add panels to properties dialog
dialog.getContentPane().add(labelPane, BorderLayout.WEST);
dialog.getContentPane().add(fieldPane, BorderLayout.CENTER);
dialog.getContentPane().add(pok-button, BorderLayout.SOUTH);

dialog.pack);
dialog.setVisible(true);

else if (e.getActionCommand().equals("Input2")) {
Ann.isInput2 = true;
// create three text fields
if (Ann.isInput2 == false){

massField = new JTextField("0.41227", 10);

else if (Ann.isInput2 == true){
massField = new JTextField("0.46168", 10);

//Layout the text fields in a panel.
JPanel fieldPane = new JPanel();
fieldPane.setLayout(new GridLayout(0, 1));
fieldPane.add(massField);

//Create three labels.
JLabel massLabel = new JLabel("End displacement

//Tell accessibility tools about label/textfield pairs.
massLabel.setLabelFor(massField);

//Layout the labels in a panel.
JPanel labelPane = new JPanel();
labelPane.setLayout(new GridLayout(0, 1));
labelPane.add(massLabel);

//create a ok button
JButton pok button = new JButton("OK");
p_ok-button.setPreferredSize(new Dimension(50,40));
MyPropOkListener myPropOkListener = new MyPropOkListener();

108

p-ok-button.addActionListener(myPropOkListener);

// add panels to properties dialog
dialog.getContentPane().add(labelPane, BorderLayout.WEST);
dialog.getContentPane().add(fieldPane, BorderLayout.CENTER);
dialog.getContentPane().add(p-ok-button, BorderLayout.SOUTH);
dialog.pack(;
dialog.setVisible(true);

}
}

class MyPropOkListener implements ActionListener
{

public void actionPerformed(ActionEvent e) {
if (e.getActionCommand().equals("OK"))

Ann.isDisplayres true;
Ann.readdata();
Ann.displacement = Double.parseDouble(massField.getText());
try {

writedisplay-file("beam.dis", Ann.displacement);
}
catch(IOException el){
}
Ann.NSAMP = 1;
Ann.fpt = "beam.dis";
Ann.task=1;
Ann.performance();

// read analysis result
try{

readDisplay("display.res");

}
catch (IOException e2){

}
dialog.hide(;

}

}

static void writedisplayfile(String fileName, double displacement) throws
IOException{

Writer writer = new FileWriter(fileName);
PrintWriter printWriter = new PrintWriter(writer);
if (Ann.isInput2 == false)(

printWriter.print(".11504 .13707 " + displacement + " 0.50");

else if (Ann.isInput2 == true)(
printWriter.print(".00143 .00674 .13659 .16115 " + displacement +

0.50 0.50");

}
printWriter.flush();
printWriter.close(;

}

static void readDisplay(String fileName) throws IOException
{

Reader fileReader = new FileReader(fileName);
BufferedReader bufferedReader = new BufferedReader(fileReader);
String nextLine;

nextLine = bufferedReader.readLine();
StringTokenizer tokenizer = new StringTokenizer(nextLine);

109

// 2 times, because the result is the second double value in the first
line

Ann.display-reduction = Double.parseDouble(tokenizer.nextToken());
Ann.display-reduction = Double.parseDouble(tokenizer.nextToken());

if (Ann.isInput2 == true) {
nextLine = bufferedReader.readLine();
tokenizer new StringTokenizer(nextLine);
// 2 times, because the result is the second double value in the

first line
Ann.displayreduction2 = Double.parseDouble(tokenizer.nextToken());
Ann.displayreduction2 = Double.parseDouble(tokenizer.nextToken());

System.out.println(Ann.display reduction + Ann.display reduction
System.out.println("Ann.displayreduction2 = + Ann.display-reduction2);
bufferedReader.close(;

}// class DisplayListener

// AnimationPanel.java
import javax.swing.*;
import java.text.*;
import java.awt.*;
import java.awt.event.*;

class AnimationPanel extends JPanel implements ActionListener

AnimationPanel() {
setBackground(Color.white);

}

public void paintComponent(Graphics g) {
super.paintComponent(g);
g.setColor(Color.black);

if (Ann.isNetwork == true) {
//NIA
int x=50, y=50;
for (int i=O; i<Ann.NIA; i++){

g.drawArc(x, y+(i*30), 20, 20, 0, 360);
for (int j=0; j<Ann.NUH[1]; j++)(

g.drawLine(x+20, y+(i*30)+8, x+100, y+(i*30) + 30*(j-i)+8);

//NHL
for (int i=O; i<Ann.NHL; i++){

x = 50 + 100*(i+l); y = 50;
for (int j=0; j<Ann.NUH[i+l] ; j++){

g.drawArc(x, y+(j*30), 20, 20, 0, 360);
int repeat;
if (Ann.NUH[i+2] == 0)

repeat= Ann.NOA;
else

repeat = Ann.NUH[i+21;
for (int k=0; k<repeat; k++){

g.drawLine(x+20, y+(j*30)+8, x+100, y+(j*30)+30*(k-j)+8);
}

}

110

// NOA
x = 50 + 100*(Ann.NHL+1);
y = 50;
for (int i=0; i<Ann.NOA; i++)(

g.drawArc(x, y+(i*30), 20, 20, 0, 360);
}

g.drawString("n=" + Ann.NIA, 50, 40);
for (int i=0; i<Ann.NHL ; i++){

g.drawString("n=" + Ann.NUH[i+1], 50 + 100*(i+l), 40);
}
g.drawString("n=" + Ann.NOA, 50 + 100*(Ann.NHL+1), 40);

else if (Ann.isDisplay == true) {
g.setColor(Color.black);
g.drawLine(100,190,100,210);

// draw blue displacement line
double scale = 0.000001;
g.setColor(Color.blue);
for (int i=O; i<420; i++){

g.drawLine(100+i, (int) (200 + i*i*i * scale),
100+i+1, (int) (200 + (i+l)*(i+l)*(i+l) * scale)

}

// draw black line
g.setColor(Color.black);
g.drawLine(100,200,300,200);
g.setColor(Color.red);
g.drawLine(300,200,320,200);
g.setColor(Color.black);
g.drawLine(320,200,520,200);

// display crack reduction
g.setColor(Color.red);
DecimalFormat df = new DecimalFormat("0.##");
g.drawString(df.format(Ann.display-reduction), 300, 190);

}
else if (Ann.isDisplay2 == true)

g.setColor(Color.black);
g.drawLine(100,190,100,210);

// draw blue displacement line
double scale = 0.000001;
g.setColor(Color.blue);
for (int i=0; i<420; i++){

g.drawLine(100+i, (int) (200 + i*i*i * scale),
100+i+1, (int) (200 + (i+l)*(i+l)*(i+l) * scale));

}

// draw black/red line
g.setColor(Color.black);
g.drawLine(100,200,120,200);
g.setColor(Color.red);
g.drawLine(120,200,140,200);
g.setColor(Color.black);
g.drawLine(140,200,300,200);
g.setColor(Color.red);
g.drawLine(300,200,320,200);
g.setColor(Color.black);
g.drawLine(320,200,520,200);

// display crack reduction

111

g.setColor(Color.red);
DecimalFormat df = new DecimalFormat("0.##");
g.drawString(df.format(Ann.display-reduction), 300, 190);
g.drawString(df.format(Ann.display-reduction2), 120, 190);

public void actionPerformed(ActionEvent e) {
if (e.getActionCommand() .equals("Learning"))

Ann.isDisplay-res = false;
Ann.isNetwork = true;
Ann.isDisplay = false;
Ann.isDisplay2 = false;
Ann.readdata();
Ann. task=0;
Ann. learning ;
System. out . println ("Learning . . . ");
repaint ();

else if (e.getActionCommand().equals("Analysis")) {
Ann.isDisplay-res = false;
Ann.isNetwork = true;
Ann.isDisplay = false;
Ann.isDisplay2 = false;
Ann.readdata();
Ann. task=l;
Ann.performance();
System.out.println("Analysis ... ");
repaint (;

}
else if (e.getActionCommand() .equals("Display")) {

Ann.isNetwork = false;
Ann.isDisplay = true;
Ann.isDisplay2 = false;
System.out.println("Display...");
repaint (;

else if (e.getActionCommand().equals("Display2"))
Ann.isNetwork = false;
Ann.isDisplay = false;
Ann.isDisplay2 = true;
System. out .println("Display2 . . . ");
repaint (;

System.out.println("Finished...");

} //class AnimationPanel

// beam3.txt
.11504 .13641 .39845 .99
.11504 .13641 .39859 .98
.11504.13642 .39874 .97
.11504 .13643 .39889 .96
.11504.13644.39904 .95
.11504.13644.39920.94
.11504 .13645 .39936 .93
.11504.13646 .39952 .92
.11504.13647 .39969 .91
.11504.13647 .39986 .90
.11504.13648 .40003 .89
.11504.13649.40021 .88

112

.11504 .13650 .40039 .87

.11504.13651 .40058 .86

.11504.13652.40077.85

.11504 .13653 .40096 .84

.11504.13654.40116.83

.11504 .13655 .40137 .82

.11504.13656 .40158 .81

.11504.13657.40180.80

.11504.13658.40202.79

.11504 .13659 .40224 .78

.11504 .13660 .40248 .77

.11504.13661 .40271 .76

.11504 .13662 .40296 .75

.11504 .13664 .40321 .74

.11504 .13665 .40347 .73

.11504 .13666 .40373 .72

.11504.13668.40401.71

.11504 .13669 .40429 .70

.11504 .13670 .40458 .69

.11504.13672.40488.68

.11504.13673 .40518 .67

.11504 .13675 .40550 .66

.11504 .13676 .40582 .65

.11504.13678 .40616 .64

.11504.13680.40651 .63

.11504.13681 .40686.62

.11504.13683.40723.61

.11504 .13685 .40761 .60

.11504.13687.40801.59

.11504.13689.40842.58

.11504 .13691 .40884 .57

.11504 .13693 .40928 .56

.11504.13695.40973.55

.11504.13697.41020.54

.11504 .13700 .41069 .53

.11504 .13702 .41119 .52
.11504.13705 .41172.51
.11504.13707 .41227 .50

// beam4.txt
.00143 .00552 .11617 .13770 .40164 .95 .95
.00143 .00552 .11617 .13774 .40246 .95 .90
.00143 .00552 .11617 .13779 .40337 .95 .85
.00143 .00552.11617.13784.40440 .95 .80
.00143 .00552 .11617 .13789 .40556 .95 .75
.00143 .00552 .11617 .13796 .40689 .95 .70
.00143 .00552 .11617 .13803 .40842 .95 .65
.00143 .00552 .11617 .13812 .41021 .95 .60
.00143 .00552 .11617 .13822 .41233 .95 .55
.00143 .00552 .11617 .13834 .41487 .95 .50
.00143 .00560 .11743 .13911 .40453 .90 .95
.00143 .00560 .11743 .13915 .40535 .90 .90
.00143 .00560 .11743 .13919 .40626 .90 .85
.00143 .00560 .11743 .13924 .40729 .90 .80
.00143 .00560 .11743 .13930 .40845 .90 .75
.00143 .00560 .11743 .13936 .40978 .90 .70
.00143 .00560 .11743 .13944 .41131 .90 .65
.00143 .00560.11743 .13953 .41310.90 .60
.00143 .00560 .11743 .13963 .41522 .90 .55
.00143 .00560 .11743 .13975 .41776 .90 .50
.00143 .00568 .11884 .14068 .40776 .85 .95
.00143 .00568 .11884 .14072 .40858 .85 .90

113

.00143 .00568 .11884 .14077 .40949 .85 .85

.00143 .00568 .11884 .14082 .41052 .85 .80

.00143 .00568.11884.14087 .41168 .85 .75

.00143 .00568.11884.14094.41301 .85 .70

.00143 .00568 .11884 .14101 .41454 .85 .65

.00143 .00568 .11884.14110.41633 .85 .60

.00143.00568.11884.14120.41845.85.55

.00143 .00568 .11884.14132 .42099 .85 .50

.00143 .00578 .12043 .14245 .41139 .80 .95

.00143 .00578 .12043 .14249 .41221 .80 .90

.00143 .00578 .12043 .14254 .41312 .80 .85

.00143 .00578 .12043 .14259 .41415 .80 .80

.00143 .00578 .12043 .14264 .41531 .80 .75

.00143 .00578 .12043 .14271 .41664 .80 .70

.00143 .00578 .12043 .14278 .41818 .80 .65

.00143 .00578 .12043 .14287 .41997 .80 .60

.00143 .00578 .12043 .14297 .42208 .80 .55

.00143 .00578 .12043 .14309 .42462 .80 .50

.00143 .00588 .12222 .14446 .41551 .75 .95

.00143 .00588 .12222 .14450 .41633 .75 .90

.00143 .00588 .12222 .14454 .41724 .75 .85

.00143 .00588 .12222 .14459 .41827 .75 .80

.00143 .00588 .12222 .14465 .41943 .75 .75

.00143 .00588 .12222 .14472 .42076 .75 .70

.00143 .00588 .12222 .14479 .42229 .75 .65

.00143 .00588 .12222 .14488 .42408 .75 .60

.00143 .00588 .12222 .14498 .42620 .75 .55

.00143 .00588 .12222 .14510 .42874 .75 .50

.00143 .00600 .12427 .14675 .42022 .70 .95

.00143 .00600 .12427 .14679 .42103 .70 .90

.00143 .00600 .12427 .14684 .42195 .70 .85
.00143.00600.12427.14689.42297.70.80
.00143 .00600 .12427 .14694 .42414 .70 .75
.00143.00600.12427.14701.42547.70.70
.00143 .00600 .12427 .14708 .42700.70 .65
.00143 .00600 .12427 .14717 .42879 .70 .60
.00143 .00600 .12427 .14727 .43091 .70 .55
.00143 .00600 .12427 .14739 .43344 .70 .50
.00143 .00615 .12664 .14940 .42565 .65 .95
.00143 .00615 .12664 .14944 .42646 .65 .90
.00143 .00615 .12664 .14948 .42738 .65 .85
.00143 .00615 .12664 .14953 .42840 .65 .80
.00143 .00615 .12664 .14959 .42957 .65 .75
.00143.00615.12664.14965.43090.65.70
.00143 .00615 .12664 .14973 .43243 .65 .65
.00143 .00615 .12664.14981 .43422 .65 .60
.00143.00615.12664.14992.43633.65.55
.00143.00615.12664.15004.43887.65.50
.00143 .00631 .12940 .15249 .43198 .60 .95
.00143 .00631 .12940 .15253 .43280 .60 .90
.00143.00631.12940.15257.43371.60.85
.00143 .00631 .12940.15262.43474.60 .80
.00143 .00631 .12940 .15268 .43590 .60 .75
.00143.00631 .12940.15274.43723.60.70
.00143 .00631 .12940 .15282 .43876 .60 .65
.00143.00631.12940.15290.44055.60.60
.00143.00631 .12940.15300.44267.60.55
.00143 .00631 .12940 .15313 .44521 .60 .50
.00143.00650.13267.15614.43947.55.95
.00143 .00650 .13267 .15617 .44028 .55 .90
.00143 .00650 .13267 .15622 .44120 .55 .85
.00143 .00650 .13267 .15627 .44222 .55 .80

114

.00143

.00143

.00143

.00143

.00143

.00143

.00143

.00143

.00143

.00143

.00143

.00143

.00143

.00143
.00143
.00143

.00650 .13267

.00650 .13267

.00650 .13267

.00650 .13267

.00650 .13267

.00650 .13267

.00674 .13659

.00674 .13659

.00674 .13659

.00674 .13659

.00674 .13659

.00674 .13659

.00674 .13659

.00674 .13659

.00674 .13659

.00674 .13659

.15633

.15639

.15646

.15655

.15665

.15678

.16051

.16055

.16060

.16065

.16070

.16077

.16084

.16093

.16103

.16115

.44339 .55 .75

.44472 .55 .70

.44625 .55 .65

.44804 .55 .60

.45016 .55 .55

.45269 .55 .50

.44845 .50 .95

.44927 .50 .90

.45018 .50 .85

.45121 .50.80

.45237 .50 .75

.45370 .50 .70

.45523 .50 .65

.45702 .50 .60

.45914 .50 .55

.46168 .50 .50

115

