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ABSTRACT

Dell is in an industry that has very high variability and cyclical demand bursts.
Dell's business model, Build to Order and Just-In-Time manufacturing dictates that they
will always have variability in their production facilities. The purpose of this thesis is to
analyze the production system and come up with a headcount strategy to help Dell
manage these bursts of variability better within the Topfer Manufacturing Center.

Through the analysis completed at TMC, three objectives were accomplished.
First, an analysis of the constraints within the factory was completed to help Dell better
understand its manufacturing floor. The thesis identified the hard constraints in the
factory, as well as modeled the factory area capacities with respect to Headcount. Some
key learning from this analysis was discussed for each area as well.

After the capacities were determine for each area, the factory was looked at from a
macro-level. The constraint of the factory was identified through use of Block and Starve
time for each area. Further, the design of the factory was discussed and the best area for
the constraint to be located in the factory was identified. An optimization was then built
to statistically minimize the amount of Headcount needed on the production floor in order
to keep the constraint in the Build area and meet the demand of the factory.

Additionally, an analysis was completed to try to correlate non-production
outcomes, such as retention rate, quality, or injury rates to production factors. There was
high correlation between Quality, measured in defects, and production factors such as
Labor Hours, Day of the Week, Hour of the Day, and the Workweek. Finally,
recommendations were given with every step of the analysis that would enable Dell to get
better correlations using the data they have already, and methods that might be explored
to collect new information that might reduce variability of the models as well.

Thesis Supervisors:
Thomas Roemer
Assistant Professor of Operations Management

Roy E. Welsch
Professor of Statistics and Management Science
Director CCREMS
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1. THESIS DESCRIPTION

Dell Corporation is a leading computer manufacturer in an industry with a very

cyclical demand cycle. During a given quarter, 15% of the period's sales volume occurs

during the first month, 35% during the second, and about half of the quarter's sales

volume occurs during the third month. Dell's build-to-order business model introduces

additional variability into fulfillment projections. With a build-to-order business model,

Dell manufactures exactly what each customer orders on a given day, which makes

forecasting daily demand tenuous, and daily production variability high. With this

variability affecting production, managing headcount at Dell's build-to-order

manufacturing plant can be tricky. This thesis provides an analysis of the manufacturing

system at Dell's highest volume manufacturing factory, the Morton L. Topfer

Manufacturing Center, TMC, and creates a headcount-staffing optimization model for

predicting optimized staffing levels under conditions of high demand volatility. Little in-

depth analysis has been done on how headcount, or the number of people needed to work

within each production area on the floor, impacts production for the Topfer factory.

Several key factors affect a factory's ability to maximize production. Some of those

factors include, headcount levels, downtime, shift lengths, and even the time and day of

the week. This tool will help TMC to understand how to manage their headcount more

effectively and see what impact headcount has on quality, safety and retention rate of

employees in the factory.

The strategic objective of this thesis is to optimize the headcount-staffing level of

the TMC factory by evaluating its productivity, retention rate, safety, and quality

indicators. The first step in this process is to identify and characterize the different

constraints on the factory floor. By understanding and controlling where the constraint is

in the factory, we can identify the boundaries for productivity that can be achieved in the

factory, which will limit our productivity in our headcount optimization. Additionally,

this thesis will perform a productivity analysis of each area in the factory. By knowing

the constraints and productivity in each area, factory area burst capacities will be defined.

Finally, some analysis will be completed on how headcount and work schedules (regular,

overtime and weekend schedules included) impact productivity, quality, safety, and

retention of headcount. More strategically, this thesis will present a framework and tools

for use by Dell to optimize the headcount in each area of the TMC in order to maintain an
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efficient factory, with maximum throughput with minimal headcount. Ultimately, Dell

will be able to use this headcount optimization model to minimize costs in their

production facility through headcount reduction, without compromising meeting

production output targets.

1.1 Thesis Considerations
While headcount modeling is usually done on a global level, the scope of this thesis

is limited only to the impact of headcount at the TMC only. As mentioned, this analysis

will include modeling for Quality, Safety, Retention Rate, and Productivity trends. To

create such a model, a study on the factory will need to be completed to identify

operational bottlenecks and productivity factors. This optimization model will help Dell

to understand and predict headcount within the factory, and to better manage the

constraints within the factory through changing staffing levels in the different areas of the

factory. Additional analysis should be done to understand how work schedules impact

productivity. For example, differences in productivity between the normal, scheduled

work hours, and the overtime or weekend work hours affect productivity consistency. It

will be important to recognize these differences to ensure work schedules are developed

to ensure highest productivity of the employees. Finally, this study should present how a

new headcount management system should be implemented, and also identify any other

areas within the TMC where Dell should improve its headcount management.

1.2 Current Methodology for Headcount Forecasting
In order to fully understand the TMC headcount optimization problem, it is

necessary to review TMC's current headcount methodology and the shortfalls that are

inherent in it. Following is a summary of the headcount planning procedure used to

predict headcount in TMC over the three years prior to the headcount optimization

project.

1.2.1 Strategic Headcount Forecasting

Strategic headcount forecasting is a complex procedure that requires much work

and coordination between departments. Strategic headcount is forecasted on a quarterly

basis. A headcount-forecasting group meets midway through the fourth quarter to

forecast headcount for the next full year. These projections are then adjusted once a

quarter, until the fourth quarter of the ensuing year, when the cycle is repeated.

12



The forecasting model is first created as a generic "current" state headcount model

that measures productivity levels as simply boxes built per person for each area in the

plant at the time of the origination. In the current forecasting model, to calculate

productivity, engineering standards based on time studies taken on the production floor

are used to estimate production capability in each area. As improvement projects occur

in the factory, new time studies must be performed and the new productivity standards

are rolled into the headcount model. Many other factors that may be hard to predict, such

as downtime, fatigue, employee vacation time, training time which impacts floor

headcount, and personal absence time are approximated and factored into the headcount

forecast model as well. Using a standard spreadsheet, these factors are applied to

determine the long-range forecasting model for the factory. Finally, the headcount

forecasting group looks at all of the projects that are coming in the future quarter. These

projects could include productivity enhancements, new equipment or automation system

installs, changes to factory products, or floor layout changes. For each of these projects,

an estimate for productivity after the change is made is calculated. Then, an optimum

headcount level is defined for every different combination of changes that could occur

over the forecasted quarter that could be implemented concurrently on the floor. Each of

these model iterations must also have predicted output volumes and productivity

estimates for each week in the quarter.

While this system produces an adequate estimate of headcount, there are a few

shortfalls to this planning approach. The biggest shortfall is that some of the factors used

in the headcount model, such as factory downtime and engineering standards are goals

that are passed down from corporate headquarters and are not based strongly on historical

trends, but on idealized estimates of what the target should be over the forecasting period.

Another shortfall in this method is that the currently used headcount model and

spreadsheet have not been accurately adjusted over the past three years for productivity

enhancements, and are strongly based on approximate goals instead of historical trending.

While a headcount forecasting process is needed, the present approach can be better

optimized.

1.2.2 Tactical Headcount Forecasting

While strategic headcount forecasting planned headcount for the whole quarter,

tactical headcount is forecasting of headcount in each area for the upcoming week. To do

13



this, the staffing group in TMC utilizes the quarterly strategic headcount model that

matches the manufacturing center's current unique scenario of workweek and

implemented projects. Then, headcount is adjusted to account for demand differences

between the week's actual expected demand and the expected demand as predicted by the

strategic headcount model. The headcounts in each work area are in turn adjusted as

well. Dell relies heavily on staffing temporary employees to survive large swings in

demand. If Dell's full-time headcount cannot meet the demand, Dell relies on temporary

employees from an external company to supply sufficient headcount to meet Dell's

headcount needs. While temporary employee staff levels are projected through the

baseline headcount model, it is up to the staffing group to ensure that accurate headcount

resources are available each week to meet the demand volumes and compensate for leave

of absences or permanent staffing level fluctuations.

While the tactical headcount forecasting model projects headcount needed from

week to week, it too has some areas that could be improved. As with the strategic model,

one area needing improvement is that many of the factors (such as downtime, etc) are

based on corporate goals instead of actual data. Additionally, this model fails to

adequately track where temporary employees end up working. At the beginning of each

week, a temporary headcount level is requested for each work area, but as workers show

up, they may be redirected to other areas. By not accurately tracking where temporary

employees are working, it is hard to know how many workers are actually working in

each area. Consequently, this practice makes it very difficult to calculate "real" output

per worker data for each area for use in future model forecasting. Historical reporting

and headcount levels are not fully accurate.

One other theoretical problem with the tactical staffing model lies in the fact that

staffing is determined for each area in order to meet the demand of the factory. In itself,

this is not a problem. However, each factory area has some amount of variability inherent

in its production output per person, caused by downtime, breaks, or productivity lags that

exist from time to time. While the output per person within a given an area hovers

around a mean, it is really normally distributed around that mean, and on rare

occurrences, there could be large deviations from the expected output. This variability

can be seen in the following Figure of box plots for each area.
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Figure 1: Old Model Output by Area

The above graph presents the output in Units Per Hour for each area in the factory

line. As the product moves through the factory, it will proceed from Kitting through

Build/Bum, Boxing and finally Distribution in that order. Each of these areas will be

introduced more thoroughly in later sections in the paper. If the output goal for the

factory was to produce 1200 Units Per Hour, and the factory were to employ the same

amount of headcount every day over multiple days, the actual output per hour would

vary. The average output per hour may be 1200 units, as the factory would like, but the

range of output level would actually vary greatly by area, as demonstrated in the above

box plot. Hypothetically, for Kitting, if enough employees were hired to produce the

average 1200 units per hour, as Figure 1 asserts, over time the range of outcomes in the

Kitting area is generally between 1020 and 1300 Units Per Hour with that same

headcount. Figure 1 also illustrates that 50% of the points will fall within the boxed area,

or between 1150 and 1220 for the Kitting area in the above plot, while the remainder of

the output level with that same headcount will be outside of that range (between 1020 and

1150 and between 1220 and 1300 Units per Hour). Because the output for each of the

areas has some amount of variability, if the output target for each area is set to the output

target for the factory, the factory will most likely miss its output target. The theory of

constraints asserts that a factory will only produce goods as fast as its slowest area, so if a

single area misses its target, and each area depends on the input or output of the other

areas, the factory as a whole will miss its target more times than not. A new headcount
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model will need to consider this variability in its formulation and be created to ensure

that the factory can meet its output objective, despite the variability inherent in each area.

1.3 Thesis Strategy

The goals of the study at Dell were to better understand the factory floor and

implement a headcount model that will help the TMC factory better predict headcount

through swings in the demand that occur in this cyclical industry. Some shortcomings

existed in TMC's headcount planning, as already mentioned, that needed to be addressed.

To improve the headcount planning I implemented the following process.

The first step was to identify and understand key non-negotiable parameters that are

important in understanding the factory, which would influence the headcount

optimization model. These parameters include items such as the maximum capacities in

each work area, and factory-designed hard constraints. Once hard constraints had been

identified and quantified in the factory, productivity information was collected for each

area in the factory. The information was used to determine how each area's capacity

related to that area's headcount level.

After the constraints and productivity information were determined, a model for each

production area was built to predict the output expected given varying headcount levels. .

Once each area was analyzed, the overall factory was analyzed to determine the best

location for the constraint to be located as well. With that information, an overall model

was created to determine the appropriate headcount necessary in each area to meet the

output goals in the factory while keeping the constraint where it was designed.

After analyzing the results of the optimization model additional analysis was

performed to suggest ways that Dell could better control its manufacturing productivity,

and make its headcount modeling more accurate.

Finally, while productivity is the key ingredient in determining headcount, there are

other non-production factors, such as quality, safety, and employee retention rate, that

impact headcount strategy as well. After productivity was measured, some analysis was

needed to attempt to correlate quality, safety, and employee retention rate to the

production factors included in the headcount model.

1.4 Success Criteria

There are three major criteria for measuring the effectiveness of this thesis. First,

upon completion of this study, Dell should be able to better understand how headcount
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impacts its production facility by looking at the outcome of our analysis within each area.

Using this data, Dell should be able to understand where its bottlenecks are within the

TMC and should have an understanding of how to maintain designed constraints within

the factory. The second success criteria is that Dell should be able to apply a headcount

optimization model in its management schema to minimize headcount in the factory,

while still maintaining the factory production rates needed to meet customer demand each

day. This model should be validated against real production data. Finally, an analysis

should be completed that will try to correlate non-production factors, such as retention

rate, quality, or injury rates to production factors. With good correlations, Dell will better

understand how changing headcount levels in the factory will impact these non-

production factors.

2 DELL INTRODUCTION AND OVERVIEW

In order to better understand the environment for this thesis study, this section

gives a broad overview of Dell, its origins, products, goals, and the manufacturing

environment at the Morton L. Topfer Manufacturing Center (TMC) at the time of the

study. By understanding the TMC factory environment and Dell's corporate culture and

strategy, the importance and impact of the thesis conclusions will be better understood.

2.1 The History of Dell Corporation

In 1983, as a freshman at the University of Texas, Michael Dell began his computer

building business. By buying surplus computers at cost from local computer dealers and

adding features such as extra memory or disk drives he was able to resell them for a

modest profit (10-15%). It became obvious to Dell that as computer manufacturer would

strive to build computers in volume, they would forget about the special needs of the

customers. This presented Michael with an opportunity to enter the market, making

computers configured for individual customers. This idea was the start of the Dell Direct

model, in which Dell would sell to the customer exactly what they wanted. By Spring

Break of his freshman year, Michael was selling $50,000 a month of personal computers.

Having hired his first employees and opening his first office, on May 3, 1984, Dell

Computer Corporation was founded (originally under the name of "PC's Limited"). In its

first month, Dell's sales were above $180,000. Today, Dell Corporation is among the

500 largest American Companies, making Michael Dell the youngest CEO to have

reached the FORTUNE 500. Dell Corporation and Michael Dell have won many
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prestigious awards for excellence. Michael Dell has been named Young Entrepreneur of

the year 6 times (1986-1991) by the Association of Collegiate Entrepreneurs, "CEO of

the Year" from Financial World Magazine, and Entrepreneur of the Year by INC.

Magazine (1991), Dell Corporation's manufacturing system has been recognized as a

world-class leader as well. The production facility that was the subject of this headcount

optimization, the Topfer Morton Manufacturing Center (TMC), also stands out as an

exemplary production facility, winning Industry Week's Best Factory in 2001. Dell

Computer Corporation today employs 36,500 people in 34 countries.

2.2 Dell's Mission

Dell's mission is to be the most successful computer company in the world by

delivering the best customer experience in the markets that they serve. Dell aims to meet

its internal and external customer expectations by providing the highest quality products,

leading technology, competitive pricing, individual and company accountability, best-in-

class service and support, flexible customization capability, superior corporate

citizenship, and financial stability.

2.3 Dell's Company Objectives

Dell evaluates its current performance as a company by focusing on the following

four key areas: Customer Experience, Globalization, Product Leadership, and Winning

Culture. Success metrics in these four areas are rolled into company incentives as bonus

targets to focus the company on meeting these goals. Each of these areas is briefly

described below.

2.3.1 Customer Experience

From a Dell perspective, customer experience embodies more than just the quality

of the product that the customer receives. At Dell, Customer Experience embodies the

whole customer experience with Dell, from shopping and finding the right product and

the purchasing experience, to customer service after the computer is in their home or

office. Dell believes that some of the areas to measure success at Dell are through sales

and services, price, performance of the systems, and through tracking revenue generated

for services beyond the computer sale itself.
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2.3.2 Globalization

Globalization is the expansion of Dell throughout the world. With a saturated

American market for personal computers, much of the future growth of this industry will

be outside the United States border. Dell wants to achieve some scaled growth in the

faster growing world markets such as China, Germany, France, and Japan. Beyond

simply meaning expansion into new regions throughout the world, globalization also

covers the spread of standards and best practices throughout corporate Dell as well.

2.3.3 Product Leadership

Product Leadership comes in three different forms. First, striving for Product

Leadership is striving to become the top personal computer company by creating extra

value through innovation, while maintaining price and cost leadership for all products.

Additionally, Product Leadership is growth for Dell's younger products such as servers,

storage, and services. Finally, Product Leadership is the spread of Dell into other

businesses that offer high margins and would fit strategically into Dell's business model,

such as printers, overhead projectors, and handheld computers.

2.3.4 Winning Culture

Winning Culture encompasses Dell's vision to maintain global values across its

organization and to raise potential leaders for the future. Winning Culture also aims to

expand workforce diversity, implement more quality and cost-savings initiatives at all

levels of the company, and cultivate a performance-based culture. Additionally, a good

amount of Winning Culture focus is on making Dell a great place to work.

2.4 Dell Products and Services

Dell offers a wide array of technical products and services to its customers. While

its main focus has been on personal computers, over the last six years its product

portfolio has broadened considerably.

2.4.1 Computer Systems

Dell offers a variety of computer systems. Dell's products and the product

descriptions are listed in Table 1 below.
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Product Description

Dell Optiplex Desktops@ The Optiplex Desktops are Dell's solution for
corporate and institutional customers. They focus on
reliability and low cost.

Dell Dimension Desktops@ These desktops are generally higher end technology
computers for businesses requiring higher end
performance.

Dell Latitude Notebooks@ These laptops are high-end laptops that focus on
specific business needs such as performance, size,
and flexibility.

Dell Inspiron Notebooks@ Targeted at small to medium sized companies, these
notebooks provide good performance at lower
prices.

Dell Precision Workstations@ These one- or two- processor workstations are
designed to run the highest performing software
applications for corporate customers, including
graphic, digital content creation, and computer-aided
design.

Dell PowerEdge Servers@ Since September of 1996, Dell has become the
fastest growing company in high-end performance
servers. Generally, these are high price servers for
shared access and powerful performance.

Table 1 - Dell's Computer Products

2.4.2 Dell's Other Products and Services

Beyond selling personal computers, Dell has ventured into new markets that are

similar to that of the personal computer assembly business. Each of the products and

services are considered complements to their personal computer business. These

products and services are listed below.
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Product Description
Dell PowerVault@ and These are high-end storage systems that are designed

Dell/EMC Storage Products@ to meet a wide range of specific customer storage
needs.

Dell PowerConnect@ Switches These are standards-based network switches that
connect computers and servers in small to medium
size organizations.

Dell Monitors These monitors span all levels of performance, from
traditional tube monitors, to flat panel display.

Software and Peripherals Dell also can be used as an outlet to purchase software
and peripheral systems directly without going to a
large distributor. Additionally, cameras, monitors,
projectors, software, memory, notebooks and
accessories are some of the products offered.

Dell Printers This is an emerging market for Dell that has high
margins. This is a market in which Dell can be
successful by applying its direct order business model.
By entering this market, Dell can increase their
profitability as well as minimize the financial
advantage of their competitors through sales of these
high-margin printers. Dell will target the small to
medium-sized customers with personal printing needs.

Dell Handheld Like printers above, this market is an emerging market
with high margins that Dell hopes to capture. Dell
will begin assembly of the portable devices within the
year as well. These handheld devices will target all
levels of the handheld market.

Dell Services Dell offers consulting services, enterprise services, and
Dell computer management services to corporations.

Table 2 - Dell's Other Products and Services

The Morton L. Topfer Center manufactures two different products. For the most

part, TMC is responsible for the manufacture of all of the Dell Optiplex Desktops@ for

the company. Additionally, during the peak season just before Christmas, TMC also

builds Dell Dimension Desktops@ as well. The products are quite different, but

manufacturing of the two products is similar.

2.5 Dell's "Direct" Business Model

Also referred to as "Dell's Direct Model," Dell sells all of its products straight to the

customer, and each exactly as the customer wants it to be built. Unlike most of Dell's
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competitors, there are no middlemen between Dell and its customers, such as retailers or

distributors. This strategy has catapulted Dell to the top of the PC market. Dell's

Business Model can be broken down into 5 major components. They include eliminating

resellers markup, time to volume, build to order, service and support, and low inventor

and capital investment. Each of these business model components is explained in more

detail below.

2.5.1 Eliminating Reseller Markup

Because Dell sells directly to the customer, there is no retailer between Dell and its

customers to artificially "mark up" the price. Most of Dell's competitors rely on retailers

to market, distribute, and sell their products. These retailers require some portion of

profit. Avoiding resellers removes an extra layer of cost that Dell has to pay to sell a

product. The customer pre-orders its product from the Dell website or phone line, and

usually times the order starts on the assembly line within 24 hours. Within a week or so

the product arrives at the customer's doorstep ready to be used. By ordering direct, the

customer can bypass the distributor and retailer markups, making the Dell PC cheaper to

its customers.

2.5.2 Build to Order
By pre-ordering Dell products, customers are assured to get exactly what they

want, instead of settling for a pre-configured system that has been pre-made and is being

sold in bulk rate at a store (for a higher price). Customers order customized personal

computers via the Dell.com website or through a toll-free phone number.

Build to Order ensures that the customers have the latest technologies and the

lowest costs available. Additionally, by not stocking shelves with pre-built computers,

Dell keeps its inventories of built computers and raw materials low.

2.5.3 Low Inventory/Capital Investment

As mentioned, "Dell's Direct Model" has huge implications on the company's

inventory amount and capital investment strategy. Dell only builds the exact product that

its customers order and Dell doesn't start building it until after it has been ordered.

Because of this, Dell can implement "just-in-time" manufacturing. Dell can order only

the parts from its suppliers that it needs to fill its orders. Dell has made arrangements

with most of its suppliers for raw materials to be available for Dell to pull and use to fill
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orders at all times. However, Dell does not own the raw material inventory until it is

pulled to fill an order. Because of this arrangement and business model, Dell, at any

given time, has extremely low inventory compared to its competitors. Since 1994, Dell

has reported that it reduced its inventory from 55 days worth of material to around six

days worth of material. Compared to competitors such as Hewlett Packard, which holds

about 50.7 days of inventory, it is clear that Dell holds a huge advantage. Two financial

impacts of this low volume strategy become apparent. First, by holding nearly 50.7 days

of inventory, Dell's competitors have to tie up excessive cash in raw material and credit

to finance that inventory. In the case of Hewlett-Packard, inventory cost equated to $5.2

billion dollars2 tied up in inventory in 2001. If Hewlett-Packard held only six days of

inventory, it would be able to free up $4.6 billion dollars for other investments. Dell has

a great advantage by limiting the holding costs associated with inventory.

A second major advantage Dell has through its low volume strategy is avoiding the

devaluation of its inventory over time. In the technology industry, depreciation of assets

(and thus, raw materials) occurs quickly. According to some accounting standards,

depreciation of technological assets takes five years. Translating this into a realized value

today, an asset loses nearly 1.7% of its value every month. This means that Dell's

competitors like Hewlett-Packard, which holds $5.2 billion dollars of inventory each

year, are essentially losing roughly 20% of their inventory values each year. That loss

equates to over $1 billion per year in inventory value. By holding only six days of

inventory a company that size would only lose $120 million. That is $880 million lost

due to the devaluation of the inventory value.

By utilizing a low inventory strategy, Dell is able to see a huge savings that can be

directly added to the profitability of the company. At this point, none of Dell's major

competitors can match these savings, due to their different business models.

2.5.4 Service and Support

Unlike most major computer manufacturers, Dell's strategy is not "service at any

cost". Dell provides a wide range of service levels- from individual personalized service

' HP Financial Statements 2001. Inventory Turnover = Inventory/Total Net Revenues
httT://www.hD.com/hpinfo/investor/financials/annual/2001/text only 10k.ndf
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and onsite consulting to assistance in disposal of old computer systems. However, unlike

their competitors that provide "full service" to their customers for no additional costs,

Dell offers customized and cost effective service levels that are selected by the

customers. With larger company contracts in which a high volume of computers are

purchased. Dell provides onsite customer support for free. Unlike for the individual

computer purchaser, the high volume of computers being purchased from Dell offsets the

cost of that onsite service. Companies are also more prone to require support for their

computer systems with their contracts.

However, unlike the money made on a high volume company's purchase, an

individual computer buyer's purchase cannot offset the cost for providing customer

service to that single person around the clock. Purchasers with little computer experience

tend to call frequently, and the cost of supporting these users is high. Dell would actually

lose money if such service were freely provided. Instead, Dell requires its single

computer purchasers to buy customer support for their systems as well. This ensures that

those that need service have access to it, and those that do not need or wish to purchase

customer service will not be required to pay for it. This strategy actually transforms

service for individual purchasers from being a cost center to a profit center for Dell.

2.5.5 Time to Volume

Within every Dell product family line, new designs that include chassis changes

with new component assemblies are released every six months to a year. Time to

Volume, as defined at Dell, is the time it takes Dell to get its new products ramped up to

high volume production. This time to volume varies by the product itself, and according

to the availability of parts. Dell has explicitly made reduction of time to volume part of

its strategy. The quicker Dell can release new products into production, the higher in

value these new products are to Dell. Given the short lifecycles of technology products,

the sooner new products are released, the longer that product's life can be profitable.

This is significant, because Dell internally estimates that nearly 60% of the profit that a

product makes is within its first six months after being released.

To accomplish this rapid time to volume, Dell partners with leading suppliers to

ensure quick release of its products. To reduce research and development costs, Dell

does not invent components, but relies on suppliers to create them. In return, Dell

24



provides open access to customer feedback on products and service issues Dell's

suppliers receive real time feedback of issues if they occur.

2.6 TMC Manufacturing Environment

Dell's main strategy is that each computer is custom-made for the customer. Once

an order is placed, Dell downloads the order and ships the built computer within three to

five business days. Generally, when orders reach the manufacturing floor, they can be

pushed out in less than eight hours time. New orders come into the manufacturing

facility each day and can be started on the floor within one day of when the orders are

taken. For this reason, forecasting of production volumes from day to day is extremely

difficult. Seasonality can be predicted, but short bursts in volumes can cause problems

on the production floor. Factory planners have less than one shift to predict production

volumes or adjust for any anticipated volume bursts for the next shift.

One impact of daily demand shifts is that headcount management is fairly difficult.

Enough headcount needs to be present to meet unanticipated higher volumes, but if too

many employees are scheduled to work and demand volume is low, a lot of capital can be

wasted on salaries. To handle this problem, Dell uses temporary employees to staff much

of their production line. If the headcount need changes substantially from day to day,

Dell can adjust the amount of people that they bring in each day to meet the staffing level

needed. Additionally, adjustments to shift length can be made to ensure that production

volumes are met. While these solutions allow Dell's headcount to be flexible, these

options have negative impacts as well. By using temporary headcount that potentially

changes each day, continuity and predictability in each line suffers. Also, as extra hours

are required of employees to meet demand, there is some impact to worker morale, which

has implications on quality, safety, or retention of employees.

Another issue with reactive business conditions is that engineers and managers

spend much of their time reacting to problems, instead of planning and creating

innovative solutions. The daily computations required to predict headcount needs for the

next day or shift take time. Instead, that time could be better spent solving problems on

the factory floor, such as mechanical and IT downtime that will help keep the

manufacturing process in control.
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3 ANALYZING DELL'S TMC MANUFACTURING PROCESS

The manufacturing process can be broken down into four main areas - Kitting,

Build/Bum, Boxing and Distribution. This process is graphically depicted below.

Kittin i t-o-BdircsBui-BR Boxing I-

Kitting 2F-Mf--P Boxing 2-

thg fo maBuild/Bun/Post-BuKng2 u Boxing and Distributic

Kitting 4 -- c ieBtxing 4a-

3. Proes Descriptio

Kitting 5 - Build/Burn/Post-Burn 3--* P- Boxing 5-

Kitting 6iBnxgng 
6 -

Kit-to-Build Recirc Build-to-Box Recirc

Figure 2: Manufacturing Process

Figure 2 shows the manufacturing process flow for the TMC factory at the time of

the author's internship. As product moves through the factory, it travels sequentially

through four main areas within the factory - Kitting, Build, Boxing, and Distribution.

Each of these areas is described in detail below.

3.1 Process Description

3.1.1 Kitting

There are six kitting lines in the TMC factory. Every kitting line is nearly identical,

and the product running down each line is similar as well. When an order comes in, the

following process steps are completed within the kitting area.

The first step within the Kitting area is some verification of the order itself, which

is done to make sure that the build is not an incompatible combination of parts. The

associate on the floor scans the orders by barcode. The inventory management system, at

that time, verifies the order and if there is an incompatible combination of parts, signaling

the computer can not be built, the system shows a red screen. At this point, the order is

held until the planning group dispositions the order correctly. After the order has been
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verified, bar code stickers identifying the computer system are placed in totes, which are

boxes that are used to transfer the computer and its parts throughout the factory. The bar

code stickers are used to track the computer and its parts through the factory.

Once coded, the tote is sent down the kitting line and floor associates at five

subsequent stations pick the parts that will be used for assembly in the computer. At each

station, lights above the part bins signal what parts are needed to build that specific

computer are automatically lit to let the associate know what parts they should pick and

put into the tote. After the parts are pulled at each station, it is moved down the kitting

line to the next station where the process is repeated until all parts needed for that

computer to be assembled have been picked. At the end of the line, the tote containing

the picked hardware is paired up with a chassis before being sent to the Build area. There

are additional associates that are responsible for resupplying the raw materials for the

kitters on the line to pick.

As seen in Figure 2, after going through the Kitting area, the tote (paired with a

chassis) is sent along an overhead conveyer, through the Kitting-to-Build Recirculation

conveyer, referred to as a Recirc. The tote will rotate on the Recirc until there is an

opening in one of the three Build line queues, where the tote will rest queued until

assembly. Normally, the floor is configured to send material from Kitting lines 1 and 2 to

Build line 1, Kitting lines 3 and 4 to Build line 2, and Kitting lines 5 and 6 to Build line

3. However, the floor can be reconfigured to allow product from any of the Kitting lines

to go to any of the Build lines. All products must move through the Kitting-to-Build

Recirc, so it is a crucial mechanism in the factory.

3.1.2 Build
Build is where the actual product is assembled. Once the product has been kitted,

its tote has all of the parts needed for final assembly. The next step in the process is that

the unassembled computer systems are sent down one of the three Build lines. Each

Build line has approximately 50 build cells along it, in which associates assemble the

computer systems, the software for the computer is downloaded, and it is electronically

tested for assembly and software configuration bugs.

Build currently uses one- and two-person build cells. At the time of the study, the

majority of the lines were still using two-person build cells, though, Dell would be

moving to solely one-person build cells in the future. In two-person build cells, a pair of
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associates build a computer together, each with different roles. One of the associates

installs the motherboard, memory, processor and heat sink, while the other associate is in

charge of all of the drives (i.e. ZIP drives, floppy drives, disk drives, and hard drives).

Both people then install all of the cables. The output target for a two-person build cell is

18 units per hour per cell.

In a one-person build line, each associate is responsible for building the entire

computer system. The main benefit of moving to the one-person build cells is more build

capacity. Two one-person build cells, each with a goal of 12 units built per hour per cell,

use the same amount of floor space as a single two-person build cell. This means the

average output would rise from 18 to 24 units built per hour with the same floor area. A

secondary benefit of using the one-person build cell is that each individual is wholly

accountable for both the quality and speed of the build. With two people building a

computer, it is hard to identify associates that might be building computers incorrectly.

With individual tracking, personal accountability can be enforced. However, the major

downside of the one-person system is that there are not two sets of eyes looking at the

system. Two-person build cells better helps spot inaccuracies in the build. If there are

extra defects due to fewer eyes checking the system after it is built, it could slow up the

process, because computers built incorrectly need to be stopped, debugged and possibly

rebuilt. Another concern with a one-person build cell is that floor associates might get

fatigued quicker because they do more individual labor. These will be concerns as Dell

moves into one person build cells in the short future.

Reflecting on the two-person cell system, the process for building a computer is

as follows. Once the tote with the individual parts arrives at a build cell, the associates in

the build cell begin by verifying the parts provided by Kitting are accurate by scanning

each part's bar code. Missing or extra parts are identified or replaced within the tote

from kitting. Once the parts have been verified, the associates place a disk in the floppy

drive, which is used to populate information about what is installed on the computer. This

will be used later in the process by the burn and test area. After the information is loaded,

the associates build the system and then put it on a conveyer to be moved over to burn

area. In the burn area, communication cables from the burn servers are connected to the

newly assembled computer to allow the Bum servers to download software and test the

new computer. The first burn step is a five to six minute diagnostic test, which tests for
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assembly and component errors. If there are problems, a quick fix can be attempted. For

substantial problems, the computer must be sent back to the build cell and rebuilt. If

there are three rebuilds on the same system, the system is scrapped and started over back

in the Kitting area. After the diagnostic check, all good computers have the system

software burned onto their hard drive. This process can take between one hour and 1

hour and 45 minutes. Once complete, an indicator will tell the associate when to

disconnect the cables and then the associate will perform a quick wipe down and final

verification that the components are all attached. After that, a clean label that shows

what type of processor and operating system resides in the system is put on the outside of

the box. Once complete, the computer is sent to the Boxing area, via the Build-to-Box

Recirc.

Like the Kitting-to-Build Recirc, every product that goes down the production line

uses the Build-to-Box Recirc. Also, similar to Kitting-to-Build Recirc, product can be

delivered between any of the three build lines to any of the six Boxing lines, however,

generally Build line 1 delivers to Boxing line 1 or 2, Build line 2 delivers to Boxing line

3 or 4, and Build line 3 delivers to Boxing line 5 or 6.

3.1.3 Boxing
In the Boxing area, the product is packaged for delivery. The first step in the Boxing

process is the computer is scanned and verified. At the same time, a box is folded and

taped along the bottom of the box, preparing for the computer for packaging. Once the

computer is verified, the computer is picked up with vacuum hoist and foam ends are

placed on each side of the computer. The computer with the foam ends is then put into a

box and put on a conveyer line similar to the Kitting line. Here, the box moves down the

line from station to station, and associates pick parts, such as a keyboard, a mouse,

documentation packets, and extra parts that were specially requested by the customer, and

put those parts in the box with the computer. At each station, the picked parts are

scanned as they are put in the box to confirm correctness. At the end of the conveyer

line, the boxes are automatically closed and taped. If there is a part missing that prevents

the Boxing from being shipped, the computer is pulled aside and tagged with an indicator

of the shortage. These boxes are held until the missing part is found. One of the lines was

fully automated at the time of the study, requiring no people, and one line required no

human interaction to put foam on the computer and place it in the box. Once the
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computer systems are complete, they are put on a conveyer that takes them to

distribution.

3.1.4 Distribution

After boxing, the packaged systems are scanned and the material tracking system

shows that the box is traveling into the distribution area. A second scan point is used to

check the weight of the box and also very that the computer has reached the distribution

conveyer system. Once the box with the computer has been weighed it is matched up

with the order's Speakers, Printers and Monitors, or SPAM, as it is known at Dell. All

the computers and SPAM are routed through the Shipping Mezzanine where orders are

automatically sorted, shipping labels are attached, and package slips such as invoice

notice are attached as well.

The sorted orders can go to one of three areas - the "Less than a Truck Load"

(LTL) area, the Parcel area, and the "Reject" area. The "Less than Truck Load" (LTL) is

where bulk order of product can be loaded by palette onto the trucks for shipping. For

orders greater than three computers, the product initially is stored in large storage racks

until the last computer in the order has cleared boxing, at which time the order is released

from storage (automatically) and are moved from storage to conveyer to LTL docks

where they assembled onto palettes and are loaded on trucks for delivery. For delivery

for orders of one to three computers, the computers will be sent to a different distribution

area, call Parcel. Here, small orders are sent by conveyer system to docks for UPS or

FedEx to load on their trucks and deliver. This area requires individual manual loading

of SPAM. Orders greater than one are sent to storage racks until the full order has been

built and assembled. Once assembled, the order gets sent to the docks for shipping. For

orders of one computer, the computer and SPAM can be sent to Parcel docks directly.

The third area is the "Reject Lanes." This area is used for individual goods that are going

to international sites or require special processing, and each product here must all be

manually handled. The speed of the distribution area is relatively flat given the process

is almost completely automated. Its throughput is not tracked like the other areas in the

factory for that reason.
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3.2 Finding the True Factory Constraint

Familiar now with the manufacturing process, the first key step in building an

optimization is identifying the constraint (or bottleneck) of the factory. A bottleneck is

defined as any process that impedes the flow of work. The slowest area in a factory is

considered the bottleneck, or the capacity constraint of the factory. This could be a hard

constraint, such as conveyer equipment, or could be a constraint due to insufficient

capacity within one of the work areas. The Theory of Constraints states that the factory

will produce at a speed equal to that of the slowest area in the factory. Areas that move

quicker than the constraint and lie before the constraint in the process, will build queues

of material for processing in front of the constraint area. If an area lies down the

production line from the constraint, they will only be fed material to work on at a rate

equivalent to the constraints production rate. Understanding where the bottleneck is in

the factory will be useful in determining how to load each of the areas in order to

maintain the constraint in the factory. Therefore, when looking at optimizing headcount

for the factory, it is important for the model to fit into the current factory design. It

should staff to a level in which the constraint area will meet the demand, and all other

areas ensure that the constraint area is always working.

3.2.1 How do you find a Constraint?

Generally, there are some easy ways to try to identify the constraint in a factory.

Ultimately, an associate on the floor could identify a constraint by looking at where

material is built up in the factory. If material is built up and waiting to be completed by a

specific area, that area might be the factory bottleneck. In the case of this factory, there is

usually inventory built up before the build area. However, there may be more than one

bottleneck in the factory.

Another approach used to find a constraint is by talking with the supervisors that

monitor the pulse of the factory every day. In the case of TMC, supervisors were asked

to identify the constraint in the factory, but there was some disagreement about where the

bottleneck was. The Kitting area supervisor thought the bottleneck was in Build, the

Build area supervisor thought the bottleneck was in Boxing, the Boxing area supervisor

pointed at Build or Kitting and the Distribution supervisor pointed at Boxing or Build.

Because there was some inconsistency in the perception of where the constraint was

located, it would imply that the bottleneck moves or is not known in the factory.
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Another approach to determine where the bottleneck is would be to talk to the

factory process designers about where they designed the constraint to be in the factory.

When talking to the manager of the Process Control group, it was found that the

bottleneck was originally designed to be in Build. However, over time, process

improvement projects that have occurred in each area and the general feel was that the

bottleneck of the factory may have shifted into another area. As productivity

enhancements were made, old headcount forecasts may have become obsolete. Now,

some areas may be overstaffed, while others are understaffed. This may cause the

bottleneck in the factory to move from where it was designed. Talking with the different

groups may give an overall look at the factory and help to determine where the constraint

lies. However, despite these observations, to really identify the constraint, production

data is key.

In order to analyze the manufacturing process at TMC, the constraints and

capacities of the different areas in the factory were determined. Initially, the idea was to

find out if the factory was hitting a bottleneck in the factory that could not be increased

by adding headcount to it. For example, the Recircs are conveyer systems with a

maximum capacity. If the capacity of the factory matches the Recirc capacity, the Recirc

is likely the bottleneck of the factory. Maximum capacities that are not headcount

related are referred to in this thesis as hard constraints. Hard constraints tell the maximum

capacity that can be achieved in the factory. At the time of the analysis, production

output for the factory had a maximum output of just over 2000 units per hour. After

determining if the hard constraints impact throughput for the factory, focus can be shifted

to determining the capacity of each area as it relates to headcount.

3.3 Finding the Factory Hard Constraints
As mentioned, the first step to building a headcount model is analysis of the

factory. Each area was looked at and production capacity was calculated. The key areas

that were considered hard constraints on our factory floor are the Kit-to-Build Recirc, the

Build-to-Box Recirc, and the Bum process. While there are other hard constraints, these

represented the four processes that were stand-alone entities with major impacts on

factory performance. Their analysis follows.
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3.3.1 Kitting-to-Build Recirt Capacity

To best estimate the Kitting-to-Build Recirc capacity, the factory was assumed to

be implementing 100% "waterfalling," meaning any kitting line can send material to any

build line. Finding a time in which the Recirc was full and running at max capacity was

hard to do, as some needed information was not accurately reported. So, the capacity of

the Kitting-to-Build Recirc needed to be calculated another way. Talking with the

engineer in the area, capacity could be calculated by knowing the speed of the conveyer,

the size of the box, and the space between the boxes. This calculation follows:

(1) RecircMaxCapacity (RMC) =ConveyerSpeed/(ToteWidth

+ SpaceBetweenTotes)

Using equation 1, above, and the following data we can calculate the number

Recirc's maximum capacity.

ConveyerSpeed

ToteWidth

SpaceBetweenTotes (SBT)

RecircMaxCapacity (RMC)

= 230 ft/min

= 2 ft/unit

= 2ft/unit

= 230/(2 ft/unit tote + 2 ft/unit SBT)

= 57.4 units/min

= 3450 units/hour

Initial reaction to the above analysis is that there is sufficient capacity in the

conveyer system to meet the current 2000 unit demand that the factory could potentially

see. However, there are two other factors to determine maximum Recirc capacity. First,

the amount of time that the Recirc is stopped (due to downtime, etc.) must be accounted

for. The impact of this can be estimated using the following formula:

(2) Average Downtime Impact = DowntimePercentage * RMC

Additionally, you would need to know the amount of capacity in totes that is lost

because the totes are not scanned properly and sent to a build line, so they need to be
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circulated and rescanned again. The Rescan Impact is two times the count of output that

does not move to the Build area. The impact includes one for the tote itself because it

could be not scanned properly or could not be pushed to the Build area for a reason other

than the Build area being full of totes. The second tote impact is due to a new tote not

being able to be pushed onto the Recirc, and therefore maximum capacity is reduced.

With these estimates known, the max capacity of the Recirc can be calculated.

(3) RescanImpact (RI) = TotesRescanned * 2

With estimates for the downtime and rescan impact the following formula could be

used to estimate the capacity of the Kitting-to-Build Recirc.

(4) TheoreticalMaxCapacity = 3450 - DowntimePercentage*3450

- 2*TotesRescanned

However, TMC at the time of this analysis did not have good downtime and rescan

data to approximate the data from. Instead, to collect this data, the process engineer in

this area did a time study in the factory in which the Recirc was filled to capacity and

units were counted manually. Downtime and Recircs were manually tabulated. While a

good approximation, the challenge was keeping the Recirc fed to its max capacity

without being starved or blocked. In that time study, the Estimated Max Capacity

actually was estimated to be 2600 Units per Hour. The combined downtime and rescan

impact could be estimated as below:

(5) Downtime/Rescan Impact = 1 - ActualOutput/RecircMaxCapacity

= 1 - 2600/3450

= 0.246

= 24.6%

This means that downtime and rescan reduced the Recirc capacity by 24.6%.

Finally, it is worth noting that in the last months, an upgrade allowed the units to be
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spaced only six inches apart. Using Equation 1, and the following information, the new

theoretical maximum throughput is reflected below:

SpaceBetweenTotes (SBT) = 0.5 ft/unit

RecircMaxCapacity (RMC) = 230/(2 ft/unit tote + 0.5 ft/unit SBK)

= 92 units/min

= 5520 units/hour

A new theoretical maximum capacity could be calculated if the downtime and

number of tote rescans were known. If so, the equation would be shown as follows:

(6) TheoreticalMaxCapacity =5520 - DowntimePercentage*5520

- 2*TotesRescanned

Unfortunately, because the rescans and downtime are not known, we could

approximate the capacity of the Kitting-to-Build Recirc, by applying the same

approximate downtime and rescan impact as with our old system. If the theoretical max

capacity was reduced by 24.6%, the capacity for the Kitting-to-Build Recirc will be 4160

units per hour. That is well above the 2000 Units per Hour of our current manufacturing

system. Therefore, it is not a bottleneck for our factory.

3.3.2 Build-to-Boxing Recirc Capacity

The capacity of the Recirc could not be accurately estimated given production data,

however, the technique used to estimate the Kitting-to-Build Recirc capacity could once

again be used for this area. Again, the assumption is that the factory is implementing

100% "waterfalling," or that any build line can send material to any boxing line. As in

the Kitting-to-Build Recirc calculations, the capacity of the Build-to-Boxing Recirc could

be calculated. Using engineering estimates of conveyer speeds, tote size and the spacing

of the totes on the conveyer system, capacity can be calculated using Equation 1 below:
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ConveyerSpeed = 150 ft/min

ToteWidth = 2 ft/unit

SpaceBetweenTotes (SBT) = 2ft/unit

RecircMaxCapacity (RMC) = 150/(2 ft/unit tote + 2 ft/unit SBK)

RecircMaxCapacity (RMC) = 37.5 units/min

= 2250 units/hour

With that as the baseline Recirc maximum capacity, the downtime and number of

totes rescanned needed to be computed to find the Kitting-to-Build Recirc total capacity.

The equation to calculate the maximum capacity is shown below:

(7) TheoreticalMaxCapacity = 2250 - DowntimePercentage*2250

- Totes Rescanned * 2

For the above calculation, the downtime and number of totes rescanned are not

known. Engineering studies have estimated the average capacity of the Recirc at 2100.

While this is above the maximum output within the TMC factory at the time of the study,

it is close to it, which means it may become a constraint as the factory grows and ramps

up production volumes.

3.3.3 Burn Capacity

Burn capacity, is the physical capacity of the Burn cells in the Build area. When

looking at Burn Capacity, a direct capacity calculation could not be performed due to a

minimal amount of data available. However, capacity could be estimated by looking at

average Bum times and total capacity in the Build areas. Within Build, there are three

lines as mentioned, and each line has 24 different quads where the computers are built

and burned. Within each quad, there are 46 burn slots that individually burn software and

test the new computer systems. Monitors within Burn record the pre-test dwell time, test

time, and post-test dwell time of each computer. Pre-test dwell time is defined as the

amount of time a computer sits in a burn station waiting to start testing. Post-test dwell

time is defined as the amount of time the computer sits within a burn cell after the burn

sequence has completed. Over the three months of the study, these times were looked at

for each computer. It found that the average pre-test dwell, test time, and post-test dwell
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per unit were 15 minutes, 51.5 minutes, and 28.2 minutes respectively. That was a total

average Burn time of 94.7 minutes as shown in the following Figure.

Units Per Hour (UPH)
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Figure 3: Total Burn Time Average per Unit

The Figure shows that the total Burn time is Normally distributed, with an average

burn time of 95 minutes and a standard deviation of 8 minutes. The box plot shows that

50% of the total Burn time data falls between roughly 90 and 100 Units per Hour. Given

the total time for each unit through Burn, we can calculate the total number of burn slots

and the capacity measured in Units per Hour (UPH) for Burn, by using the following

formulas.

(8) TotalBurnSlots = BurnSlots*BuildQuads*BuildLines

Total Burn Slots = 46 slots * 24 quads * 3 lines

= 3312 slots

(9) UPH Estimate = Total Burn Slots *60 / Total Burn Time

This estimate was used to calculate the UPH in Burn for each hour over the

timeframe of the internship. The following Figure shows the output Units per Hour for

the Burn area.
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Figure 4: Distribution of Burn Units per Hour

The Bum UPH is a Normal distribution with average capacity of 2114 UPH and a

standard deviation of 182 UPH, which leads us to believe that there is sufficient capacity

at Bum.

To verify this, Bum capacity was compared to the capacity of the Build area for the

same shift in two ways. The graph on the left shows the distribution of shift Bum

capacity minus the Build area's total output for each shift. The graph on the right shows

the average Bum hourly capacity minus Build hourly average output during the same

shift.
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Figure 5: Burn Excess Capacity Over Build by Shift and by Hour
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In Figure 5, the graph on the left shows that by totaling the capacity in Burn for

each shift and subtracting the Build total from the Burn capacity there was an average

shift surplus of burn capacity that averaged 6315.5 units with a standard deviation of

2317.34. This reiterates that we have sufficient capacity to not constrain Build. The

graph on the right shows that same data as an hourly average, Burn capacity was greater

than Build average hourly output in all cases tested, with a minimum excess capacity of

nearly 181 units per hour worked. This Burn capacity data again shows that Burn would

generally not be considered to be constraining Build or the factory for that matter.

3.3.4 Hard Constraints Analysis Results

The results of measuring the hard constraints show that none of the three hard

constraints were low enough that they could be considered the constraint for the factory.

However, Build-to-Boxing Recirc may be near the maximum capacity for the factory,

and may become an issue as the factory grows and output volumes increase. With

maximum factory output at the time of the study at roughly 2000 units per hour, because

each of the hard capacities were sufficiently above this maximum historical output level,

the constraint of the factory is likely not due to these hard constraints, but instead due to

headcount capacity constraints found in one of the areas in the factory.

The hard constraint calculations were good estimates, however, better estimates

could be found with a few extra data items. First, in the Estimated Max Capacity for the

Recirc capacities, both downtime and tote rescans could be measured by writing reports

that query the material tracking database currently in place in the factory. However,

those reports have not been generated, and therefore the data is too cumbersome to

calculate. For the Burn cell calculations, some data collection could improve capacity

tracking as well. First, the cell total is based on the total amount of cells in the factory,

not necessarily cells that were available each day. While close to the same number, the

availability number will have some impact on final capacity calculations. Also, the

capacity measurement in the Burn area is based on shift totals averaged to units per hour.

While hourly numbers are tracked, there are no current reporting methods to access that

data at this time. Better reports will allow better tracking to be done and allow capacity

variation to be tracked as well.
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3.4 Analyze Production Capacity in Each Area

Since the hard capacities were determined to not be the bottleneck within the

factory, the production capacity can be looked at in each area to determine which area is

the constraint. Within this thesis, production capacities are defined as those in the factory

that can be controlled through changing the conditions inside the factory. To change the

capacity, the area factors such as headcount could be changed which would in turn raise

or lower the output in the area. To change the constraint in the factory, the factors such

as headcount could be changed in each area simultaneously, which would in turn raise or

lower the capacity in every area simultaneously. The constraint becomes the area with

the lowest capacity overall, and the constraint could change with time. This was verified

by looking at Block and Starve analysis in the factory. Here, the constraint can be found

by looking at how often each area is blocked by an area down line, or starved for material

from the area before it. An area is blocked when an area cannot move product out of

their area into the next area because the area down the line is full and cannot accept new

material. Likewise, an area is starved when that area is not able to work on product

because it is not being sufficiently supplied with enough material to keep that area busy.

Using the data from internal inventory tracking databases, every minute of block

and starve time in the factory had been recorded for the last year. With that data, I

analyzed the amount of block and starve time in each of the areas. The Kitting

measurements were taken pre-kitting for Starve time, and right after kitting for the Block

time. Build was measured before and after each of the Build lines. Boxing Block and

Starve was measured after push-out from Boxing and before the Boxing vacuum hoists

respectively. It is important to say that for this discussion we have assumed that the hard

constraints in the factory are not in themselves a bottleneck, but instead the bottleneck is

caused by productivity of the headcount in the Kitting, Build or Boxing area. The results

of the analysis on block and starved time for each area follow:
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AREA BLOCK TIME STARVE TIME

(Avg, Std Dev) (Avg, Std Dev)

Kitting Not Reliable (0.007, 0.031)

Build (0.232,0.238) (0.112,0.212)

Boxing (0.039,0.045) (0.321,0.171)

Table 3: Block Starve Analysis

While the Kitting block data is a bit unreliable, the amount of time that each of these

areas is the constraint can be estimated. The block time in Table 3 above shows the mean

percentage and standard deviation of each hour that each area is blocked by the next area

in the production process. The starve time represents the amount of time (mean and

standard deviation) that each area is starved of material from the preceding area. To

estimate the amount of time that Kitting is the bottleneck the following equation can be

used.

(10) KittingConstraintPercent = BuildStarvedPercent - KittingStarvedPercent

Looking at the data from Table 1, Kitting is starved for materials on average of 0.7%

of each hour, and Kitting starves Build 11.2% of the time. Using this information, we

can use the above equation to estimate the percentage of time that Kitting is the

constraint.

KittingConstraintPercent = 11.2% - 0.7%

= 10.5%

Likewise, the percent of time that Build is the constraint can be approximated, as

well, using the following equation.

(11) BuildConstraintPercent = BoxingStarvedPercent - BuildStarvedPercent

From the data in Table 3, Boxing is starved of material an average of 32.1% of the

day, and Build is starved of material an average of 11.2% of each day. With that
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information the percentage of each day that the Build area is the constraint can be

estimated.

BuildConstraintPercent = 32.1% - 11.2%

= 20.9%

Finally, the amount of time that the Boxing area is the constraint can be determined as

well. The equation to estimate the amount of time that Boxing is the constraint is shown

below.

(12) BoxingConstraintPercent = BuildBlockedPercent - DistribBlockedPercent

From Table 3, it can be seen that the Distribution area blocks the Boxing area only

3.9% of the time. Table 3 also shows that the Build area is constrained by the Boxing

area 23.2% of the time. Using this information, the percentage of time that the Boxing

area is the constraint can be calculated.

BoxingConstraintPercent = 23.2% - 3.9%

= 19.3%

Noticing that each of the above areas are a constraint within the factory supports the

theory that the bottleneck is at this point unpredictable and can move between areas

throughout a day, however, most of the time, it resides in Build. This also supports the

idea that the shift could be due to headcount fluctuations in the factory.

To understand how shifts in headcount can impact productivity, a model for

production capacity was created for each area, based on various factors on the factory

floor. There are three key benefits to creation of these production models. First, the

production models should help determine which factors are important in predicting

production volumes and which factors are not. For those factors that are important, the

analysis should point out to what extent that factor impacts production and if there are

trends that we should be aware of. Secondly, by running the analysis, it should help

measure how closely output in each factory area can be predicted given the production
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factors. Finally, the analysis should characterize the amount of variability that exists

between the predicted output and the actual output of the factory. By measuring the

variability, the range of possible output given set factors can be known, as well as the

probability of meeting certain output level given the different factor settings. For

example, given a set headcount, the range of output possible with the headcount can be

determined, and the probability of achieving an output goal given that headcount level

can be determined.

To build the production model, a multivariate regression analysis that predicts the

maximum output for the three main production areas, Kitting, Build and Boxing were run

using a standard statistics package. The results for each area are discussed below.

Additionally, some analysis was done in Distribution that will be addressed as well. Data

was clustered by shift for the convenience of the managers in charge of each shift.

3.4.1 Kitting Capacity
The first area that was analyzed was the Kitting area. The factors that focused on

in Kitting included Hour of Day Worked, Day of the Week, and a factor called Labor

Hours. Labor Hours was calculated by multiplying the percentage of each hour worked

times by the number of temporary and permanent employees that were working that hour.

The equation for Labor Hours can be seen below.

(13) KittingLaborHours = PercentHoursWorked * KittingHeadcountTotal

Initially, regression analysis was performed measuring hours worked and

headcount separately, but the best regression analysis occurred when these factors were

combined into the one factor, labor hours, as described above. For kitting, in order to

account for economies of scale, two factors including Labor Hours Squared and Labor

Hours Cubed were also included. The premise was that as the number of hours of labor

increase, the increase in productivity actually increased at a polynomial rate instead of

linearly. The results confirm this assumption as the model was a better predictor as the

squared and cubed factors were included. Each of these factors were regressed against

production output volume, which was defined as the number of filled totes that leave the

area with parts ready for assembly in the build area. Production output was summarized

by hour, so the hourly output rate for the Kitting area could be determined. It was
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important to choose a time frame in which some intra-day variation could be measured,

but not too granular that the data was meaningless. Shift totals would not reflect different

output rates from the other areas because the factories each move as fast as the slowest

area. For less than an hour, the regression would contain too many parameters and would

not meaningful.

One other factor that was looked into was the amount of block and starve time for

the kitting area. Block and starve time did not prove to be a good factor to help predict

production levels in the kitting area. To measure block time, there is a photo-eye sensor

that sits directly after each Kitting Line. To be considered block time, the conveyers

need to be filled completely, all the way to the photo-eye sensor. When the photo-eye

sensor sees a tote sitting above it, the line is considered blocked, and the total blocked

time will be recorded in the database. The reason block and starve might not be a good

predictor of output in the Kitting area could be that the associates in the Kitting area

actually slow down as it visually sees the buildup of material, and so the conveyers are

not backed up to the photo-eye. The workers are working less efficiently than they

should, however, the photo-eye does not show that the Kitting area is blocked.

Regardless of block and starve time's usefulness in this model, it is something that could

be used to create a good prediction model in the future.

3.4.1.1 Parameter Estimates for Kitting

The output of the multivariate regression analysis will give you a combination of

each factor, referred to as a Term, a measure of its importance to the prediction model

(given by a P-value), and a multiplier, called the Estimate, that is used to measure the

impact of each Term. The following table contains the Parameter Estimates by factor for

the Kitting area.
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Parameter Estimates
Term Estimate Std Error t Ratio P-Value
Intercept -2477.419 1150.806 -2.15 0.0321
Hour[OO] 209.97356 53.4979 3.92 0.0001
Hour[01] 65.359689 69.82185 0.94 0.3500
Hour[02] -600.7254 128.3333 -4.68 <.0001
Hour[05] -21.93978 59.73281 -0.37 0.7137
Hour[06] 269.59273 47.19971 5.71 <.0001
Hour[07] 8.1870055 43.55285 0.19 0.8510
Hour[08] 86.295521 44.87439 1.92 0.0554
Hour[09] 330.52775 47.38304 6.98 <.0001
Hour[10] 237.5415 44.83703 5.30 <.0001
Hour[111] -613.4656 44.71202 -13.72 <.0001
Hour[12] -253.5107 44.76367 -5.66 <.0001
Hour[13] 252.95222 47.19808 5.36 <.0001
Hour[14] 10.430631 54.59729 0.19 0.8486
Hour[15] -378.224 187.7608 -2.01 0.0448
Hour[16] -124.8497 44.73264 -2.79 0.0056
Hour[17] 375.5987 45.03964 8.34 <.0001
Hour[18] -142.6235 45.03964 -3.17 0.0017
Hour[19] -625.4569 45.03964 -13.89 <.0001
Hour[20] 408.5987 45.03964 9.07 <.0001
Hour[21] 365.32092 45.03964 8.11 <.0001
Hour[22] -78.34575 45.03964 -1.74 0.0830
Day of the Week[FRI] -39.0757 26.31688 -1.48 0.1386
Day of the Week[MON] 24.860837 24.04191 1.03 0.3019
Day of the Week[SAT] -76.47103 61.24114 -1.25 0.2127
Day of the Week[THU] 9.8015916 25.54663 0.38 0.7015
Day of the Week[TUE] 28.396449 23.3257 1.22 0.2244
Labor Hours Squared -1.57805 0.712395 -2.22 0.0275
Labor Hours Cubed 0.0067708 0.003132 2.16 0.0314
Labor Hours 129.68356 51.39143 2.52 0.0121

Table 4: Kitting Regression Equation Estimate

There are a couple of important pieces of information that can be focused on from

this information. First, the terms listed along the left column are the factors that have

been used to predict output in the factory. In the above parameter estimates, there are

three types of Terms listed.

First, the Intercept Term is the value of where the prediction equation would cross

the y-axis if all other factors had a value of zero. The second type of Term is a

continuous variable term. These terms can be any numerical value. In the Parameter

Estimates shown above, the terms Labor Hours, Labor Hours Cubed, and Labor Hours

Cubed are continuous terms, because the amount of Labor Hours worked could be any

number, such as 323.25 hours. Finally, the third type of Term is called a categorical, or

discrete term. This means that there are predetermined specific values that these Terms

could be. In this case, the Hour and Day of the Week terms are both examples of

categorical Terms. The values for Day of the Week can only be Monday, Tuesday,

Wednesday, Thursday, Friday or Saturday because the factory never ran on Sunday.

Likewise, the Hour Term can only be 0 through 23, or midnight through 1lpm. Each of
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the categories possible for categorical Terms is listed in the brackets next to the Term

name. For example, the Hour[O] Term and Estimate displays the Estimate value for when

the hour is zero, or midnight. Each hour of the day that TMC actually worked over the

three months from which the data was collected is included in this model.

It is important to note that to determine the Estimate, one value is selected as the

baseline case, and the effect that each other value has is measured. For the Day of the

Week variable, the baseline case would be Wednesday. Its Estimate value is assumed to

be zero in this model. Every other day's value is the Estimate of the difference between

that day and Wednesday. For this model, Hour[23], or 11pm, is considered the baseline

case for Hours. All other Estimates are compared to that hour. For continuous terms, the

Estimate is the estimate of the effect of adding 1 more unit of the term to the model.

One other important piece of information given by the regression output is the P-

Value column, which is used to measure significance of the factor. The lower the value

the more significant that factor is. For the analysis run in the factory, a factor is

considered to be significant when the P-Value column contains a value that is less than

0.15. The parameter estimates for kitting allow us to pull out some key information.

This Kitting prediction equation shows that with a few exceptions most of the factors we

have used are significant indicators of output in the factory. Below are key assumptions

that we can make from our data. All the conclusions below are based on what the model

shows as significant data points. Additionally, using all of the Terms and Term Estimates

can be used to predict the output for the Kitting area given a known number of Labor

Hours, Day of the Week, and Hour of the Day. An example of this is shown later in this

chapter.

3.4.1.2 Kitting Prediction Equation

Knowing the Terms and Estimates, a Prediction Equation can be created that will

estimate the average output given the Intercept, Day of the Week (DOW), Hour, and the

number of Labor Hours worked in the Kitting area. To find the average output in the

Kitting area, the following equation is derived.

(14) KittingOutput = KittingInterceptEstimate

+ KittingDOWEstimate

+ KittingHourEstimate + KittingLaborEstimate
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For the above Equation, the InterceptEtimate term can be found in the Parameter

Estimates, and is equal to -2477.419. Additionally, the DayofTheWeekEstimate and

HourEstimate can be found by matching the day of the week and hour you are estimating

with the Day of the Week and Hour terms that matches them. Finally, by plugging the

number of labor hours (as computed in Equation 13) into the following equation, the

LaborEstimate can be solved.

(15) KittingLaborEstimate = 0.0067708*KittingLaborHours3

- KittingLaborHours2 * 1.57805

+ KittingLaborHours * 129.3568

Using the above equation, the Kitting area can be estimated. An example using

numerical data is given in Section 3.5.

3.4.1.3 Observations from the Data

Looking at each hour in the Kitting parameter estimates, it can be determined

those good production hours for the first shift includes the hours of 6am, 9am 10am and

1pm. By looking at the Estimates, we see that these hours generate at least 100 units per

hour greater output than the model baseline. Poor production hours include the hours of

11am and 12pm. These hours generate at least 100 units per hour less output than the

model baseline case. When excluding lunch hour and the first hour of the shift, the

general productivity of the workers arguably decreases as the shift drags on by about

seven units per hour.

A second observation is that good production hours for the second shift include

the hours of 5pm, 8pm, 9pm and 12am. These hours generate at least 100 units per hour

greater output than the model average. Poor production hours for second shift include

the hours of 4pm, 6pm, 7pm and 2am. Each of these hours has output volumes that are

over 100 units per hour less than base case for the overall production model. When

excluding lunch hour and the first hour of the shift, the general productivity of the

workers arguably increases as the shift drags on by about four units per hour.

A third observation is that the day of the week does not generally have a

significant effect on the output level of the Kitting area. However, Friday performance is
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significant and shows that productivity is generally poor, yielding 39 units less per hour

than other our base case, Wednesday. Also, by looking at the predicted Estimates for the

each Day of the Week, it can be seen that output reduces by an average of 40 units per

day throughout the week.

Each day, there are scheduled breaks in the factory. One big impact that that this

shows is that breaks have a severe impact on productivity. While some drop in output is

expected during breaks, it can be seen that lunch breaks for each shift, occurring at 11am

and 7pm, have additional impact to production output. The hour following lunch in the

first shift, 12pm, produces 253 units less than average, and the hour before lunch during

second shift, 6pm, produces 143 units less. There is a two-hour window of impact

around lunch breaks for each shift.

. Finally, by looking at the relationship between labor hours and productivity the

model shows that productivity is a polynomial function. An increase in output due to

labor hours can be approximated by the equation:

KittingLaborEstimate =0.0068*KittingLaborHours3

- 1.58*KittingLaborHours2

+ 129.68*KittingLabor Hours

This shows that productivity is not a linear relationship, but one that grows with

growth in labor hours invested. While not intuitive, this model suggests that there might

be some economies of scale within the kitting area.

3.4.1.4 Measure of Predictability of Kitting

Given the factors and the equation above, the Parameter Estimates was found to be

pretty accurate for predicting output against the actual output values. To measure the

output, each hour that was analyzed had its actual output tracked against the predicted

output given the hour, day, and labor hours that were used during the hour. Below is a

plot of the predicted value versus the actual value plotted against each other for all hours

analyzed. Additionally, a summary of the model's fit is included.
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Actual by Predicted Plot
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Figure 6: Kitting Regression Analysis

Ideally, for a perfect prediction, a straight line would be seen in which the actual

output values always equal the predicted output values. Under the perfect scenario, the

summary of fit would show an R-square and R-square Adjusted values of 1.00. For the

Kitting area prediction, there is some variability that exists in the plot of actual values

versus the predicted value, seen by scattered appearance of the points. However, a good

general trend exists relating our prediction equation to actual values. The measure of fit

for this model is summarized by the R-Square and R-Square Adjusted values. In this

model, the prediction model accounts for nearly 80% of the variation in production

output. That is a decent prediction given the number of factors that we are tracking.

3.4.1.5 Variation between Predicted and Actual Values

One final component that was looked at in the regression model is the residual

plots. The residual is the measure of how far the predicted values are off from the actual

values. There are two factors to look at. First, it is important to look at the residual

values against the actual output volumes using a residual plot. That plot is shown in the

Figure below.
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Residual by Predicted Plot
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Figure 7: Kitting Residual Analysis

This plot is used to look for trends in the residual plot. If a trend exists, and the

plot doesn't appear randomly distributed, the regression could probably be made to be

more accurate by trying more advanced regression techniques with the data. With this

data, there is slight convexity, however it is not a severe trend in the residual plots, such

as U-shapes, etc. This implies that our data points are truly independent, and the

regression model can be used.

The second trend to look for with the residuals is if they are well behaved normal

probability plots. If the values are truly random, there should be a good normalized

distribution for each of the areas. The plot of this data is shown in Figure 8 below.
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Moments
Mean -1.49e-12

Std Dev 179.10086
Std Err Mean 9.7999631

upper 95% Mean 19.277639
Lower 95% Mean -19.27764

N 334

Goodness-of-Fit Test
Shapiro-Wilk W Test
W Prob<W

0.981398 0.2634

Figure 8: Kitting Residual Distribution and Goodness-of -Fit

These plots are important for showing that the residuals are normally distributed

around the predicted output values. The Shapiro-Wilk test measures Normality and

measures the percent of variation that is attributed to normal variation of the output. In

this case, 98% of the variation of the residuals can be explained through normal variation.

For kitting, by looking at the residuals, there is a mean difference from each hour of

actual output of zero (mean of -le-12). The measured standard deviation of the model is

179. In general, a model for the kitting area has been generated by using the prediction

estimates from Table 2 to solve for a predicted output volume, it can be safely assumed

that the model will be off by an amount that can be quantified by a normal distribution

around that predicted value by a standard deviation of 179 units per hour. The measure

of variability of the Kitting area and the Build area will be important in determining what

level of output in the Kitting area is needed to ensure that the Build area is not starved.

This will be addressed later in the paper.

3.4.2 Build Capacity

Hourly data from the time period of our study was available for the factors

identified in the Area Production Headcount Factors section above. The factors that

focused on in Build included Hour of Day Worked, Day of the Week, and a factor called

Labor Hours. Labor Hours was again calculated as it was in Kitting found above, by

multiplying the headcount by the percent of each hour worked, as shown in the following

equation.
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(16) BuildLaborHours = PercentHoursWorked * BuildHeadcountlotal

Once again, while regression analysis was performed measuring hours worked and

headcount separately, the best regression analysis occurred when these factors were

combined into labor hours.

3.4.2.1 Parameter Estimates for Build

As in kitting above, the output of the multivariate regression analysis will give a

combination of each factor, a measure of its importance to the prediction model, and a

multiplier that is used to measure the impact of each factor. Below was the parameter

estimates for each factor used to model the output level in the Build area.

Parameter Estimates
Term Estimate Std Error t Ratio P-Value
Intercept -2200.792 534.4663 -4.12 <.0001
Day of the Week[FRI] -11.17126 11.70407 -0.95 0.3401
Day of the Week[MON] -56.12757 11.61581 -4.83 <.0001
Day of the Week[SAT] 43.422362 20.20481 2.15 0.0319
Day of the Week[THU] 18.503633 11.9323 1.55 0.1213
Day of the Week[TUE] -6.239416 11.38596 -0.55 0.5838
Hour[00] 130.79715 27.96144 4.68 <.0001
Hour[01] 243.99288 34.75841 7.02 <.0001
Hour[02] 147.13515 75.14358 1.96 0.0506
Hour[03] -136.7332 108.3637 -1.26 0.2074
Hour[04] -70.95223 86.61524 -0.82 0.4129
Hour[05] 26.669131 30.14686 0.88 0.3766
Hour[06] 41.312235 23.96619 1.72 0.0851
Hour[07] -139.6062 23.305 -5.99 <.0001
Hour[08] 56.299763 24.25424 2.32 0.0205
Hour[09] 146.4533 24.49728 5.98 <.0001
Hour[l 0] 140.17673 24.02719 5.83 <.0001
Hour[11] -586.5979 24.19114 -24.25 <.0001
Hour[12] -208.173 23.9738 -8.68 <.0001
Hour[13] 132.79337 24.189 5.49 <.0001
Hour[14] 191.58747 27.55515 6.95 <.0001
Hour[15] -92.63199 77.05813 -1.20 0.2297
Hour[16] 9.6097112 23.35953 0.41 0.6809
Hour[17] 125.30767 23.62446 5.30 <.0001
Hour[18] -306.0731 23.21596 -13.18 <.0001
Hour[19] -461.4484 23.41146 -19.71 <.0001
Hour[20] 192.97865 23.61812 8.17 <.0001
Hour[21] 261.2289 24.07136 10.85 <.0001
Hour[22] -64.57066 23.99994 -2.69 0.0073
Labor Hours 26.405038 5.574089 4.74 <.0001
Labor Hours Squared -0.071831 0.01818 -3.95 <.0001
Labor Hours Cubed 0.000072 0.000019 3.81 0.0002

Table 5: Build Regression Equation Estimate

There are again some key observations that can be seen on from the Parameter

Estimates. As in Kitting, P-Value is the measure of significance of each factor and the

lower the value the more significant that factor is. For the analysis run in the factory, a

factor is considered to be significant when the P-Value column contains a value that is
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less than 0.15. Also worth noting, the baseline case for the Hour parameter estimates was

once again 11pm, and the baseline case for the Day of the Week variable was again

Wednesday.

3.4.2.2 Build Prediction Equation

Like in the Kitting area, knowing the Terms and Estimates, a Prediction Equation

can be created that will estimate the average output given the Intercept, Day of the Week

(DOW), Hour, and the number of Labor Hours worked in the Build area. To find the

average output in the Kitting area, the following equation is derived.

(17) BuildOutput = BuildInterceptEstimate + BuildDOWEstimate

+ BuildHourEstimate + BuildLaborEstimate

The InterceptEstimate for the above equation is found to be -2200.792 in the

Parameter Estimate table for the Build area. Additionally, as in Kitting, the Day of the

Week estimate and the Hour estimate can be found as well, by matching the day and the

hour being predicted with the Day of the Week and Hour estimates in the Parameter

Estimates table. Finally the LaborHourEstimate term can be determined by calculating

the Labor Hours for the Build area using the following equation.

(18) BuildLaborEstimate = 0.000072*BuildLaborHours3

- 0.071831-BuildLaborHours 2

+ 26.405038*BuildLaborHours

With the prediction equation calculated, the parameter estimates can be analyzed

Below are some observations that we could make from the Build area model.

3.4.2.3 Observations from the Data

For the first shift, good production hours include the hours of 9am 10am, 1pm,

and 2pm. These hours generate at least 100 units per hour greater output than the model

baseline of 11pm. Poor production hours include the hours of 3am, 7am, 11am, and

12pm. These hours generate at least 100 units per hour less output than the model
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baseline. When excluding lunch hours, 11am, and the first hour of the shift, the general

productivity of the workers arguably increases as the shift goes on by an average of

nearly 26.5 units per hour.

For Shift 2, good production hours for Shift 2 include the hours of 5pm, 8pm,

9pm and 12 am. These hours generate at least 100 units per hour greater output than the

model baseline of 11pm. Poor production hours for Shift 2 include the hours of 4pm,

6pm, 7pm and 2am. Each of these has output volumes that are over 100 units per hour

less than baseline for the overall production model. When excluding lunch hour, 7pm,

and the first hour of the shift, the general productivity of the workers also arguably

increases as the shift goes on by an average of about 5.5 units per hour.

Looking at the productivity by day, Monday performance is significant, with a P-

Value of less than 0.0001, and shows that productivity is generally poor, yielding 56 units

less per hour than the baseline case of Wednesday. Saturday is a highly productive day

yielding 43 extra units per hour worked. Also, by using these predicted estimates and

observing the general trend for the week, it can be noted that output increases by an

average of 14 units per day throughout the week.

One big indicator that this Build prediction equation shows is that breaks have a

severe impact on productivity. While some drop in output is expected during breaks, the

model shows that lunch breaks for each shift have a high impact on productivity. The

hour following lunch, 12pm, is not productive, yielding an average of 208 less units than

the baseline case, and the hour before lunch during shift 2, 6pm, produces an average of

306 less units than the baseline as well. This data shows that there is a 2-hour window of

impact around lunch breaks for each shift.

Finally, by looking at the relationship between labor hours and productivity, it can

be seen that productivity is a polynomial function. An increase in output due to labor is

approximated using Equation 18, as shown below.

BuildLaborEstimate = 0.000072*BuildLaborHours 3

- 0.07*BuildLaborHours2

+ 26.41*BuildLaborHours
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Unlike a linear relationship where the output growth rate is stable, this model

suggests that there is polynomial growth in the Build area, where the output growth rate

per labor hour actually increases as the number of labor hours increases. This equation

would suggest some economies of scale are being achieved in the Build area, just as in

the Kitting area.

3.4.2.4 Measure of Predictability of Build

Below is a plot of the predicted value vs. the actual value plotted against each other

for all hours analyzed. Additionally, a summary of the model's fit is included.

Actual by Predicted Plot

2000

1000j

1 1000 2000

Build Total Predicted P<.0001 RSq20079
RMSE=155.45

Summary of Fit
Rsquare 0.793109

RSquare Adj 0.785401
Root Mean Square Error 155.4477

Mean of Response 1408.104
Observations (or Sum Wgts) 864

Figure 9: Build Regression Analysis

For our build prediction, there is a good general trend exists relating the prediction

equation to actual values. The R-square value suggests that the prediction model

accounts for nearly 80% of the variation in production output. Once again, this is a

decent prediction for the Build area.

3.4.2.5 Variation between Predicted and Actual Values

To test for independence the residual values were plotted against the actual output

volumes. That plot of the residuals is shown below.
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Residual by Predicted Plot
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Figure 10: Build Residual Analysis

As with the kitting plots, the residual plot for build has a slight convexity, however,

there are not severe trends in the residual plots, such as U-shapes. Additionally, looking

at the distribution of the residuals around the predicted value, there is once again a

Normal distribution. This distribution chart is shown below.

Residuals for Build Distribution
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N 864

Goodness-of-Fit Test
Shapiro-Wilk W Test
W Prob<W

0.982654 0.0654

Figure 11: Build Residual Distribution and Goodness-of -Fit
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These plots are important for showing that the residuals are normally distributed

around the predicted output values. The Shapiro-Wilk test shows that 98% of the

variation of the residuals can be explained through normal variation.

For the Build area, by looking at the residuals it can be seen that a mean difference

from each hour of actual output of zero (mean of -2.01e-13). The measured standard

deviation of the model is 153. In general, a model for the Build area can be calculated by

using the prediction equation from Table 3 to solve for a predicted output volume, and

the model's residuals are can be quantified by a normal distribution around that predicted

value by a standard deviation of 153 units per hour.

3.4.3 Boxing Capacity

Generally, the Boxing regression was not as accurate as the other areas in the

factory. While more data was available for the factors identified in the Area Production

Headcount Factors section above, the data was much less reliable. The same factors

used in Build were used to predict output in Boxing. They include Hour of Day Worked,

Day of the Week, and Labor Hours. Labor Hours for Boxing is calculated with the

following formula.

(19) BoxingLaborHours = PercentHoursWorked * BoxingHeadcountTotal

Labor Hours was calculated as it was in Kitting and Build and additional factors of

Labor Hours Squared and Labor Hours Cubed were used in the regression to account for

productivity gains that might be present do to changes in productivity due to scaling

effects in the factory.

The biggest difference between Boxing and the other areas is that Boxing is fed

work from Build, which is generally the constraint of the factory. Because of this, boxing

will many times be starved of material and unable to work. For that reason, Boxing

factors in a measure of block and starve time for the Boxing area was added into the

model as well. Block and Starve time for the Boxing area was the measure of time that

boxing was blocked by distribution (it could not push out boxes to distribution) or starved

of work from Build. Block and Starve data for Boxing was measured using photo-eye

sensors at the point immediately before and immediately after the boxing line. While
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kitting showed no correlation between productivity and the block and starve time

measurements, boxing did show a good correlation. For this reason, block and starve

times are used as factors in the creation of our prediction equation for boxing.

3.4.3.1 Parameter Estimates for Boxing

Using the factors mentioned above, a multivariate regression was run for the

boxing area. Below area the parameter estimates by factors for the Boxing area.

Parameter Estimates
Term Estimate Std Error T Ratio P-Value
Intercept -1145.928 314.1743 -3.65 0.0003
Total Block Box -445.1005 156.5409 -2.84 0.0046
Starve Total -373.928 44.72017 -8.36 <.0001
Hour[00] 91.597076 30.09283 3.04 0.0024
Hour[01] 259.52653 39.26438 6.61 <.0001
Hour[02] 193.32873 92.12238 2.10 0.0361
Hour[03] -369.0458 129.881 -2.84 0.0046
Hour[04] -20.59078 128.8326 -0.16 0.8731
Hour[05] -11.27967 34.28826 -0.33 0.7423
Hour[06] 111.12703 27.73306 4.01 <.0001
Hour[07] -56.57066 28.06712 -2.02 0.0441
Hour[08] 73.588522 28.39782 2.59 0.0097
Hour[09] 236.59696 28.05585 8.43 <.0001
Hour[10] 253.96343 27.92961 9.09 <.0001
Hour[11] -589.7338 28.86436 -20.43 <.0001
Hour[12] -150.4103 28.679 -5.24 <.0001
Hour[13] 264.44002 28.30215 9.34 <.0001
Hour[14] 186.84029 31.92569 5.85 <.0001
Hour[15] -351.908 130.4618 -2.70 0.0071
Hour[16] -34.01453 26.85168 -1.27 0.2055
Hour[17] 190.80668 28.21742 6.76 <.0001
Hour[18] -307.8806 27.17461 -11.33 <.0001
Hour[19] -583.1138 27.57487 -21.15 <.0001
Hour[20] 266.35928 27.83412 9.57 <.0001
Hour[21] 264.91244 28.51699 9.29 <.0001
Hour[22] -143.765 27.70316 -5.19 <.0001
Day of the Week[FRI] 15.177396 12.76464 1.19 0.2347
Day of the Week[MON] -72.16153 14.52159 -4.97 <.0001
Day of the Week[SATJ 15.495413 25.44874 0.61 0.5427
Day of the Week[THU] 16.677354 13.54749 1.23 0.2186
Day of the Week[TUE] 6.424319 12.54809 0.51 0.6088
Boxing Labor Hours 71.532529 12.7602 5.61 <.0001

Figure 12: Boxing Regression Equation Estimate

The important information that can be pulled out from these equations is as

follows. As in the Build area and Kitting area models, the regression baseline case for

the categorical Terms, Hour and Day of the Week, were 11pm and Wednesday,

respectfully. With factor significance defined by when the P-Value column contains a

value that is less than 0.15, there are some assumptions that we can make from our data.

3.4.3.2 Build Prediction Equation

Like in the other areas, knowing the Terms and Estimates, a Prediction Equation

can be created that will estimate the average output given the Intercept, Day of the Week
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(DOW), Hour, and the number of Labor Hours worked in the Boxing area. Unlike

Kitting and Boxing, the amount of time that the Boxing area was blocked and starved

proved to be valuable in predicting the output of the Boxing area. To find the average

output in the Boxing area, the following equation is derived.

(20) BoxingOutput = BoxingInterceptEstimate

+ BoxingDOWEstimate

+ BoxingHourEstimate + BoxingLaborEstimate

+ BoxingStarvedTotal + BoxingBlockedTotal

The InterceptEstimate for the above equation is found to be -1145.928 in the

Parameter Estimate table for the Boxing area. Additionally, as in the other areas, the Day

of the Week estimate and the Hour estimate can be found as well, by matching the day

and the hour being predicted with the Day of the Week and Hour estimates in the

Parameter Estimates table. Finally the LaborHourEstimate term can be determined by

calculating the Labor Hours for the Boxing area using the following equation.

(21) BoxingLaborEstimate = 0.00259*BoxingLaborflours 3

- 0.71*BoxingLaborHours 2

+ 71.53*LaborHours

With the prediction equation calculated, the parameter estimates can be analyzed

Below are some observations that we could make from the Boxing area model.

3.4.3.3 Observations from the Data

For first shift, good production hours include the hours of 9am 10am, 1pm, and

2pm. These hours generate at least 100 units per hour greater output than the model

baseline of 11pm. Poor production hours include the hours of 3am, 1 1am, and 12pm.

These hours generate at least 100 units per hour less output than the model baseline. As

expected the hourly productivity trends are similar to the trends seen in Build. When

excluding lunch hour, 1 1am, and the first hour of the shift, the average productivity of the

workers increases as the shift goes on by an average of about 18.5 units per hour.
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For second shift, good production hours for Shift 2 include the hours of 5pm,

8pm, 9pm, lam and 2am. These hours generate at least 100 units per hour greater output

than the model baseline case of 1 1pm. Poor production hours for Shift 2 include the

hours of 6pm, 7pm and 10pm. Each of these has output volumes that are over 100 units

per hour less than the baseline case. When excluding lunch hour, 7pm, and the first hour

of the shift, the general productivity of the workers also increases as the shift goes on by

an average of about 38 units per hour.

While days are generally mixed in measured significance, there are a couple of

interesting facts can be pulled out. Monday performance is significant and shows that

productivity is generally poor, yielding 56 units less per hour than other hours and

Saturday is a highly productive day yielding an extra 43 units per hour worked. Also, by

using these predicted values and observing the general trend for the week, it can be seen

see that output increases by an average of 14 units per hour per day throughout the week.

This trend is fairly significant, however, variation does exist that could mean the trend

data is not enough to measure daily effects.

One big indicator that this shows is that breaks once again have an impact on

productivity. The hour following lunch in first shift, 12pm, produces 150 units less than

the baseline hour, and the hour before lunch during second shift, 6pm, produces 307 units

less than the baseline hour. There is a two-hour window of negative impact around lunch

breaks for each shift.

Finally, by looking at the relationship between labor hours and productivity it can

be seen that productivity is once again a polynomial function. An increase in output due

to labor hours can be approximated using Equation 21, which is shown again below.

LaborEstimate = 0.00259*LaborHours3 -0.71*LaborHours 2

+ 71.53*LaborHours

This shows that productivity is not a linear relationship, but one that has polynomial

growth in output units with every labor hours invested, just as in the other areas. This

equation would suggest that there are some economies of scale that increase the

productivity of the area as the area becomes more staffed.
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3.4.3.4 Measure of Predictability of Boxing

Below is a plot of the predicted value versus the actual value plotted against each

other for all hours analyzed. Additionally, a summary of the model's fit is included.

Actual by Predicted Plot
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Total Boxing Outs Predicted P<.0001
RSq=0.74 RMSE=188.96

Summary of Fit
Rsquare 0.740746

RSquare Adj 0.732034
Root Mean Square Error 188.9558

Mean of Response 1351.484
Observations (or Sum Wgts) 1016

Figure 13: Boxing Regression Analysis

For our boxing prediction, there is a close general trend exists relating the

prediction equation to actual values. The R-square value suggests that the model

accounts for nearly 74% of the variation in production output. Once again, this is a

decent prediction for the boxing area, but not great. Some amount of variance should be

eliminated from this model to make it more reflective of actual production numbers.

3.4.3.5 Variation between Predicted and Actual Values

To test for independence, the residual values are again looked plotted against the

actual output volumes. That plot of the residuals is shown below.
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Residual by Predicted Plot
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Figure 14: Boxing Residual Analysis

As with the kitting and build plots, the residual plot for boxing has a slight

convexity, however, there is not severe trends in the residual plots. Additionally, from

the distribution of the residuals around the predicted value, there is once again a Normal

distribution. This distribution chart is shown below.

Boxing Residual Distribution
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Figure 15: Boxing Residual Distribution and Goodness-of-Fit
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These plots are important for showing that the residuals are normally distributed

around the predicted output values. The Shapiro-Wilk test measuring Normality shows

that 98% of the variation of the residuals can be explained through normal variation.

For boxing, by looking at the residuals it can be seen that there is a mean difference from

each hour of actual output of zero (mean of -1.69e-12). Our measured standard deviation

of the model is 186. In general, we now have a model for the Boxing area that can be

calculated by using the prediction equation from Table 3 to solve for a predicted output

volume, and the residuals can be quantified by a normal distribution around that predicted

value by a standard deviation of 186 units per hour.

3.4.4 Distribution Capacity
While this is not tracked in the normal WIP tracking tool of the factory, some

measurement of the distribution area has been completed through other internal

methodology. Analysis suggests that Distribution capacity is about 3300 units per hour.

Variability in the Distribution area is caused by downtime and other factors. However,

the maximum-recorded output from Distribution was 4275 Units per Hour, so it is

assumed that the Distribution is able to make up for downtime events by working at a

much faster rate of speed than the other areas. Additionally, in case there is an excursion

that causes Distribution to fall behind the other production areas in the factory, the

storage facilities in the Distribution area can be used to temporarily hold product until the

Distribution area catches up with the rest of the factory.

3.5 Example - Predicting Area Output by Hour
For each Kitting, Build, and Boxing, the methodology used to collect the data, the

prediction equations, and the analysis of the residuals was discussed. With that

information, this section will give an example of how that analysis can be used to predict

the output for the area. For this example, lets assume that the prediction equation is being

used to predict the output for the Build area, given the following influencing factors.

63



Factor Value

Day Monday

Hour of the Day 9am

Headcount in Build 343 people

Portion of Hour Worked Full Hour (1 hour)

Table 6 - Example Factors for Determining Output

Using these factors, and the prediction equation the average (expected) output can

be calculated for the Build area. From the prediction equation, the Intercept for the

model is shown to be -2201 units. Because the day of the week is Monday, the Output is

computed by using the Estimate of the "Day of the Week [Monday]" Term, resulting in

an adjustment of-56 units. Since the hour of the day is 9am, the Hour[9] Estimate would

be used to find that there is an adjustment of 146 units. Finally, to calculate the Labor

Hours in the Build area, the number of workers is multiplied by the percent of hour

worked, as in Equation 16.

BuildLaborHours = PercentHoursWorked * BuildHeadcountTotal

= 1.00 (full hour of work) * 343 workers

= 343 workers

In this case, the labor hours will be 343 labor hours as 343 floor associates each

worked one full hour. Knowing the labor hour's value, and utilizing the Build Labor

Hours Equation, the Labor Hours adjustment is calculated, using Equation 18, as shown

below.

BuildLaborEstimate = 0.000072*BuildLaborHours3 - 0.071831

- BuildLaborHours2 + 26.405038*BuildL aborH ours

Plugging in the BuildLaborHours value, 343, into the equation, the following Build

Labor Estimate is calculated.
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BuildLaborEstimate = 0.000072*3433 - 0.072*3432 + 26.4*343

= 3511

With the output due to labor hours estimated, and the other term estimates known,

the average output in the Build area can be calculated using Equation 17, shown again

below.

BuildOutput = BuildInterceptEstimate + BuildDOWEstimate

+ BuildHourEstimate + BuildLaborEstimate

Plugging in the BuildLaborEstimate value, 3511, as well as the Build Intercept

value of -2201, the Day of the Week (DOW) adjustment of -56, and the Hourly

adjustment of 146, the output is determined as shown below.

BuildOutput = - 2201 - 56 + 146 + 3511

= 1400 Units

Thus, the average output in the Build area given the example values is calculated to

be 1400 units. While this is a good estimate of output, as the area analysis showed above,

the output will vary compared to our predicted output. By characterizing the residuals, or

measurement that the predicted value was off from the actual output for the Build area, it

was found that the residuals were characterized by a Normal distribution around our

predicted value, with a standard deviation of 153 units per hour. A graph of this

distribution can be seen in the Figure below.
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Build Residual Distributions
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Figure 16: Predicted Output with Normal Distribution of Residuals

The expected output calculated from our prediction equation for Build, labeled as

the predicted value above, can be seen in a residual plot, as the zero value for the residual

plot. Likewise, one standard deviation above and below the predicted value is labeled at

+152.63 and -152.63 respectively. By definition of a Normal distribution, 68% of all the

actual data points will fall between +/- 152.63 units of the predicted value. In fact,

because the distribution of values have the characteristic of being a Normal distribution,

the probability that the true output will fall above a given value, below a given value, or

within a given range of points above or below our prediction can be calculated as well.

In fact, a Normal distribution can be used to calculate the probability of getting any

output value, given a predicted output value and standard deviation of the residuals. As

the optimization model is built this becomes important.

4 BUILDING A NEW HEADCOUNT OPTIMIZATION MODEL

An optimization model can be used to iteratively determine the maximum or

minimum value of one variable, given a set list of constraints. There are two bits of

information that the optimization needs in order to be created. First, the optimization

model needs an objective function. The objective function is the goal for the

optimization, which in the case of the Dell headcount problem, would be to determine the

minimum headcount needed in order to meet the production output demand each shift.

An optimization model also needs constraints defined for the model, in order to set

bounds for the possible solutions for the problem. In the headcount optimization, the
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model will be bound by a couple of things. First, the output should always be greater

than or equal to zero. This in turn implies that the headcount level should never fall

below zero. Additionally, the output from each area every day should be equivalent.

Over time, there should never be an imbalance in the amount of material made from area

to area in a just-in-time system. The prediction equations and the variation that has been

determined for each area hour will be a constraint of the optimization as well. Using this

information, the average output for the shift and variability can be determined. Using the

shift output for each area, and the variability the optimization can determine the

appropriate headcount needed in each area to meet the demand of the factory and ensure

the bottleneck does not move between areas.

Finally, the optimization created for this headcount model will allow the managers

of the model to vary the Shift, Day, Hours in the Shift, and Output Demand. In addition,

the managers will be able to determine what level of confidence they want to ensure that

the constraint area meets the production volume for the Shift, as well as the percent

confidence that the constraint does not move throughout the factory. With all of the

above information, all the pieces are available to build the optimization model. The

headcount in each area will be varied, until a minimum headcount to meet the overall

production volume is met. The above optimization process will be discussed in great

detail throughout this Section and the optimization output will be described.

4.1 Determining Mean Output and Standard Deviation for a Shift

The prediction equation analysis of each of the areas could be used to determine

each area's hourly output, given factors such as labor hours, day, and time of the week.

While it is important to understand the hourly mean and variance that exists for each area,

as calculated in the last section, Dell's headcount planners are not interested in predicting

headcount hour by hour. Instead, they are interested in understanding how much

headcount is needed to match their shift output needs within the factory. That means the

optimization model should have a way of predicting headcount needed for an entire shift,

which requires that we calculate the mean and standard deviation of the output for a

whole shift. This is not straightforward because the shift lengths can range between five

and 11.5 hours depending on the demand. However, given the length of the shift, the

shift output mean and variance can be approximated. This approximation is described

below.
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4.1.1 Accounting for the Length of the Shift

The factory is broken into two shifts and the demand for the shifts and hours of

work are determined with only one day of lead-time. The floor associates come in the

next day and work until the backlog of orders is depleted to a given level. Because of

this, shift length can vary to some degree from day-to-day. However, once the number of

hours is determined for the following day, the actual schedule that the floor associates

work is fairly consistent. Because the hours that are worked are consistent, and the

prediction equations created for each area have hourly approximations of output rates, the

information about what hours the associates work can be used to better determine the

shift output. Knowing how many work hours are planned for the shift, the schedule will

tell what hours to include in our model. The shift total will be the total of each hour's

mean output, and the variability for the shift can be estimated as well.

Looking at First shift, to determine what hours the associates will work, given the

scheduled shift length (SL), the following business rules can be used.

Shift Shift Scheduled Hours

Start Time:
Shift Length (SL) Start Time

SL <= 9 hrs 6am
9 hrs <= SL <=11 hrs 6-(SL - 9) am

SL >= 11 hrs 4am
End Time: Start Time + Shift Length

First Lunch: 7pm
Break: varies - generally 10 pm

Start and End Examples:
Shift Length Start Time I End Time

7 2 hours 6am 1:30pm
10 % hours 4:30am 3pm
11 ' hours 4am 3:30 pm

Table 7 - TMC First Shift Work Hour Rules

From Table 7, we see how the start and end time for the shifts are determined

within the factory for Shift 1. An example of how to use the above table to determine the

start and stop time of the shift is given below. Assuming that the shift being worked is

first shift (S 1). Assuming also that the shift length is scheduled to be 10.5 hours, the start

time and stop time of the shift can be calculated using the equations below:
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(22) S1 Start Time

(23) S1 Stop Time

= 6am - (Shift Length - 9)hrs

=6am - (10.5 - 9)hrs

= 4:30am

= StartTime + Shift Length

=4:30am + 10.5 hrs

=3 pm

Using the equations shown in the table above, the start and stop times for the first

shift with any shift length can be determined. Likewise, the shift hours for the second

shift are easy to determine as well. A table that includes the business rules to determine

the second shift (S2) hours is shown below.

Shift Shift Scheduled Hours

Start Time: Always starts at 4pm.
End Time: Start Time + Shift Length
Lunch: 7pm

Second Break: varies - generally 10 pm

Start and End Examples:
Shift Length Start Time End Time

7 V2hours 4pm 11:30pm

Table 8 - TMC Second Shift Work Hour Rules

Second shift always starts at 4pm, and the end time is determined by the number

hours that will be worked during the shift. As an example, a 10.5-hour second shift will

have a start time of 4pm and an end time of 2:30am. The scheduled work hours will be

important in the calculation of the mean output for the shift, demonstrated in the next

section.

4.1.2 Calculating the Mean Output for the Shift

As mentioned, knowing the hours that will be worked now can be used to

determine which hours will be worked during each shift. Because each hour's output is

distributed normally, the individual hour mean outputs for each area can be summed to

find the average output for the shift. For example, if the model is being used to
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determine the mean Build output for Shift 1, and the shift lasts eight hours, starting at

6am, a mean output for the shift can be determined by adding up the mean hourly outputs

for the hours of 6am, 7am, 8am, 9am, 10am, 11am, 12pm, and 1pm. As an example, if it

is assumed that the output for the first shift is being calculated, and it is for a Monday

with 343 factory associates working, the average shift output would be equal to the mean

output for each hour between 6am and 1pm. To calculate the mean, the hourly means are

summed to create an average output for the shift. In this example, the mean shift output

would be as shown in the following table.

Labor Monday Hour Total
Output Intercept djustment Adjustment Output

6am 3511 -2201 -56 41 1295
7am 3511 -2201 -56 -140 1114
8am 3511 -2201 -56 56 1310
9am 3511 -2201 -56 146 1400
10am 3511 -2201 -56 140 1394
11am 3511 -2201 -56 -587 668
12pm 3511 -2201 -56 -208 1046
1pm 3511 -2201 -56 133 1386

Shift Avg= 9614

Table 9 - Shift Output for an 8-hour shift on Monday with 343 workers

As shown above, the hourly outputs were calculated from the prediction equation

for the Build area. The average output for the shift is equal to sum of each hour's

average output, which would be 9614 units out of the Build Area.

4.1.3 Calculating the Variance of Output for the Shift

While the average output is good to know there is also power in knowing the

amount of variability that exists during the shift. The most basic approach assumes that

each hour's output is independent of the output from any of the other hours' outputs.

This assumption would infer that if a bad hour were experienced in the factory, it would

in no way impact the output from any other following hour. Calculating the amount of

variability in the shift output in this case is easy to calculate. To do this, the shift output

would equal the square root of the sum of the squares of each individual hour's standard

deviation. In this case, the standard deviation for every hour is equivalent, so the
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equation to calculate the standard deviation of the shift output variability is written

below.

(24) Shift StdDev = (Number of Hours in Shift * StdDev(Hour)2 )

As an example, using this equation, the standard deviation of the output variability

for the Build area for an 8-hour shift would be equal to:

Shift StdDev = ( 8 * (153)2 )112 = 433 units

In this example, by definition of Normal distributions, there is a 68% chance that

Build's output would fall between 433 units above and below the average of 9614 units,

or restating this, of falling between 9183 and 10049 units. By calculating the shift output

averages and standard deviations for each area, validation of the shift output predictions

can be done by comparing our calculated averages to the actual output for known hours.

That activity was performed and is described below.

4.1.4 Validating the Area Models

In order to validate each areas model the actual output was compared with what

the prediction equation for each area estimated the output. In order to validate the model,

the residuals were tested for Normality. If the actual output minus the predicted output is

truly a Normal distribution, the difference between the actual and the predicted values

should mean that 50% of the points should lie above the zero and the other half should lie

below zero. Stated a different way, when comparing the actual and predicted outputs, the

predicted value should lie above the actual value, roughly 50% of the time, and it should

lie below the actual value roughly 50% of the time. Additionally, if the residual value is

truly a normal distribution, it should create a standard normal distribution where 68% of

the actual output falls within one standard deviation above or below the predicted value.

For the simple estimate of variability, that would mean 68% of the actual shift outputs

should fall within 433 units of the mean. The results of the validation for the Build area

are found in the Appendix. What was found was that when the standard deviation for the

shift was calculated, assuming that each of the hours was independent, only 58% of the

shift data points fell within the estimated 1 standard deviation, or 433 units, of the output
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for the Build area. This suggests that the assumption that each area's output was

independent of every other hour's output was most likely incorrect.

Looking at the distribution a different way, a second method can be used to

determine the standard deviation of output each shift. Instead of the equation used above

to determine the standard deviation, which assumes no interdependence between factors

in our prediction equation, a new equation can be used, as seen below.

(26) Shift StdDev = (Number of Hours in Shift * StdDev(Hour) 2

+ (Hourly Covariance of All Factors) 2)"2

This equation includes a term "Hourly Covariance of All Factors" that represents

the total interdependence of each factor, such as hour of the day and day of the week that

could exist and should be used to predict the shift output. Ideally, the interdependence

between each combination of factors in the regression model could be determined,

however, the prediction equation would become very complex. Part of the consideration

when creating an optimization model would be the ease of replication and

implementation. For that reason, the interdependence between all factors was looked at

as a whole. To solve for the standard deviation, the "Hourly Covariance of All Factors"

was approximated until 68% of the historical data fell within one standard deviation of

the mean. The "Hourly Covariance of All Factors" was approximated to be 230 units per

hour.

While this approximation was a good method that takes into account the number of

hours in the shift, ease of implementation was again a major concern for this model.

Because this prediction technique would need to be done on a systematic basis, and

someone would support the model with less knowledge about statistics, it was decided

that an even easier method needed to be created. To simplify the process for

approximating the output, the final approach used was to subtract the average shift output

calculated in the previous section from the actual shift output and look at the distribution.

In this case, the predicted shift output minus the actual output can be seen in the normal

distribution as shown below.
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Figure 17 - Distribution of Predicted Shift Output - Actual Shift Output

The distribution of the predicted shift output minus the actual shift output is a

normal distribution with an average of 38 units per shift and a standard deviation of

nearly 690 units. That means our prediction equation had nearly the same average output

as the actual output, and 68% of the actual values were within 690 units of the predicted

shift output. For the case of our headcount optimization, that was a close enough

approximation to use overall.

The same type of analysis was done for Kitting and Boxing was done as well.

These areas had predicted output that averaged the actual output overall, and they had

standard deviation values of 700 units per hour and 750 units per hour respectively.

These relationships will be used for an overall factory model shortly.

4.2 Choosing a Constraint
One problem with the old headcount model at Dell is that the model for the factory

sets the output target of each area equal to the overall target for the factory area. Below

is the old factory headcount model as shown in the thesis description section.
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Figure 18 - Old Model Output by Area

Recalling the issues seen by using this type of output model, it was shown that with

the areas output targets set to the factory output target, the constraint of the factory could

move between areas, and may cause the situation where you miss your daily output

targets for the factory consistently. To address this issue, a new headcount model was

built using the Theory of Constraints assumption that your factory constraint should be

chosen and the constraint of the factory should always stay in one area of the factory.

The Theory of Constraints also states that after deciding which area will be the factory

constraint, the production capacity of each of the other areas should be raised enough to

prevent them from ever becoming the bottleneck of the factory again. Elevating the

headcount in the non-constraint areas can help boost those areas production capacities.

By making one area remain the constraint, controlling the factory output is much easier,

because to control the output of the factory, you need to only concentrate on controlling

the output of the constraint area in the factory. Also, there is much less variability

possible in the output of the factory.

To decide which area will be the factory constraint can be determined by looking at

some key information. First, there are hard constraint limits in the factory due to the

capital equipment capacity or hard limit bottlenecks. An area will never have higher

production rates than that of the hard limit bottlenecks. The second main consideration is

the cost of adding production capacity is a main concern. The area with the highest

marginal cost per extra unit produced is the main determinant of cost of capacity.
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Another factor that may be considered is the area's activity involved in the production of

the material and the level of expertise and activity that needs to be performed in each area

of the factory. For areas with a large amount of activity of highly skilled or specialized

jobs, it is more important to keep activity level high. If these areas start and stop

frequently, repetition is interrupted, and the concentration of the workers could be

impacted. This could cause less than optimal throughput rates, or high error potential.

One final consideration is determining which area has the lowest amount of variation in

its output rate. By selecting the area with the lowest variability, the factory output rate

will be less variable and more controllable, and therefore easier to predict.

In the case of the TMC Factory, the Build area was chosen as the constraint. Build

is the highest capital cost area in the factory to upgrade and it is also the most labor

intensive. Additionally, from the analysis of each of the areas, the Build area appeared to

have the lowest variability of any of the production areas. For those reasons, it makes

sense that the bottleneck should remain in Build. This area was also identified by

production control as the designed constraint for the factory. Recalling the historical

Block and Starve data, it was shown that the constraint of the factory was Build at nearly

21% of the time. With this information in mind, the model was designed to force Build

to always be the constraint of the factory. In order to create a model that forces Build to

be the slowest area in the factory, the production capacity of Kitting, and Boxing can be

raised to ensure that Build is the slowest performing area in the factory. The following

graph demonstrates how this is accomplished.
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Figure 19 - The New Factory Headcount Model

Applying this design to the area prediction models that were derived, we can now

build an intelligent headcount model that will make sure the constraint stays where we

want it in the factory. Because each of the area output distributions are normal

distributions, it is easy to calculate the probability that the area will perform above or

below a given production volume given the input factors such as labor hours or day of the

week. Because those probabilities can be calculated, headcount can be adjusted in

Kitting and Boxing that will artificially raise their area capacities and ensure these areas

outperform Build a majority of the time (to the confidence interval that is desired by the

factory).

Given the basic premise and design of the factory headcount model above, the final

system optimization model was created using the area prediction models from Kitting,

Build and Boxing. To do this, the model takes the prediction equation of each area, and

sets their headcount targets so that Kitting and Boxing will statistically not allow the

Build area to be blocked or starved a majority of the time. By doing this, Build will

remain the slowest area in the factory and the Build area will solely determine the factory

output. An explanation of how the optimization works follows.

4.3 Factors Used to Create the Headcount Optimization

Now that the design for the optimization has been discussed, the overall headcount

optimization can be created. To do this an optimization was created to include the three
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possible constraint areas - Build, Kitting and Boxing. To build an optimization some

specific information needs to be defined. First, the objective function must be

established. The objective is to minimize the headcount needed to achieve the needed

output target for the area. The solver utility will vary headcount, given all other factors to

meet the output desired for the shift with the minimum amount of headcount possible.

4.3.1 Inputs for the Optimization

The optimization being created is setup to allow the managers within the factory to

determine headcount needed for varying conditions. Because of this, it requires the

ability for managers to configure the solver to meet the conditions by which the solver

will try to optimize the headcount in the factory. These configuration variables are

included below:

Variable Description
Target Output The target output for the shift is defined by the

factory's shift demand
Shift The model can be run for first or second shift.
Number of Hours Worked This is the total hours worked in the shift.
Day of the Week The model can be run for Monday, Tuesday,

Wednesday, Thursday, Friday, or Saturday.
Percent Confidence of Making This is used to determine the probability of making
the Output Target the output goal for the shift. This is set to 50% for

general case. (This will be explained in further
detail below.)

Table 10 - List of Variables for Build Optimization

While most of the above factors are straight forward, percent confidence is a little

difficult to understand. This attribute is further described below.

4.3.2 Percent Confidence of Meeting our Output Goal

If there is a goal for the output needed within a shift of 9000, the probability of

achieving that goal will vary as the mean output of the area changes. If the area is staffed

with a greater amount of headcount that the amount needed to average 9000 units per

shift, the probability of reaching 9000 units per shift will be greater than 50%. Assume

that for the example in which there is a goal of reaching 9000 units per shift and that the

factory is staffed at a level that typically would average 9614 units of output. Normal

distributions allow the computation of the probability of meeting an output goal given all
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of the different production factors, if we know simply the average output and the standard

deviation of the residuals. With the mean and standard deviation of 9614 and 690

respectively, we can solve for the probability of building at least 9000 units. Graphically,

this is shown below:

/Z
- az

Figure 20 - Probability of at Least "a" units being produced

The above picture shows the probability (in grey) of getting "a" units or greater

units produced in the factory given an average output of 9614 units. The following

equation in conjunction with a cumulative normal distribution table from a Statistics text

can give us an estimate of the probability of greater than "a" units from our factory area.

(27) P(Z>a) = 1 - D((p-a)/T)

In the above equation, the "a" variable represents the number of units the model is

trying to exceed. By plugging in the mean of the Normal Distribution, p, and the

standard deviation, a, of the Normal Distribution, we get the following results.

P(Z>a) = 1 - D((9000 - 9614)/690)

= 1 - (D(-0.89)

Looking in the included Normal Distribution table in the Appendix, we can now

calculate the probability that the actual output will exceed 9000 units.
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P(Z>a) = 1 - 0.1867

= 0.8133

Using cumulative distribution tables included in the Appendix, the probability of

exceeding 9000, in a distribution with a mean of 9614 and standard deviation of 690 is

nearly 81%, meaning there is an 81% chance of hitting 9000 units per shift if the average

output achieved for the shift with the given headcount is 9614.

Using this above relationship, a percent confidence as well as the other factors

discussed can be chosen by the managers at Dell, and the solver program will adjust the

headcount in order to make sure that the workforce meets the output goal. The solver will

stop when the output objective is met, and it has the minimum headcount possible.

4.4 Creating the Build Headcount Optimization
Using the optimization methodology that was discussed above, the Build area

headcount model was created. The output goal for the Build area is equal to the output

goal for the factory. That is because the Build area is the constraint of the factory and as

mentioned, the Theory of Constraints states that the factory output should be equal to that

of its constraint. For this optimization, the model assumed a 50% confidence level of

achieving the productivity output in the factory. With a 50% confidence level, over time

the predicted output will average out to equal the actual average output of the factory.

However, if it is more crucial that the factory meets its production output level, the

managers might set the factory's percent confidence at 60% or even 80% in order to have

a higher chance of meeting the factory's production goal. This factor is at the manager's

digression. The manager can also vary the day, shift and shift length as well. With these

factors, and knowing the build standard deviation was estimated to be 690 units, the

optimization will iterate until it determines the headcount needed to meet the output

needs. The final optimization model for build is shown in the Appendix.

4.5 Kitting Headcount Optimization
Like the Build optimization, to optimize the headcount needed to meet a given output

level in the Kitting area requires essentially the same information as was needed in the

Build optimization. However, there are a couple of distinct differences. The output goal
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for the Kitting area is different than the output goal in the Build area in that the Kitting

area is not the constraint in the factory. While the Build area's job is to set the pace of

the factory, and has its output goal set to the output target for the factory, the Kitting

area's job is to make sure that the Build area is never starved of material. Because of

this, the goal for the Kitting area should be to be able to produce units much faster, and

thus, never starve the Build area. For that reason, the Kitting area's production goal

varies with the Build area output.
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Figure 21 - Adjusted Production Volumes of Kitting and Boxing Output with Build Output

As shown in the above figure, the Kitting area's output goal must be set higher than

the Build area's output goal. With the Build area's output determined to be the factory's

output target, there is some variability in the actual amount produced by the Build area.

The variation in the Build area has a standard deviation of 690 as discussed, and the

Kitting area has a shift standard deviation as well of 700. To make sure that the Kitting

area will never starve the Build area of material, the Kitting area's output must be

elevated enough to ensure that despite the variability that exists in each of these there is a

low probability that the Build area will outperform the Kitting area.

To find the probability that the Kitting area will outperform the Build area can easily

be calculated. Because the Kitting and Build output values are both Normal distributions,
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the actual difference between the two values is, itself, a Normal distribution. To calculate

the Normal distribution of the difference between the Kitting and Build Output, the

following relationships can be used.

(28) KB Diff. Mean = Kitting Output - Build Output

(29) KB Diff. Std Dev = (Kitting Output Std Dev ^2

+ Build Output Std DevA2)A1/2

With the difference mean and standard deviation defined, the method used earlier

to determine the probability of meeting the shift goal given a different mean and standard

deviation can be used here as well. Determining the probability of the Kitting area

having a higher output than the Build area is equivalent to determining the probability

that the difference between Kitting Average Output and the Build Average Output (Diff

Mean) being greater than zero, given the standard deviation of the difference (Diff Std

Dev). To help demonstrate how this is calculated, an example is included below.

4.5.1 Example: Probability of Kitting Output Greater than Build Output

Assume that Kitting and Build have an average output of 10,000 and 9,300

respectively. Also assume that Kitting and Build have Standard Deviations of 690 and

700 as discussed in previous sections. Using equations 28 and 28 to solve for the mean

and standard deviation of the difference in production output between the Kitting and

Build area, the following calculations can be performed.

Diff Mean = 10000 - 9300

= 700 Units per Shift

Diff Std Dev = (690A2 + 700A2)A1/2

= 983 Units per Shift

Using those two values, the probability of Kitting outperforming Build can be

calculated using Equation 27, which expressed the probability of achieving or exceeding
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a production goal given the mean and standard deviation of the difference between their

Normally distributed values.

P(Z>a) = 1 - F(( 9300 - 10000)/983)

=1 - D(-0.71)

= 1-0.2389

= 0.7611

Therefore, there is a 76% chance that Kitting area will outperform the Build area in

the factory for the shift. Because the Kitting area outperforms the Build area, the Build

area should not be starved of material.

4.5.2 Determining the Output Goal

Knowing our output goal for Build, the goal for the Kitting area can be determined.

Basically, the optimization model created will take as input the day, shift, the number of

hours in the shift, and a probability that management wants the Kitting area to outperform

the Build area. Using these factors as well as the Build output goal and the variability of

the Kitting and Build area, the optimization will set a mean output goal for the Kitting

area as in the section above. Then the optimization will fluctuate headcount in order to

ensure the output goal is met and the minimum headcount is used. The spreadsheet for

the Kitting area is shown in the Appendix.

4.6 Boxing Headcount Optimization
The Boxing and Kitting area essentially calculated in the same manner. Once again,

the Boxing area's job is to make sure that Build is not blocked and can always push

material out. For that reason, the Boxing area's production goal is again determined by

the Build area's output. Once again, the probability of the Boxing area outperforming

Build is equivalent to finding the probability that the difference between the Boxing area

output and the Build area output is greater than zero. Given the Boxing and Build mean

outputs and the standard deviations of the two areas the probability of the difference can

be determined by calculating the mean difference between the two areas output levels and

the standard deviation of the Boxing area outputs minus the Build area outputs. The
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equations for the mean difference and standard deviation between the Boxing area output

and the Build area output are given below:

(30) BB Diff. Mean = Boxing Mean Output - Build Mean Output

(31) BB Diff. Std Dev = (Boxing Output Std Dev A2

+ Build Output Std DevA2)A1/2

Like in the example for the Kitting area, the standard deviation of the difference

between the Boxing output distribution and the Build output distribution could be

determined outright, using Equation 31 above. Knowing that the Boxing output

distribution standard deviation equals 750, and the Build output distribution standard

deviation equals 690, the standard deviation of the difference between these area

distributions is be calculated.

Diff. Std Dev = (750 A2 + 690A2)A1/2

= 1019 units

Thus, the standard deviation of the difference between the Boxing and Build area is

1019 units. Now that the mean difference between the two areas output means and the

standard deviation of the difference between the means has been characterized, they can

to determine the probability that Boxing will outperform Build. Just as in the Kitting

area, to do this an output target for Boxing is set that ensures that Boxing outperforms

Build a majority of time. Basically, the optimization model created will take as input the

day, shift, the number of hours in the shift, and a probability that management wants

kitting to outperform Build. Using these factors, the output goal for the Boxing area will

be determined by the optimization and then the optimization will fluctuate the headcount

in Boxing to determine the minimum headcount needed to meet the area's production

goal.

One final difference between Boxing and Kitting is that in Boxing, Block and

Starve metrics are used to help us approximate the output in the area. Since it was a

predictor in our equation, the managers in the area can estimate the amount of block and

starve time that will be expected in the Boxing area over the shift. For the initial model
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the block and starve time was set to the average block time recorded for the duration of

the internship. The averages over the period, as computed above were roughly 30%

Starve time, and 5% Block time. These values were used in the optimization. The

spreadsheet for the Boxing area is shown in the Appendix.

4.7 Optimization Model Summary
In order to make it so the user of the Headcount Optimization only had to input

data at one place, a control page was created to put the Optimization model together. The

input needed for the optimization to run, predicting headcount in each of the three areas,

could be consolidated into a short list of input parameters. They include the Shift Output

Goal, the Probability of Build meeting the Shift Output Goal, the Probability that the

Kitting area outperforms the Build area, the Probability that the Boxing area

outperforming the Build area, the Day of the Week, the Shift, the Number of Hours in the

Shift, the Block Time in the Boxing area, and the Starve Time in the Boxing area. As

described in the previous section, the model also took into account the standard

deviations for each of the areas in determining the optimal output level of each area.

With the above information, an optimization model for the factory was created to

minimize the total headcount needed in the factory, establish and maintain a constraint in

the Build area, and ensures that the factory meets its output goal. The overall

optimization is included in the Appendix.

5 HEADCOUNT MODEL RESULTS AND RECOMMENDATIONS

After creation of the overall optimization model, it was tested against historical

headcount and output data to measure any improvements that could exist by using the

headcount optimization model. To do this, one week of output totals by shift from each

month in May, June, July, and August was used. For each of these days, all of the input

factors were known so the optimization could be run to determine the optimum

headcount needed to meet the actual output for the shift. Once computed, the

optimization results were compared against actual headcount levels for each shift of each

day. With each comparison, a number of key assumptions were made. Each of these

assumptions is described in detail below.

The first assumption made when running the optimization model for the

comparison was to assume that there was a 50% chance that predicted output of Build
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meets the actual output for the factory over the days discussed. Over the 4 weeks, the

average output level of the actual and predicted values should be equivalent.

In order to ensure that Kitting never starves Build, the assumption was made that

Kitting would outperform Build 70% of the time. Assuming a queue is built up before

Build starts in the morning and Kitting outperforms Build 70% of the time, it was

inferred that the queue between Kitting and Build would never be depleted enough that

Build will be starved through the day.

In order to ensure that Boxing never blocks Build, the assumption was made that

Boxing would outperform Build 70% of the time as well. Assuming all units after Build

were cleared before Build started in the morning and Boxing outperforms Build 70% of

the time, it was inferred that there would not be sufficient buildup of inventory after

Build that would prevent Build from moving units out of their area.

The Boxing area optimization is unique in that Block and Starve time is needed in

its area model to predict output from the Boxing area. By optimizing headcount in the

Kitting area, the Build area and the Boxing area, the amount of block and starve time

should decrease in the factory. The Kitting area should no longer starve the Build area,

which in turn should not starve the Boxing area of material. That is important for two

reasons. First, the speed of the factory is assumed to be equal to be the speed of Build.

Second, because the factory is optimized, we can be more confident that the Kitting area

will not starve the Build area, and the Boxing area will not block it.

Recalling the block and starve data for the factory, the Kitting area was starving the

Build area 12% of the day (Build Starve Time). This assumption also ignores the amount

of time that the Kitting area gets starved, because it is such a small fraction of time that

even if starved, the kitting area will work fast enough to rebuild up the queues before the

Build area could diminish them. In turn, the Build area 32% of the day starves the

Boxing area. Because the Kitting area can be controlled to not starve boxing, the model

can eliminate that 12% Build area starve time. In turn, the Build area will not starve

Boxing for that 12% of the time as well. For the model results, the reasonable

assumption was made that Boxing would be starved 20% of the day, which was

equivalent to the original 32% starve time minus the 12% Kitting starve time.

Since this model does not impact the amount of time that Boxing is blocked by

distribution, the assumption was made that the amount of blocked time in Boxing will
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remain the same at 4%. With these assumptions, the actual headcount versus the

predicted headcount for the 4 weeks of output was compared. Their results are discussed

below.

5.1 Test Results
The shift-by-shift results for the optimization headcount compared to actual

headcount are shown in the Appendix. In general, there would have been a pretty

substantial drop in headcount needed to meet the output demand for these weeks if the

optimized headcount levels had been used. The results are shown in the following

Figure.

OPTIMIZATION STATISTICS

209<- People Savings First Shift
323<- People Savings Second Shift

9<-Hours in Shift
4788<- Total Hours
$8.50<-Cost Per Hour

$40,698.00<- 1 month Savings
$488,376.00

<- Yearly Savings

Assumptions:
50% Probability of Build Making Output

70% Probability of Kitting Outperforming Build
70% Probability of Boxing Outperforming Build

4% Block Time in Boxing
20% Starve Time in Boxing

Table 11 - Cash savings of optimized versus actual headcount levels

With a conservative estimate from the human resources on employee salaries, the
3

average reduced employee hours has an average salary of $8.50 per hour , an average

monthly savings of $40,698 and a yearly substantial headcount savings of $488,376 could

be obtained by using the optimized headcount plan. Additional savings could be inferred

if the cost of employee benefits were included in the cost per hour statistic above. The

average cost per hour for benefits averaged $3 within TMC. Factoring in these savings as

Human Resource Statistics - Shift I and Shift 2 permanent salary averages are $9.33 and $9.15 per hour
respectively (not including benefits). Assuming no shrinking headcount. Shift 1 and Shift 2 temporary
salary averages are $8.50 and $9.35 per hour respectively.
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well, the yearly potential savings were $660,744. This analysis is included in the

Appendix. While the results are good, the regression models could be better. Below are

suggestions that would improve the prediction.

5.2 Hard Constraint Analysis Recommendations

While the results above showed dramatic cost savings had the headcount

management tool been used, there are some key recommendations that could make the

headcount prediction more accurate. Some recommendations to make the hard constraint

analysis more accurate are included below.

5.2.1 Kitting-to-Build Recirc Recommendations

There are two components that are needed to predict throughput of the Kitting-to-

Build Recirc more accurately. First, the percent downtime of the Recirc would be helpful

and could be obtained by measuring the amount of time that the Recirc is actually

running in a given hour. Downtime will impact the maximum throughput rate of the

Recirc and should be tracked accurately. A second recommendation is to track the total

number of tote rescans that occur on the Recirc by counting the number of totes that the

production conveyer system did not push to a Build line while the Build line was not

completely full. This happens from time to time and requires knowing which line the tote

should be pushed to. Each unit that is not pushed to a Build line drops the capacity by 2

units - one for the unit that missed its line, and one for the tote that is unable to get on the

Recirc because the slot is full. Knowing these two key bits of data will help managers

determine the maximum capacity of the Recircs and the overall capacity achieved per

hour as well.

5.2.2 Burn Rack Recommendations

At times, the bum racks have been thought to be the constraint of the factory.

While this thesis analysis has shown that the bum racks are not currently the constraint,

from the max capacity estimated, the bum racks could slowly become a possible

constraint as the production capacity of Build, Kitting, and Boxing increases. However,

no real measurement of the bum rack capacity exists. To track the Bum rack capacity,

the following could be done.

First it is important to know the number of Bum Cells that can be used every

hour. This will be important to determine the maximum capacity of the Bum area, as
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non-useable burn cells lower the maximum throughput. By coupling the total number of

burn racks with information about the average pre-test, test, and post-test times every

hour, the Burn capacity can be calculated, as it was in the Hard constraints section.

Knowing the Burn capacity will be important to be sure that the Burn area is not

becoming the factory constraint. Another important measurement that could be collected

is the time that individual computer systems move in and out of the Burn area. Currently,

the data is averaged every hour, but by understanding the individual times for each

computer, the variation that may exist in the Burn area can be measured as well. This

will also give a more realistic estimate of how often Burn may be the constraint in the

factory.

One final suggestion in the Burn area is that Dell may want to track pre- and post-

dwell times in each quad for each hour and holding the associate responsible for that

quad more accountable for quad performance. One method of tracking burn rack status

would be to look at the Real Time Monitor Board slot-tracking screen shown in the

Figure below.

Re'd fj e IhwsI Monitor - Quad LI _Q5A

Figre 2 -aa ATe BImto ScreeIn#44

Figure 22 - Real Time Burn Monitor Screen
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Every burn slot status is tracked in this system real time. It would be good to

track the cumulative times of the different states, such as the total amount of time the

computers are awaiting the start of the Burn process, of all of the slots in the quad each

hour. This would help isolate if an associate is overworked by measuring the throughput

rate in the area, or simply by counting the number of slots per hour that are waiting for

the Burn process to start or the associate pushing the computer on to the next process

step. Additionally, it would help determine how Burn errors affect throughput at the burn

racks. If the Burn sequence has to be restarted often due to downloading errors, the Burn

area will not be utilized as well as it should be. Finally, the monitor could help identify if

there is a capacity shortage in the Burn area. If inventory is waiting to get into the burn

area, and the slots are all filled with computers actively burning software, then the total

number of Burn slots is a constraint.

5.2.3 Boxing-to-Build Recirc Recommendations

There are two components that are needed to predict throughput of the Build-to-

Boxing Recirc more accurately. In general, the estimate for throughput on the Boxing-to-

Build Recirc is hard to estimate. It appears that when downtime is factored in, the

theoretical and estimated capacity is close enough to the maximum Build area output in

the factory, that this may be a hard constraint in the factory shortly. This should be

validated. Additionally, as in the Kitting-to-Build Recirc, data should be available to

measure downtime for the Recirc and computer totes that have to re-circulate through the

Build-to-Boxing Recirc as well.

5.3 Capacity Data Collection Recommendations
While each factory area's capacity estimates are fairly good for this factory, there

are some ways to make the prediction equations much more accurate. Some descriptions

for some suggestions to improve capacity modeling at TMC are included below.

5.3.1 Track temporary headcount placement and movement in the factory

It is very important to track temporary headcount by area each day. Currently, it is

extremely difficult to accurately predict how many people are working in each area. The

temporary headcount numbers are forecasted totals that are assigned to different areas,

however, the workers are not necessarily working in the forecasted area. When the

workers arrive on site, the management team dispositions the workers to the areas in the
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factory that need them the most. Tracking placement and movement of employees is

important, because without knowing accurate number of workers in each area,

productivity measurements would never be fully accurate.

A secondary affect of not knowing where the temporary headcount resides in the

factory is that correlation of safety, productivity or quality by percentage of temporary

workers in each area is not possible. The correlations that were run based on these

estimates were not accurate enough to pull meaningful trends out of. If more detailed

tracking of temporary headcount were done, it would improve those correlations.

5.3.2 Define Block and Starve Metrics in the Factory

Incentives should be created that measure the Boxing area and the Kitting area on

how often they block or starve the Build area respectfully. Since Build is the constraint,

every minute that it is down is a wasted minute of production capacity. If the factory is

designed to feed the constraint, all other areas in the factory should guarantee that they do

not impede the constraint area, regardless of whether that rate is above or below the

factory output goal. To estimate the block goal for the Kitting area the following formula

can be used.

(32) Kitting Block Time = 1-Build Output/Kitting Adjusted Capacity

This estimates the percent excess capacity that Kitting area has, and determines

the amount of downtime the area could expect because the slower Build area blocks the

Kitting area. For example, if Kitting has a predicted capacity of 14,000 units per day and

Build has an output level of 13,000 units, the expected downtime as calculated with

Equation 32, will be as follows.

Kitting Block Time = 1- 13,000/14,000

= 1- 0.9286

= 0.0714

= 7.14%
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Likewise, to estimate the starve time for the Boxing area the same estimate can be

calculated for Boxing Starve time as was done for the Kitting Block time above. The

following formula can be used.

(33) Boxing Starve Time = 1 - Build Output/Boxing Adjusted Capacity

By calculating the expected block and starve times, now the Kitting and Boxing

areas have an incentive to work at a pace that increases the amount of time they are

outperforming the Build area, and ensures that build will be filled to capacity.

5.3.3 Use Monitors to Display Block and Starve Time against Goal

As part of this thesis, a new real time monitor was created to help track and the

accumulated time for each shift that the Kitting area was blocked by the Build area and

could not push material onto the Kitting-to-Build Recirc. Through a display in the

factory, this information could then be displayed to the factory workers real time.

Likewise, a monitor was created to measure the amount of time each shift that the Build

area starved the Boxing area so there would not be a buildup after the Build-to-Boxing

Recirc of computer systems waiting to be boxed. This information could be displayed

real time on the factory floor as well. These monitors were already designed and the

placement of these monitors can be seen in the graphic below.

Figure 23 - Placement of Block and Starve Monitors in the Factory
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By placing the monitors before the Recirc, the motivation for the employees in the

Kitting area would be to not just prevent the Build area to be starved every minute, but

actually to build a large queue of inventory up in front of the Build area. This buffer

would insure that Build always has totes available for assembly when they are needed

despite fluctuations between the Kitting and Build area production areas. Likewise,

monitors would be placed after the Build-to-Boxing Recirc, and would measure the

amount of time that Boxing is starved. The motivation for the Boxing area would be to

clear the Build-to-Boxing Recirc completely of material, which would ensure that Build

will always be able to push out as much material as possible. By reducing the block and

starve time in Build, it will be easier to make better predictions of output in Build,

because the output would measure only the output levels in Build, unaffected by the

block and starve potential that existed in the old headcount model.

One additional side effect of putting up monitors is that the employees on the line

would see the performance goal for the shift, and can set their speed in order to beat their

target. As mentioned, the real time monitor has been created already and the display for

Kitting Line 4 can be seen in the Figure below.

Figure 24 - Kitting Line 4 Real Time Block Monitor

92



For the above monitor, the Recirc was setup to ensure that Kitting Line 4 had

specific slots that it could push out material to, and it was also setup to feed Build Line 2

only. As Kitting Line 4 outpaced the Build Line 4, and completely filled its slots on the

Kitting-to-Build Recirc, Kitting Line 4 became blocked, and started to accumulate

blocked time for the shift represented by "Full %" in the monitor. For the monitor in the

display, the line was shown to be blocked 10% of the time by Build, and was pushing out

totes at a rate of 88 units per hour. The other Kitting lines are displayed as well for the

Kitting Associates to see how the other lines are doing. Finally, the monitor also shows if

there is material backed up in each of the Kitting Lines by showing the number of photo-

eyes that are covered before the Kitting-to-Build Recirc. Kitting Line 4 in the monitor is

showing that there are currently three totes, shown as bright dots, lined up that are

waiting to be pushed onto the Kitting-to-Build Recirc.

It is important to note that as the factory begins "water falling," or sending

material from any Kitting line to any Build line, a second benefit can be seen. In order

for any one Kitting line to be blocked by Build, the Build line queues and the Kitting-to-

Build Recirc must be completely filled. This, in turn means that every Kitting line will

be blocked at the same time. For this reason, the Kitting lines will need to work together

to build a queue large enough that no material can be moved out of any of the Kitting

lines. Under the old system, each Kitting line was measured according to the number of

units per hour it put out. It was possible for one Kitting line to steal output capacity from

another line. By being the fastest to fill the Recirc, one line can have a high unit per hour

count, while another line has a low unit per hour count because there is no space to push

material onto the Recirc. Instead, measuring by the percent blocked time in Kitting as

well as "waterfalling" between the Kitting and Build Lines, it forces all the lines to work

together to insure that the blocked percentage target is met.

The same methodology for tracking Kitting area blocked time also applies to

tracking the Boxing area starved time. The monitors display the same basic information

as the Kitting area displays, however instead of blocked time for each line, starved time is

tracked. Like in the Kitting area, when "waterfalling" between the Build and Boxing

areas starts, all lines will need to work together to ensure that the Boxing lines remain

starved by the Build area.
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5.3.4 Start Kitting and Boxing 15 minutes earlier than Build

In order to ensure that a queue is entirely built up before the Build area and all

computer systems awaiting Boxing are purged from the line after the Build area, it is

important to start the Kitting and Boxing areas early. By starting these areas early, a

buffer can be built up that will ensure Build will have material available if there is a large

fluctuation of output levels in the Kitting. Additionally, it will ensure that there is no

material that would prevent Build from pushing out computer systems after they are

assembled. After a month of checking Build area and Kitting area queues after each

shift, on average, only one line in Kitting was fully blocked by material awaiting

processing within the Build area. Likewise, the Boxing area queues were not always

depleted at the end of each shift. By remaining disciplined about building a queue up in

front of the Build area, and clearing material after it, Build will be able to move product

more freely into and out of its area. By doing this, the factory would be much more

predictable, and the constraint will remain in the Build areas. This will make the

optimization prediction equations for the areas much more accurate as well, because the

factory constraint will not shift as much.

5.3.5 New Downtime Tracking Methodology

Monitoring factory downtime is extremely important when looking at a

production facility. Within TMC, factory downtime in meetings was tracked as the

downtime in the Build area alone, because it was assumed to be the bottleneck.

However, unless the constraint remains in Build, downtime metrics are useless. The

constraint may move due to downtime in the different areas, or an imbalance in area

capacity that forces the constraint to move to a different area of the factory. To prevent

the constraint from moving, it is important to feed the Build area, and ensure that each

area has ample resources to recover from downtime and keep from impacting the Build

areas production flow.

A second issue with downtime tracking is that collecting data has been a struggle.

The problem is that there are so many different types of downtime that are being rolled

up into one downtime metric for the factory. Some of the data sources come from

production databases, where downtime can be measured directly. Other downtime

sources are simply call logs, where measuring downtime is not as easy to quantify. All of

these data sources are rolled one downtime metric for the factory. The model presented
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in this thesis takes a different approach on downtime. It requires that data be available

for throughput, block and starve time and time down in the Build area as metrics to

compute an accurate prediction of factory throughput.

When a system goes down in the factory, the downtime's impact on production is

tracked in two ways. First, when there is downtime of a hard constraint production

engineers need only to know whether its downtime caused the hard constraint to become

the factory constraint or not. The second impact would be measuring the impact of

downtime in one of the other production areas. In that case, it would be important to

determine whether Build was blocked or starved because of the downtime seen in these

areas. If Build is blocked or starved, the impact to the factory can be quantified by

looking at the hourly output volumes in Build.

5.3.6 Track Hours Worked in the Shift
The number of hours worked in a shift at TMC was not tracked accurately. To

estimate the hours worked during a shift for the optimization, the hours in each shift had

to be counted that had output near average amounts for that shift. If a final hour or

beginning hour in the shift actually had output values near %/ the predicted value, the

schedule was assumed to have a hour shift in the start or end time. Because of these

estimates, the regression correlations could be off.

For this reason, a system should be setup that tracks shift start, shift end, and the time

workers move on and off of the factory floor for breaks, lunch, or training. A new

program in the factory was implemented in the factory that had supervisors enter the start

and stop time of their employees manually, but a system like that relies on accurate

recording by the manager. Because it relies on human estimation, and does not account

for breaks, training, or all hands meetings even that downtime tracking was inaccurate.

An automated system of recording the hours that are worked on the factory would be

nice. One suggestion to track start or stop time of each shift might be to track a piece of

reliable machinery such as a Recirc or conveyer system that constantly runs during each

shift. This might give a good estimate of shift start and stop times by looking at when the

machinery is stopped or started. While individual breaks would not be recorded still, this

is at least a more reliable method for tracking shift start and stop time than the current

process of manually recording of the times.
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5.3.7 Track Headcount in Each Area

The regression analysis for the optimization relies on knowledge about how many

employees are working in each area on a given day. As mentioned, this information was

estimated in the headcount forecasts created each week, however workers get moved

around in the factory quite a bit. It would be nice to record where headcount is in the

factory at every instance. One suggestion might be a badge reader using a technology

similar to Radio Frequency Identification that could be placed at stations throughout the

factory and could record that movement of each employee. This would let the managers

have insight into where their employees are at any time. While Dell would incur costs as

it first sets up this technology, true headcount predictions are hard to determine without

tracking where and when people are working in the factory. This is important, because

as variability exists in the model, extra headcount is needed to ensure that production

output is met. As the variability in the model is reduced, less of a headcount buffer is

needed to ensure production output is met. The dollar savings could be large. Another

benefit is that an employee tracking system would also give management insight into

how much associate time is spent in training, or off the shop floor.

Another suggestion to improve headcount tracking on the floor is that Dell should

track the placement and movement of their temporary employees. While the headcount

forecasts predict the amount of temporary headcount needed in each factory area, many

times temporary headcount comes in under one manager and is distributed differently

throughout the factory. Additionally, in the headcount tracking spreadsheet, all of the

temporary employees are actually recorded under one cost center. To ensure that the

temporary employees can be tracked, separating the temporary employees into different

cost centers and automatically tracking where temporary headcount moves throughout the

factory during a day would be good. By knowing where headcount is utilized,

projections of how many employees are needed in each area, and how issues like quality

and safety are impacted by temporary hires in the factory could be much better

approximated.

5.3.8 Track Product Mix Variability through Each Line

There is a good deal of variability that is introduced into the model by product mix

and it is not tracked by line. The time to kit, build, and box systems is different for every

system type, and that impacts the throughput of each area. Information about the product
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mix running on each line in the factory exists in the company database, however the

complex queries to pull that data out have not been written. If that data could be pulled

out, it could be used as a major factor in make correlations much more reliable.

6 INCORPORATE NON-PRODUCTION FACTORS
There are other factors besides productivity that are important to when modeling

headcount for a factory. These factors include Quality, Injury Rates, and Employee

Retention Rates. While these are indirect factors, they are no less important. For

example, if quality is lagging due to workers producing at an extremely high production

level, there is some tradeoff between high productivity rates and high defect. These

indirect metrics need to be gathered and evaluated. Some comments on each of these

factors follow.

6.1 Quality
A regression model was run that correlated the number of defects in the TMC

factory to the following factors: defects, total number of shipped PC's, headcount, total

number of hours worked per day, and day of the week. Additionally, to account for

quality improvements over time due to general quality improvement projects, the model

also includes the workweek as a factor in the prediction model. Including the workweek

tracks the general quality improvements over time, and assumes that quality defects

reduce at a given rate each week. The most reliable way to measure defects is to measure

the number of defects found in at electronic test station, which test the computer

functionality before it leaves the plant. This data is published as "Defects per Million" or

DPM data. Other quality indicators used within Dell, such as "Field Incident Rates"

which test the quality of the computer after it leaves the factory, were regressed against

production factors as well, but no other defect metric was found to have high correlations

with the production environment. The regression performed for the DPM data is

described below.

6.1.1 Quality Data Source

The comprehensive list of factors used to correlate the "Defects Per Million" rate

with the production environment at TMC is in the following table.
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Variable Description

Total Headcount The total headcount is a measurement of headcount in the Kitting,

Build and Boxing areas

Hours in the Shifts This is a measure of the total number of hours worked in the day

(both shifts). This is one measure of fatigue.

Total Output This measures the total output from the factory for each day.

Labor Hours This is measure of total people resources that worked during the

day. It is calculated by multiplying the total Hours in the Shifts

times the Total Headcount

Percent Overtime Another measure of fatigue. This measures the total number of

overtime hours divided by the total number of hours worked in

the day. Overtime is considered any time over 8.5 hours of work

during a shift.

Day of the Week This is the day of the week for the model.

Fiscal Week This tracks general quality improvements over time. Since

individual projects are not tracked, this is meant to approximate

the total quality improvement project impacts.

Repairs This data comes from the Defect per Million data, and counts the

repairs that were caught at the end of the line, before shipping to

the customer.

Table 12 - Production Factors Used to Predict Quality Defects

6.1.2 Quality Results

Given the input variables above, a multivariate regression was run for the time

period of the internship in order to create a prediction model for the impact on quality

given factory metrics. The prediction equation for the results is shown below:

6.1.2.1 Quality Parameter Estimates

The regression relating the production factors to the number of qulity defects found

in the electronic test area, at the end of the production line, was run, and the parameter

estimates for the model are included in the Table below.

98



Parameter Estimates
Term Estimate Std Error t Ratio P-Value
Intercept -14.9282 247.2869 -0.06 0.9520
Sum(Total Output) 0.0083185 0.007164 1.16 0.2494
Sum(Hours in Shifts) 14.743202 9.385728 1.57 0.1206
Sum(Total Headcount) 0.1910467 0.163518 1.17 0.2465
Day of the Week[FRI] 25.973749 21.31228 1.22 0.2269
Day of the Week[MON] -37.41838 20.02095 -1.87 0.0657
Day of the Week[SAT] -23.28484 38.29652 -0.61 0.5451
Day of the Week[THU] 17.607038 19.01152 0.93 0.3575
Day of the Week[TUE] -10.60176 19.45675 -0.54 0.5875
Fiscal Week -8.57578 1.920941 -4.46 <.0001
Total Output/Labor Hours 178.62303 71.14831 2.51 0.0143
Mean(Percent Overtime) 414.70742 187.7923 2.21 0.0304

Table 13-Prediction Equation for Quality versus Production Factors

6.1.2.2 Observations from the Data

The above prediction equation gives us some insight into our quality defects as they

are related to the Production factors. First, there is a good correlation between Fiscal

Week and Repair totals. That shows that there is a fairly constant improvement in

Repairs caught at electric test from week to week. This trend is an approximation of the

weekly improvement in quality due to quality improvement projects that are being

implemented in the factory or improvements in general builder skills. The model

suggests that the number of defects is actually decreasing at a rate of 9 defects per week.

A second major consideration when looking at builder quality is fatigue. In this

model, there are several main factors used to track fatigue. They are composed of output

volume, hours in the day, and headcount. Specifically, the number of hours of work per

day, total number of labor hours, and the number of units built per laborers in production

were found to be significant. General trends indicate that as the total output per

headcount grows, the number of defects grow as well. Additionally, as the number of

labor hours in production grows, the number of defects grows as well. Finally, the data

shows that as headcount grows the defect rate grows as well. This might suggest that the

areas are getting more crowded, which causes more defects.

Looking at fatigue in a different way, the Total Output/Labor Hours factor has the

second highest correlation estimate for the quality model. This shows that the more

output each individual associate works, the more Repairs are found at electronic test.

When the average Total Output/Labor Hours is increased by one unit per person per day,

defects climb by roughly 179 units for that day. An average output per person per hour is

usually 1.0-1.5 units per hour. An example of how this is calculated is shown through the

example below. Assume in this example, the following information.
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Variable Value

Total Headcount (Kitting, Build, Box) 1,042 workers

Hours in the Shifts (Daily Work Hours) 17 hours

Total Output 22,998 units

Table 14 - Total Output/Labor Hours Example

To determine the Output/Total Labor Hours, the Total Labor Hours would first

need to be calculated. The equation to determine the Total Labor Hours in the factory is

included below.

(34) Total Labor Hours = Total Headcount * Hours in the Shifts

Plugging in the total headcount and the total number of hours for the day into

Equation 34 yields the following result.

Total Labor Hours = 1042 workers *17 hours

= 17,714 hours

Now, the total Output per Labor Hour can be calculated using the following

equation.

(35) Output/Labor Hours = Total Output/Total Labor Hours

Using the total labor hours calculated above, and knowing the total output for the

factory as given in the example data, the Output per Labor Hour can be calculated.

Output/Labor Hours = 22,996/17,714

= 1.298 units

With this calculation in mind, it is important to note the best volume days per hour

were measured to be near 2.5 units per hour. With a 1.2 raise in average units per labor
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hour, high volume days may increase the amount of repairs by nearly 215 units, which

implies there may be a tradeoff between volume and quality defects.

Another observation about the Quality regression is that defects increase with Percent

Overtime. This would suggest that for every one percent of overtime added by an

associate, quality defects are raised 4.14 units per day. For example, 10% overtime

would yield an additional 41.40 additional failures. Similarly, the total number of defects

increases with as the Hours in the Day increases. This would suggest that you could

expect repairs to increase by 14.74 units per hour as the length of the shifts (i.e. total

work hours) increase. Finally, it was important to note that the day of the week has an

impact on the quality of the product as well. It is important to also realize that Mondays

appear to have the lowest defects of any day with 57 less defects than the baseline case of

Wednesday. There is also a trend that the number of defects actually grows throughout

the week. Monday has the lowest defect rate, and it grows every day through the week,

until Saturday when it drops off again.

6.1.2.3 Measure of Predictability for Quality

With the prediction equation determined, the predicted value was plotted against

the actual quality defect rate in the factory. This plot is given in the figure below.

Whole Model
Actual by Predicted Plot

1100-
1000-
900-

-c 800-
700-__

600
500-
400-
300
200
100

100200 30040 500 600 700 8R0 900 1100
Repairs Predicted P<.0001 RSq=0.81
RMSE=78.69

Summary of Fit
Rsquare 0.805869

RSquare Adj 0.776211
Root Mean Square Error 78.68951

Mean of Response 716.9881
Observations (or Sum Wgts) 84

Figure 25 - Impact of Headcount on Quality
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The above model shows an R-square value of 80.6%. This suggests that the factors

selected can explain a majority, 80.6%, of the variability in the repair rates seen on the

TMC factory floor. This would be considered to be a good regression fit for the model.

6.1.2.4 Variation between Predicted and Actual Values

Looking at the residuals below, we see the residuals, or the measure of how far off

our predicted defect number was from the actual defect number in the regression analysis.

Residual by
Predicted Plot
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Figure 26 - Residual Plot for Quality Data

From these plots it was seen that the residuals were normally distributed with a

mean of new zero, and a standard deviation of 53. There is no trending to suggest a

better regression was possible.

6.1.3 Temporary vs. Permanent Employee Impact

A regression to predict quality against the above factors as well as the percentage

temporary workers in the factory was run. When running the regression, there were

fewer data points to use, so the results were slightly different than the above model.

Below shows the same correlation ran on the reduced subset, and a correlation used to

measure the impact of temporary headcount on quality.
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Original Data - Reduced Subset
Actual by Predicted Plot
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With Temp Percentage
Actual by Predicted Plot
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Figure 27 - Quality Regression Analysis with Percent Temporary Worker Included

The above charts show that temporary employee percentage is not a great predictor

of Quality. The R-square value was only increased by .001 or .1%, and the R-square

Adjusted value actually dropped, implying that the number of temporary employees is

not significant. Below is the new parameter estimates for the quality regression with

temporary employee percentage as a contributing factor.

Parameter Estimates
Term Estimate Std Error
Intercept 708.19642 624.3275
Sum(Total Output) 0.0171003 0.012111
Sum(Hours in Shifts) -5.758851 20.99542
Day of the Week[FRI] 30.260959 21.917
Day of the Week[MON] -46.10433 21.24612
Day of the Week[SAT] -32.02617 43.57949
Day of the Week[THU] 23.737951 20.71364
Day of the Week[TUE] -12.44247 20.94173
Fiscal Week -9.521327 2.87447
Total Output/Labor Hours -49.38598 183.2434
Mean(Percent Overtime) 533.80774 271.8886
Sum(Total Headcount) -0.082689 0.321202
Temp Percentage 139.09252 259.804

Table 15 - Predictor Equation for Quality versus

t Ratio
1.13
1.41

-0.27
1.38

-2.17
-0.73
1.15

-0.59
-3.31
-0.27
1.96

-0.26
0.54

P-Value
0.2610
0.1629
0.7848
0.1723
0.0338
0.4652
0.2562
0.5546
0.0015
0.7884
0.0541
0.7977
0.5943

Production Factors including Temporary Employee Percentage

This shows similar conclusions to our base model. We find that the Temp

Percentage factor, or percentage of temporary employees, is not a significant term, as its
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P-Value is greater than 0.15, at 0.5943. This suggests that the percentage of temporary

headcount with respect to permanent employees does not matter when quality is being

determined. Additionally, we find that instead of Output per Labor Hour and Headcount

being significant, the Total Output becomes the main factor. The Fiscal Week and

Percent Overtime remain the top predictors of our Repair rate. Because the model will be

used to determine Headcount's impact on Quality, the first model is preferred. It tells us

how we will impact quality by adjusting headcount.

6.1.4 Limitations of the Results

While the model had a high R-square value showing statistical significance, the

model has some shortcomings. The first shortcoming of this model is that the data is

rolled up into daily quality metrics, instead of by shift. By tracking the defects found per

shift, there will be more data points for an overall model, which would in turn suggest

that a stronger correlation could be found. Additionally, quality could be very shift

dependent. By tracking the defect rate by shift, it could help to isolate problems that

could occur by one shift or the other. With the quality data combined for a daily total,

shift trends cannot be determined.

Another improvement that could be implemented that could enhance the quality

data could be to track defects by products within the factory. That information exists, but

is buried in the factory databases, and would require some complex queries to be written.

However, this data would be helpful in isolating build problems by product within the

factory.

Another improvement to the quality regression would to design a better way to

track quality improvement projects and their impact on the number of defects found on

the factory. Currently, it is hard to quantify the impact of specific production floor

changes on quality, and so the quality trend is tracked by workweek. Finding a method to

measure defect rates by quality improvement projects instead of using average

improvement rates would help eliminate some of the variability in the model.

Finally, additional data points would be good for correlations between quality

defects and temporary employee percentage as well. The results were inconclusive for

the data points that were used for the regression, and more data points could be helpful.
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6.2 Retention Rate

One of the objectives of the thesis was to determine if there were a correlation

between the retention rate of floor associates and the different conditions on the factory

floor. The manufacturing managers were particularly interested in determining whether

overtime, work hours, or high production volumes had an impact on the number of

employees that left the company. While multiple attempts were made to find some

correlation between the floor conditions and the number of employees that quit, no

correlation was found.

There are a few factors that certainly impact the accuracy of any prediction model.

First, many of the employees were temporary workers. Sustaining a workforce of

temporary employees is difficult under most conditions. There is no great bond between

temporary workers and the host company, and so there is less motivation for a temporary

worker to stay with the company given other opportunities or commitments. Secondly,

the event where an employee leaves Dell cannot always be correlated to an immediately

preceding event. Employees may leave the company days or even weeks after the

triggering event occurs, which adds some additional variability into a retention rate

prediction model. Finally, there will always be employees that leave Dell for reasons

external to the company itself. Because many employees leave for reasons other than

work related issues, extra noise is added into retention rate model that will make the

prediction much less accurate.

The above examples represented some examples of why accurate prediction of

employee retention rate was not fruitful at the TMC. To better predict retention rate

within the factory, more information such as when the employee termination notice was

submitted, the employee's reason for quitting, and differentiating between temporary and

permanent employees would be helpful in filtering out employee terminations that were

not caused by production issues. This data was not available for the time frame tracked

for the headcount optimization, and collection of this data would be difficult. It may

ultimately be very difficult to find any correlation between employees that quit and

production factors at all.

6.3 Injuries

Correlating injuries to headcount is not as easy as creating a regression analysis.

Over the period of the internship, the maximum amount of injuries that occurred during a
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shift was three. Given the many factors that contribute to cause the injuries, a standard

regression analysis was not helpful. More complex models were run on the data as well,

including a Poisson regression analysis, however, the output from the regression was not

significant. Instead of running a regression model for Injury Rates, only general trends

from the data could be found. The results of the trend analysis are included in the

following sections.

6.3.1 Injuries Data Source

The data used for injuries came from reports that were accumulated and published

including all Injuries as well as Near Misses. Injuries are defined as reported incidents

that occur in the factory in which an employee was physically impacted. Injuries include

minor cuts, bumps, and scrapes if they are reported. Near Misses includes reported

incidents that occur on the floor in which bodily harm was avoided, however, the risk of

harm existed. These are tracked to enable employees to prevent injuries on the floor

before they happen.

6.3.2 Injuries and Near Miss Results

While prediction equations could not be derived for the number of Injuries and

Near Miss incidents that occurred on the floor, some interesting information could be

observed. The number of Injury and Near Miss Incidents were compared under three

different situations. First, the number of Injury and Near Miss Incidents were compared

under conditions of different workloads in the factory. Secondly, the number of Injury

and Near Miss Incidents were observed under different overtime scenarios and the trends

were documented. Finally, the number of Injuries and Near Miss Incidents were

observed in the factory for each day of the week, and the trends were documented. Each

of these observations can be seen below.

6.3.2.1 Injuries - Workload Analysis

While these predictions cannot be used to "calculate" expected impact of additional

headcount on the factory Injury rates, the following three graphs show some basic trends

that are interesting.
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Variability Chart for Variability Chart for Output Variability Chart for Output per
RTDB Output per Person Person per Hour

2000(

20-

1500E 0

1000E 10-
5006

1 0 1 2 30 1 2 3

Total Injuries and Near Misses Total Injuries and Near Misses

i4.&C.26008
400 2 3 - 0.1

0 0 1 2 3

Total Injuries and Near Misses Total Injuries and Near Misses Total Injuries and Near Misses

Figure 28 - Mean Injury with different Output Levels

Looking at the number of Injury and Near Miss Incidents for different Production

output rates, there are three important trends that can be seen. First, from the graph on

the teft, it can be seen that as the total output of the factory must grow from an average of

5,000 units to about 10,000 units to increase from zero to one injury in the factory.

However, above 10,000 units higher injury totals are easily possible. By increasing the

average production in the factory per shift to 12,500 the average Injury and Near Miss

incident rate rises to two. This trend seems to indicate that as the production volumes

increase, there is an increasing chance of Injury or Near Miss Incidents in the factory.

The middle chart, measures output per person over a shift. The trend remains

fairly constant. With slight growth in output per person it is raising the injury rate. The

minimum output per person raises from zero for zero injuries, to about 12.5 for 3 injuries.

The average output raises from 15 units per person to 15.5 for 3 injuries.

Finally, the output per person per hour trend shows us how injuries are impacted by

total output expected each hour. We see the average injuries raise from 0 injuries for

1.75 per hour to 3 injuries when 1.85 units per hour are expected.
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While these trends are not directly measurable or predictable, they are telling to the

fact that mild fluctuations in Output per Person or Output per Person per Hour can impact

the injury rates in the factory.

6.3.2.2 Injuries - Overtime Analysis

Below is a graph that shows the number of injuries with respect to overtime.

0
N=39 2

Total Injuries and Near Misses 0 El 1E 2

0.15

N=61

3

E 3

Figure 29 - Injuries vs. Overtime Pie Charts

The charts above show the number of injuries given the percent overtime worked

during the shift. The general trend shows that as the percentage of overtime increases, the

number of injuries increases as well. The percentage of overtime for the given shift is

displayed above each chart. Also, the total number of data points is listed next to the Pie

chart. Plotting the data in a different way, the average injury rate given different

percentages of overtime as well as the expected shift injury rate is graphed in the

following Figure.

% 1 Shiftly Injury Totals by /60 T Worked -,+-Average

. 0 O~7Q Injuries

.. -- Expected
O I Injuries

0% OT 5.6% OT 15% OT

Figure 30 - Expected versus Actual Injury and Near Miss Rate for Different Overtime Rates
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Basically, the expected injury rate assumes that the likelihood of an Injury or Near

Miss incident within a shift is flat throughout the full shift. The regular work schedule is

an 8.5-hour workday. Given an injury average rate of 0.59 with no overtime, the injury

rate per hour could be found as in the equation below.

Hourly Injury Rate = Avg. Daily Injury and Near Miss Rate/Hours in Shift

= 0.59 injuries /8.5 hours

= 0.069 injuries per hour

Given the hourly injury rate of 0.069 Injury or Near Miss Incidents, a 5.6%

overtime, which adds a half hour to the total work time, should have a 0.63 expected

Injury or Near Miss rate. Additionally, a 15% overtime rate would add 1.5 hours to the

shift. Its expected Injury or Near Miss incident rate would be 0.70. However, the Injury

and Near Miss Incident Rate increases at a faster pace, reaching 0.91 at 15% overtime.

This suggests that higher overtime yields higher amounts of injuries.

6.3.2.3 Injuries - Day of the Week Analysis

Finally, an attempt was made to track the Injury and Near Miss incident rate by

the Day of the Week.

Shiftly Injuries by day of the Week 0
- 11- - 1 Injuries

S 0.8 7 .88 0.91 0.86 0.8 1 Injury

S06 065 0.6
0.5 049- .

-0.4 Er 0.4 Injuries

0.2 0.2 Injuries
0 0 -_-Average

Day of the Week MON TUE WED THU FRI SAT Injuries

Figure 31 - Injury and Near Miss Rate by Day of the Week

From the above graphs we see that injury rates are highest on Tuesday, Thursday,

and Saturdays. There is no discernable pattern that the Injury and Near Miss Incident rate

follows, indicating that fatigue that may occur from as the number of consecutive days of

work increases is not occurring. Monday and Wednesday appears to be the lowest

occurrence of injuries. Thursday has the highest Injury Rate.
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7 SUMMARY AND CONCLUSIONS

Dell is in an industry that has very high variability and cyclical demand bursts.

Dell's business model, Build to Order and Just-In-Time manufacturing dictates that they

will always have variability in its production facilities. The purpose of this thesis was

to analyze Dell's production system and create a headcount strategy to help Dell

manage bursts of production variability within the Topfer Manufacturing Center.

Through an analysis completed at TMC, three objectives were accomplished.

First, an in-depth analysis of the constraints within the factory was completed to help

Dell better understand its manufacturing floor. The analysis identified and quantified

the hard constraints in the factory, using factory data. Additionally, each of the Kitting,

Build and Boxing areas in the factory were analyzed to quantified their capacities, and

determine how factors such as Headcount, Day of the Week, Hour of the Day, and

Block and Starve time impact productivity within each area. Some key data surfaced

from this analysis related to each area, such as productivity trends by Hour and Day of

the Week, as well as the impact of breaks within the production area.

After production capacities were determined for each area, the factory was

observed at from a macro-level. The constraint of the factory was identified through

analysis of Block and Starve time within the factory. Further, the design of the factory

was discussed and some analysis was completed to determine the best area for the

constraint to be located in the factory, the Build area. An optimization was then

suggested that allowed managers to input data such as Day of the Week, the Shift, the

Number of Hours in the Shift, and the Output target, and the optimization would

statistically minimize the amount of Headcount needed in the Kitting, Build, and

Boxing areas in order to keep the constraint in the Build area and meet the demand of

the factory. This model was validated against real production data, and found to reduce

the cost of labor in the factory substantially.

Additionally, an analysis was completed to try to correlate non-production

outcomes, such as retention rate, quality, or injury rates to production factors. While

the correlations were not very strong between production factors and the employee

Retention Rate or the Injury and Near Miss incident rate, the Injury and Near Miss

incident rate gave some indication that overtime and higher volumes of production had

a noticeable impact on Injury and Near Miss incidence rates and that the Day of the
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Week could have an impact as well. On a bright note, there was high correlation

between Quality, measured in Defects, and production factors such as Labor Hours,

Day of the Week, Hour of the Day, and the Workweek.

Finally, recommendations were given with every step of the analysis that would

enable Dell to achieve better correlations between productivity factors, such as

headcount, and production output, quality, retention rate, and injuries using the data

they have already. Additionally, recommendations were presented to acquire new

information that might reduce variability of the models as well. While the general

correlations presented in this thesis were fairly good predictors of headcount needs and

quality in the TMC factory, with more data, and better data data, better models can be

achieved. By using the tools and suggestions in this thesis, primarily the optimization

model, Dell will be able to react quickly to demand variability bursts that impact their

facility. By utilizing the optimal headcount level, Dell can ensure that the factory meets

its shift demand and minimize the headcount needed to achieve it.
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APPENDIX

1 Optimization Variable: Optimization Finds the Minimum Value to meet Output 2. Goal: Outs Predicted

Goal. People Adjustnent is calculated using the Labor Hour Formula for Each Area. by Headcount = Output
needed to meet wanted
probability of meeting

Output Goal

BUILD

Variables
People 342.7224389 <-Headcount Output 4. Day Adjust:
Shift Determines Adjustment

for which Day of the

Hours in Shift 8 9511 Week it is.
Outs 9614 9613.999860 5. Predicted
% Confidence 0.5 00 Output by
Day MON Predicted 9613.999860
Day Adjustment -56.12757 High 10103.07

Low 9124.93'
Intercept -2200.79
Hour Hour Adjust Used Flag? Hours People Adj Day Adjust Predicted E 4i

4 -70.95223 0 0 0 -56.12757 0.000000
5 26.669131 0 0 0 -56.12757 0.000000
6 41 5 1 1 3510.837265 -56.12757 1295.229930
7 - 9.606200 1 1 3510.837265 -56.12757 1114.311495

56.299763 1 1 3510.837265 -56.12757 1310.217458
3. Shift Hours: Determines 9 146.453300 1 1 3510.837265 -56.12757 1400.370995

Hours Worked 10 140.176730 1 1 3510.837265 -56.12757 1394.094425
11 -586.597900 1 1 3510.837265 -56.12757 667.319795
12 -208.173000 1 1 3510.837265 -56.12757 045.744695
13 132.793370 1 1 3510.837265 -56.12757 386.711065
14 191.587470 0 0 0 -56.12757 0.000000
15 -92.631990 0 0 0 -56.12757 0.000000
16 9.609711 0 0 0 -56.12757 0.000000
17 125.307670 0 0 0 -56.12757 0.000000
18 -306.073100 0 0 0 -56.12757 0.000000
19 -461.448400 0 0 0 -56.12757 0.000000
20 192.978650 0 0 0 -56.12757 0.000000
21 261.228900 0 0 0 -56.12757 0.000000
22 -64.570660 0 0 0 -56.12757 0.000000
23 221.645521 0 0 0 -56.12757 0.000000
0 130.797150 0 0 0 -56.12757 0.000000
1 243.992880 0 0 0 -56.12757 0.000000
2 147.13515 0 0 0 -56.12757 0.000000
3 -136.7332 0 0 0 -56.12757 0.000000

Sum of Hourly Adjustments 8.0 9613.999860

Appendix Table 1 - Example of Headcount Optimization Model . The input for this optimization is

included in the top box on the left-hand side. The hour adjustments are derived from the prediction
equation derived from the regression analysis. Additionally, Solver needs rules to be created in order

to bound the possible solution that we are solving for (in this case Headcount). The rules for the

optimization are as shown by arrow above.
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BUILD

Variables
People
Shift

Hours in Shift
Outs
% Confidence
Day
Day Adjustment

Intercept
Hour

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
0
1
2
3

Sum of Hourly Adjustments

342.7224389 <-Headcount Output1-
8 2741.779511

9614 9613.999860
0.5 0.5000

-56.127571

1 -2200.792|
Hour Adjust Used Flag? H

-70.95223 0
26.669131 0
41.312235 1

-139.606200 1
56.299763 1

146.453300 1
140.176730 1

-586.597900 1
-208.173000 1
132.793370 1
191.587470 0
-92.631990 0

9.609711 0
125.307670 0

-306.073100 0
-461.448400 0
192.978650 0
261.228900 0
-64.570660 0
221.645521 0
130.797150 0
243.992880 0

147.13515 0
-136.7332 01

Predicted
High
Low

ours
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

8.0

9613.999860
10103.07
9124.93

People Adj Day Adjust Predicted Built

0
3510.837265
3510.837265
3510.837265
3510.837265
3510.837265
3510.837265
3510.837265
3510.837265

0
0
0
0
0
0
0
0
0
0
0
0
0
0

-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757
-56.12757

0.000000
0.000000

1295.229930
1114.311495
1310.217458
1400.370995
1394.094425
667.319795

1045.744695
1386.711065

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

9613.999860

Appendix Table 2 - Build Headcount Optimization Model . The input for this optimization is shown
in the box in the upper left. The hour adjustment values show the values that come from the

prediction equation that we derived from the regression analysis for the Build area. The headcount
output is the value derived by the optimization.
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KITTING

Variables
People
Shift
Hours in Shift
Outs
% Confidence

Intercept
Hour

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0
1
2
3

Sum of Hourly Adjustments

78,5903323

-2477.419|
Hour Adjust Used Flag?

0
-21.939780
269.592730

8.187006
86.295521

330.527750
237.541500

-613.465600
-253.510700
252.952220

10.430631
-378.224000
-124.849700
375.598700

-142.623500
-625.456900
408.598700
365.320920
-78.345750

218.758243
209.973560

65.359689
-600.7254

0

:A. f -1 k5-l9 <-tbufla (3oal
0.750000 <-Probability of Beating Build Goal

Predicted
High
Low

Hours
0
0
0
0
0
0
0
0
0
0
0
0
1

1

0
0
0
0

8.0

People Adj
0
0
0
0
0
0
0
0
0
0
0
0

3731.746268
3731.746268
3731.746268
3731.746268
3731.746268
3731.746268
3731.746268
3731.746268

0
0
0
0

10857.677148
11363.97
10351.39

Day Adjust
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286
53.257286

Predicted Built
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

1182.734854
1683.183254
1164.961054
682.127654

1716.183254
1672.905474
1229.238804
1526.342797

0.000000
0.000000
0.000000
0.000000

10857,677148

Appendix Table 3 - Kitting Headcount Optimization Model. The input for this optimization is shown
in the upper left hand portion of the above figure. The hourly adjustments show the values that

come from the prediction equation that we derived from the regression analysis for the kitting area.
The "people" cell represents the headcount needed in the kitting area and is the value derived by the

optimization.
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1
8 741.2469338 Prediced

10301.383921 9614.000000 <-Build Goal Hgh
0.75 0.750000 <Probability of Beafing Build Goal LOw

0.3
0.05

-1145.928|

Hur
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
0
1
2
3

Surn of ourly Adjusments

HR Aclust Used Rag?
-20.59078

-11.279670
111.127030
-56.57066
73.588522

236.596980
253.963430
-589.73380
-150.410300
264.440020
186.840290

-351.908000
-34.014530
190.806680

-307.880600
-583.113800
266.359280
264.912440

-143.765003
225.230957

91.597076
259.526530

193.32873
-369.0458

Hours Bock A4 Sarve Adj People dj [ayAdjust Predicted BUlt
0.000000
0.000000

1380.924870
1213.227180
1343.386362
1506.394800
1523.761270
680.064040

1119.387540
1534.237860

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.0000
0.000000
0.000000

Appendix Table 4 - Boxing Headcount Optimization Model. The input for this optimization is shown
in box at the upper left hand of the Figure. The hourly adjustment values show the values that come
from the prediction equation that we derived from the regression analysis for the Boxing area. The

headcount needed in Boxing is the value derived by the optimization.
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Vaiables
People
Shift
Ho.rs in Shift
Outs
% Canfideno
Sarve Perca
Bock Percntage

10301.383921
10827.47
9775.30

D 0 -22255025 -1121784 0 -72.16153
D 0 -22255025 -112.1784 0 -72.16153
1 1 -22255025 -112.1784 2622.32D795 -72.16153
1 1 -22255025 -112.1784 2622.320795 -7216153
1 1 -22255025 -112.1784 2622.320795 -7216153
1 1 -22255025 -1121784 2622.32D795 -72.16153
1 1 -22255025 -112.1784 2622320795 -72.16153
1 1 -22255025 -112.1784 2622.32795 -72.16153
1 1 -22255025 -112.1784 2622.32D795 -72.16153
1 1 -22255025 -112.1784 2622320795 -72.16153

0 -22255025 -112.1784 0 -72.16153
3 0 -22255025 -112.1784 0 -72.16153
3 0 -22255025 -112.1784 0 -72.16153

0 -22255025 -1121784 0 -72.16153
D 0 -22255025 -112.1784 0 -72.16153
D 0 -22255025 -112.1784 0 -72.16153
30 -22255025 -112.1784 0 -72.16153
3 0 -22255025 -112.1784 0 -72.16153
30 -22255025 -112.1784 0 -7216153
3 C -22255025 -112.1784 0 -72.16153
D _ -22255025 -112.1784 0 -72.16153

-22255025 -1121784 0 -7216153
_ _ _ -22.255025 -1121784 0 -72.16153
_ _ _ -22.255025 -112.1784 0 -72.16153

8.0



PRODUCTION OPTIMIZATION

Factory Outs
People
Outs - Mean
Outs - Std Dev
Confidence Inter
Block
Starve

Output
Shift
Day of Week
Hours in Shift

Kitting Build Boxing Total People
70.15 342.72 92.66 505.53

10276.96 9614.00 10301.38
7f 00 n qn n 7.0 n

Appendix Table 5 - Production Headcount Optimization Model. The input for the overall headcount

optimization is shown in grey above. Given the varying input values, the Solver will minimize the

headcount needed in the factory to meet the output demand and keep the constraint in Build.
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Day of Mean Predi
the (Total Low cted - Cova

Calendar Week Build RTDB Hours Predicted High Predicti Actua Shift Std rianc Upper Lower Within 1 Above
Date 2 Shift People) Total Worked Total Total n I Deviation e Total Limit Limit Std Dev Predicted
06/06/200 482.56357 712.56 15364.5
2 THU First 400 14626 10 14652 15228 14077 26 09 230 36 6 13939.44 1 1
06/06/200 482.56357 712.56 15143.5
2 THU Second 369 14270 1C 14431 15006 13855 161 09 230 36 6 13718.44 1 1
06/07/200 482.56357 712.56 14566.5
2 FRI First 384 14457 1C 13854 14429 13278 -603 09 230 36 6, 13141.44 1 0
06/07/200 482.56357 712.56 14677.5
2 FRI Second 364 13165 1C 13965 14541 13389 800 09 230 36. 6 13252.44 0 1
06/08/200 403.74165 633.74 9299.74
2 SAT First 349 9109 7 8666 9148 8185 -443 01 230 17 2 8032.258 1 0
06/08/200 403.74165 633.74 9482.74
2 SAT Second 338 8714 7 8849 9331 8387 135 01 230 17 2 8215.258 1 1
06/10/200 444.90162 674.9C
2 MON First 371 11672 8.5 10911 11442 10381 -761 96 230 16 11585.9 10236.1 0 0
06/10/200 444.90162 674.9C
2 MON Second 382 11418 8.5 11617 12147 11086 199 96 230 16 12291.9 10942.1 1 1
06/11/200 444.90162 674.9
2 TUE First 384 11639 8.5 11785 12315 11254 146 96 230 1 12459.9 11110.1 1 1
06/11/200 444.90162 674.9C
2 TUE Second 396 12467 8.5 12524 13055 11993 57 96 230 16 13198.9 11849.1 1 1
06/12/200 444.90162 674.9C
2 WED First 384 12576 8.5 11790 12320 11259 -786 96 230 16 12464.9 11115.1 0 0
06/12/200 444.90162 674.9C
2 WED Second 39C 13007 8.5 12372 12902 11841 -635 96 230 16 13046.9 11697.1 1 0
06/13/200 444.90162 674.9C
2 THU First 383 11438 8.5 1201C 12540 11479 572 96 230 16 12684.9 11335.1 1 1
06/13/200
2 THU Second 39J 13600 9 13517 14063 12971 -83 457.8 230 687.8 14204.8 12829.2 1 0
06/14/200 444.90162 674.9C
2 FRI First 379 12344 8.5 11612 12143 11081 -732 96 230 16 12286.9 10937.1 0 0
06/14/200 431.61797 661.61 12570.6
2 FRI Second 374 11551 8 11909 12440 11379 358 92 230 8 2 11247.38 1 1
06/17/200 444.90162 674.9C
2 MON First 39C 10178 8.5 11399 11929 10868 1221 96 230 16 12073.9 10724.1 0 1
06/17/200 444.90162 674.9C
2 MON Second 381 10623 8.5 11591 12122 11060 968 96 230 16 12265.9 10916.1 0 1
06/18/200 482.56357 712.56 15587.5
2 TUE First 416 14041 1 14875 15451 14300 834 09 230 36 6 14162.44 0 1
06/18/200 482.56357 712.56 15727.5
2 TUE Second 399 14972 1C 15015 15590 14439 43 09 230 36 6 14302.44 1 1
06/19/200 482.56357 712.56 15092.5
2 WED First 40C 15331 10 14380 14956 13804 -951 09 230 36 6 13667.44 0
06/19/200 482.56357 712.56 15554.5
2 WED Second 393 14513 10 14842 15418 14267 329 09 230 36 6 14129.44 1 1
06/20/200 482.56357 712.56 15038.5
2 THU First 389 14615 1C 14326 14901 13750 -289 09 230 36 6 13613.44 1 0
06/20/200 482.56357 712.56 15886.5
2 THU Second 395 15195 1C 15174 15749 14598 -21 09 230 36 61 14461.44 1 0
06/21/200 444.90162 674.9C
2 FRI First 378 11534 8.5 11586 12117 11056 52 96 230 16 12260.9 10911.1 1 1
06/21/200
2 FRI Second 382 11313 9 12801 13346 12254 1488 457.8 23 687. 13488.8 12113.2 0 1
06/24/200 482.56357 712.56 14334.5
2 MON First 395 13391 1 13622 14197 13046 231 09 230 36 61 12909.44 1 1
06/26/200
2 NED First 412 11559 9 13237 13783 12691 1678 457.8 230 687.8 13924.8 12549.2 0 1
07/01/200 517.49177 747.49 17678.4
2 MON Second 409 16563 11.5 16931 17548 16313 368 77 230 18. 9 16183.51 1 1
07/02/200 517.49177 747.4 17991.4
2 TUE First 420 17394 11.5 17244 17861 16627 -150 77 230 1 9, 16496.51 1 0
07/02/200 517.49177 747.4 17998.4
2 _ TUE Second 398 17678 11.5 17251 17868 16634 -427 77 230 1E 9 16503.51 1 0
07/03/200 517.49177 747.4 17805.4
2 WED First 415 17971 11.5 17058 17676 16441 -913 77 230 18 9 16310.51 0 0
07/03/200 506.11694 736.11 17519.1
2 WED Second 403 17039 11 16783 17387 16180 -256 3 230 6 2, 16046.88 1 0
07/08/200 482.56357 712.5( 14606.5
2 MON First 404 13883 1C 13894 14470 13319 11 09 230 3E E 13181.44 1 1
07/08/200 482.56357 712.5( 15308.-
2 MON Second 405 15225 1C 14596 15172 14020 -629 09 230 3E E 13883.44 1 0
07/09/200 482.56357 712.5q 15177.
2 TUE First 403 15685 1 14465 15041 13890 1220 09 23 3q 6, 13752.44 1 0



P7/09/200
2 TUE Second 414 15347 IC 15482 1605E 149071 135

482.56357 712.51 16194.'
0 230 36 E14769.44

07/10/200 482.56357 712.5 15370.!
2 WED First 409 16006 10 14658 15234 14083-1348 09 230 3 ( 13945.44 0 C
07/10/200 482.56357 712.5( 16397.-
2 WED Second 42C 15400 10 15685 16261 15110 285 09 230 3( ( 14972.44 1 1
07/11/200 482.56357 712.5( 15274.!
2 THU First 397 14494 1C 14562 15137 13986 68 09 23C 3E 6 13849.44 1 1
07/12/200 482.56357 712.5( 14976.5
2 FRI First 398 14512 1C 14264 14840 13689 -248 09 230 36, 6 13551.44 1 C
07/15/200 444.90162 674.9C
2 MON Second 416 12473 8.5 12534 13065 12004 61 96 230 16 13208.9 11859.1 1 1
07/16/200
2 TUE First 424 12410 9 13586 14042 13130 1176 457.8 23 687.8 14273. 12898.21 0 1

403.74165 633.74 8449.74
8/5/2002MON First 327 7391 7 7816 425 01 230 17, 2 7182.258 1 1

444.90162 674.9C
8/5/2002MON Second 32d 9816 8.5 10200 384 96 230 1E 10874.9 9525.098 1 1

444.90162 674.9C
8/6/2002 TUE First 342 11367 8.5 10725 -642 9 230 1 11399.9 10050.1 1 C

444.9016 674.9C
8/6/2002 TUE Second 325 11640 8.5 10716 -924 91 230 1 11390.9 10041.1 0 C

444.90161 674.9C
8/7/2002 WED First 354 11167 8.5 11032 -135 9 230 1 11706.9 10357.1 1 0

444.9016 674.9C
8/7/2002WED Second 345 11829 8.5 11231 -598 91 230 1C 11905.9 10556.1 1 0

444.9016 674.9
8/8/2002 THU First 341 12248 8.5 10950 -1298 9 230 16 11624.9 10275.1 0 0

444.9016 674.9C
8/8/2002 THU Second 324 12099 8.5 10941 -1158 91 23 1 11615.9 10266.1 0 0

482.56357 712.5 13240.5
8/9/2002 FRI First 336 13636 1C 12528 -1108 0 23 3 6 11815.44 0 0

482.56357 712.5 13177.E
8/9/2002 FRI First 31C 13848 1C 12465 -1383 09 230 3 6 11752.441 0 0

694.63
64 1STD >Pred

34 27

0.693878 0.55102

Appendix Table 6 - Build Data Validation (Average and Standard Deviation). A value of 1 was given
in the "Within 1 Std Dev" column if the value was within 1 standard deviation of the predicted value.

Also, the total number of values above the predicted value was counted as well. There should be
roughly 68% of the values falling within +/- 1 standard deviation, and about 50% of the values falling

above the predicted value.
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Date Actual HC Predicted HC Shift Output Shift Length
22-Aug 516 525 1 13326 10
23-Aug 500 407 1 11072 10
26-Aug 501 454 1 9664 8.5
27-Au 498 546 1 11445 8.5
28-Aug 511 535 1 11397 8.5

2526 2467 -59<-1 week people savings
10-Ma 434 371 1 9202 9
13-Ma 424 457 1 9708 8.5
14-May 475 360 1 7841 8
15-Ma 470 432 1 9789 8.5
16-May 469 486 1 10702 8.5
17-May 456 504 1 10724 8.5

2728 2610 -118<-1 week people savings
3-Jun 576 460 1 11726 10
4-Jun 599 583 1 14155 10
5-Jun 603 589 1 14416 10
6-Jun 596 598 1 14626 10
7-Jun 580 602 1 14457 10
8-Jun 534 551 1 9109 7

3488 3383 -105<-1 week people savings
8-Jul 603 592 1 13883 10
9-Jul 613 649 1 15685 10

10-Jul 618 655 1 16006 10
11-Jul 605 591 1 14494 10
12-Jul 609 604 1 14512 10
13-Jul 574 604 1 8640 6

3622 3695 73<-1 week people savings
12364 12155 209r-5 week people savings

Date Actual HC Predicted HC Shift Output Shift Length
22-Aug 512 526 2 13726 10
23-Aug 505 552 2 10798 8
26-Aug 511 568 2 10727 8
27-Au 523 527 2 11330 8.5
28-Aug 526 477 2 10719 8.5

2577 2650 73<-1 week people savings
10-Ma 426 454 2 10916 9
13-Ma 467 355 2 6394 7
14-Ma 485 439 2 9437 8
15-May 497 488 2 10892 8.5
16-May 485 446 2 10279 8.5
17-May 471 451 2 10110 8.5

2831 2633 -198<-1 week people savings
3-Jun 582 530 2 13193 10
4-Jun 589 527 2 13556 10
5-Jun 591 584 2 14681 10
6-Jun 578 559 2 14270 10
7-Jun 563 507 2 13165 10
8-Jun 536 549 2 8714 6.5

3439 3256 -183<-1 week people savings
8-Jul 610 634 2 15225 10
9-Jul 624 621 2 15347 10

10-Jul 633 617 2 15400 10
11-Jul 626 627 2 15673 10
12-Jul 620 599 2 16315 11

3113 3098 -15<-1 week people savings
11960 11637 -323 -5 week people savings

Appendix Table 7 - Validation of the Optimization Headcount Savings in TMC. The optimization's predicted headcount (HC) was compared with actual
output figures from each shift for 5 days out of 4 months. The overall savings for the 5 month period was 323 workers.



209<- People Savings First Shift
323<- People Savings Second Shift

9<-Hours in Shift
4788<- Total Hours

$11.50<-Cost Per Hour
$55,062.00<- 4 Weeks Savings

$ 660,744.00

<- Yearly Savings

Setup:
50% Probability of Build Making Output

70% Probability of Kitting Outperforming Build
70% Probability of Boxing Outperforming Build

4% Block Time in Boxing
20% Starve Time in Boxing

Appendix Table 8 - Optimization Estimated Financial Savings.
Payrate includes cost of salary as well as benefits



=h+x) = 7 e-7dy

Table of Normal Distribution Probabilities

Soo 0.01 O.l2 0.03 0.04 0.05 0.06 0.07

4.90.1841 0O18140178801762 0.1736[ i s 7601

-.8 O 19 0.2090;0.2061 0.203310.2005 ,0.1977 0.1949[0.1922

0. 0.2420[0.2389 0.2358 10.2327 (.2296 0.2266 :0.223610.0

-0.6 0 30 10.267612 1.2611 10.2578 10.254610.2514

0.08 0.09

[0.1401 0.1379

[0. 163s 50. 1611
jb10 .9 0 867
12177 0.2148

10.2483' [0.245 1_

0.5 0.30850.3050 0.3015 D.298110.2946 [.2912 0.2877 [6.2843 h0.2810 ;0.2776

04 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 [0.3192 0.315610.3121

-0 3 03821 03783 0.3745 .3707 0.3669 1036321 0.3594 !03557 0.3520 0.3483
0.2 0.4207 0.4168 0.4129 1.4090 5 0 -4013 A3936 - [.3897 0.3859

10.4602 04562 0.4522 [44830.4443 0.4404 03.2 4255 [ .28 7

-. 0 0.000. 04960 0.4920 488O 0.484010.4801 7 0 47210.468 6

0.0 0.5000 o .5040 0.5080 0o5120 0.5160 0.5199,0.5239 R 5279 0.5319 05359

0.1 0.5398,0.5438 0.5478[0.5517 0.555710.5596 0.5636 0.5675 0.57140.5753

0.2 0.5793 j05832 0.5871 05910 0.5948 0.5987 0.6026 0.6064 10.6103;0.6141

0.3 :0.6179 0.6217 O.6255 O.6293 0.633110.6368 0.6406 0.6443 A6480;06517

0.4 0.6554 106591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

'0.5 0.6915 0.6950 0.6985 10.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 10.7291 0.73240.7357 0.73890.7422 48 7505

10:7 0.7580 0.7611 0.7642 [&767 0.7704[0.7734 0.776416 779460.7823 0.7852

10.8 0.7881 [0.791o01793910.97 [&.799[6.80230.8051 0.8078108106 108133

0.9 :0.8159 08186 0.82 12 -0.8238 .8264 0.8289 0.8315 0.8340 0.8365 !0.8389

1.0 0.8413 10.8438 0.8461 0.8485 0.8508 0.8531 08554 0.8577 0.8599 0.8621

1.1 0.8643 [.8665 0.8686 0.8708 0.8729 0.87490.870 A7 890 8810 0.8830

.2 A8849 1A8869 0.8888 0.8907 0.8925:[0.8944 0.8962 [0.8980 [0.89970.9015

Appendix Table 9 - Table of Normal Distribution Probabilities
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