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ABSTRACT

Humans have exploited plant alkaloids as medicines since at least the Neolithic
Era. Today, alkaloids such as vinblastine (isolated from Catharanthus roseus) and
morphine (isolated from Papaver somniferum) are prescribed to treat various cancers and
relieve pain, respectively. Despite this storied use and palpable presence in the current
pharmacopeia, relatively little is known about the biosynthesis, regulation and transport
of these molecules.

For example, monoterpene indole alkaloid (MIA) biosynthesis, a set of metabolic
pathways that produces hundreds of bioactive natural products, has not been fully
elucidated in any organism. Here we examine the biosynthesis of secologanin, which
contributes the monoterpene moiety to all MIAs. Specifically, we excavate C. roseus
transcriptomic datasets to identify 1 0-hydroxygeraniol oxidoreductase, a missing step in
secologanin biosynthesis. 10-hydroxygeraniol oxidoreductase catalyzes the oxidation of
both hydroxyl moieties of 10-hydroxygeraniol to form 10-oxogeranial, which is the
substrate for iridoid synthase, the reductive cyclase that assembles the characteristic
iridoid scaffold.

Despite having an incomplete understanding of MIA biosynthesis, several
engineering strategies have been successfully deployed to incorporate halogenation into
the MIA machinery and yield halogenated alkaloids. Although alkaloids and plant natural
products have been used to treat various diseases, these compounds have not evolved
specifically to do so. Therefore, these compounds frequently require editing to effectively
tune their biological and pharmacological activities. We also describe efforts to
reengineer tryptophan halogenase RebH to preferentially install chlorine onto tryptamine,
the direct indole precursor for the MIAs. After reengineering RebH, we then over-
expressed the tryptamine-specific mutant RebH Y455W and flavin reductase RebF in C.
roseus and observed the de novo biosynthesis of a chlorinated unnatural natural product
12-chloro- 19,20-dihydroakuammicine.

Lastly, we describe the serendipitous discovery of a P. somniferum codeine-O-
demethylase mutant that selectively demethylates codeine, a benzylisoquinoline alkaloid
involved in morphine biosynthesis, instead of both codeine and thebaine. This mutant
may selectively disable a redundant route in the biosynthesis of morphine that has been
associated with poor seed and licit opium quality.

Thesis Advisor: Sarah E. O'Connor
Title: Professor, The John Innes Centre and the University of East Anglia
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I. Introduction

Medicinal plants and the natural products derived from them have been

exploited for thousands of years. For example, opium poppy has been employed

both as an anaesthetic and a conduit to the spiritual world since at least the

Neolithic Era.1'2 Independently, the blue petals of some periwinkle varieties are

said to invoke a sense of calm in Hoodoo practices (traditional African-American

folk magic), while the leaves are believed to strengthen conjugal vows if sewn

into a couple's mattress.2

The alkaloids themselves-isolated from poppy, periwinkle and other

medicinal plants-have a particularly long and storied narrative as well. This

history is highlighted in the life of Cleopatra, who used alkaloid-containing

extracts from belladonna (Italian for 'beautiful woman') to dilate her pupils so as

to increase her beauty and thereby disarm her enemies.3 Far from being

confined to ancient chronicles, the alkaloids retain a palpable presence in today's

clinics. For example, optometrists still apply eye drops containing the alkaloid

atropine, an active component of belladonna, to dilate the pupil during routine

eye exams.3

It is unsurprising that most alkaloids are bioactive given that evolutionary

processes select for the biosynthesis of products that confer an advantage to the

producing organism. Despite the rich ethnopharmacological tradition and high

usage of alkaloids in the modern era, relatively little is known about the

biosynthesis, regulation and transport of these molecules. Access to these potent

pharmaceuticals frequently pivots upon isolation from their native producers;
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isolation typically requires laborious separation techniques that often result in low

yields. Lacking a more sophisticated understanding of alkaloid biosynthesis

significantly impedes our ability to co-opt nature's machinery in order to

overproduce-that is, to metabolically engineer-these valuable compounds.

Notably, many drug screening efforts exclude plant natural products

because of their high production costs and instead screen larger numbers of

simpler synthetic molecules, which can be produced inexpensively and in fewer

chemical steps.4 Typically these high throughput screens are enriched with

aromatic, sp 2 -rich compounds that are obtained from commercial vendor

libraries.5 While these compounds have been useful for certain targets such as

kinase inihibition, this area of chemical space is not always ideal for drug-like

molecules.4'5 In contrast, natural products and compounds inspired by natural

products occupy a 'privileged' drug-like space, and comprise nearly half of all

FDA approved drugs.5 7 Importantly, natural products nearly always have more

chiral carbons-a metric of complexity-than compounds typically found in

commercial vendor libraries.5 Given that natural products have specifically

evolved to bind to cellular targets and exhibit some bioactivity that is beneficial to

the host organism, it is hardly surprising that natural products are enriched for

bioactivity, while relatively flat compounds uninspired by natural product

structures typically fail pharmaceutical screens.8

Given the successes of getting natural products through the drug pipeline,

we contend that more natural products-including plant alkaloids-should be

included in drug screens. Plant natural products have a high success rate as
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candidates and leads.6'7 While the chemical syntheses of plant natural products,

particularly the alkaloids, are dramatically improving,9 many syntheses are still

too lengthy for commercial production or require industrially impractical

separation steps. Therefore, alternative production platforms must be developed,

evaluated and instituted. An increasing body of work enlists microbes as well as

cell and tissue cultures to produce these valuable plant-derived products.7

Biological systems have the potential to be scalable and selective, while

simultaneously being more environmentally friendly and-importantly-less

expensive than synthetic reactions.7

In this chapter, we highlight recent metabolic engineering efforts designed

to improve production of selected plant-derived alkaloids. We focus on the

monoterpene indole alkaloids (MIAs), the benzylisoquinoline alkaloids (BlAs) and

the glucosinolates. Though not classically classified as alkaloids, the

glucosinolates are nitrogen-containing compounds that have been the subject of

a compelling body of research that will inform the forward engineering of all plant

natural products. In total, these three classes of plant-derived nitrogen-containing

natural products have been the subject of recent research efforts aimed at

discovering and manipulating cellular activities, which include enzymatic function,

metabolite transport and regulatory control. Ultimately this work may lead to

biotechnologically useful enzymes and new drug candidates. Throughout this

chapter, we also highlight the challenges that arise in attempting to chart the

underexplored landscape of plant biosynthesis. Lastly, the chapter concludes by

contextualizing the scope of this thesis.
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11. The Monoterpene Indole Alkaloids

A. Introduction

The monoterpene indole alkaloids (MIAs) have garnered interest over the

past few decades largely because of vinblastine 8 and vincristine 9, two potent

and widely prescribed anti-cancer agents that are currently produced solely

through harvest from the leaves of mature periwinkle plants (Catharanthus

roseus). 0 The concentrations of vinblastine and vincristine per gram of dry leaf

material are approximately 0.01% and 0.003%, respectively, and are greatly

dependent upon plant growth conditions." Their low yields and lengthy

production timeline have elicited intense efforts to engineer higher titers of these

medicinally important MIAs.

The MIAs are encountered most commonly in the Apocynaceae,

Loganiaceae and Rubiaceae families.12 Most MIAs are built from the secoiridoid

secologanin 3 and the indole-containing molecule tryptamine 2 (Figure 1a) [9].

Strictosidine synthase (STS) condenses these two molecules via a Pictet-

Spengler condensation that forms strictosidine 4, The P-carboline backbone that

is formed via STS exhibits over 25 unique activities, highlighting the 'privileged'

status of this class of compounds. 7,13

Strictosidine 4-the central precursor in MIA metabolism-is believed to

ultimately succumb to either of two chemical fates.1 4'15 If the plant is not under

herbivore attack, strictosidine 4 is deglucosylated and rearranged into the over

3000 MIAs found in nature.15 Madagascar periwinkle contains a subset of
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approximately 130 MIAs. Alternatively, if the plant is under herbivore attack, the

strictosidine 4 pool (estimated to be approximately 10 mM in periwinkle leaf

epidermal cells hormonally treated to mimic herbivore attack) can be directed to

the nucleus for mass deglucosylation, leading to a reactive dialdehyde species

capable of cross-linking proteins. This mechanism has been dubbed the

strictosidine nuclear 'bomb' in reference to the 'mustard oil bomb' mechanism of

glucosinolate biosynthesis (see below).15 Importantly, many of the MIA

metabolites themselves have also been implicated in plant defense strategies. 6

B. Obtaining the Building Blocks for Metabolic Engineering Efforts-A Case Study

on the Discovery of P450s Involved in MIA biosynthesis

The enzymatic pathways leading to the MIAs have not yet been fully

elucidated in any organism. These uncharacterized biochemical steps may utilize

novel chemistries or possess informative and interesting specificities that enable

the enzymes to be employed in various synthetic metabolic pathway designs.17,18

Notably, many plants-including MIA producers-are predicted to contain a high

percentage of cytochromes P450 (P450s). Some estimates place P450s at

approximately 1 % of representative plant genomes,19 over 5-fold higher than the

proportion of P450s found in the human genome.2 0 By using molecular oxygen to

tailor hydrocarbon skeletons, P450s facilitate a panel of difficult chemical

transformations and are consequently utilized in many alkaloid biosynthetic

pathways.18
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P450s have also been successfully engineered for biotechnological

purposes.221 Various technologies, such as nanodiscs,2 and N-terminus

reengineering efforts21 have improved the expression of membrane-bound

P450s, making this class of enzymes accessible to a full suite of biochemical and

biophysical characterization techniques. Given the high sequence similarity of

P450s, identifying a P450 that facilitates a specific biochemical reaction within a

biosynthetic pathway remains a challenge. This has greatly slowed the discovery

and characterization of new P450s within the plant kingdom. However, Giddings

et al. recently used co-expression analysis to identify P450s with expression

profiles similar to known MIA biosynthetic genes.1 7 By functionally assaying these

candidates in Saccharomyces cerevisiae, Giddings et al. discovered one P450

(CYP71BJ1) that hydroxylated the 19 position of either lochnericine or

tabersonine 7, an intermediate that is positioned at a metabolic branch point.1 7

Hydroxylation of tabersonine 7 at the 16 position commits the intermediate to

vindoline and vinblastine 8 biosynthesis, whereas hydroxylation at the 19 position

commits the molecule to 19-0-acetylh6rhammericine formation.1 7 Controlling this

switch may be important in engineering efforts designed to improve the titres of

vindoline and vinblastine 8. Moreover, similar strategies must be employed to

find other missing pathway steps in MIA biosynthesis (Chapter 2) and other

natural product pathways.
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Figure 1.1: (A) The monoterpene indole alkaloid (MIA) pathway. TDC,

tryptophan decarboxylase; STS, strictosidine synthase; Gic, glucose. (B)

Introduction of halogenation into the MIA pathway. RebH and PyrH are both

flavin-dependent halogenases from actinomycetes species; STSvm,

strictosidine synthase Val214Met mutant. (C) Reengineering of halogenase to

preferentially chlorinate tryptamine 2 over the natural substrate tryptophan

1 (Chapter 3).
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C. Engineering 'Unnatural' Natural Products

Plant alkaloids often require modification to improve their pharmacological

properties prior to human consumption. Halogenation, particularly fluorination

and chlorination, is a pervasive modification in successful pharmaceutical

candidates.23 24 Halogens often confer the potency of a drug, alter its

pharmacokinetics or function as site-specific handles for subsequent

modification. 2 Halogens can be introduced into MIA pathways by a number of

methods. One particular example employed mutasynthesis, a process whereby

natural biosynthesis is first blocked by genetic silencing of the natural precursor,

and then rescued by feeding with structural analogs of the precursor.26 In this

case, in conjunction with the RNAi-mediated knockdown of tryptophan

decarboxylase (TDC), unnatural tryptamine 2 analogs were added to a

chemically 'silent'-non-alkaloid producing-background and fluorinated MIA

analogs were observed.26 In a separate engineering strategy, strictosidine

synthase (STS)-the enzyme situated at the first committed step of MIA

biosynthesis-was engineered to accept an expanded range of halogenated

tryptamine 2 precursors; 27 the utility of this enzyme was demonstrated in planta

by feeding previously unaccepted unnatural precursors to C. roseus hairy roots.28

Finally, Runguphan et al. interfaced RebH and PyrH-two tryptophan

halogenases isolated from soil-dwelling actinomycetes species-with the MIA

metabolism of periwinkle to produce halogenated natural products de novo [24]

(Figure 1 b). However, the lines overexpressing both RebH and RebF also

displayed a brown and slow growth morphology. 29 Runguphan et al.
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hypothesized that this morphology was the result of the accumulation of 7-

chlorotryptan la, an analog of primary metabolite L-tryptophan 1 that is

somewhat structurally similar to 4-chloroindole-3-acetic acid, an auxin known to

be involved in regulating plant growth. 29

To circumnavigate this problem, Glenn et al. employed structure-guided

protein design to engineer a halogenase that preferentially chlorinated tryptamine

2, a more direct MIA precursor (Figure 1C) (Chapter 3).30 Microgram per gram

fresh weight quantities of 12-chloro-19,20-dihydroakuamicine 5a were observed

with this strategy, but neither 7-chlorotryptophan la nor 7-chlorotryptamine 2a

accumulated in planta, indicating the chlorinated precursor was being effectively

shuttled into MIA metabolism [25]. Engineering halogenation into MIA

metabolism highlights an important need to interface specialized metabolism with

primary carbon and nitrogen metabolism.

I1. The benzylisoquinoline alkaloids

A. Introduction

Benzylisoquinoline alkaloids (BlAs) are found mainly in the Papaveraceae,

Ranunculaceae, Berberidaceae and Menispermaceae plant families.

Approximately 2500 BIAs have been isolated to date.31 This class of compounds

has been used throughout human history and contains pharmaceuticals that are

still widely used today, including the narcotic and analgesic morphine 28, the

cough suppressant codeine 26, the muscle relaxant papaverine, and the anti-

microbial agents sanguinarine 19 and berberine 29. All known BIAs, like the
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MIAs, are derived from a single intermediate, which, for this class of compounds,

is norcoclaurine 13. Norcoclaurine synthase (NCS) catalyzes the Pictet-Spengler

condensation between dopamine 11 and 4-hydroxyphenylacetaldehyde 12 to

yield the central intermediate, norcoclaurine 13.

Notably, the biosynthetic pathways of several benzylisoquinoline

alkaloids-morphine 28, sanguinarine 19 and berberine 29-have been fully

elucidated at the genetic level, which has enabled sophisticated metabolic

engineering approaches. The application of metabolic engineering strategies for

BIAs has focused predominantly on improving the yields of specific alkaloid

compounds that exhibit medicinal value (Table 1.1).

B. Enzyme Discovery and Engineering in BIA Pathways

Several outstanding efforts in enzyme discovery have been reported for

BIA biosynthetic pathways. In a recent effort, Hagel et al. characterized two 0-

demethylases that are involved in morphine biosynthesis, completing the

characterization of the morphinan pathway (Figure 2B).3 This work also clearly

highlighted how co-expression analysis can be used to discover enzymes with

unprecedented catalytic function. These enzymes offer the first examples of non-

heme iron(II) oxoglutarate dioxygenases capable of catalyzing O-demethylation.

Codeine-0-demethylase (CODM) regioselectively demethylates codeine 26 and

thebaine 22 at the 3-position, while thebaine-6-0-demethylase (T60DM)

demethylates thebaine 22 and oripavine 24 at the 6-position. Swapping amino

acid regions between the two demethylases resulted in a CODM mutant that

29



selectively demethylates codeine (Figure 2B) (Chapter 4).33 This mutant-which

effectively sidesteps oripavine 24 production by committing thebaine 22 to just

one of two possible routes-could potentially impact titers of codeine 26 and

morphine 28 in subsequent metabolic engineering efforts. Collectively, these

studies highlight how characterizing individual pathways steps and understanding

their specificity and selectivity can both inform and enable metabolic engineering

efforts.

While transcript analysis has proven to be spectacularly successful in

elucidating the demethylases of morphine 28 biosynthesis, Winzer et al. provide

a rare example of gene clustering in a BIA pathway. 34 The authors describe a 10-

gene cluster in the poppy genome that putatively encodes the entire biosynthetic

pathway of the BIA noscapine 15. This is the first gene cluster discovered for an

alkaloid pathway, and it is the largest plant gene cluster discovered to date. The

authors further successfully silenced six of the ten proposed genes using VIGS to

validate their role in noscapine 15 biosynthesis.34 This study indicates that

genomic data, in addition to expression data, can be used to decipher alkaloid

pathways in plants.

C. Engineering in Native Hosts

In one of the earliest attempts to engineer BIA-producing plants, RNA

interference (RNAi) was used to silence the expression of codeinone reductase
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in the opium poppy.35 COR, the penultimate enzyme of morphine biosynthesis,

converts codeinone 25 to codeine 26 (Figure 2b). While one might anticipate that

the silencing of COR would lead to elevated levels of codeinone 25, the study

found instead that COR-silenced plants accumulated reticuline 14-an

intermediate seven steps upstream of codeinone 25-at the expense of

morphine 28, codeine 26, oripavine 24 and thebaine 22. A feedback mechanism

was proposed as an explanation for the elevated levels of reticuline 14, though

testing this hypothesis has yielded conflicting results.35

Other early attempts to improve the yields of BIA alkaloids include the

overexpression of berberine bridge enzyme (BBE) in Eschscholzia califomica

root cultures. This effort resulted in elevated levels of downstream alkaloids and

decreased levels of amino acids, though notably levels of tyrosine 10-the amino

acid employed in BIA synthesis-were unaltered. 6 Conversely, the antisense

suppression of BBE expression led to the effective silencing of BIA production

and increased cellular amino acid levels, though, again, tyrosine 10 levels went

largely unchanged (less than two-fold higher than in control lines).37 Nonetheless,

these two studies highlight how perturbations in alkaloid metabolism can impact

primary metabolism.6' 37 More recent studies suggest, however, that the RNAi

suppression of BBE in E. californica leads to increased accumulations of (S)-

reticuline 14 instead of various canonical amino acids.38 These contradictory

results are surprisingly common in the metabolic engineering of alkaloids in

plants and cell cultures and provide us with the impetus to understand these
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pathways in greater detail, paying specific attention to their biochemical and

molecular regulatory elements.

D. Reconstituting BIA Biosynthesis into Microbial Systems

Many pathways in BIA biosynthesis are fully characterized, which opens

the possibility of transplanting entire alkaloid pathways into microbial hosts.

Though relatively difficult, the reconstitution of entire metabolic pathways into

microbial hosts confers a number of advantages, including rapid biomass

accumulation, facile purification and access to the host of tools available for

workhorse organisms like E. coli and S. cerevisiae. A number of recent reports

have successfully reconstituted portions of BIA pathways into S. cerevisiae, E.

coli and combinations thereof in co-culture systems.3 9-41 For example, Hawkins et

al. were able to produce reticuline 14 as well as sanginarine/berberine-type and

morphinan-type BIAs in yeast by over-expressing genes from mixed plant

sources and human. 40 Notably, they were also able to tune enzyme expression

levels through use of a glucocorticoid-inducible promoter and in situ promoter

titration. 5 This level of tuning enables maximal pathway flux and minimal enzyme

expression. The expression system is nominally taxed under these conditions,

since valuable cellular resources are not used on the biosynthesis of

supernumerary proteins and nucleic acids.
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IV. The Glucosinolates

A. Introduction

The glucosinolates are not classified as alkaloids, although, along with the

alkaloids, these compounds are amino acid-derived, nitrogen-containing small

molecules of plant origin. The glucosinolates are included in this chapter because

the recent and creative metabolic engineering studies performed on this class of

compounds will undoubtedly inform the forward engineering of all plant natural

products, particularly the alkaloids, which also contain nitrogen. Glucosinolates

are sulfur- and nitrogen-containing compounds that are derived from glucose and

various amino acids (Figure 3A).42 They are found in cruciferous vegetables (the

Brassicaceae plant family) and have been shown to possess a range of

bioactivities.42 The glucosinolates occupy an essential space in the chemical

ecology of their host organisms by attracting specialist crucifer pollinators and

insects and deterring predatory herbivores.43 Specifically, crucifers employ

myrosinases (hydrolases) to cleave the glucose moiety of glucosinolates in

response to predation and herbivory (Figure 3B).44 The myrosinases and

glucosinolates are physically segregated within the plant, coming into contact

only upon disruption of the plant tissue (Figure 3B). 44 Upon hydrolysis, the

resultant unstable aglycone intermediate spontaneously rearranges into the

corresponding isothiocyanate via a Lossen-type rearrangement.44 The three

known types of specifier proteins, Thiocyanate-Forming Proteins (TFPs), Nitrile-

Forming Proteins (NFPs) and Epithiospecifier Proteins (ESPs)-which can be
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found in planta or in various specialist insects-can redirect glucosinolate

hydrolysis from isothiocynate products toward thiocyanate, simple nitrile and

epithionitrile products, respectively (Figure 3B).44 Notably, many specifiers can

direct glucosinolate hydrolysis to more than one product.44 Early workers on this

plant defense and pollination system dubbed it 'The Mustard Oil Bomb'.43 To

date, over 120 glucosinolates have been identified. 45

B. Improving Yields in Non-Native Hosts

The reconstitution of entire metabolic pathways into heterologous plant

hosts requires the use of efficient and facile 'gene stacking' methodologies. A

spectacularly successful example is the engineering of benzylglucosinolate

biosynthesis into Nicotiana benthamiana. Benzylglucosinolate was reconstituted

in N. benthamiana using a transient expression system. In this study, Geu-Flores

et al. identified a y-glutamyl peptidase bottleneck, suggesting that reduced sulfur

is incorporated into glucosinolates via glutathione conjugation (Figure 3A).42 The

co-expression of this peptidase augmented the yield of benzylglucosinolate 5.7-

fold, indicating how consideration of primary metabolite resources can impact

natural product yield.42

In a separate metabolite analysis, Moldrup et al. monitored the

accumulation of desulfobenzylglucosinolate, the penultimate product in the

benzylglucosinolate pathway.46 Directing sulfur from primary to secondary

metabolism through the co-expression of adenosine 5-phosphosulfate kinase-

which provides the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) co-
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-substrate necessary for the final step of benzylglucosinolate biosynthesis

(Figure 3A)-in the N. benthamiana expression system alleviated the subsequent

bottleneck and increased the benzylglucosinolate yield by 16-fold.46

In yeast, Mikkelsen et al. were able to reconstitute the biosynthesis of

indolylglucosinolate.45 This example was a proof-of-concept study for a

technology that enables the stacking of large numbers of genes, a requirement

for total pathway reconstitution. Notably, the benzylglucosinolate biosynthetic

pathway has also been stably transformed into Nicotiana tabacum, another non-

cruciferous plant, which does not normally produce glucosinolates.47 This

reengineered plant has been shown to attract the diamondback moth (Plutella

xylostella) and encourage oviposition (the deposition of eggs), highlighting its

potential utility as a dead-end trap crop to deter predatory insects and prevent

billion-dollar damages to cruciferous crops worldwide.47

Forward engineering in non-native hosts is particularly attractive if the

product distribution converges to one or a few products. This obviates the need

for taxing and costly separation procedures and can allow for rapid biomass

accumulation. Moreover, forward engineering can increase product gains, as the

engineering takes place in a nearly or completely chemically silent background.

In contrast, over-expressing or silencing single genes in the context of normal

plant primary and secondary metabolism typically does not significantly alter the

product profile.
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V. Scope of Thesis

This thesis-Understanding and Manipulating Alkaloid Biosynthesis-

commences with an effort to identify 10-hydroxygeraniol oxidoreductase activity

in Madagascar periwinkle (Chapter 2). 10-hydroxygeraniol oxidoreductase is an

enzyme involved in the biosynthesis of secologanin, the terpenoid precursor for

all MIAs. A high proportion of genes in the C. roseus transciptomic datasets are

predicted to facilitate oxidation or reduction steps, making the discovery of the

physiologically relevant enzymes(s) involved in this transformation difficult.

Despite having an incomplete understanding of MIA biosynthesis, the

pathway has still been amenable to various engineering strategies, most notably

incorporation of halogens. Chapter 3 discusses our efforts to engineer

halogenation into periwinkle by redesigning RebH, a tryptophan halogenase, to

preferentially chlorinate tryptamine, a direct MIA precursor. We subsequently

incorporated this reengineered halogenase into alkaloid biosynthesis and

observed the de novo biosynthesis of a halogenated 'unnatural' natural product.

The final research chapter (Chapter 4) explores mixing-and-matching

closely related protein sequences in benzylisoquinoline alkaloid biosynthesis to

generate an enzyme with novel activity. Specifically, we systematically swapped

residues from PsT60DM-a dioxygenase that demethylates the 6 position of

oripavine and thebaine-into PsCODM, a dioxygenase that demethylates the 3
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position of thebaines and codeine. The resulting enzyme was a PsCODM mutant

that was specific for codeine. This switch in selectivity does not readily correlate

with the substrate specificity of the parent enzymes. This chapter highlights the

difficulty of rationally redesigning enzymes. Nonetheless, because the mutant is

specific for codeine, it could presumably be used in reconstitution efforts to

disable a redundant route in morphine biosynthesis.

The thesis closes with major conclusions of the work discussed within this

text followed by the grand challenges and future work of the field (Chapter 5).

From folk magic to clinics, plant-derived natural products have an exciting and

storied past and hopefully a rich and expansive future.
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Chapter 2

Discovery of 10-hydroxygeraniol Oxidoreductase Activity in C. roseus
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I. Introduction

The iridoids constitute a sizable class of natural products and boast an

equally impressive repertoire of biological activities (Figure 2.1).12 Despite their

utility as both pharmaceuticals and pest repellents, many steps of iridoid

biosynthesis are unknown.' 2 The enzymatic reactions within this pathway have

both captivated and challenged scientists for decades. Ultimately, understanding

this pathway could potentially decrypt novel enzymatic function. Moreover,

understanding iridoid biosynthesis will aid in the production of these valuable fine

chemicals in tractable heterologous hosts.

HO ~HO- ,

- . H Y -Y 1-7. je7C
H- HH eIJO

Aucubin Catapol Valerate
1 2 3

Figure 2.1: Structures of three representative plant iridoids. Glc, glucose.

Iridoids are composed of a bicyclic 10-carbon skeleton that is derived from

the condensation of dimethylallyl pyrophosphate (DMAPP) 4 and isopentyl

pyrophosphate (IPP) 5.2 Subsequently, geraniol synthase dephosphorylates this

10-carbon unit-geranyl pyrophosphate 6-to form geraniol 7.3 In the first

committed step of iridoid terpene biosynthesis, geraniol 10-hydroxylase

(G1OH)-a cytochrome P450-hydroxylates geraniol 7 at position 10, forming

1 0-hydroxygeraniol 8.4
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The pathway from 10-hydroxygeraniol 8 to secologanin 15, the direct

precursor to monoterpene indole alkaloid formation, contains approximately eight

steps, at least three of which are unknown (Figure 2.2).2 Namely, the enzyme(s)

that facilitates oxidation of the di-alcohol 10-hydroxygeraniol 8 to the di-aldehyde

10-oxogeranial 9 is unknown.2 However, alcohol dehydrogenases are known to

catalyze the oxidation of alcohols and are therefore strongly implicated in this

transformation. Likewise, the enzyme(s) that facilitates conversion of nepetalactol

10 to 7-deoxyloganic acid aglycone 12 is unknown.2 Notably, this conversion

may require as many as three unique enzymes. The first predicted step in this

conversion-a hydroxylation reaction-is likely cytochrome P450-dependent.

The oxidation of the resultant alcohol 11 to the carboxylic acid 12 may employ

the same cytochrome P450 or require separate dehydrogenases. Namely, a

dehydrogenase may convert the alcohol 11 to an aldehyde, then the aldehyde to

the carboxylic acid. Alternatively, a dedicated alcohol dehydrogenase may

convert the alcohol 11 to an aldehyde, and a disparate aldehyde dehydrogenase

may convert the resulting aldehyde to the carboxylic acid 12. Finally, the enzyme

responsible for the glucosylation of the 7-deoxyloganin aglycone 13 is unknown,

though a glucosyl transferase is strongly implicated in this transformation.2

Importantly, it is perfectly feasible to imagine that the glucosyl transferase could

also act on nepetalactol 10 or any intermediate prior to acid formation.

Intriguingly, the glucosylation of nepetalactol 10 directly-prior to P450

oxidation-would prove strongly redolent of flavonoid biosynthesis.5 While some
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substrate specificity studies have been performed with crude plant lysates, the

order of these reactions has not yet been established definitively.6
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Figure 2.2: The proposed biosynthesis of iridoid secologanin 16. From 10
hydroxygeraniol 8 to secologanin 16, a direct monoterpene indole alkaloid
precursor, at least three enzymatic steps are unknown. Glc, glucose; OPP,
pyrophosphate.

As outlined above, chemical logic allows us to sensibly hypothesize the

enzyme class responsible for each unknown pathway step. Further, advances in

sequencing technologies and statistical methods equip us to identify and assess

the biological function of candidate genes of interest. This chapter focuses on the
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discovery and characterization of 10-hydroxygeraniol oxidoreductase, the

enzyme that catalyzes the conversion of 1 0-hydroxygeraniol 8 to 1 0-oxogeranial

9. This enzyme acts on the substrate positioned at the seat of iridoid biosynthesis

and produces the substrate for iridoid synthase, a reductive cyclase that

assembles the bicyclic iridoid scaffold.

Previous attempts to identify the 10-hydroxygeraniol oxidoreductase were

confined to protein isolation from iridoid-containing plants.' 8  Specifically,

Hallahan et al. demonstrated that oxidoreductase activity found in Nepeta

racemosa (catmint) leaf extracts converted 10-hydroxygeraniol 8 to 10-

oxogeranial 9 in an NADP*-dependent fashion (NAD' is not accepted). The

enzyme of interest-a heterodimer comprised of one 40 kDa subunit and one 42

kDa subunit-was purified 1150-fold, though not to apparent homogeneity.

Consequently, no protein sequence is reported.7

In a separate study, Ikeda et al. purified to apparent homogeneity a 44-

kDa oxidoreductase from Rauwolfia serpentina cell cultures that converted 10-

hydroxygeraniol 8 to 10-oxogeranial 9.8 This enzyme was shown to be NADP'-

dependent (while NAD+ is not accepted) and, based on atomic absorption

spectroscopy, to bind zinc ions. Moreover, in contrast to previously characterized

alcohol dehydrogenases from higher plants, this enzyme appears to function as a

monomer based on gel filtration chromatography and SDS PAGE analysis.

Strikingly, the first 21 residues of alcohol dehydrogenases isolated from maize,

pea and Arabidopsis exhibit high sequence homology, with 13 of the N-terminal

residues conserved.8 However, the N-terminus of the purified protein from R.
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serpentina-N H2-NQQXXTKVTKMVYKLVLVNTY-did not display significant

homology to previously characterized alcohol dehydrogenases or to proteins

registered in the Protein Data Bank. To the best of our knowledge, the 10-

hydroxygeraniol oxidoreductase gene from R. serpentina has not been cloned,

and the full sequence has not been reported.

While previous studies relied upon protein isolation-an arduous, but

state-of-the-art technique when sequence data is unavailable-we trawled

recently acquired C. roseus transcriptomic datasets in this study to 'fish out'

genes of interest.9 Specifically, we selected genes of interest by employing the

'guilt-by-association' principle, whereby uncharacterized, but functionally

annotated genes are baited with genes of known function-in this case, genes

known to be involved in C. roseus iridoid biosynthesis.110 Genes functionally

predicted to catalyze alcohol dehydrogenation that also cluster with known iridoid

biosynthetic genes in hierarchical clustering algorithms are assigned as prime

10-hydroxygeraniol oxidoreductase candidates. These candidates are

subsequently assessed for length completeness, cloned from the complementary

DNA (cDNA) of C. roseus, expressed heterologously, then assayed for the

desired activity. Importantly, the N-terminus of the oxidoreductase isolated from

R. serpentina displays no significant sequence homology to any transcripts in the

C. roseus assemblies or to genes registered within the Plant Genomic Database.

Efficiently mining large datasets for genes of interest is currently a major

challenge in the field of plant enzyme discovery." In the most recent C. roseus

transcriptomic assembly, approximately 1.2% (about 400) of the gene transcripts
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(0.6% heme-dependent and 0.6% non-heme-dependent) are functionally

predicted to facilitate redox reactions!-a figure that undergirds terrestrial plants'

expansive oxidoreductive landscape. Notably, however, the 'guilt-by-association'

principle has been successfully employed previously with C. roseus

transcriptomic data sets to bait the genes of missing pathway steps, including the

reductive cyclase responsible for iridoid scaffold assembly.' 0 This chapter

describes our efforts to excavate C. roseus transcriptomic datasets to unearth

the alcohol dehydrogenase(s) responsible for the oxidation of 10-hydroxygeraniol

8 to 10-oxogeranial 9, a missing step in iridoid biosynthesis.

II. Results and Discussion

The oxidation of the di-alcohol 10-hydroxygeraniol 8 to the di-aldehyde 10-

oxogeranial 9 strongly invokes catalysis via an alcohol dehydrogenase.

Therefore, in a principle known as 'guilt-by-association,' we mined C. roseus

transcriptome assemblies for alcohol dehydrogenases with similar expression

patterns to known genes in iridoid biosynthesis.

The most recent C. roseus transcriptome assembly contains

approximately 33,000 transcripts.9 To facilitate the mining process, we employed

various transcript filtering conditions. For example, Dr. Fernando Geu-Flores

filtered the data set based on gene expression in leaves and methyl jasmonate

elicitation. Genes either not expressed or only poorly expressed [fragments per

kilobase of exon per million (FPKM) values < 2] in leaves can be discarded, as

iridoid biosynthesis is known to occur in leaves. We postulate that 10-
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hydroxgeraniol oxidoreductase expression is high in leaves. Similarly, methyl

jasmonate is known to upregulate iridoid biosynthesis.12 Therefore, genes non-

elicited by methyl jasmonate may also be discarded. Approximately 4,500

transcripts remain after these constraints are enforced.

Additionally, in three separate filters, I retained only the 5000 most highly

expressed genes in C. roseus immature leaves, mature leaves and hairy roots,

respectively. Because iridoid-containing molecules are isolated from each of

these three tissues, we conjecture that iriodoid biosynthetic genes should be

highly expressed in these tissues as well. Transcripts with FPKM values less

than zero in each of these tissue samples were discarded.

We then employed hierarchical clustering analyses on each of the four

filtered assemblies to correlate gene expression levels across the 17 different

tissue samples. Transcripts were imported into Multiple Experiment Viewer 4_7,

then clustered using the hierarchical clustering algorithm based on Pearson

Correlation as the distance metric and average linkage clustering as the linkage

selection method. A representative cluster (cluster based on both high leaf

expression and methyl jasmonate elicitation) is shown below (Figure 2.3).

In addition to hierarchical clustering, we also treated the data with another

type of analysis called mutual ranking analysis. Using a preliminary transcriptome

dataset (C. roseus transcriptome assembly 1), Geu-Flores et al. generated a

mutual ranking list based on gene expression likeness to geraniol 10-

hydroxylase, the enzyme directly upstream of 1 0-hydroxygeraniol

oxidoreductase.' Specifically, Geu-Flores et al. calculated the Pearson
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Correlation Coefficients (PCCs) for each contig that passed the methyl

jasmonate elicitation and high leaf expression filters. Genes were ranked in

descending order according to their PCCs for geraniol 10-hydroxylase. This list is

the forward ranking list. To obtain the reverse ranking list, Geu-Flores et aL.

computed the PCCs for the 200 best-correlated contigs in the forward list against

each other. The mutual rank (Table 2.1) is the square root of the forward and

reverse product:

Equation 2.1: Mutual Rank = [(forward rank)(reverse rank)]112
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ID Mut Rank PCC Rev Rank Fwd Rank MRV Annotation Comments
2665_iso=1 1 0.989099123 2 1 1.414 p450 Cytochrome P450
9933 iso=1 2 0.974834433 3 2 2.449 ---
34690_iso=1 3 0.972471793 3 3 3 --- ---
9710_iso=1 4 0.965799646 4 4 4 p450 Cytochrome P450
13334_iso=1 5 0.964354354 5 5 5 GcpE 4-hydroxy-3-methylbut-2-en-1-y diphosphate synthase, bacterial-type
729 iso=1 6 0.957657585 4 10 6.325 --- Iridoid Synthase
42065 iso=1 7 0.962529328 7 6 6.481 --- ---
17224 iso=1 8 0.9620476 6 7 6.481 DXP redisom 1-deoxy-D-xylulose 5-phosphate reductoisomerase, C-terminal
5089_Iso=1 9 0.955826582 5 11 7.416 ADH zincN Candidate 5743
15157_iso=2 10 0.959631421 7 8 7.483 MTHFR Methylenetetrahydrofolate reductase
37738_iso=3 11 0.953962234 5 12 7.746
12882_iso=1 12 0.9340208 3 20 7.746 UDPGT UDP-glucuronosyl/UDP-glucosyltransferase
17468 iso=1 13 0.958511244 8 9 8.485 zf-Dof Zinc finger, Dof-type
18942 iso=1 14 0.947575109 8 13 10.2 polyprenyl-sy Polyprenyl synthetase
36044 iso=1 15 0.942874239 9 15 11.62 DUF581 Protein of unknown function DUF581
39905 iso=1 16 0.945957994 13 14 13.49 --- _ ---
2437 iso=1 17 0.933503619 9 21 13.75 YgbB 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, core
3272_iso=1 18 0.929045736 8 26 14.42 GcpE 4-hydroxy-3-methylbut-2-en-1-yi diphosphate synthase, bacterial-type
7526_iso=1 19 0.916690108 6 37 14.9 --- ---
3938_iso=1 20 0.94046914 15 17 15.97 GHMP kinase. GHMP kinase, C-terminal
1136_iso=1 21 0.921921584 9 33 17.23 Aldedh Aldehyde dehydrogenase
43316 iso=1 22 0.936586676 19 18 18.49 --- _ ---
9680_iso=2 23 0.887353468 4 98 19.8 HLH Helix-loop-helix DNA-binding domain
8952 iso=1 24 0.907762934 7 57 19.97 --- ---
31515_iso=1 25 0.941437245 32 16 22.63 LRRNT_2 Leucine-rich repeat-containing N-terminal domain, type 2

Table 2.1 The top 25 contigs from a mutual rank with Geraniol 10-hydroxylase. Candidate 5743 ranks 9th and is shown in red.
ID, transcript number in C. roseus transcriptome dataset 1; Mut Rank, Mutual Rank; PCC, Pearson Correlation Coefficient; Rev,
Reverse; Fwd, Forward; MRV, Mutual Ranking Value.



After selecting alcohol dehydrogenases from each of these analyses, we

then assessed each candidate for length by comparing the longest open reading

frame across all C. roseus assembly data with the top-ranking BLAST (Basic

Local Alignment Search Tool) hit. Partial length genes were discarded. Next, we

assessed each gene for its predicted sub-cellular localization by submitting

sequences to the TargetP 1.1 server. 3 Genes strongly (i.e. confidence level 1)

predicted to localize to the chloroplast, mitochondria or endoplasmic reticulum

(ER) were discarded, as all early iridoid biosynthetic steps are cytosolic, including

the characterized steps directly before (i.e. G10H) and after (i.e. iridoid synthase)

10-hydroxygeraniol oxidoreductase. Notably, the P450-dependent enzyme G10H

is anchored to the ER membrane, but catalysis occurs within the cytoplasm.

Eight candidates were retained after all constraints were enforced; the

filter(s) and hierarchical cluster(s) in which the candidates appear are shown in

Table 2.2. Table 2.2 also displays the mutual rank order, if the candidate

appeared on the mutual ranking list. Candidate 5743 had a mutual rank of 9,

making it the highest-ranking candidate on the mutual ranking list.

Candidate Me3a+Leaf Immat. Leaf Hairy Root Root Mutual Rank Cytosol
1786 X X X Not Found X
26 X X X 103 X

4319 X X Not Found
5743 X X X X 9
7220 X Not Found X
8694 165
2041 X 91
580 X X X X Not Found X

Table 2.2: Candidate filter summary. 'X' signifies that the candidate passed the
filter restraints and was identified in the corresponding cluster. Geraniol 10-
hydroxylase mutual rank is provided if the candidate is found on the list. Meja,
methyl jasmonate; Immat., immature.
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Notably, four of the final eight candidates are predicted with varying

confidence levels to localize to the ER, according to TargetP 1.1 (Table 2.3). The

candidates were retained, however, because the signal peptide predictor SignalP

4.1 server failed to identify any regions likely to function as signal peptides for

any of these candidates.1 4 Moreover, none of the candidates are strongly

predicted to localize to the ER. Significantly, Candidate 5743 is one of the

candidates predicted, albeit with low confidence (i.e. confidence level 5), to enter

the secretory pathway and localize to the ER. We postulate that the high cysteine

content (15 cysteine residues in the 378-residue primary structure) likely

relegates this candidate to the ER in the prediction algorithm. Notably, however,

Ikeda et al. indirectly implicated sulfhydryl groups in 10-hydroxygeraniol

oxidoreductase catalysis by incubating the oxidase from R. serpentina with a

thiol-reactive Michael acceptor (i.e. N-ethyl maleimide) and observing significant

activity attenuation.8 Therefore, Candidate 5743-which co-expresses well with

known iridoid biosynthetic genes, according to both hierarchical clustering

analyses and mutual ranking-was retained in the screen even though the

prediction algorithms suggested it was unlikely to localize to the cytosol.

Candidate Chloroplast Mitochondria ER Other Confidence
1786 0.193 0.130 0.122 0.519 4

26 0.180 0.165 0.035 0.406 4
4319 0.102 0.023 0.850 0.042 2
5743 0.589 0.028 0.607 0.063 5
7220 0.197 0.261 0.024 0.557 4
8694 0.140 0.038 0.321 0.645 4
2041 0.268 0.078 0.278 0.092 5
580 0.009 0.326 0.159 0.606 4

Table 2.3: TargetP1.1 localization prediction. Strongest predictions are
highlighted in yellow. High confidence = 1; low confidence = 5. Confidence
values reflect the difference between the two highest predictions.
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Faced with cloning multiple genes, we employed USER cloning, a ligation-

free, cassette-based expression method. Each gene, except for Candidate 580,

which could not be cloned from C. roseus cDNA, was successfully cloned into

the USER cassette (gene and protein sequences are provided in Appendix A). All

candidate expression trials were run in RosettaTM 2 E. coli, a host strain

optimized for rapid and robust eukaryotic protein expression. Proteins were

expressed and purified with an N-terminal histidine tag (His6). Five of the seven

cloned candidates-candidates 1786, 26, 4319, 5743 and 7220-expressed well

Theoretical Predicted
Candidate Mass (kDa) pI Expression?

1786 40.7 5.27 yes

26 32.5 5.22 yes

4319 40.0 7.63 yes

5743 40.4 6.27 yes

7220 33.4 5.71 yes

8694 42.9 5.76 no/poor

2041 42.9 6.57 no/poor

Table 2.4: Summary of data from candidate expression in Rosetta 2 cells. Five of
the 7 cloned candidates expressed robustly. Theoretical masses listed are the
predicted average masses using the ExPASy server.
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(Table 2.4; Figure 2.4) and were subsequently assayed for 1 0-oxogeranial 9

formation from 1 0-hydroxygeraniol 8.
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Figure 2.4: SDS PAGE gels of candidate expression and purification. A.
Expression of Candidates 1786, 26 and 4319. Each of these candidates
expressed well. B. Expression of Candidate 5743. C. The expression trials of
Candidates 7220 and 8694. Candidate 7220 expressed well under the
conditions highlighted in the method section, whereas Candidate 8604 did
not. D. Expression trial of Candidate 2041. Candidate 2041 did not express
well under the conditions of the screen (methods section). Red boxes
highlight the fractions that were pooled, concentrated and buffer exchanged
into 20 mM MOPS (pH 7.0) for subsequent assay.

Each of the five well-expressed candidates was screened for 10-

oxogeranial 9 formation by both thin layer chromatography (TLC) and gas
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chromatography - mass spectrometry (GC-MS). Positive hits-candidates that

produced 10-oxogeranial 9-were further assessed with a battery of controls to

test for zinc and cofactor (NAD+ or NADP+) dependence (Appendix A). Namely,

we conducted the following control experiments on positive hits: (1) no enzyme

controls, where enzyme was omitted from the assay; (2) no NAD' or NADP+

controls, where these cofactors were omitted from the assay; (3) no zinc controls,

where no ZnCl 2 was added to the assay mixture; and (4) chelator controls, where

1 mM EDTA (ethylene diamine tetraacetic acid) was added to the assay and

ZnCl 2 was omitted. The summary of those experiments is shown below in Table

2.5; the TLC controls and all GC-MS data are supplied in Appendix A.

I Candidate Screen I TIC I Ic~uc I

15743 EDTA + No Zinc Yes Yes Yes Yes

INo NAD(P)+ Controls No No No No
No Enzyme Controls No No No No

Table 2.5: Summary of the candidate screen with TLC and GC-MS. 'Yes' indicates that
10-oxogeranial 9 formation was observed. 'No' indicates that 10-oxogeranial 9
formation was not observed. 'N/A' indicates that the candidate was not screened
under said conditions (No controls with Candidate 26 were conducted on TLC
because product formation was not observed via TLC.) Experiments for each
candidate are grouped.

The TLC screen identified two candidates-Candidates 1786 and 5743-

that can utilize either NAD+ or NADP+ to form 1 0-oxogeranial 9, based on co-

migration with an authentic standard (Figure 2.5). To confirm 10-oxogeranial 9

59



formation via TLC, we also performed a coupled assay with a representative

positive hit (Candidate 5743 with NAD+) and iridoid synthase, the enzyme directly

downstream of 10-hydroxygeranial oxidoreductase. In aqueous media,

nepetalactol 10-the iridoid synthase product-forms a range of hydrates, which

most standard TLC stains fail to detect readily. Therefore, we monitored 10-

oxogeranial disappearance rather than nepetalactol 10 formation. The spot that

co-elutes with 10-oxogeranial 9 was metabolized in the coupled assay, whereas

the same spot was retained in the control experiment with only Candidate 5743

and NAD+, confirming 1 0-oxogeranial 9 formation (Figure 2.6).

A. Candidates with NAD+

Candiates

4M Produc

*w Substae

Homnhs: EtOk (1:1)
B. Candidates with NADP+

Candiates

E Product

Hemms: EtOAc (1:1)

Figure 2.5: TLC screens of candidates with (A) NAD+ and (B) NADP+. Candidates
1786 and 5743 accept both NAD+ and NADP+ to form 10-oxogeranial, the
authentic standard of which is on the right of both sets of TLCs. TLC plates are
stained with anisaldehyde.
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Figure 2.6: Coupled assay with Candidate 5743 (NAD+) and iridoid synthase. In
the presence of iridoid synthase and NADPH (right), the spot that co-migrates
with 10-oxogeranial 9 (middle) disappears. The 10-oxogeranial standard is
shown on the left. The iridoid synthase product, nepetalactol 10, forms a range of
hydrates in aqueous media, which are not readily detected by anisaldehyde.

For both Candidate 1786 and Candidate 5743, product formation occurs only in

the presence of the enzyme and NAD+ or NADP+. Product formation was still

observed when zinc was omitted from the assay, suggesting that either Zn2+ is

unnecessary for catalysis, or more likely that the enzyme co-purifies with metal

bound during expression in LB media supplemented with 100 pM ZnC 2.

PredZinc, a zinc binding predction server with 75% accuracy for known zinc-

binding proteins, predicts zinc-binding sites at positions C43, H64, C94, C97 and

C100 for Candidate 1786 and positions C51, H72, C102, C105 and C108 for

Candidate 5743.17
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Intriguingly, the addition of EDTA to the assay mixture in conjunction with

the omission of ZnCl2 only quelled product formation with Candidate 1786 when

NADP+ was employed, suggesting Zn2+ binds more weakly with this co-factor.

The addition of chelator EDTA did not disrupt product formation for Candidate

1786 with NAD+ or for Candidate 5743 with either NAD+ or NADP*.

We also confirmed 10-oxogeranial 9 formation with GC-MS, specifically by

co-elution with an authentic standard and spectral similarity to the standard's

fragmentation pattern. Representative traces of positive hits are shown in Figure

2.7; all other traces are provided in Appendix A.

The GC-MS results were in good agreement with the TLC results, except

GC-MS-a more sensitive technique than TLC-identified an additional positive

hit. Specifically, GC-MS identified that Candidate 26 exclusively employs NADP+

to form 10-oxogeranial (NAD* is not accepted). Candidate 26 also forms product

when zinc is omitted from the assay and when the EDTA is added to the assay

and zinc is omitted. Again, these results suggest that either the candidate does

not require Zn2+ for catalysis or more likely that the enzyme co-purifies with metal

bound during protein expression LB media supplemented with 100 pM ZnCl2.

PredZinc predicted no zinc-binding residues for Candidate 26.16 Intriguingly,

however, Candidate 26 is the only candidate that accepts NADP+ exclusively,

which is in agreement with previously reported 10-hydroxygeraniol

oxidoreductase activities purified from other plants. 7,8
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Figure 2.7: Gas Chromatography - Mass Spectroscopy (GC-MS) chromatograms and spectra of a representative
positive hit (Candidate 5743 with NADP+ - Blue). Candidate 5743 with NADP+, shown in blue, co-elutes with an
authentic standard of 10-oxogeranial (Black). The GC spectra of both the authentic standard of 10-oxogeranial
(black) and Candidate 5743 with NADP+ (blue) are shown in insets A and B. Magnified spectra are provided in
Appendix A. The fragmented ions are identical in the assay and the authentic standard, which confirms 10-
oxogeranial 9 formation in the assay. Notably, 10-oxogeranial 9 is not formed in the control lacking NAD(P)+ (shown
in red). The enzymatic substrate, 10-hydroxygeraniol 8 is shown in green.

8
I
I

a

1 2



Having confirmed product formation via GC-MS, we have successfully

identified three candidates (Candidates 1786, 26 and 5743) that may prove

useful in reconstituting iridoid biosynthesis, most notably secologanin

biosynthesis, for biotechnological purposes. Importantly, preliminary experiments

suggest that candidate 5743 functions well in efforts to reconstitute nepetalactol

(Sherden and O'Connor, unpublished). However, we also aim to understand the

physiological relevance of these candidates. A silencing effect-whereby the

candidate gene is knocked down and a distinct metabolic phenotype emerges-

would physiologically validate or revoke candidates in this screen, proving or

disproving their relevancy to iridoid biosynthesis in C roseus.

Assuming no functional redundancy, silencing the 10-hydroxygeraniol

oxidoreductase could result in the accumulation of substrate, 10-hydroxygeraniol

8, and a decrease in downstream iridoids and iridoid-derived alkaloids. It is

important to note, however, that the plant could potentially derivatize 10-

hydroxygeraniol 8 to prevent its accumulation. In this case, we would not observe

an accumulation of 10-hydroxygeraniol 8, but would still expect a decrease in

downstream iridoid or monoterpene indole alkaloid production. We can use

Virus-Induced Gene Silencing (VIGS) to test this hypothesis. VIGS utilizes the

tobacco rattle virus platform, a bipartite vector system that hijacks the plant's own

defense system to degrade the cognate mRNA of interest and thereby potentially

induce a transient gene silencing effect.1 7 Importantly, VIGS has been shown to

be effective in C. roseus for a number of genes involved in monoterpene indole

alkaloid biosynthesis.17
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Here, 478-base pair regions in both candidates 1786 and 5743 were

targeted for knockdown (candidate 26 was not prepared in time for the first round

of VIGS experiments and will be assessed at a later date). The region to be

silenced is cloned and inserted into vector pTRV2 (tobacco rattle virus). To

facilitate the cloning, inserts were flanked with adapters compatible with the

pTRV2 USER cassette described in Geu-Flores et al.1 The metabolic profiles of

these silenced lines remain to be measured. Additionally, quantitative PCR must

also confirm that the gene candidates are in fact silenced. These experiments

are ongoing.

In addition to understanding the physiological relevance of these

candidates, we also wish to understand why the enzyme-which produces a

presumably toxic dialdehyde intermediate capable of cross-linking proteins-

evolved in the first place. The answer is as yet unknown. Speculation leads us to

ask if the 1 0-hydroxygeraniol oxidoreductase and iridoid synthase rapidly co-

evolved and if a protein-protein interaction is required to shuttle the dialdehyde

product into nepetalactol 10 formation in order to prevent cell damage by the

highly reactive aldehyde.

1I. Future Work

We have successfully mined C. roseus transcriptomic datasets for an

enzyme that catalyzes a missing step in iridoid biosynthesis. Specifically, using

hierarchical clustering algorithms and the mutual ranking list of G1QH-the

enzyme directly upstream of 10-hydroxygeraniol oxidoreductase-we identified
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three enzymes with 10-hydroxygeraniol oxidoreductase activity. While we believe

these candidates could prove to be promising for a number of biotechnology

applications, most notably the reconstitution of secologanin biosynthesis, a

number of experiments remain to be completed in the full characterization of

these candidates. First, a number of peaks in addition to the substrate and

H

Route A 2

H'0
10-oxogeraniol

17 2

OH

10-hydroxygerandol 10-oxogeraniai

Route B (Psomerlzatlon at 2,3-double bond)
1O-hydroxygeranial

Is
(isomerizaon at 2,3-double bond)

Figure 2.8: The two possible routes from 10-hydroxygeraniol 8 to 10-
oxogeranial 9. The possible intermediate 10-hydroxygeranial 18 is known to
isomerize at the 2,3-double in aqueous solution. Similarly, the enzymatic
product 10-oxogeranial 9 is known to isomerize at the 2,3-double bond in
aqueous solution. The isomers of the potential intermediate at the product
could account for four peaks on a representative GC-MS chromatogram
(Candidate 1786 with NAD+).

product are found on GC-MS chromatograms; these must be properly

characterized. Co-injecting authentic standards of the intermediates will aid in

peak identification. Dr. Nathaniel Sherden is synthesizing and characterizing

both possible enzymatic intermediates, 1 0-oxogeraniol 17 and 10-

hydroxygeranial 18 (Figure 2.8). The intermediate 10-hydroxygeranial 18 is
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Figure 2.9: Representative trace (Candidate 1786 with NAD+) illustrating multiple peaks in addition to the substrate
(not highlighted, 10-hydroxygeraniol 8) and product (orange, 10-oxogeranial 9) peak. Peak 1 (blue) and Peak 4
(orange, 10-oxogeranial) have similar GC spectra, suggesting they could be isomers of each other. Likewise, Peak 2
(red) and Peak 5 (green) have similar GC spectra, which suggests they could be isomers of each other. Both 10-
oxogeranial 9 and potential intermediate 10-hydroxygeranial 17 are known to isomerize in aqueous solution.
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known to isomerize at the 2,3-double bond in aqueous solution and could

account for two peaks observed in the Candidate 1786 with NAD chromatogram,

for example (Figure 2.9).18 Peaks 2 and 5 have similar fragmentation patterns,

suggesting that they are related (red and green insets, respectively) and could be

isomers of 10-hydroxygeranial 18. An authentic standard of 10-hydroxygeranial

18 will confirm this assignment. Similarly, the enzymatic product 10-oxogeranial 9

is also isomerically unstable at the 2,3-double bond, which could potentially

explain the presence of Peak 1.19 Peak 1 (blue inset) has a similar fragmentation

pattern to 10-oxogeranial 9 (orange inset, Peak 4, E isomer at the 2,3-double

bond), suggesting the peaks are related. These assignments would account for

all 5 major peaks in the assay with Candidate 1786 and NAD+ (Figure 2.9).

Similar assignments must be made for all other positive hits in the screen as well.

After identifying the enzymatic intermediate(s), steady state kinetic

parameters will be measured via spectrophotometry of the NADP+ absorbance

(increase in absorbance at 340 nm) for 1 0-hydroxygeraniol 8 and a number of

commercially available substrate analogs, including geraniol 7, nerol 19,

citronellol 20 and linalool 21. These compounds were selected for their structural

similarity to the native substrate, 10-hydroxygeraniol 8. Notably, linalool 21

cannot undergo dehydrogenation because the alcohol is tertiary. However, it is

possible that linalool 21 may function as a competitive alcohol dehydrogenase

inhibitor by binding, but not being converted to product.

Understanding the substrate scope of these enzymes will inform future

biotechnological applications. To understand the physiological relevance of these
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candidates, however, the metabolic and gene expression profiles of the VIGS

experiments must be thoroughly analyzed. These experiments are underway.

OH

GeranikO Nerol Cronllai Unalool
7 19 20 21

(both isomers) (both isomers) (both isomers)

Figure 2.10: Substrate analogs to test with 10-hydroxygeraniol oxidoreductase.
Analogs were chosen based on structural similarity to 10-hydroxygernaiol 8.
Linalool 21 possesses only a tertiary alcohol that cannot be oxidized to the
corresponding aldehyde. Importantly, 21 may function as an inhibitor.

IV. Conclusions

In this chapter, I have described how we employed 'guilt-by-association'

through the use of hierarchical clustering to discover enzymes with 10-

hydroxygeraniol oxidoreductase activity. 10-hydroxygeraniol reductase is a

missing enzyme in C. roseus iridoid biosynthesis and as such has never been

cloned and characterized. This discovery will aid in biotechnological efforts to

reconstitute iridoid biosynthesis in tractable heterologous hosts. Three

candidates from our screen-Candidates 1786, 5743 and 26-were able to

oxidize both hydroxyl moieties of 10-hydroxygeraniol. Interestingly, Candidates

1786 and 5743 can utilize both NADP+ and NAD+, whereas candidate 26 uses

NADP+ exclusively. Interestingly, in both N. racemosa and R. serpentina-the

two plants in the literature with partially characterized 10-hydroxgeraniol

oxidoreductases-the enzyme exclusively accepts NADP+. 7'8
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For all three candidates, in assays to test Zn2+ dependency, ZnCl 2 was

omitted from the reaction. However, product formation was still observed,

suggesting that either Zn2+ is unnecessary for catalysis or more likely that the

enzyme co-purifies with metal bound during expression in LB media

supplemented with 100 pM ZnC12. Intriguingly, the addition of EDTA to the assay

mixture in conjunction with the omission of ZnCl2 only quelled product formation

in the assay with Candidate 1786 and NADP+, suggesting Zn2+ binds more

weakly in these conditions. The zinc-binding prediction server ZincPred predicted

zinc-binding sites for both Candidate 1786 and Candidate 5743 (bolded,

underlined and in red font in Appendix A; listed in Results and Discussion), but

did not identify any zinc-binding residues for Candidate 26.16 More complete

characterizations of these enzymes are underway.

Though the discovery of these enzymes is poised to aid in various

biotechnological endeavors, most importantly, the heterologous reconstitution of

secologanin, the physiological relevance of the three active enzymes is yet to be

determined. We have elected to study the candidates' physiological relevance

using VIGS; these experiments are currently underway. Theoretically, three

outcomes are plausible: (1) These candidates could be physiologically irrelevant,

meaning no silencing effect is observed at the metabolite or transcript levels; (2)

one (or more) candidate could be physiologically relevant, but functional

redundancy mutes any silencing effect at the metabolite level (candidates could

potentially be knocked down combinatorially to address this issue); or (3) one (or
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more) could be physiologically relevant, and that relevancy is displayed in both

the gene expression profile and metabolic profile.

V. Methods

A. Gene Cloning

The cassette-consisting of GFP flanked on either side by Pac sites,

variable nucleotide regions (which enable directional cloning) and Nt.BbvCl

sites-was generated according to Nour-Eldin et al. then inserted into the BamHl

and Hindill sites of pET28a (Figure 2.11; Page 29).15 Candidates were cloned

from C. roseus cDNA with X7 phusion polymerase ® and primer annealing

temperatures of 55 0C and flanked with the corresponding USER adapters.

Primers to amplify each candidate are listed in Table 6.2. The linearized vector

(digested with Pac and Nt.BbvCl) was incubated with gel purified and USER-

digested 10-hydroxygeraniol oxidoreductase candidate genes prior to

am

1500 bp E

500 bp

1 2 3 4 5 6 7

Lane Candidate Base Pair Count
1 1786 1131
2 26 900
3 4319 1098
4 5743 1137

6 8694 1164
7 2041 1170

Figure 2.12: USER cloning PCR-purified inserts and expected base pair counts.
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transformation into chemically competent Top 10 ® cells (Figure 2.12). Plasmids

were then isolated and sequenced to check for the correct insert sequence prior

to transformation into chemically competent RosettaM 2 cells for expression. All

candidates were cloned successfully except candidate 580 (Figure 2.12).

Primer Name Sequence (5'-3')

1786_sense GGCCTTAAQQ CAGATCATAACTTGCAAGGCTGTGG

1786_antisense GGTTTAAU TCACAATGTGATGAGAACCTTCACGC

26_sense GGCCTTAAUG GCCGCCATGGGTACC

26_antisense GGTTTAAU TCATTCAAACGATGACTCCTCGCTG

4319_sense GGCCTTAAUG GCCAGAAAATCACCAGAAGATGAACAT

4319_antisense GGTTTAAU TCACACCTCTGATGGAAGAGTGAG

5743_sense GGCCTTAAU ACCAAGACCAATTCCCCTGC

5743_antisense GGTTTAAU TTAGAACTTGATAACAACTTTGACACAATCAG

7220_sense GGCCTTAAUG GAGATTAATGTTGAAGTTGCTCCAGTAAG

7220_antisense GGTTTAAU TCAAAACTCGGATAGTTTTGTCTGATCAAAGT

8694_sense GGCCTTAAUQ ACGTCGTCATCCTCGCCGTC

8694_antisense GGTTTAAU TTACTCTTGAGAAGCCCCATATCTGC

2041_sense GGCCTTAAUG GGATACTACCATTATTATATTAGACAACCACTC

2041_antisense GGTTTAAU TCAACATCTGCAACTATGTTGTGCTTCG

580_sense GGCCTTAAUG CATCTGCAGCACCCCATCCG

580_antisense GGTTTAAUTCATTCCTCAAATTTCAATGTATTTCCAATGTCAAT

Table 2.6: Primers used to amplify candidates in this study for expression with
pET28a in Rosetta 2 cells. Sense and antisense adaptors for the pET28a USER
cassette are shown in red and green, respectively. Black letters represent gene-
specific sequences. The underlined portion of the sense primers shows the start
codon.
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A.

Nt.BbvCI Paci Pacl Nt.BbvCl

GCTGAGGCCTTAAJTAPG TTAATAAACIICAGC
CGACI|CCGGAA TAATT 'AA AATTTGGAGTCG

SET28a USER Casette

(7 o Into BanHI and Hindlil sites)

Paci
Nt.BbvCI
digestion

GCTGAGGCCTTAAT-3' TCAGC

CGACT 3'-TAATTTGGAGTCG

C.

5'-GCCCTTAAUG CANDIAEATTAAACC
CGGGAATTAC C UAATTTGG-5'

USER
digestion

GCANDIDATE ATTAAACC3'
3'CGGGAATTAC

1. Incubation
2. Transformation

GCTGAGGCCTTAATGCANDIDATE ATTAAACCTCAGC
CGACTCCGGAATTAC TAATTTGGAGTCG

pET28a with candidate

Figure 2.11. Scheme for USER cloning. Adapted from Nour-Eldin.(A) pET28a USER cassette, cloned into the BamHI
and Hindlil sites. Digestion with Pac and Nt.BbvCl results in directional overhang adaptors. B.'CANDIDATE'
amplified with uracil-containing adaptors that are complementary to the overhangs of the USER cassette (shown in
A). Digestion with USER enzyme removes the uracil residues and allows short fragments to dissociate. C. After
incubating the linearized cassette and the USER enzyme-digested candidate at 37 *C for 15 minutes and at room
temperature for 15 minutes, the plasmid can be directly transformed into E. coli without prior ligation.

B.



B. Protein Expression

All candidates were cloned into pET28a and in frame with an N-terminal

His6 tag. Cultures were seeded from a single colony harboring the gene of

interest; colonies were grown overnight at 37 *C and shaking at 200 rpm in LB

media supplemented with kanamycin and chloriamphenicol. Ten milliliters of the

seed culture were added to 500 mL of LB media supplemented with kanamycin

and chloramphenicol and shaken at 200 rpm at 37 0C until the optical density at

600 nm (OD6oo) reached 0.5-0.7. After reaching the appropriate OD600 , the

cultures were incubated at room temperature for 1 hour. Subsequently, the LB

media was supplemented with IPTG to a final concentration of 0.1 mg/mL to

induce expression and 100 pM ZnC2 to potentially aid in protein folding.

Candidates were expressed at 18 0C for 16 hours.

Cells were then spun down at 8000 rpm for 20 minutes. The cells were

then resuspended in chilled PBS buffer [50 mM KH 2 PO 4 (pH 8), 300 mM NaCl,

10 mM imidazole,10 mM dithiothreitol and 10% glyercol] and subjected to

sonication (1 second on and 4 seconds off for 1.5 minutes; 60% intensity). The

cellular refuse was spun down at 18000 rpm for 1 hour. The supernatant was

incubated with 600 pL of Ni-NTA resin for 2.5 hours at 4 OC. The enzyme was

eluted with stepwise fractions of increasing imidazole concentrations (25 mM, 50

mM, 100 mM, 150 mM and 300 mM).

Imidazole fractions were then subjected to SDS PAGE. Fractions shown

to contain protein (red boxes, Figure 2.4) at the correct molecular weight were

pooled and concentrated to 1 mL using a 10 kDa molecular weight cutoff Amicon
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@ centrifugal filter (15 mL). Concentrated samples were then buffered

exchanged three times with 20 mM MOPS and immediately stored at -20 0C in

single-thaw aliquots.

C. Thin Layer Chromatography (TLC) Assays

Assays for oxidase activity that were monitored by TLC contained the

following components: 700 pM 10-hydroxygeraniol, 9 mM NAD(P)+, 100 PM

ZnC 2, 100 mM phosphate (pH 7.2), 3 pM enzyme (concentration based on

Bradford Assay and the protein's predicted average molecular weight on the

ExPASy server).19 Distilled and deionized water was added to a final volume of

100 pL in each reaction. The reactions were run at 30 *C for approximately 16

hours. To quench the reactions and extract the product mixtures, 90 pL of the

assay mixture were added to 200 pL of dichloromethane in a glass vial and

mixed thoroughly with a syringe. After the phases settled, approximately 100 pL

of the dichloromethane layer were recovered. Samples were then concentrated

to approximately 15 ptL under vacuum. To screen for product formation,

approximately 5 pL of the sample or control were spotted onto thin layer

chromatography (TLC) plates and run in hexanes: ethyl acetate (1:1). All plates

were stained with anisaldehyde and analyzed for product formation (Appendix A).

D. Gas Chromatrography - Mass Spectrometry (GC-MS) Assays

Assays were set up with the following components: 700 jM 10-

hydroxygeraniol, 9 mM NAD(P), 100 pM ZnC 2, 100 mM Phosphate (pH 7.2), 3

75



pM Enzyme (based on Bradford Assay and the protein's predicted average

molecular weight on the ExPASy server).1 9 Deionized and distilled water was

added to a final volume of 100 tL in each reaction. The reactions were run at 30

0C for approximately 16 hours. To quench the reactions and extract the product

mixtures, 90 pL of the assay mixture were added to 400 tL of dichloromethane

(in a glass vial) and mixed thoroughly with a glass syringe. After the phases

settled, approximately 300 pL of the dichloromethane layer were recovered.

Samples were concentrated to dryness under vacuum then re-suspended with

dichloromethane to exactly 50 pL in glass vial inserts.

GC-MS analyses were carried out using an Agilent 6890N GC system that

was connected to an Agilent 5973 MS detector. The separations were per-

formed on a Zebron ZB-5 HT column (30 m X 0.25 mm X 0.10 mm) using

helium as the carrier gas at a rate of 1 mL min~' (linear velocity of 37 cm s-) and

an injector temperature of 220 OC. The program initiated with an isothermal

phase at 60 0C for 5 minutes, followed by a 20 0C min-' gradient up to 150 C, a

45 0C min' gradient up to 280 OC, then a 4-min isothermal phase at 280 OC. The

total run time was 16.39 min. GC-MS chromatograms and product spectra are

shown in Appendix A.
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E. Virus-Induced Gene Silencing (VIGS)

478-base pair regions from Candidates 1786 and 5743 were cloned using

the following primer pairs:

Primer Sequence (5'-3')

1786_VIGSSense GGCGCGAUTCCTCAAGAATGTCTTCCGCCAAAG

1786_VIGSAntisense GGTTGCGAUATTCAAGAGCTTCATTAACCAAGTCAGG

5743_VIGSSense GGCGCGAUTGCTCCTTCTGTCATCACTTGCAAAG

5743_VIGSAntisense GGTTGCGAUTGGATCTACCTTCACTGCATAAGCTG

Table 2.7: Primers used to amplify 478-base pair regions of open reading frames
from Candidates 1786 and 5743. Red and green show the sense and antisense
adapters for the pTRV2 cassette. Black represents gene specific sequences.

pTRV2 vectors harboring the inserts of interest were subjected to sequencing

prior to being transformed into electrocompetent Agrobacterium tumefacians

(strain Gv3101). The agrobacterium was prepared and handled according to

Liscombe et al. Colony PCR (using primers shown in Table 2.6) was performed

on overnight cultures to ensure that the agrobacterium retained the plasmid

(Figure 2.13).18

Subsequently, cultures harboring pTRV1 and pTRV2 with the region to be

silenced were pelleted and resuspended in inoculation solution (10 mM MES, 20

pM acetosyringone, 10 mM MgC 2) to a final OD600 of 0.7. pTRV1 and pTRV2

harboring the insert of interest were mixed in a 1:1 ratio (according to OD6oo) and

incubated at 30 *C with shaking for 4 hours. Eight-week-old C. roseus plants

(Little Bright Eyes)-grown in a walk-in growth chamber at 26 *C and a

photoperiod of 16 hours light and 8 hours dark-were inoculated via pinching just
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1500 bp

500 bp

Figure 2.13: Colony PCR of Candidates 1786 and 5743 (in duplicate) after
Agrobacterium tumefacians (Gv3 101) harboring the construct containing the
478-base pair insert had been cultured overnight. This experiment was
conducted to ensure the A. tumefacians retained the construct prior to plant
inoculation.

below the apical meristem. Eight plants were inoculated with each construct

harboring regions from either Candidate 1786 or Candidate 5743. Silenced

magnesium chelatase-which displays a leaf yellowing phenotype resulting from

the disruption of photosynthesis-was used as a silencing marker proxy.

Additionally, an empty vector was also infiltrated to enable comparison of

silencing due to the insert alone. Eight plants were inoculated with each of the

magnesium chelatase and empty vector control constructs as well.

VI. Appendix A Contents

Appendix A, affixed to the end of this thesis, contains gene and protein

sequences for each of the 7 cloned candidates, TLC controls and all GC-MS

spectra.
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Chapter 3

Reengineering a Tryptophan Halogenase to Preferentially Chlorinate a Direct
Alkaloid Precursor

Part of this chapter is published as a communication in

Glenn WS, Nims E and O'Connor SE. J Am Chem Soc. 2011 Dec
7; 133(48):19346-9
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I. Introduction

Though natural products have been used to treat human disease for

thousands of years, they have not evolved specifically to do so. Therefore, before

reaching the clinic, these co-opted natural products frequently require structural

modification-an exigent enterprise given their often awe-inspiring complexity. 1-4

Installing halogens regioselectively onto natural products can generate

compounds with novel or improved properties. What is more, a significant

fraction (roughly 25%) of pharmaceuticals in the clinic contains halogens.24

Notably, several classes of halogenases have been discovered and

characterized, which enables environmentally friendly halogenation; however,

applications are limited because of the oftentimes narrow substrate specificity of

these enzymes.5 Importantly, it has been demonstrated across different classes

of natural products that incorporating simple precursor analogs into biosynthetic

pathways is an effective strategy to produce complex natural products that are

modified in a site-specific manner.6-9 Therefore, we reasoned that enzymatically

generating a modified precursor in situ would enable de novo production of

complex natural products that are site-specifically modified.

This chapter describes strategies to interface RebH-a halogenase that

regioselectively installs chlorine atoms onto the 7 position of tryptophan 1-with

monoterpene indole alkaloid (MIA) metabolism to yield chlorinated alkaloids de

novo. MIA biosynthesis commences with the decarboxylation of L-Tryptophan 1

by tryptophan decarboxylase to yield tryptamine 2 (Figure 1A),10 which

condenses with secologanin 3 via a Pictet-Spengler-type reaction mechanism
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A. Scheme of Monoterpene Indole Alkaloid Biosynthesis
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1 Secologanin 4

3

B. In planta rexpression of RebHiF - Runguphan et al.14
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7-Chlorotryptophan 7-chlorotryptamine 12-choro
lb 2b 19,20-dihydroakuammicine

5b

Figure 3.1: A. Scheme of MIA biosynthesis. Tryptophan decarboxylase (TDC)
decarboxylates L-Tryptophan 1 to form tryptamine 2, which condenses with
secologanin via a Pictet-Spenglerase-type mechanism to form strictosidine 4, the central
MIA intermediate. 19, 20-dihydroakuammicine is a MIA found in Madagascar periwinkle
that harbors opiate activity. B. Runguphan et al. expressed RebH/F in planta and
observed the de novo production of chlorinated alkaloid 12-chloro-19,20-
dihydroakuammicine at 25 [tg/g fresh weight. However, 7-Chlorotryptophan lb
accumulated at 50 [tg/g fresh weight because of the TDC bottleneck.

to form strictosidine 4, which is the central intermediate in the biosynthesis of

over 3000 MIAs, including 19,20-dihydroakuammicine 5, a strychnos-type MIA

with opiate activity (Figure 1A). Previously, Runguphan et al. integrated RebH

and its partner flavin reductase RebF into the metabolism of C. roseus

(Madagascar periwinkle), a plant that produces a subset of approximately 130

MIAs (Figure 1 B). 13 ,14 RebH and RebF generate 7-chlorotryptophan, which

endogenous tryptophan decarboxylase decarboxylates to form 7-

chlorotryptamine 2b. 7-chlorotryptamine 2b-a modified direct MIA precursor-is

then incorporated into MIA metabolism, generating a chlorinated MIA, namely 12-

chloro-19,20-dihydroakuammicine 6b. However, in addition to accumulating 12-

chloro-19,20-dihydroakuammicine 5b, a halogenated "unnatural" natural product,
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the resulting tissue cultures also accumulated substantial levels of 7-

chlorotryptophan 1b (Figure 1B). 1 4 Tryptophan decarboxylase, the enzyme

that converts L-Tryptophan 1 to tryptamine 2, accepts 7-chlorotryptophan lb

at only 3% of the efficiency of the native substrate L-Tryptophan 1, thereby

creating a metabolic bottleneck .4

This bottleneck is undesirable because 7-chlorotryptophan lb could be

shuttled into the production of the more valuable halogenated alkaloid final

product 12-chloro-19,20-dihydroakuammicine 5b. Moreover, L-Tryptophan 1 is

an essential metabolite that is involved in many central metabolic processes,

including protein biosynthesis and, in the case of plants, auxin (growth hormone)

biosynthesis. The accumulation of a halogenated primary metabolite seemingly

has adverse effects on the growth rate of the tissues, perhaps because it is

incorporated into protein or auxin biosynthesis. In contrast, chlorinated

tryptamine analogs can be fed to seedlings and hairy roots at concentrations up

to 1 mM without adverse effects.8

We hypothesized that this bottleneck could be alleviated in two ways: (1)

over-express the endogenous periwinkle tryptophan decarboxylase to increase

the conversion of 7-chlorotryptophan lb to 7-chlorotryptamine 2b (Figure 3.2A);

and (2) reengineer the halogenation machinery, namely RebH, to preferentially

chlorinate a substrate downstream of the decarboxylase bottleneck (Figure

3.2B). Here we demonstrate that while over-expressing tryptophan

decarboxylase failed to fracture the metabolic bottleneck (Figure 3.2A),

reengineering RebH to install chlorine preferentially onto tryptamine 2
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successfully circumvented the bottleneck altogether (Figure 3.2B). To validate

the function of this engineered enzyme in vivo, we transformed the tryptamine-

specific RebH mutant (Y455W) into the alkaloid-producing plant Madagascar

A. Strategy I to alleviate TDC bottleneck - Overexpress TDC

SCO 2H 2H

C 2H N H T DC WN H 2
N RebF NNH P Over- I C H C 2MCI H Express

L-Tryptophan 7-Chiorotryptophan 7-chorotryptamine 12-choro-1 lb 2b 19,20-dhydroakuammcine
5b

B. Strategy 2 to alleviate TDC bottleneck - Reengineer RebH

"CO 2HN

/) ~ V\ \ H R NH2  \
N7 N . 7 RebF N -- NH H CI H CI H CO 2Me

12-chioro-L-Tryptophan Tryptamine 7-chlorotryptamine 19,20-dihydroakuammicine
1 2 2b 5b

Figure 3.2: A. Strategy 1 to alleviate the TDC bottleneck by over-expressing TDC
in planta. B. Strategy 2 to alleviate the TDC entails reengineering RebH to
preferentially chlorinate tryptamine 2, which is downstream of the bottleneck.

periwinkle. Despite having an incomplete understanding of MIA biosynthesis at

the genetic level, we observed the de novo production of the halogenated

alkaloid 12-chloro-19,20-dihydroakuammicine 5b. In comparison with cultures

harboring wild-type RebH and RebF, tissue cultures containing mutant RebH

Y455W and RebF also accumulate microgram per gram fresh-weight quantities

of 12-chloro-19,20-dihydroakuammicine 5b but, in contrast, do not accumulate 7-

chlorotryptophan 1b, demonstrating the selectivity and potential utility of this

mutant in metabolic engineering applications.
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1I. Results and Discussion

We initially hypothesized that the over-expression of tryptophan

decarboxylase in periwinkle would increase the conversion of 7-chlorotryptophan

Ib to 7-chlorotryptamine 2b and thereby alleviate the bottleneck (Figure 3.2A).

However, all efforts at the constitutive over-expression of tryptophan

decarboxylase, RebH and RebF in periwinkle resulted in plant tissue that failed to

survive selection (Figure 3.3A). Additionally, tissues transformed with only

tryptophan decarboxylase also failed to survive selection and could not be

Figure 3.3: A. Madagascar periwinkle hairy roots over-expressing RebH, RebF
and TDC on Gamborg's B5 media after 21 days. B. Periwinkle hairy roots on
Gamborgs B5 media after 21 days over-expressing TDC only. Both sets of
roots failed to survive selection. Roots only over-expressing TDC could not be
rescued by being placed on media supplemented with tryptophan.

rescued through transfer to growth medium supplemented with 500 pM L-

Tryptophan 1 (Figure 3.3B). The apparent lethality of tryptophan decarboxylase

over-expression suggests, perhaps unsurprisingly, that disrupting the flux of L-

Tryptophan I is detrimental to plant survival.
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The alternative strategy-bypassing the tryptophan decarboxylase

bottleneck-hinges upon our ability to reengineer substrate specificity. Two

strategies are plausible, namely reengineering tryptophan decarboxylase to

selectively decarboxylate 7-chlorotryptophan 1b or reengineering RebH to

selectively chlorinate a downstream intermediate. Because the structure of

tryptophan decarboxylase is unknown and the structure of RebH is known1 we

elected to focus our efforts solely on the halogenase. Enzyme engineering efforts

are substantially enhanced when the protein structure is known and the

mechanism is well understood. Then, the enzyme can be subjected to structure-

guided techniques, such as domain swapping and site-directed mutagenesis,

which create smaller protein libraries that are enriched for functional mutants.

RebH, a structurally characterized enzyme whose mechanism is well understood,

is a prime candidate with which to undertake various enzyme engineering efforts

for these reasons.

With various enzyme engineering strategies in hand, we can begin to

envision ways to engineer halogenases to accept non-native substrates for

various metabolic engineering and biocatalysis efforts. Specifically, we

envisioned reengineering the halogenase to preferentially chlorinate tryptamine

2, a downstream biosynthetic intermediate that is the direct precursor to MIA

biosynthesis and removed from primary metabolism (Figure 3.2B). We targeted

tryptamine, specifically, because chlorinated tryptamine analogs have been

shown to be non-toxic in feeding experiments with seedlings and hairy roots,

even when concentrations were as high as 1 mM.
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To reengineer RebH for tryptamine 2 selectivity, we examined the crystal

structure of RebH complexed with L-Tryptophan I (PDB entry 2E4G) and

proposed 17 mutations to the active site, specifically targeting residues proximal

to the carboxylate moiety of the native substrate L-Tryptophan I (Figure 3.3).15

We employed LC-MS to monitor mutant activity for both Tryptophan I and

tryptamine 2. Gratifyingly, one RebH mutant, RebH Y455W, preferentially

L-Trp Y455

152

Figure 3.4: Tryptophan 1 complexed with RebH (2E4G). Tryptophan 1 is
highlighted in yellow sticks. The residues proximal to the carboxylate moiety
of 1 that were targeted for reengineering the substrate selectivity of RebH are
shown in green space filling models.
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Substrate at 20 pM
-Trn Trnv*mmina

152F
152Y
P53F
P53G
P53W
F111L
F111W
F111Y
L113F

6% 6%
6% 6%
6% 6%
6% 6%
6% 6%
6% 6%
6% 6%
6% 6%
6% 6%

L113W x
L114F x x
L114G x x
L114W x x
Y455F x x
Y455L x x

Table 3.1: Summary of RebH WT and mutant assays. Only RebH L113G and RebH
Y455W retained activity for either substrate. Only RebH Y445W is selective for
tryptamine 2. Percent substrate conversions are shown in parentheses.
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accepts tryptamine 2 as opposed to the natural substrate L-tryptophan 1 (Figure

3.5). Only one other mutant, RebH L 113G, retained activity for either tryptophan

I or tryptamine 2 (Table 3.1). Since RebH L1 13G converted both L-Tryptophan 1

and tryptamine 2 to the respective chlorinated products, we subjected this mutant

to competition assays as described in Methods. RebH L 113G does not have the

desired selectivity, converting approximately 20% of both L-Tryptophan I and

tryptamine 2 to product after an incubation period of 16 hours in the competition

assay (Figure 3.6; Table 3.1). In contrast, RebH Y455W converts approximately

40% of tryptamine 2 to product, but less than 5% of L-Tryptophan 1 to product

(Figure 3.5B; Table 3.1).

Slow conversion to product in vitro prevented accurate measurement of

the steady-state enzyme kinetics parameters for WT RebH, RebH Y455W and

RebH Li 13G. Thus, to rigorously assess the substrate selectivity of RebH

Y455W-the mutant that preferentially chlorinates tryptamine 2 instead of

tryptophan 1-we utilized competition assays where either WT RebH or the

Y455W mutant was incubated with different ratios of L-Tryptohan 1 and

tryptamine 2. In total, we tested three different L-Tryptophan 1: tryptamine 2

ratios (500 pM:500 pM, 1000 pM:500 pM, and 500 pM:1000 pM). WT RebH

chlorinated both L-Tryptophan I and tryptamine 2 under these assay conditions

(Figure 3.7). However, we observed an approximately 30-fold higher

accumulation of 7-chlorotryptamine 2b than 7-chlorotryptophan lb in RebH

Y455W assays across all three substrate ratios (Figure 3.7). Relative to WT

RebH in these competition assays, the production of 7-chlorotryptophan I b was
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A. RebH WT
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B. RebH Y455W
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Figure 3.5: A. Extracted Ion Chromatograms for RebH WT competition assay
with tryptophan and tryptamine, each at 20 RM concentration. The top two
chromatograms display 7-chlorotryptophan and 7-chlorotryptamine
authentic standards. The third chromatogram displays the conversion of
tryptophan, where 80% of the substrate L-tryptophan is converted to product
after 16 hours. The bottom pane displays RebH WT tryptamine conversion in
the competition assay, with less than 5% of tryptamine converted to product
after 16 hours. B. Extracted Ion Chromatograms for RebH Y455W competition
assay with tryptophan and tryptamine, each at 20 [M concentration. The top
two chromatograms display 7-chlorotryptophan and 7-chlorotryptamine
authentic standards. The third chromatogram displays the RebH Y455W
tryptophan conversion, where less than 5% of the substrate L-tryptophan is
converted to product after 16 hours. The bottom pane displays RebH Y455W
tryptamine conversion, with approximately 40% of tryptamine converted to
product after 16 hours. These results illustrate that the substrate specificity of
RebH has been altered successfully.
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Figure 3.6: A. RebH L 13G competition assays with tryptophan and tryptamine
(tryptophan conversion). At concentrations of 20 [tM for both substrates, RebH Li 13
converts approximately 20% of tryptophan to product after an incubation period of 16
hours (bottom pane). Top and middle panes, respectively, display 7-chlorotryptophan
and L-tryptophan authentic standards. B. RebH Li 13G competition assays with
tryptophan and tryptamine (tryptamine conversion). At concentrations of 20 pLM for
both substrates, RebH Li 13 converts approximately 20% of tryptamine to product
after an incubation period of 16 hours (bottom pane). The top and middle panes,
respectively, display 7-chlorotryptamine and tryptamine authentic standards.
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120 RebH WT RebH Y455W

1C0oo 7-chIorotryptamine

80

60

A

Mi0

Ratio of initial tryptophan-to-tryptamine concentrations (pM)

Figure 3.7: RebH WT (wild type) and RebH Y455W competition assays with
tryptophan and 1 tryptamine 2. Both RebH WT (left) and RebH Y455W
(right) were incubated with three different ratios of tryptophan-to-
tryptamine. RebH Y455W has a 30-fold higher accumulation of 7-
chlorotryptamine (60 pM) over 7-chlorotryptophan (2 [iM), indicating that
this mutant is highly selective for 2.

diminished 10-fold while the production of 7-chlorotryptamine 2b was augmented

approximately 3-fold with RebH Y455W (Figure 3.7).

Mutational analyses in PyMol suggest that RebH Y455W partially

occludes L-tryptophan I from the redesigned active site while not impeding

access for tryptamine 2 (Figure 3.8). This mutational analysis is congruent with

the observation that the RebH Y455W mutant shows a clear preference for

tryptamine 2 as a substrate, even when L-Tryptophan I is present at initial

concentrations twice as high as tryptamine 2 (Figure 3.7). These results

demonstrate that we successfully altered the substrate specificity of RebH in vitro

to make it highly specific for tryptamine 2, a direct MIA precursor.
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A. B

L113

Y455

L-Trp
152

RebH WT model with L-Trp
PDB ID: 2E4G

RebH WT model with Tryptamine
modeled Into the active site

D.

L113 A**1113

Y455W

152

RebH Y45SW model with L-Trp
modeled Into the active site

152

RebH Y455W model with Tryptamine
modeled Into the active site

Figure 3.8. A. RebH WT model with L-tryptophan from the PDB code:
2E4G. B. Model of RebH WT with tryptamine. Tryptamine was modeled
into the RebH active site by removing the carboxylate moiety of the
tryptophan substrate of PDB code: 2E4G. C. RebH Y455 model with L-
tryptophan. L-Trp buttresses RebH Y455W. The mutant RebH Y455W
model was constructed via in silico mutational analysis from the PDB code:
2E4G in MacPyMOL. The right panel shows a model of RebH Y455W with
tryptamine. Tryptamine was modeled into the RebH Y455W active site by
removing the carboxylate moiety of the tryptophan substrate of the RebH
Y455W model with L-Tryptophan (left). Models were constructed in
MacPyMOL.
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Notably, H6lzer and co-workers demonstrated that PrnA, a tryptophan 7-

halogenase involved in pyrollnitrin biosynthesis (55% sequence identity to RebH)

does accept tryptamine analogues.16 However, PrnA was shown to install

chlorine atoms at the more nucleophilic 2-position of various analogues of

tryptamine 2, not at the 7-position, suggesting that the non-native substrates bind

differently to PrnA (Figure 3.9).16 To ensure that the regioselectivity of RebH

Y455W was unaltered, and also to determine whether WT RebH possesses the

same regioselectivity for the non-native substrate tryptamine 2, we compared the

tryptamine 2 enzymatic products of WT RebH and RebH Y455W with authentic

standards of all possible monochlorinated tryptamine isomers, namely,

tryptamine 2 chlorinated at the 2-, 4-, 5-, 6-, or 7-position of the indole ring. Using

LC-MS to monitor the retention times of the various chlorotryptamine isomers

(m/z 195), we noted that the WT RebH and RebH Y455W tryptamine enzymatic

products co-eluted exclusively with the 7-chlorotryptamine authentic standard

(Figure 3.10). Thus, WT RebH and RebH Y455W retained regioselectivity for the

7-position of the indole ring with tryptamine 2.

Though the mutant enzyme was sluggish in vitro, we rationalized that a

steady supply of fresh enzyme in the plant cell may allow the mutant enzyme to

function adequately over extended periods to yield isolable quantities of

chlorinated alkaloids. To test this reengineered enzyme in the context of a

biosynthetic pathway in vivo, we introduced RebH Y455W and RebF into
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periwinkle (C. roseus) via Agrobacterium rhizogenes to yield stably transformed

root cultures. To streamline the engineering process, neither gene was codon

A. Prod= Ky

POO

540 NH2

C1 2
6 N

7 H

Mono-chlorinated tryptamine Isomem

B. Pictet-Spengler Mechanism

R Cycdiztion 
+ N N

H H )HH
Base

Restore NH

Aromaticity 0 NR
H

tetrahydro*carboUne

Figure 3.9: A. Chlorotryptamine product key. B. Proposed Pictet-Spengler
mechanism of strictosidine synthase. Holzer and co-workers demonstrated
that PrnA, a tryptophan 7 halogenase involved in pyrollnitrin biosynthesis
(55% sequence identity to RebH) does accept tryptamine analogues.1 6

However, PrnA was shown to install chlorine atoms at the more nucleophilic 2-
position of various analogues of tryptamine 2, not at the 7-position.
Chlorination at the 2 position of tryptamine 2 would preclude tetrahydro-P-
carboline formation via a Pictet-Spengler-type mechanism, a necessary step
in MIA biosynthesis.

optimized for expression in periwinkle. Each gene was placed into a

commercially available plant vector (pCAMBIA1305.1) and under the control of

the constituitive promoter CaMV 35S.
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Precursor-directed biosynthesis studies in periwinkle with 7-

chlorotrypamine 2b, as well as the prior studies in which periwinkle was

transformed with WT RebH and RebF, indicated that analogues of 19,20-

RebH WT Tryptamine Product

m/z 195

RebH Y4 W Tryptamine Product

r/z 195

7-chlo ptamine Standard

m/z 195

4.- 1 19 51 M
-v,,-chlo rptmine Standard

m/z 1954-chor i~ytmine Standard

m/Z 195

-chloR tptamine Standard m/Z 195

Regng o TIm a(M3n"wes)

dihydroakuammicine 5 are the major alkaloid analogue products when the 7-

position of the indole ring is modified. Notably, when the tryptamine precursor is

chlorinated at other positions of the indole ring and integrated into periwinkle

metabolism, the resulting chlorinated alkaloid profiles are drastically different,
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and chlorinated 19,20-dihydroakuammicine 5 is not a major product.8 Methanolic

extracts of the transformed roots were analyzed with selected ion monitoring for

12-chloro-19,20-dihydroakuammicine 5b (m/z 359) and 7-chlorotryptophan lb

(m/z 239). We observed several root lines harboring RebH Y455W and RebF

that produced 12-chloro-19,20-dihydroakuammicine 5b (Figure 3.11). RebH

Y455W/RebF (line 13), for example, accumulated 2.65±1.08 pg per gram fresh

weight of the product 12-chloro-19,20-dihydroakuammicine 5b (averaged across

three biological replicates) with no measured accumulation of 7-chlorotryptophan

Ib, indicating that RebH Y455W displays the desired substrate selectivity in

planta as well as in vitro (Figure 3.12; Tables 3.2 and 3.3). The accumulation of

12-chloro-19,20-dihydroakuammicine 5b (characterized by co-elution with an

authentic standard), the major metabolite expected from 7-chlorotryptamine 2b,

provides further confirmation that RebH Y455W installs chlorine regioselectively

at the 7-position of the indole ring of tryptamine 2. Chlorinated alkaloids aside

from 12-chloro-19,20-dihydroakuammicine 5b were not observed in this study, as

evidenced by selected ion monitoring. Moreover, chlorination at the 2-position of

the indole ring of tryptamine, as was observed in the study with Holzer and co-

workers,16 would preclude the formation of the tetrahydro-p-carboline via a

Pictet-Spengler mechanism, a necessary step in the biosynthesis of the

monoterpene indole alkaloids (Figure 3.9).)
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Line 13 12-chloro-1 9,20-dihydroakuammicine 7-chlorotryptophan
m/z 359 239

Subculture Accumulation (pg / g fresh weight) Accumulation (pg / g fresh weight)
Subculture 1 1.41 not detected
Subculture 2 3.23 not detected
Subculture 3 3.32 not detected
Average 2.65 not detected
Standard Deviation 1.08 not detected

Table 3.2: Metabolic analysis of RebH Y455W and RebF line 13 across 3
subcultures.

Line 74 12-chloro-1 9,20-dihydroakuammicine 7-chlorotryptophan
m/z 359 239

Subculture Accumulation (pg / g fresh weight) Accumulation (pg / g fresh weight)
Subculture 1 2.15 1.25
Subculture 2 2.24 not detected
Subculture 3 1.83 not detected
Average 2.07 0.415
Standard Deviation 0.215 0.722

Table 3.3: Metabolic analysis of RebH Y455W and RebF line 74 across 3
subcultures.

Figure 3.11: RebH Y455W and RebF lines 13 and 74 at 21 days.
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Figure 3.12: Metabolic analysis of lines harboring RebH Y455W and RebF. A.
Selected ion monitoring for 12-chloro-19,20-dihydroakuammicine 5b (m/z 359)
in transgenic root lines. This line accumulates 2.65 t 1.08 jg per gram fresh
weight of 5b B. The authentic standard of 5b.14 C. Selected ion monitoring of 7-
chlorotryptophan lb (m/z 239), D. Authentic standard of 1b." Lines expressing
RebH Y455W and RebF do not display a peak corresponding to 7-
chlorotryptophan 1b, but do produce alkaloid 5b.
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Notably, no 7-chlorotryptamine 2b accumulated in these transformed hairy

root lines, suggesting that 7-chlorotrypamine 2b is readily shuttled into the

alkaloid metabolism of periwinkle. Moreover, the lines harboring RebH Y455W

and RebF survived selection and grew more rapidly than lines over-expressing

tryptophan decarboxylase, RebH WT, and RebF (Figures 3.3A and 3.11),

demonstrating that reengineering the halogenase was the superior method of

alleviating the tryptophan decarboxylase bottleneck. However, the yield of

unnatural alkaloid 12-chloro-19,20-dihydroakuammicine 5b in this study

remained low (approximately 1% of the total alkaloid content),1 4 indicating that

this system is not yet at a stage where large-scale production of 12-chloro-1 9,20-

dihydroakuammicine 5b is practical.

We also transiently expressed RebH Y455W and RebF in leaf. Gene

constructs were separately transformed into Agrobacterium tumefacians, then

the two Agrobacterium strains were mixed in a 1:1 ratio just prior to transfection.

Perwinkle leaves were transfected via either vacuum infiltration or syringe

injection. We did not observe the accumulation of either 7-chlorotryptamine 2b or

halogenated alkaloids under these conditions, suggesting perhaps that MIA

biosynthesis-which is removed from primary metabolism-was not highly active

at that stage of growth. Alternatively, build up of halogenated alkaloids may

require an extended period of time, which in turn would require a constitutive

rather than transient expression system. Free tryptamine 2 levels in periwinkle

leaf were not measured in this study, but it is plausible that low levels of free

tryptamine 2 prevent the detection of the direct RebH Y455W and RebF product,
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7-chlorotryptamine 2b. Because we did not see formation of 7-chlorotryptamine

2b, we also screened for the accumulation of downstream alkaloids, specifically

12-chloro-19,20-dihydroakuammicine 5b, which we did not observe either.

Notably, 19,20-dihydroakuammicine 5 does not accumulate at detectable levels

in periwinkle plant leaf, presumably because the genes involved in 19,20-

dihydroakuammicine biosynthesis-which have not been identified as yet-are at

best only poorly expressed in leaf.

We hypothesize that as tractable heterologous hosts are developed to

produce plant-derived alkaloid pathways in high yields, incorporation of this

redesigned biosynthetic enzyme (along with selected downstream biosynthetic

enzymes that have also been engineered to favor chlorinated substrates) may

play a crucial role in improving the production of chlorinated alkaloids.

Il. Conclusions

Installing halogens onto natural products can generate compounds with

novel or improved properties.lA Notably, enzymatic halogenation is now possible

as a result of the discovery of several classes of halogenases;5 however,

applications are limited because of the narrow substrate specificity of these

enzymes. Here we demonstrate that the flavin-dependent halogenase RebH can

be engineered to install chlorine preferentially onto tryptamine 2 rather than the

native substrate L-Tryptophan 1. Tryptamine 2 is a direct precursor to many

alkaloid natural products, including approximately 3000 monoterpene indole

alkaloids. To validate the function of this engineered enzyme in vivo, we
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transformed the tryptamine-specific RebH mutant (Y455W) into the alkaloid-

producing plant Madagascar periwinkle (Catharanthus roseus) and observed the

de novo production of the halogenated alkaloid 12-chloro-1 9,20-

dihydroakuammicine 5b. While wild type RebH has been integrated into

periwinkle metabolism previously, the resulting tissue cultures accumulated

substantial levels of 7-chlorotryptophan lb-a metabolite that potentially disrupts

primary metabolism, including auxin (growth hormone) biosynthesis. Tryptophan

decarboxylase, the enzyme that converts L-Tryptophan I to tryptamine 2,

accepts 7-chlorotryptophan lb at only 3% of the efficiency of the native

substrate, thereby creating a bottleneck. 1 4 The RebH Y455W mutant circumvents

this bottleneck by installing chlorine directly onto tryptamine 2, a downstream

substrate. In comparison with cultures harboring RebH and RebF, tissue cultures

containing mutant RebH Y455W and RebF also accumulate microgram per gram

fresh-weight quantities of 12-chloro-19,20-dihydroakuammicine 5b but, in

contrast, do not accumulate 7-chlorotryptophan 1b, demonstrating the selectivity

and potential utility of this mutant in metabolic engineering applications.

Halogen moieties in natural products have been shown to confer potency

and modulate molecular bioactivity and pharmacokinetics.1,2,4,6,1 3 ,17 Additionally,

halogens offer unique, site-specific handles that can be utilized in cross-coupling

methodology for further derivatization.18 Notably, halogens appear in 25% of

pharmaceutical compounds.2 4 We have demonstrated the de novo biosynthesis

of a halogenated "unnatural" plant natural product by redesigning a halogenase

to preferentially install a chlorine atom onto a direct alkaloid precursor, tryptamine
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2, and subsequently integrating this redesigned enzyme into the alkaloid

biosynthesis of periwinkle. Interestingly, RebH can brominate the 7-position of L-

Tryptophan 1 in the presence of bromide ions.1 4'1 5 However, bromination does

not occur selectively in the presence of chloride sources (such as sodium

chloride), which to date has prevented selective formation of brominated

products using chlorinase enzymes in whole-cell systems.14

This mutant allows us to circumvent the metabolic bottleneck positioned at

tryptophan decarboxylase. Moreover, this work, along with other recently

reported studies19-for example, Payne et al. demonstrated the use of wild-type

RebH to halogenate an array of arenes regioselectively 20-highlights the

potential use of halogenases for more widespread applications. Notably, the work

presented in this chapter was conducted without a complete understanding of

MIA biosynthesis at the genetic level. One of the efforts to further elucidate MIA

biosynthesis is described in Chapter 2. Understanding the pathway completely

would potentially enable the efficient shuttling of chlorinated alkaloids into

different pathway branches through the reengineering of enzymes that do not

accept halogenated substrate analogs.

IV. Methods

A. The in planta Over-Expression of RebH WT, RebF and TDC

To over-express RebH WT, RebF and TDC in planta, we used the

pCAMBIA vector system. Specifically, the plant transformation vector harboring

codon optimized RebH WT and RebF (pCAMBIA1300-RebHRebF) and the plant
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TDCNcoI pCAM1305.1 5 ' -AAAAAACCATGGATGGGCAGCATTGA-3 '

TDCBsteII pCAM1305.1 5'-AAAAAAGGTGACCTCAAGCTTTTTG-3'

Table 3.4: Primers to clone Tryptophan Decarboxylase into pCAMBIA1305.1.
Restriction sites are underlined and bolded.

transformation vector harboring tryptophan decarboxylase (pCAMBIA1305.1-

TDC) were transformed separately into A. rhizogenes. pCAMBIA1 300-

RebHRebF was a gift from Runguphan and Qu. 4 C. roseus Tryptophan

decarboxylase (TDC) was amplified from TDC in pGEM (pGEM-TDC was a gift

from Runguphan) and flanked with Ncol and Bstell then placed into the vector

pCAMBIA1305.1 using the primers listed in Table 3.4. These vectors were used

to transform C. roseus according to Methods Section B. C. roseus roots

overexpressing Tryptophan Decarboxylase (TDC) along with codon optimized

RebH and RebF were grown, selected and propagated according to Methods

Section B. To ensure that transgenic TDC was integrated into the genome of C.

roseus, primers were designed to amplify from the CaMV 35S promoter of

pCAMBIA1305.1 to the middle of TDC to give an amplicon of 500 basepairs.

These primers are listed in Table 3.5. The amplicon from genomic DNA is shown

in Figure 3.13. Roots expressing RebH, RebF and transgenic TDC are shown in

Figure 3.3A. Control lines overexpressing TDC only are shown in Figure 3.3B.

TDC~transgenic forward 5'-CTCTTGACCATGGATGGGCAGC-3'
TDC transgenic reverse 5'-GTGGTGITTTGGATGACGCCGCC-3'

Table 3.5: Primers for 500-bp TDC amplicon from CaMV 35S promoter to center

of TDC gene.
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1000 bp

500 bp

Figure 3.13: Agarose electrophoresis gel (1%) of TDC amplicon from RebH, RebF
and TDC-overexpressing line. Lane 1: DNA ladder. Lane 2: TDC amplicon from
constitutive eukaryotic CaMV 35S promoter to middle of TDC gene (amplicon 500
base pairs).

B. Stable Transformation Protocol - RebH Y455W and RebF

C. roseus seedlings were germinated aseptically on solid Gamborg's B5

media (full strength basal salts, full strength vitamins, 30 g/L sucrose, 6 g/L agar,

pH 5.7) and grown for 4-6 weeks in a 16-hour light 8-hour dark cycle at 26 *C.

Liquid cultures of A. rhizogenes containing the plasmid of interest were grown in

Yeast Extract and Mannitol (YEM) media supplemented with kanamycin at 30 0C

for 48 hours just prior to infection. Seedlings were wounded at the stem tip using

forceps freshly dipped in the inoculant. Hairy roots formed on the seedlings at

approximately 3 weeks on approximately 80% of the punctured seedlings. Hairy

roots were grown on the seedlings for an additional 3 weeks then excised and

placed on solid Gamborg's B5 media (half strength basal salts, full strength

vitamins, 30 g/L sucrose, 6 g/L agar, pH 5.7) containing hygromycin (0.03

mg/mL) for selection and cefotaxime to a final concentration of 0.25 mg/mL to kill
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remaining A. rhizogenes. Cultures were grown in the dark for 1 month at 26 0C

during the selection process. Following the selection process, roots were

propagated by transferring actively growing portions of the root after 21 days

onto Gamborg's B5 media lacking hygromycin and cefotaxime.

C. RebH Mutant Design and Expression

The construct containing the RebH gene (pET28a-RebH) was expressed

in BL21 (DE3) pLysS and purified with Ni-NTA resin as previously described. 4

Single-thaw aliquots were stored at -80 OC for no more than 2 weeks. Primers to

introduce 17 mutations (152F, 152Y, P53F, P53G, P53W, F111L, F111W, F111Y,

L113F, L113G, L113W, L114F, L114G, L114W, Y455F, Y455L, Y455W) into the

pET28a-RebH construct were designed using the Stratagene (Agilent) online

site-directed mutagenesis tool

(http://www.genomics.agilent.com/CollectionSubpage.aspx?PageType=Tool&Su

bPageType=ToolQCPD&PagelD=15). Mutations to the pET28a-RebH construct

were made using the QuikChange Site-Directed Mutagenesis Kit according to

manual protocol specifications. The sequences of all vector constructs were

verified by DNA sequencing. Mutant genes were expressed and purified following

the same procedure for RebH wildtype.1 Primers to introduce mutations are listed

in Table 3.6.

Primer Name Primer Sequence (5'-3')

152FSENSE GGCGAGGCCACGTTCCCCAATCTGC

152FANTISENSE GCAGATTGGGGAACGTGGCCTCGCC

152YSENSE GTCGGCGAGGCCACGTATCCCAATCTGCAGACG
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152YANTISENSE CGTCTGCAGATTGGGATACGTGGCCTCGCCGAC

P53FSENSE GGCGAGGCCACGATCTTCAATCTGCAGACGGC

P53FANTISENSE GCCGTCTGCAGATTGAAGATCGTGGCCTCGCC

P53GSENSE GCGAGGCCACGATCGGCAATCTGCAGACGG

P53GANTISENSE CCGTCTGCAGATTGCCGATCGTGGCCTCGC

P53WSENSE GGCGAGGCCACGATCTGGAATCTGCAGACGGCG

P53WANTISENSE CGCCGTCTGCAGATTCCAGATCGTGGCCTCGCC

F11 L_SENSE CCACTTCTACCACTCCTTAGGTCTGCTCAAGTACC

Fl 11 L_ANTISENSE GGTACTTGAGCAGACCTAAGGAGTGGTAGAAGTGG

Fl 11W_SENSE ACCACTTCTACCACTCCTGGGGTCTGCTCAAGTACC

F111WANTISENSE GGTACTTGAGCAGACCCCAGGAGTGGTAGAAGTGGT

Fl 11 Y_SENSE GACCACTTCTACCACTCCTATGGTCTGCTCAAGTACCA

Fl 11 Y_ANTISENSE TGGTACTTGAGCAGACCATAGGAGTGGTAGAAGTGGTC

Li 13FSENSE CTACCACTCCTTCGGTTTCCTCAAGTACCACGAGC

Li 13FANTISENSE GCTCGTGGTACTTGAGGAAACCGAAGGAGTGGTAG

Li 13GSENSE CTTCTACCACTCCTTCGGTGGGCTCAAGTACCACGAG

Li 13GANTISENSE CTCGTGGTACTTGAGCCCACCGAAGGAGTGGTAGAAG

Li 13WSENSE CTTCTACCACTCCTTCGGTTGGCTCAAGTACCACGAG

Li 13WANTISENSE CTCGTGGTACTTGAGCCAACCGAAGGAGTGGTAGAAG

Li 14FSENSE CACTCCTTCGGTCTGTTCAAGTACCACGAGC

Li 14FANTISENSE GCTCGTGGTACTTGAACAGACCGAAGGAGTG

Li 14GSENSE CCACTCCTTCGGTCTGGGCAAGTACCACGAGCAG

Li 14GANTISENSE CTGCTCGTGGTACTTGCCCAGACCGAAGGAGTGG

Li 14WSENSE CTACCACTCCTTCGGTCTGTGGAAGTACCACGAGCAGATTC

Li 14WANTISENSE GAATCTGCTCGTGGTACTTCCACAGACCGAAGGAGTGGTAG

Y455FSENSE ACGACGCCCAGCTCTACTTCGGCAACTTC

Y455FANTISENSE GAAGTTGCCGAAGTAGAGCTGGGCGTCGT

Y455LSENSE GACGACGCCCAGCTCTACTTAGGCAACTTCGAGG
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Y455LANTISENSE CCTCGAAGTTGCCTAAGTAGAGCTGGGCGTCGTC

Y455WSENSE ACGACGCCCAGCTCTACTGGGGCAACTTCGAG

Y455WANTISENSE CTCGAAGTTGCCCCAGTAGAGCTGGGCGTCGT

Table 3.6: Primers to introduce 17 separate RebH mutations.

RebH WT and RebH Y455W expression are shown in Figure 3.13.

A. RebH WT Expression
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Figure 3.14: A. RebH WT expression (expected molecular weight 62.3 kDa). B.
RebH Y455W expression (expected molecular weight 62.3 kDa).
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D. RebH Activity Assays

RebH or RebH mutant enzyme at a final concentration of 1 [tM (estimated

by Bradford assay) was incubated with 50 [tM Flavin Adenine Dinucleotide

(FAD), 50 mM NaCl, and substrate (either 20 [tM L-tryptophan, 20 [tM tryptamine

or 1250 [tM tryptamine), in 100 mM K2HPO4 buffer (pH 7.2) in a final volume of

100 pL. For ease of screening, dithiothreitol (20 mM) was added to all in vitro

assays as a reductant for FAD. The assay mixtures were incubated at 30 'C for

12 hours, after which aliquots (25 [tL) were quenched with methanol (975 tL)

and centrifuged at 13,000 rpm for 5 minutes to remove any particulates.

Liquid chromatography was performed on an Acquity Ultra Performance

BEH C18, 1.7 [tm, 2.1 x 100 mm column. The gradient was 10-90% acetonitrile

over 4.1 minutes with water and 0.1% formic acid as the second solvent. The

flow rate was 0.6 mL/min. Ionization was performed by ESI with a Micromass

LCT Premier TOF Mass Spectrometer in positive ionization V- mode. The

formation of 7-chlorotryptophan was monitored by selected ion monitoring at m/z

239. The identity of the product was characterized by co-elution with an authentic

standard.' The formation of 7-chlorotryptamine was monitored by selected ion

monitoring at m/z 195. The halogenated tryptamine product was characterized by

co-elution with an authentic 7-chlorotryptamine standard. 4 The following control

experiments were performed for both RebH WT and RebH Y455W: (1) boiled

enzyme control, where the enzyme was boiled to deactivate it, (2) no DTT

control, where 20 mM DTT was omitted from the assay and (3) no substrate

control, where tryamine was omitted from the assay mixture. Product formation
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was not observed for RebH WT (Figure 3.15) or RebH Y455W (Figure 3.16)

when active enzyme or reductant (20 mM DTT) was removed from the assay.

7-Chlorotryptamine 2b Standard

1 20

100 120 140 i 1 2
RebH WT+Trpn+ DTT

d O-" 120 140

Boiled enzyme c

1

No DTT control

10 120 140

No tryptamine c

1n00 120 1

Retentior

MLZ 195
I 'W 2 01

m/z 195

1 80 20,

M/Z 19M

nTin* (Min)

Figure 3.15: RebH WT tryptamine product co-elutes with an authentic 7-
chlorotryptamine standard. The RebH tryptamine product is not observed in
any of the negative controls (boiled enzyme, no DTT, no tryptamine).
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Figure 3.16: RebH Y455W chlorotryptamnine product (m/z 195) co-elutes with

an authentic 7-chlorotryptahro tandard. The RebH Y455W tryptamine

product is not observed in any of the negative controls (boiled enzyme, no

DTT, no tryptamine).

For more rigorous characterization, we also used authentic standards of

each mono-chlorinated tryptamine isomer (2-chlorotryptamine, 4-

chlorotryptamine, 5-chlorotryptamine, 6-chlorotryptamine and 7-

chlorotryptamine). Chlorinated tryptamine isomers 4-chlorotryptamine and 6-

chlorotryptamine were a gift from Elizabeth McCoy.8 Weerawat Runguphan
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provided authentic standards of chlorinated tryptamine isomers 5-

chlorotryptamine and 7-chlorotryptamine that were previously described.14 The 2-

chlorotryptamine isomer was synthesized. ('HNMR, 500 MHz, DMSO: 7.51

(1H, d, J = 7.5 Hz), 7.24 (1H, d, J= 7.5 Hz), 7.07 (1H, t, J = 7.5 Hz), 7.02 (1H, t, J

= 7.5 Hz) 2.77 (multiplet s, 4H); 13CNMR, 125 MHz, DMSO: 134.6, 126.7, 121.7,

121.1, 119.4, 117.8, 110.9, 39.2, 22.9). The RebH WT and RebH Y455W

halogenated tryptamine product co-eluted exclusively with 7-chlorotryptamine.

E. RebH Wild Type, RebH Y455W and RebH L1 13G Competition Assay Screen

Slow conversion to product in vitro prevented accurate measurement of

the steady-state enzyme kinetics parameters for wild-type (WT) RebH, RebH

Y455W and RebH L113G. RebH, RebH Y455W and RebH L113G were

assessed by competition assay with a mixture of L-tryptophan and tryptamine.

These assays contained 1 [tM enzyme, 50 [tM FAD, 50 mM NaCl, 20 mM DTT,

20 [M L-tryptophan and 20 [tM tryptamine, in 100 mM K2HPO 4 buffer (pH 7.2) in

a final volume of 100 pL. Assays were quenched and analyzed by LC-MS as

described above in Methods Section D.

F. RebH WT and RebH Y455W Selectivity at Different Tryptophan-to-Tryptamine

Ratios

Further competition assays with different substrate concentrations, as

described in the main text, were also performed with RebH WT and RebH

Y455W. Enzyme at a final concentration of 2 [tM (estimated by Bradford Assay)
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was incubated with 20 mM DTT, 1 mM FAD, 50 mM NaCl, L-tryptophan,

tryptamine and 100 mM K2HPO 4 buffer (pH 7.2) at 30 0C for 16 hours. Ratios of

L-tryptophan:tryptamine were 500:500 pM, 500:1000 pM and 1000:500 pM. The

final assay volume was 100 [L. Aliquots (25 [tL) from enzyme assays were

quenched with 975 [tL methanol and then subjected to LC-MS analysis as

outlined in Methods Section D. Conversion of substrate to product was monitored

by simultaneous selected ion monitoring of both substrate and product masses

(L-Tryptophan m/z 205), 7-chlorotryptophan (m/z 239), tryptamine (m/z 161) and

7-chlorotryptamine (m/z 195).

G. The in planta Over-Expression of RebH Y455W and RebF

Approximately 350 C. roseus seedlings were germinated aseptically on

solid Gamborg's B5 media as described according to Methods Section B. The

plant transformation vectors pCAMBIA1305.1-RebHY455W and

pCAMBIA1305.1-RebF were separately transformed into Agrobacterium

rhizogenes ATCC 15834 via electroporation according to manual specifications

(BioRad electroporator). Liquid cultures of A. rhizogenes harboring

pCAMBIA1305.1RebHY455W and A. rhizogenes harboring

pCAMBIA1305.1RebF were mixed just prior to seedling infection.

All hairy root lines surviving hygromycin selection were macerated in

methanol (between 10 and 40 mL/g of fresh weight hairy roots) using a mortar

and pestle with 106 [tm acid washed glass beads. Crude product mixtures were

filtered through a 0.2 pm cellulose acetate membrane (VWR). Prior to analysis,
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samples were centrifuged at 13,000 rpm for 5 minutes to remove any

particulates. Alkaloid methanolic extracts (60 1tL) from hairy root tissues were

added to 700 tL HPLC grade methanol and subjected to LC-MS analysis as

follows. Liquid chromatography was performed on a single quadrupole Agilent

1100 HPLC-MS. A Phenomenex C18, 2.0 [tm, 2 x 50 mm column was employed.

The gradient was 10 to 90% acetonitrile over 8 minutes with water and 0.1%

formic acid as the second solvent. The solvent composition was returned to 10%

acetonitrile by 8.1 minutes, and the column was self-equilibrated at initial run

conditions until 12 minutes. The flow rate was 0.4 mL/min. Ionization was

performed by an 1100 MSD Mass Spectrometer in positive ionization mode. The

following specifications were employed: 4000 V capillary voltage, 350 0C drying

gas temperature, 30 psig nebulizer pressure. Single ion monitoring, 50% m/z 239

for 7-chlorotryptophan and 50% m/z 359 for 12-chloro-1 9,20-

dihydroakuammicine, was used. Each run injected 20 [tL.

No halogenated alkaloids (either 12-chloro-19,20-dihydroakuammicine or

7-chlorotryptophan) were detected in negative control lines [wild type hairy roots,

hairy roots with knocked down tryptophan decarboxylase (TDCi),

pCAMBIA1305.1 empty vector]. TDCi lines were a gift from Weerawat

Runguphan .14 An authentic standard of 12-chloro-19,20-dihydroakuammicine

was previously reported .14 Quantities of 12-chloro-19,20-dihydroakuammicine

and 7-chlorotryptophan (averaged across 3 subcultures) from two representative

lines harboring both RebHY455W and RebF are shown in Table 3.2 and Table

3.3.
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Two lines producing 12-chloro-19,20-dihydroakuammicine 5b (Lines 13

and 74) were subjected to isolation of genomic DNA following manual

specifications (Qiagen DNeasy kit). Both lines contained both RebH Y455W and

RebF. A 660 basepair amplicon was amplified in RebH Y455W. The primers for

the RebH Y455W amplicon are shown in Table 3.7. Full length RebF (503

basepairs) was amplified. The primers for the full-length RebF amplicon (513

basepairs) are provided in Weerawat et al.14 These lines co-migrated with the

corresponding amplicons from pET28aRebHY455W and pET28aRebF. The

negative control lines (TDCi) did not contain the amplicon (Figure 3.17).

Exposure was set at 040 ms. Contrast was set at 1.00.

RebHY455W gDNA forwardI5'-GTCT[ GATGGGGAGG CYG 3 -
RebHY455W gDNAreverse 5'-GTAGATGTGGATGTTGTCGG-3'

Table 3.7: Primers for RebH Y455W amplicon from genomic DNA (gDNA) extraction.

RebF Y455W

1000 bp

SO bp

13 74 TOI pET2Ba 13 74 TOI pET28a
RebF Rabh

Amplicon for RebF is full length (513 bp)
Amplicon for Y455W is 660 bp

Figure 3.17: Agarose gel (1%) of genomic DNA analysis of RebH Y455W and
RebF lines. RebF and RebH Y455W amplicons are shown in root lines and in
plasmid (positive control), but not in the TDCi line (negative control).
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H. Transient Expression of RebH Y455W and RebF

The plasmids pCAMBIA1305.1-RebHWT, pCAMBIA1305.1-RebHY455W

and pCAMBIA1305.1-RebF were each transformed separately into both

Agrobacterium tumefacians strain GV 3101 and A. tumefacians LB 4404 for a

total of 6 bacterial transformations. Liquid cultures (5 mL) of A. tumefacians

containing the plasmid of interest were grown in Yeast Extract and Mannitol

(YEM) media supplemented with kanamycin at 30 0C for 48 hours just prior to

infection. Since plasmids were transformed into separate A. tumefacians strains,

the cultures harboring them were mixed (either pCAMBIA1305.1-RebHWT and

pCAMBIA1305.1-RebF or pCAMBIA1305.1-RebHY455W and pCAMBIA1305.1-

RebF) just prior to plant transformation. (1) pCAMBIA1305.1-RebHWT and

pCAMBIA1305.1-RebF and (2) pCAMBIA1 305.1 -RebHY455W and

pCAMBIA1305.1-RebF were transiently expressed in planta via two different

methods (1) syringe injection (without a needle) and (2) vacuum infiltration for

each gene combination. Transformations were conducted also by testing both A.

tumefacians strains (GV3101 and LB 4404) using each infiltration method

(vacuum infiltration or syringe injection). All transiently transformed mature

leaves, each day for 3 days after transformation, were macerated in methanol

(between 10 and 40 mL/g of fresh weight hairy roots) using a mortar and pestle

with 106 m acid washed glass beads. Crude product mixtures were filtered

through a 0.2-[tm cellulose acetate membrane (VWR). Alkaloid methanolic

extracts (30 [tL) from mature leaves were diluted with 700 [tL HPLC grade
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methanol and subjected to LC-MS analysis as outlined in Methods Section D.

Each run used 2 [tL of extract. No chlorinated alkaloids were detected in any

transient expressions under these conditions.
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Chapter 4

Redesign of a Dioxygenase Involved in Morphine Biosynthesis

Part of this chapter is published as a communication in

Runguphan W*, Glenn WS* and O'Connor SE. Chem Biol. 2012
Jun 22;19(6):674-8. (*equal contribution)
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I. Introduction

Opium poppy (Papaver somniferum) produces an array of medicinally

important benzylisoquinoline alkaloids, including the analgesics codeine 10 and

morphine 11 (Figure 4.1).1,2 The biosynthesis of these alkaloids commences with

the Pictet-Spengler condensation of dopamine 1 and 4-

hydroxyphenylacetaldehyde 2 to form (S)-norcoclaurine 3, which is further

modified to form (S)-reticuline 4, the pivotal biosynthetic intermediate of all

benzylisoquinoline alkaloids. (S)-reticuline 4 is subsequently converted to

thebaine 5, the intermediate at the entry point of the morphinan alkaloid pathway.

Two biosynthetic routes have been proposed for the conversion of

thebaine 5 to morphine 11. 3 In the first route (route A; see Figure 4.1), thebaine

6-0-demethylase (PsT60DM) demethylates thebaine 5 at the 6 position to form

neopinone 7, which spontaneously isomerizes to form codeinone 8. Codeinone 8

is then enzymatically reduced to yield codeine 10. Codeine O-demethylase

(PsCODM) demethylates codeine 10 at the 3 position to yield morphine 11.

Alternatively, in the second route (route B; see Figure 4.1), PsCODM

demethylates thebaine 5 at the 3 position to form oripavine 6. PsT60DM

catalyzes the second demethylation of oripavine 6-this time at the 6 position-

to form morphinone 9, which is then reduced to form morphine 11. Morphinan

alkaloids thebaine 5, oripavine 6, codeine 10, and morphine 11 all accumulate in

opium poppy, suggesting that both routes are operative in Vivo.12

The discovery of O-demethylases PsCODM and PsT60DM completed the

genetic characterization of the morphinan pathway.3 These genes were
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Figure 4.1: Biosynthesis of benzylisoquinoline alkaloids in P. somniferum.
The biosynthetic pathways leading to morphine 11 via morphine 9 and
codeine 10.
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discovered through a functional genomics approach by differentially comparing

transcripts found in native opium poppy (plants that accumulate morphine)

versus poppy mutant varieties that are devoid of morphinan alkaloids.4 The

differentially expressed genes (i.e. genes expressed in morphinan alkaloid-

containing plants that were not expressed in varieties lacking morphinan

alkaloids) could then be assayed for the desired demethylase activity.4'5

Surprisingly, non-heme iron [Fe(II)]- and a-ketoglutarate-dependent

dioxygenases (PsCODM and PsT60DM), were identified from this study. Notably,

PsCODM and PsT60DM are the only members of the non-heme iron- and cc-

ketoglutarate-dependent dioxygenase family capable of catalyzing 0-

demethylation; all others are P450s.4

The morphinan pathway provides a highly attractive reengineering target

at the enzyme and pathway levels because all late pathway genes are known.

Here we demonstrate how exploiting natural enzyme variation through

systematically mixing and matching the non-conserved amino acid regions of

these two recently discovered demethylases (PsCODM and PsT60DM) has led

to an enzyme with new specificity: a PsCODM mutant that is highly selective for

codeine. The unique selectivity of the reengineered demethylase enzyme may

allow us to explore how closing the metabolic valve to route B and redirecting

substrate exclusively through route A (Figure 4.1) will impact downstream

product yields in this branched natural product pathway.
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11. Results and Discussion

A clustal alignment of PsCODM, PsT60DM, and PsDIOX2 (a P.

somniferum 2-oxoglutarate/Fe(I)-dependent dioxygenase for which the native

substrate has not yet been identified, but which is known to be able to 0-

demethylate a number of protoberberine alkaloids) 4 revealed five specific regions

where these dioxygenases differ significantly at the amino acid level: A1

(residues 145-149), A2 (residues 150-152), B (residues 334-336), C, (residues

338- 342), and C2 (residues 343 - 152) (Figure 4.2). Lacking a crystal structure

of a P. somniferum dioxygenase, we built a homology model of PsCODM based

on the crystal structure of Arabidopsis thaliana anthocyanidin synthase (AtANS),

a structurally characterized 2-oxoglutarate/Fe(ii)-dependent dioxygenase with

moderate amino acid sequence similarity to PsCODM (32% identity at the amino

acid level).6 We employed SWISS-MODEL, an automated protein homology-

modeling server, to generate the model (Figure 4.3).7 Key residues likely to be

involved in Fe(ll)/2-oxoglutarate binding are highlighted in the (Figure 4.2). The

five regions-grouped as follows, A1 and A2 (residues 145-152); B (residues

334-336); and C1 and C2 (residues 338-346)-were then mapped on to this

homology model, where they appeared to be located proximal to the anthocyanin

binding site (Figure 4.3).
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DIOX1 MEKAKLMKLGNGEIPSVQELAKLTLAEISRYVCANENL:LGASVINDHETI ?VIDI 60
DIOX2 METAKLJKIGNGMSISVQELAKLTLAEISRYICTVENLQLVGASVIDDHETVJVIDI 60
DIOX3 METPILIKLNGLSIPSVQELAKLTLAEIPSRYTCTGESPLNNIGASVTDD-ETVVIDL 59

DIOX1 ENLLSPEPI IGKLELDRLHFACKENGFFQVVNHGVDASLVDSVKSEIQGFFNLSMDEKTK 120
DIOX2 ENLISSEPVTEKLELDRLMSACKENGFFQVVNHGVDTSLVDNVKSDIQGFFNLSMNEKIK 120
DIOX3 QNLLSPEFVVGKLELDKLHSACIEWGFFQLVNHIGVDALLMNIKSEIKGFFNLPMNEKTK 119

Region A
DIOX1 YEQEDGDVFQGFIESEDQTLIDADLnWTLPLLRKPLFSKLPVPLREIESYSS 180
DIOX2 YGQKDGDVEGFGQAEVASEDQTLDNADIFMILTLLRLRKPRLFSKLPLPLRETIESYSS 180
DIOX3 YGQQDGDFEGFGQFYIESEDRLDWTEVF3E.5LFLLRKPfLFFEL?LPFRETLESYLS 179

DIOX1 EMKLSMVLFNIMEKALCVQAAEIKGMSEVFIDGTQAMRMNYY??CQN:AIGLTSHSD 240
DIOX2 EOKLSMVLFEKOEKALVQAVEIKEISEVFKDMTQVMRMNYY??CQPEAIGLTPHSD 240
DIOX3 KMKLSTVVFMLKSLQL- -VEIKMT DLFEDGLQTIMRMNYYC?R?ELVLGLTSSD 237

DIOX1 FaGLTILLQINEVEGLQIKREGTNISVKLPNAFVVNVGDILEITNGIYHSVDRAVVN 300
DIOX2 FGGLTILLWLNEVEGLQIKNEGRWISVKLNAFVVNVGDVLEIMTNGYRSVDURAVVN 300
DIOX3 FSGLTI LLQLNEVEGLQIRKEERWISIKLPDAFIVNVDILEIMTNGIYRSVEHRAVVN 297

Region B Region C
DIOX1 STNERLSIATFHDPSLESVIGPISSLITPETPALEXAMMTYGLVZMrerRKLDGKSFLD 360
DIOX2 STKERLSIATFlDNLESEIGISSLITNTALFRSGSTYSELVEEFHSRKLDGKSFLD 360
DIOX3 STKERLSIATFHDSKLESEIGISSLVTETALFKM-RYEDXLXENLSRLDGKSFLD 356

DIOX1 SMRI- 364
DIOX2 SMRM- 364
DIOX3 YMRM- 360

Figure 4.2: Sequence alignment of PsDIOX1 (PsT60DM), PsDIOX2 and PsDIOX3
(PsCODM). * indicates residues that have been proposed to be important in 2-
oxoglutarate binding. * indicates residues that have been proposed to be
important in coordinating Fe(II).
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Figure 4.3: Homology Models of PsT60DM and PsCODM Based on the Crystal
Structure of AtANS PsT60DM is indicated in green, and PsCODM is indicated in pink.
The models were created using SWISS-MODEL. Regions Al and A2 (residues 145-
152) are shown in red, B (residues 334-336) is in yellow, and C1 and C2 (residues
338-346) are in blue.

We hypothesized that the residues' proximity to the primary substrate

binding site implicated their involvement in dictating regioselectivity, which could

be readily reengineered through mutagenesis. Specifically, we envisioned using

site-directed mutagenesis to reverse the regioselectivity of PsCODM, which

demethylates the 3 position of morphinan alkaloids, and PsT60DM, which

demethylates the 6 position of morphinan alkaloids. Initial protein expression

screening revealed that all PsT60DM mutants are expressed at low levels.

Therefore, in this study, we focused our efforts on developing engineered
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PsCODM enzymes. We systematically replaced the native PsCODM sequence

with the corresponding sequence from PsT60DM at the five nonconserved

regions using standard site-directed mutagenesis. In total, we constructed 16

PsCODM mutants (Table 4.1).

Tested PsCODM Mutants

A, A 2  B C, C2 (wild type PsCODM)

1) At* A2* B C1* C2 *

2) A,* A, B C1* C2*

3) A,* A2* B C, C2 *

4) At* A,* B C1* C2

5) A,* A2* B C, C2

6) At* A2  B C, C2 *

7) At* A 2  B CI* C 2

8) A,* A 2  B C, C2

9) A1  A2* B C1 * C2*

10) At A2  B CI* C2 *

11) A1  A2* B C1  C2*

12) A, A2* B C1* C2

13) A, A2* B C1  C2

14) A1  A, B C1  C2*

15) A, A2  B C1* C,

16) A1  A 2  B* C, C2

Table 4.1: PsCODM mutants that were constructed in this study. * indicates that
the residues in that region were mutated to those of PsT60DM
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Plasmid Template used in SDM Primers used in SDM

pQECODM A,* A2 B C C2  pQECODM A, A2 B C, C2  Forward: 5'-ggaccaaagacttgattgggctgatgtgtttagcatgttaagtc-3'
Reverse: 5'-gacttaacatgctaaacacatcagcccaatcaagtctttggtcc-3'
Then perform the second round of SDM with the following primers
Forward: 5'-ccaaagacttgattgggctgatatatttagcatgttaagtcttcctc-3'
Reverse: 5'-gaggaagacttaacatgctaaatatatcagcccaatcaagtctttgg-3'

pQECODM AI* A2* B C, C2  pQECODM A,* A2 B C, C2  Forward: 5'-aaagacttgattgggctgatatatttatgatgttaagtcttcctctccatt-3'
Reverse: 5'-aatggagaggaagacttaacatcataaatatatcagcccaatcaagtcttt-3'
Then perform the second round of SDM with the following primers
Forward: 5'-cttgattgggctgatatatttatgatgttcactcttcctctccatttaagga-3'
Reverse: 5'-tccttaaatggagaggaagagtgaacatcataaatatatcagcccaatcaag-3'

pQECODM A, A2* B CI C2  pQECODM A, A2 B C, C2  Forward: 5'-caaagacttgattggactgaagtgtttatgatgttcactcttcctctccatttaaggaagcc- 3'
Reverse: 5'-ggcttccttaaatggagaggaagagtgaacatcataaacacttcagtccaatcaagtctttg-3'

pQECODM A, A2 B* C, C2  pQECODM AI A2 B C, C2  Forward: 5'-gacacctgctttgttcaaaagtggatctacatatgaggatattttgaagg-3'
Reverse: 5'-ccttcaaaatatcctcatatgtagatccacttttgaacaaagcaggtgtc-3'

pQECODM A, A2 B C* C2  pQECODM A, A2 B C1 C2  Forward: 5'-tttgttcaaaagaggtaggtatggggatcttttgaaggaaaatctttcaagg- 3 '
Reverse: 5'-ccttgaaagattttccttcaaaagatccccatacctacctcttttgaacaaa-3'
Then perform the second round of SDM with the following primers
Forward: 5'-caaaagaggtaggtatggggatcttgtggaggaaaatctttcaagga- 3'
Reverse: 5'-tccttgaaagattttcctccacaagatccccatacctacctcttttg-3

pQECODM A, A2 B C,* C2* pQECODM A, A2 B C,* C2  Forward: 5'-gtatggggatcttgtggaggaatgtctttcaaggaagcttga- 3 '
Reverse: 5'-tcaagcttccttgaaagacattcctccacaagatccccatac-3'
Then perform the second round of SDM with the following primers
Forward: 5'-agaggtaggtatggggatcttgtggaggaatgtaagacgaggaagcttgatggaaa-3'
Reverse: 5'-tttccatcaagcttcctcgtcttacattcctccacaagatccccatacctacctct-3'

pQECODM AI A2 B C, C2* pQECODM AI A2 B C, C2  Forward: 5'-gacacctgctttgttcaaaagaggtaggtatgaggatattttgaa
ggaatgtaagacgaggaagcttgatggaaaatcatttct-3'
Reverse: 5'-agaaatgattttccatcaagcttcctcgtcttacattccttcaa
aatatcctcatacctacctcttttgaacaaagcaggtgtc-3'

pQECODM A,* A2 BCI* C2* pQECODM AI A2 B C,* C2* Forward: 5'-ggaccaaagacttgattgggctgatgtgtttagcatgttaagtc-3'
Reverse: 5'-gacttaacatgctaaacacatcagcccaatcaagtctttggtcc-3'
Then perform the second round of SDM with the following primers
Forward: 5'-ccaaagacttgattgggctgatatatttagcatgttaagtcttcctc- 3'
Reverse: 5'-gaggaagacttaacatgctaaatatatcagcccaatcaagtctttgg-3'
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Plasmid Template used in SDM Primers used in SDM

pQECODM A,*A 2* BC1 *C2* pQECODM A,* A2 BCI* C2* Forward: 5'-aaagacttgattgggctgatatatttatgatgttaagtcttcctctccatt-3'
Reverse: 5'-aatggagaggaagacttaacatcataaatatatcagcccaatcaagtcttt-3'
Then perform the second round of SDM with the following primers
Forward: 5'-cttgattgggctgatatatttatgatgttcactcttcctctccatttaagga-3'
Reverse: 5'-tccttaaatggagaggaagagtgaacatcataaatatatcagcccaatcaag-3'

pQECODM A, A2* B C1* C2  pQECODM A, A2 B C1 * C2  Forward: 5'-caaagacttgattggactgaagtgtttatgatgttcactcttcctctccatttaaggaagcc-3'
Reverse: 5'-ggcttccttaaatggagaggaagagtgaacatcataaacacttcagtcaatcaagttttg-3'

pQECODM AI* A2 B C1 C2* pQECODM A,* A2 B C C2  Forward: 5'-gacacctgctttgttcaaaagaggtaggtatgaggatattttgaa
ggaatgtaagacgaggaagcttgatggaaaatcatttct-3'
Reverse: 5'-agaaatgattttccatcaagcttcctcgtcttacattccttcaa
aatatcctcatacctacctcttttgaacaaagcaggtgtc-3'

pQECODM A, A2* B C, C2* pQECODM A, A2* B C, C2  Forward: 5'-gacacctgctttgttcaaaagaggtaggtatgaggatattttgaa
ggaatgtaagacgaggaagcttgatggaaaatcatttct-3'
Reverse: 5'-agaaatgattttccatcaagcttcctcgtcttacattccttcaa
aatatcctcatacctacctcttttgaacaaagcaggtgtc-3'

pQECODM AI* A2* BC C2* pQECODM AI* A2* B C, C2  Forward: 5'-gacacctgctttgttcaaaagaggtaggtatgaggatattttgaa
ggaatgtaagacgaggaagcttgatggaaaatcatttct-3'
Reverse: 5'-agaaatgattttccatcaagcttcctcgtcttacattccttcaa
aatatcctcatacctacctcttttgaacaaagcaggtgtc-3'

pQECODM A, A2* B CI*C2 * pQECODM A, A2 B Cj* C2* Forward: 5'-caaagacttgattggactgaagtgtttatgatgttcactcttccttccatttaaggaagcc- 3'
Reverse: 5'-ggcttccttaaatggagaggaagagtgaacatcataaacacttcagtcaatcaagtCtttg- 3 '

pQECODM AI* A2* BC,* C2  pQECODM AI* A2* B C, C2  Forward: 5'-tttgttcaaaagaggtaggtatggggatcttttgaaggaaaatctttcaagg- 3'
Reverse: 5'-ccttgaaagattttecttcaaaagatccccatacctacctcttttgaacaaa-3'
Then perform the second round of SDM with the following primers
Forward: 5'-caaaagaggtaggtatggggatcttgtggaggaaaatctttcaagga-3'
Reverse: 5'-tccttgaaagattttcctccacaagatccccatacctacctcttttg-3'

pQECODM AI* A2 B C,* C, pQECODM A,* A2 B C1 C2  Forward: 5'-tttgttcaaaagaggtaggtatggggatcttttgaaggaaaatctttcaagg- 3 '
Reverse: 5'-ccttgaaagattttccttcaaaagatccccatacctacctcttttgaacaaa-3'
Then perform the second round of SDM with the following primers
Forward: 5'-caaaagaggtaggtatggggatcttgtggaggaaaatctttcaagga-3'
Reverse: 5'-tccttgaaagattttcctccacaagatccccatacctacctcttttg-3'



Dr. Jillian Hagel and Professor Peter Facchini (University of Calgary,

Calgary, Alberta, Canada) provided Escherichia coli expression plasmids

pQEDIOX1 and pQEDIOX3, which contain the open reading frames of P.

somniferum T60DM and CODM, respectively. Primers to design the mutant

constructs are listed in Table 4.2. We adapted heterologous expression

conditions for E. coli from a previously reported protocol.3 Protein expression of

the majority of PsCODM mutants was robust (Figure 4.4). Only the A1A 2*BC1C 2

mutant (S149M L151F S152T mutant; the asterisk designates the mutated

region) was expressed at low levels, perhaps due to improper folding. We

screened each of the mutant enzymes with substrates thebaine 5 and codeine 10

at a concentration of 0.25 mM. Assay conditions are provided in Methods.

Product formation was monitored using liquid chromatography-mass

spectrometry (LC-MS). LC-MS chromatograms of representative in vitro

enzymatic assays of wild type and mutant PsCODM enzymes are shown in

Figures 4.5 and 4.6, respectively. These endpoint assays indicated that the

majority of the mutants lost 0-demethylase activity toward both thebaine 5 and

codeine 10. Out of the total of 16 mutants, only two, A1A 2 BC1*C 2 (E338G 1340L

L341V K342E) and A1A2B*C1C 2 (R334S R336S+T), retained O-demethylase

activity toward either thebaine 5 or codeine 10 (Figure 4.5). The A1A 2B*C1C 2

mutant was similar to the wild type enzyme in that it turned over both thebaine 5

and codeine 10 to yield oripavine 6 and morphine 11, respectively.

The co-elution of the wild type PsCODM and PsCODM A1A2B*C 1C2 mutant

thebaine 5 demethylation products suggests that the A1A2B*C1C 2 mutant

132



*

* ~

QW* V

4b *~

* *
P,.' UV."

4Q9

4;'b 4b lb 4b

MW IrN Vill le

(JV
*

(-I'."

*

* *

V.',

*
(-I

*

(-p. Q(I'
qO

Calculated MW
DIOX3 and mutants: 42.2 kDa
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corresponding to the correct molecular weight.
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retained regiospecificity for the 3 position of thebaine 5 (Figure 4.5). In contrast,

the AiA2 BC1*C 2 mutant displayed only negligible 0-demethylation activity for

thebaine 5 but selectively turned over codeine 10 (Figure 4.5). Since codeine 10

only contains a methoxy group at the 3 position, the C3 regioselectivity of the

AiA2 BC1*C 2 mutant is also clearly unchanged from the wild type PsCODM.

Competitive assay conditions with both thebaine 5 (0.25 mM) and codeine 10

(0.25 mM) were also employed to assess the activity of PsCODM mutants

(Figure 4.5). Morphine 11 and oripavine 6 products formed at a 4:1 ratio when

wild type PsCODM was subjected to these assay conditions. Similarly, the

A1A 2B*C1 C2 mutant also yielded morphine 11 and oripavine 6 at approximately a

4:1 ratio, though notably at lower concentrations than the wild type enzyme,

HO

CODMANe

k' INMe C NMe

HO HOr
qE30 Codeine Morphine l/Z 28610 11

A1 A2 B* C, C2  AM
A1 A2 B C1* C2* M/Z 286

A1 A2 B C1* C2 T1M/26

A1*A2* B C1 C2 m/z 286

A1* A2 B C1 C 2  n/ 286

A, A2 B C, C2 4- morphine ftz 286
(WT) V I

OAO 0 am OM g n im 1 110 10 10 140 100 00 10 . too 00 zoo 21.0f 20

lme (min)

Figure 4.5: PsCODM and representative PsCODM mutants with codeine 10. Only
A1B 2B*C1C2 and AiA 2BC1*C 2 retain activity for codeine 10. qE30 is empty vector.
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Figure 4.6: PsCODM wild type and representative PsCODM mutants with thebaine
5. Only A1B 2B*C1 C2 and A1A2BC1*C 2 (negligible) retain activity for thebaine 5.
qE30 is the empty vector control.

qE30

A1 A2 B* C1 C2

A1 A2 B C1* C2*

m1z 286 and 298

m/z 286 and 298

m,, 286 and 298

A1 A2 B C,* C2

A1*A 2* B C1 C2

mnz 286 and 298

m/z 286 and 298

A1* A2 B C1 C2

A1 A 2 B C1 C2

(WT) ph

nm/ 286 and 298

!N~ ortoevine
040 a M 0 " 010 070 00 090 100 1,10 1 2D 13D i40 100

m/z 286 and 298

190 17,0 19 190Ig 200 210 220

Time (min)

Figure 4.7: PsCODM wild type and representative PsCODM mutants in a
competition assay with both codeine 10 and thebaine 5. Only A1B 2B*C1C 2 and
AiA 2BCI*C 2 retain activity for either substrate; AiA 2 BC1*C 2 is specific for
codeine 10. qE30 is the empty vector control.
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indicating lower catalytic efficiency for the mutated enzyme. However, while the

AiA2BC1*C 2 mutant produced only negligible amounts of oripavine 6, morphine

11 was produced at levels similar to those observed with wild type enzyme,

confirming the stringent selectivity of the A1A 2BC1*C 2 mutant.

We measured the steady-state kinetic parameters of wild type PsCODM

and mutant PsCODM AiA2 BC1*C 2 by monitoring the rate of product formation. In

total, we measured kinetic parameters for the following combinations: (1) wild

type PsCODM with codeine (kcat/KM = 9.54 x10-7s-1 tM-1 and KM = 72.3 ± 33.4

tM); (2) wild type PsCODM with thebaine (kcat/KM = 1.52 x 10-8 s-'iM- and KM =

216 ± 76.2 [M); and (3) PsCODM mutant A1A 2BC1*C 2 with codeine (kcat/KM =

3.62x10-7 s-1 M~1 and KM = 99.0 ± 22.4 [M). Notably, the mutant enzyme formed

only negligible amounts of the thebaine 5 demethylation product after 4 hr even

when substrate concentrations were as high as 2,000 [M. Steady-state kinetic

data are shown in Figures 4.8-4.10; Table 4.3).

Although structural information is not yet available for these demethylases,

we could build a homology model for both wild type and A1A 2BC1*C 2 mutant

PsCODM based on the anthocyanidin synthase enzyme docked with thebaine 5.

While these computational results must be interpreted with caution, docking

studies suggest that the binding orientation of thebaine differs substantially

between the wild type enzyme and the A1A 2 BC1*C 2 mutant (Figures 4.10 and

4.11). Specifically, in the model of the mutant with thebaine 5, the

histidine/asparate facial triad seemingly anchors the iron-oxo complex away from

the 0-methyl moiety. It is interesting that the homology model (Figure 4.2) also

136



predicts that the C1 region switches from an alpha helix in the wild type enzyme

to a random coil in the codeine-specific mutant, suggesting that the mutation in

the C1 region introduces changes to the PsCODM secondary structure.

Parameters WT with AIA 2BC,*C 2  WT with AA 2 BC,*C2
Codeine with Codeine Thebaine with Thebaine

Vmax (gM/min) 0.299 ± 0.044 0.213 ± 0.015 0.043 ± 0.001 ND
Km ([M) 72.2 ± 33.4 99.0 ± 22.4 216.1 ±76.2 ND
kcat (s-) 6.90 x 10-s 3.58 x 10- 3.28 x 10-6 ND
kcat/KM (s- pM-) 9.54 x 10-7 3.62 x 10-7 1.52 x 10-8 ND
r2 0.92 0.97 0.96 ND
replicates 2 3 2 3

Table 4.3:Summary of kinetic parameters for PsCODM and Mutant
AA 2BC,*C 2with codeine 10 and thebaine 5.
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Figure 4.8: Michaelis-Menten curve of WT PsCODM with codeine 10.
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Figure 4.12: Thebaine docked into wild type PsCODM (DIOX3).
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Figure 4.13: Thebaine docked into PsCODM (DIOX3) mutant AjA 2BC,*C 2

Figure 4.14 Codeine docked into wild type PsCODM (DIOX3).
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Figure 4.15: Codeine docked into PsCODM (DIOX3) Mutant AA 2BCI*C 2.

The mutation in the Ci* region appears to prevent productive binding of the

thebaine 5 substrate without greatly altering the catalytic efficiency for codeine 10

(kat/Km = 9.54 x10-7s- M-1 for wild-type, kat/KM = 3.62 X10 ~7S~ M- for mutant).

In the models, the binding orientation of codeine 10 does not appear to differ

substantially between the wild type enzyme and the A1A 2 BC1*C 2 mutant.

At the outset of this study, we hypothesized that the amino acid differences

between PsCODM, a C3 O-demethylase, and PsT60DM, a C6 O-demethylase,

would control the distinct regioselectivity of the demethylation reactions.

Therefore, we expected that swapping the non-conserved amino acid regions of

these two enzymes would alter the regioselectivity of the mutated enzymes.

Instead, the mutations altered the substrate selectivity in an unpredictable
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manner. Moreover, the A1A 2 BC1*C 2 PsCODM mutant retained C3

regioselectivity.

Notably, PsT60DM turns over thebaine 5 and oripavine 6, and PsCODM

turns over thebaine 5 and codeine 10. Despite both wild type enzymes accepting

thebaine 5, the introduction of residues from PsT60DM into PsCODM at the C1

position (Figure 4.3) yields a mutant PsCODM enzyme that is selective for

codeine 10. This change in substrate specificity does not readily correlate with

the substrate specificity of the parent wild type enzymes. Particularly in the

absence of experimental structural data, it is difficult to rationalize what structural

changes these mutations confer to PsCODM and how these changes impact

substrate specificity. Nevertheless, while this work highlights the difficulty of

rational, structure-based protein design, we successfully demonstrate how

sequence alignment of enzymes with subtle differences in specificity can be used

to readily generate swapped sequences that are functionally distinct from

naturally occurring wild-type variations.

One goal of metabolic engineering is the removal of shunt or redundant

pathways that adversely impact production yields of a desired compound.8 This

A1A2BC1*C 2 PsCODM mutant may fulfill an engineering function by providing a

means to shut off a redundant route (route B in Figure 1) in morphinan

biosynthesis. Because A1A 2BC1*C 2 PsCODM fails to demethylate thebaine 5 to

form oripavine 6, the first committed step of route B, replacement of wild-type

PsCODM with the A1A 2 BC1*C 2 mutant would presumably force the morphine

pathway to proceed via route A.
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Notably, growers in India, a major cultivator of licit opium, inadvertently

counter-selected for P. somniferum cultivars low in oripavine 6 when selecting for

the highest seed quality and opium yields, suggesting that low oripavine 6

production levels may correlate with economically desirable traits.9 Therefore, in

addition to assessing how knock-outs of wild type PsCODM and PsT60DM affect

flux into morphine production, it will be of interest to observe how using the

PsCODM A1A2 BC 1*C2 mutant-which effectively sidesteps oripavine 6

production by committing thebaine 5 to route A-instead of the wild type

PsCODM enzyme would impact titers of codeine 10 and morphine 11. 9

Moreover, substantial interest lies in reconstituting morphinan alkaloid

biosynthesis in yeast and E. coli.' 0 12 Mutants with altered specificity such as

PsCODM A1A 2BC1*C 2 could provide important building blocks for these synthetic

biology efforts.

III. Conclusions

We have altered the substrate specificity of a morphinan pathway enzyme

codeine O-demethylase (PsCODM). One PsCODM mutant, mutant A1A2BC1*C 2

(E338G 1340L L341V K342E), exhibits demethylase activity exclusively toward

codeine 10, whereas the wild type PsCODM exhibits demethylase activity with

both codeine 10 and thebaine 5. These results provide a starting point for

rationalizing how PsCODM and PsT60DM, two enzymes involved in morphinan

biosynthesis with 73% identity at the amino acid level, facilitate O-demethylation

regioselectivity on separate sets of substrates. In addition to providing insight into
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O-demethylase substrate selectivity, this mutant could also be useful in

biotechnological efforts to provide P. somniferum strains with augmented yields

of codeine 10 and morphine 11 and diminished titers of oripavine 6, an

intermediate in a redundant pathway branch that has been associated with poor

seed quality and low opium yields.9 In short, mutants with enhanced enzyme

selectivity will allow us to explore how the targeted disruption of a redundant

pathway branch affects downstream product yields and may enable more

efficient production of these high value compounds. In addition to the potential

biotechnological applications of this enzyme, these protein engineering efforts

also provide a starting point for understanding how the subtle sequence

differences of highly similar enzymes can impact substrate and regioselectivity.

IV. Methods

A. Construction of PsCODM Mutant Expression Plasmids

pQEDIOX1 (pQET60DM) and pQEDIOX3 (pQECODM), which contain the

open reading frames of PsT60DM and PsCODM, respectively, were provided by

Professor Peter Facchini and Dr. Jillian Hagel (University of Calgary). To obtain

the 16 CODM mutants (Table 4.1), site-directed mutagenesis (SDM) was per-

formed using the Stratagene QuikChange Site-Directed Mutagenesis kit. SDM

primers are listed in the Supplemental Information (Table 4.1). The PsCODM

mutant constructs were sequenced to verify the DNA sequence and were

subsequently transformed for expression into E. coli strain SG13009 (QIAGEN)

via electroporation using standard protocols.
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B. Heterologous Expression of PsCODM Mutants

A single transformed E. coli colony (strain SG13009 [QIAGEN]) was

inoculated in 10 ml Luria-Bertani (LB) media supplemented with kanamycin (0.05

g/l) and ampicillin (0.1 g/l) and incubated overnight at 370C with shaking at 225

rpm. Subsequently, 800 ml LB media supplemented with kanamycin (0.05 g/l)

and ampicillin (0.1 g/l) was inoculated with an overnight culture (8 ml) and incu-

bated at 370C with shaking at 225 rpm until reaching an optical density 600

(ODoo) of 0.6. Protein expression was induced by the addition of isopropyl-P-D-

galactopyranoside (IPTG; final concentration 0.3 mM). Following induction, cells

were incubated at 60C with shaking at 225 rpm for 24 hr. Cells were harvested by

centrifugation and lysed by sonication. The hexa-histidine-tagged PsCODM

mutants were purified using Talon colbalt affinity column (Clontech) using the

manufacturer's protocols. Eluted enzyme was subsequently buffer-exchanged

into Tris buffer (100 mM Tris-HCI, pH 7.4, 10% [v/v] glycerol, and 14 mM 2-

mercaptoethanol) and immediately assayed for activity. These enzymes were not

stable upon extended storage.

C. In Vitro Activity Assay of PsCODM Mutants

The in vitro activity assay protocol was adapted from a previous report

(Hagel and Facchini, 2010). Briefly, the assay for 2-oxoglutarate/Fe(ll)-

dependent dioxygenase activity was performed using a 100 ml reaction mixture

of 100 mM Tris-HCI (pH 7.4), 10% (v/v) glycerol, 14 mM 2-mercaptoethanol, 0.25
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mM alkaloid(s), 10 mM 2-oxoglutarate, 10 mM sodium ascorbate, 0.5 mM

FeSO4, and 1 mM purified enzyme. Assays were carried out for 4 hr at 30 C.

Aliquots (25 ml) were quenched in 1 ml methanol containing yohimbine (500 nM)

as an internal standard. The samples were centrifuged in a microcen- trifuge

(13,000 rpm, 5 min) to remove particulates and then analyzed by LC-MS.

Samples were ionized by ESI with a Micromass LCT Premier TOF Mass

Spectrometer. The LC was performed on an Acquity Ultra Performance BEH

C18, 1.7 [tM, 2.1 x 100 mm column on a gradient of 10%-90% acetoni-

trile/water (0.1% formic acid) over 5 min at a flow rate of 0.6 ml/min. The

appearance of morphine 11 and oripavine 6 was monitored by peak integration

and normalized to the internal standard. All chemicals were obtained from a

commercial source (Sigma Aldrich).

D. Steady-State Kinetic Assay of Wild-Type CODM and AjA2BCi*C 2 Mutant

Assay components were used in the following final concentrations: pH 7.4

Tris-HCI (67 mM) containing 10% (v/v) glycerol and 14 mM 2-mercaptoethanol,

o-ketoglutarate (6.7 mM), sodium ascorbate (6.7 mM), iron (11) sulfate (333 mM),

and enzyme wild type (4.1 mg/ml) or enzyme mutant (18 mg/ml), in an assay

volume of 150 ml. The enzyme concentrations were estimated by Bradford

assay. Assays were initiated by addition of iron (II) sulfate and conducted at

300C. Aliquots (25 ml) were quenched every 30 min from 1 to 3 hr with 975 ml

methanol containing 500 nM ajmaline as an internal standard. Prior to analysis,

methanol quenched samples were centrifuged in a microcentrifuge at 13,000 rpm
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for 5 min to remove any particulates. Liquid chromatography was performed on

an Acquity Ultra Performance BEH C18, 1.7 [tM, 2.1 x 100 mm column. The

gradient was 10%-90% acetonitrile over 4 min with water and 0.1% formic acid

in water as the second solvent. The flow rate was 0.5 mI/min. We performed

electrospray ionization (ESI) with a Micromass LCT Premier TOF Mass

Spectrometer in positive ionization V-mode.

Product accumulation was measured to determine the kinetic parameters. A

standard curve for morphine 11, the demethylation product of codeine 10, was

constructed to determine the kinetic parameters of codeine 10 demethylation.

However, oripavine 6, the demethylation product of thebaine 5, was unavailable;

therefore, hydromorphonone, which was available, was used as a surrogate.

Plotted experimental data were fit to a Michaelis-Menten curve using SigmaPlot

version 9.0. Experiments were duplicated or triplicated to ensure reproducibility.

E. Computational modeling

Both wild type and mutant PsCODM homology models were built using A.

thaliana anthocyanadin synthase (AtANS) as a template in SWISS MODEL.

Primary substrates were docked into the active site at the lowest catalytically

competent conformation. The location of the iron-oxo species was postulated

based on the position of histidine/aspartate facial triad.
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Chapter 5

Conclusions and Future Work: The Alkaloids and Beyond



I. Conclusions

Chapter 1 opens the thesis by discussing current work in the

understanding and manipulation of plant natural product biosynthesis.

Specifically, chapter 1 surveys current research regarding monoterpene indole

alkaloids, benzylisoquinoline alkaloids and the glucosinolates. These classes of

compounds have been witness to heroic efforts aimed at enzyme discovery and

engineering. These efforts have undoubtedly been energized by the desire to

harness and improve yields of these highly bioactive compounds.

While many pathway segments of benzylisoquinoline biosynthesis-most

notably the morphinan pathway'-have been completely characterized,

monoterpene indole alkaloid biosynthesis has not been fully elucidated in any

organism. Fully elucidated pathways are more amenable to various engineering

strategies. Moreover, we also have an impetus to study missing pathway steps

because they may possess unique and interesting chemistry. Approximately

three steps are missing in the biosynthesis of secologanin, a direct monoterpene

indole alkaloid precursor in Madagascar periwinkle (Figure 5.1). Chapter 2

chronicles our efforts to discover 10-hydroxygeraniol oxidoreductase activity in

periwinkle (Figure 5.1). This enzyme is positioned at the seat of iridoid

biosynthesis and produces the substrate for the iridoid synthase, which

assembles the characteristic iridoid molecular scaffold.

Despite having an incomplete understanding of monoterpene indole

alkaloid biosynthesis, our lab has demonstrated several successful engineering

strategies for this pathway, most notably the incorporation of halogens.4-6
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Runguphan et al. provides a seminal study on the de novo production of halogenated

alkaloids by introducing prokaryotic genes that code for tryptophan halogenases into

periwinkle, a terrestrial plant.5 This is the first example of de novo combinatorial

biosynthesis in plants. In this study, Runguphan et al. produced 12-chloro-19,20-

dihydroakuammicine 13 at a titer of 25 [tg per gram fresh weight.5 However, because of

the metabolic bottleneck situated at tryptophan decarboxylase (TDC), the plant also

accumulated 7-chlorotryptophan-the RebH/F product-at 50 tig per gram fresh weight

(twice as high as the chlorinated alkaloid titer).5 We posited that the accumulation of 7-

chlorotryptophan-an analog to a canonical, proteinogenic amino acid that is structurally

similar to an auxin growth hormone-caused the slow growth and browning morphology

observed in Runguphan et aI.'s intial study. Therefore, as highlighted in chapter 3, we

explored two strategies to alleviate the metabolic bottleneck: (1) over-expressing

endogenous TDC and (2) reengineering RebH to preferentially chlorinate tryptamine, a

downstream and direct alkaloid precursor, instead of the native substrate L-tryptophan

(Figure 5.2).6 While over-expressing endogenous TDC failed to fracture the metabolic

bottleneck, we successfully circumnavigated the bottleneck by reengineering RebH to

preferentially accept tryptamine (Figure 5.2).6 The tryptamine specific mutant RebH

Y455W along with flavin reductase RebF was incorporated into periwinkle's metabolism,

and we observed de novo production of 12-chloro-19,20-dihydroakuammicine 13. In

contrast to Runguphan et al., no 7-chlorotryptophan was observed when this mutant was

employed, demonstrating its desired substrate selectivity (Figure 5.2).6

Pathways are more amenable to sophisticated engineering strategies (or only

plausible) when the targeted pathway is completely characterized. The morphinan

pathway, whose elucidation was completed in 2010 with the discovered of the two

dioxygenases Codeine O-Demethylase (PsCODM) and Thebaine 6-0-Demethylase
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Figure 5.2: RebH was reengineered to preferentially chlorinate tryptamine 11 instead of
native L-tryptophan. This strategy successfully alleviated the metabolic bottleneck by
circumventing it altogether. Incorporation of this mutant into the MIA metabolism of C.
roseus (Madagascar periwinkle) led to the de novo production of halogenated metabolite
12-chloro-19,20-dihydroakuammicine 13, without the accumulation of 7-
chlorotryptophan, highlighting the reengineered specificity of the enzyme.

(PsT60DM) from Papaver somniferum, is particularly attractive as it produces codeine

and morphine.' The pathway utilizes two separate routes to convert thebaine into

morphine.' Chapter 4 archives our serendipitous discovery of a PsCODM mutant that

would presumably selectively disable one pathway-adventitiously, the pathway

associated with poor licit opium and seed quality-while simultaneously committing

thebaine to the route with more medicinally valuable compounds.7

The PsCODM project began by attempting to switch the regioselectivity of

PsCODM (which selectively demethylates the 3 position of thebaine 18 and codeine 21)

and PsT60DM (which selectively demethyltes the 6 position of thebaine 18 and

oripavine 22). The enzymes' primary structures are highly similar, but sequence analysis

pinpointed five regions of dissimilarity. We hypothesized that mixing-and-matching the

regions of dissimilarity between the two sequences would alter the enzymes'

regioselectivity and, in turn, offer some insight into how regioselectivity is controlled in

this class of enzyme.



PsT60DM mutants were only poorly expressed; therefore, we focused our efforts

on PsCODM mutants. While most of the 16 mutants were inactive for either thebaine or

codeine, one PsCODM mutant (E338G 1340L L341V K342E) selectivity demethylates

codeine. This switch in selectivity does not readily correlate to the selectivities of the

parent enzymes. Nonetheless, this mutant could fulfill a pivotal role in morphinan

pathway reconstitution (Figure 5.3).
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Figure 5.3: PsCODM mutant E338G 1340L L314V K342E selectively demethylates
thebaine 14. This mutant disables route B, which has been associated with poor licit

opium and seed quality and instead commits thebaine 14 to the more medicinally
useful pathway that produces codeine 17 and leads to morphine 20.

II. Future Directions - The Alkaloids and Beyond

Historically, altering metabolic pathways in plants to achieve a given end has

been difficult. Metabolic engineering in plants is still in its infancy and until very recently

has largely been confined to single-gene expression or silencing events in the

background of endogenous plant cell metabolism. The complexity of the plant host's

metabolism has been shown, in many cases, to effectively mute the engineering effort or

lead to unpredictable results (Table 1.1). However, in recent years, a wealth of new

approaches has expanded the capabilities of multi-gene pathway expression in both



plants and microbes and has highlighted our increasing ability to engineer the production

of plant natural products in both plants and heterologous systems. The increase in

available and reliable sequencing and expression data enables the (relatively) facile

discovery of gene, transporter and regulatory elements, the identification of which is

often a prerequisite for multi-step metabolic engineering efforts. The three case studies

described in Chapter 1 (MIAs, BIAs and glucosinolates) exemplify the challenges and

progress in metabolically engineering plant-derived natural products. While we have

made a special effort to highlight the advantages and pitfalls of individual techniques and

efforts throughout this thesis, a number of grand challenges for plant metabolic

engineering remain to be tackled in the coming years.

A. Effective Mining Strategies

Effective mining strategies, such as those employed by Giddings et al.,8 Hagel et

al.,' Winzer et al.,9 Liscombe et al.,10 and Geu-Flores et al.,' are required to sift through

the mounting data of the sequencing age. Hanson et al. provides a recent

comprehensive review of effective mining strategies and phylogenetic analyses.

Traditionally, plant enzyme discovery methods have relied heavily upon time-intensive

reverse genetics based strategies. Bioinformatic techniques that engage co-expression

analyses and comparative metabolite profiling to limit the gene space to be investigated

are greatly accelerating the discovery process in plant systems. Moreover, a suite of

new silencing tools, including VIGS,1 2 RNAi13 and the IL-60 system,14 can provide rapid

insight into the physiological function of plant enzymes.

B. Metabolic Engineering in Native Versus Non-Native Hosts

Many efforts aimed at improving the yield of alkaloids in native hosts have

focused on feeding precursors and over-expressing transcription factors or enzymes



positioned at metabolic bottlenecks. While these efforts often result in modest

improvements to yield (Table 1.1), many are often accompanied by adverse

morphological effects that may significantly stunt the growth of plant and tissue cultures,

highlighting the tight regulation of metabolic processes within highly organized plant cells

and tissues. In native systems especially, the slow growth phenotypes may result from

the depletion of cellular resources used in synthesizing a surfeit of transcripts and

enzymes or from the accumulation of toxic intermediates that negatively impact growth

and development. Engineering in native hosts or heterologous plant species is attractive

because not having to build the starting substrates and supply the co-factors greatly

simplifies engineering efforts. However, with this strategy, maintaining the balance

between primary metabolism and the engineered metabolism-a feat that will likely

improve growth morphologies-is complicated precisely because endogenous primary

metabolite pools are expropriated for the overproduction of selected metabolites. Also,

despite the advantage of minimal gene stacking, the often uncharacterized and

unanticipated complex metabolism and regulatory elements of native systems can lead

to engineering outcomes that are particularly difficult to control and predict. The

industrial scale production of plant natural products will likely require more

comprehensive engineering efforts than single-gene over-expression or silencing events

in the context of native plant hosts. Engineering in faster-growing and "chemically silent"

heterologous hosts may increase biomass accumulation and simplify purification.

C. Controlling Metabolic Flux through New Expression Constructs, Scaffolds and

Tunable Regulatory Elements

The intricate relationship between primary metabolism (i.e. glycolysis, the TCA

cycle) and the native or heterologous secondary metabolism (i.e. isoprenoid and alkaloid

pathways) must be considered. In plants, Park et al. alluded to this interplay by



demonstrating that BBE expression levels vastly affect amino acid levels.15'16 As

metabolic engineering strategies in plants become more sophisticated, we should also

begin to consider flux analyses, taking into account that natural product pathways are

evolutionarily optimized to channel intermediates toward product through a highly

choreographed system of protein-protein interactions, localization and regulation .7 The

overall goal is to maximally channel metabolic resources to the desired products without

over taxing the host system.

Co-localization through scaffolding is a proven way to channel metabolites in E.

coli. These systems attempt to mock natural megasynthases, which efficiently shuttle

metabolites between adjacent active sites. Essentially, scaffolding increases the local

metabolite and enzyme concentrations and effectively lowers the Km of the substrate.

These systems are widely modular and are known to improve titers, alleviate metabolic

bottlenecks and reduce metabolic loads by preventing carbon from exiting the pathway.

Under conditions of low enzyme expression (decreased metabolic load), Dueber et al.

successfully achieved a 77-fold enhancement in mevalonate production by building a

scaffold based on the protein-protein interactions of GBD, SH3 and PDZ domains and

their cognate ligands.18 They built the scaffold on hydroxymethylglutaryl-CoA reductase,

the enzymatic bottleneck of mevalonate production.18 Notably, these scaffolding systems

require that the enzyme at the metabolic bottleneck, the subsequent enzyme and the

substrate be co-localized,18 underscoring why they may be untenable for some highly

compartmentalized systems. Nonetheless, the prospect of engineering metabolons into

plants is exciting.

The effective metabolic engineering of plant natural products will inevitably

require advanced, but easy-to-use, gene stacking techniques. Traditionally, multi-gene

expression in plants has been plagued with inadvertent silencing events, the incomplete

incorporation of all genes and lengthy and technically challenging procedures.19 A



number of new technologies, however, are being developed to assemble and transplant

large fragments of DNA.19 Golden Gate cloning and USER fusion have been used to

clone multiple pathway elements. 1 9,20 Additionally, synthetic plant chromosomes and the

universal expression and silencing IL-60 platform both have the demonstrated capability

of introducing multiple plant pathway elements into plants.1921 For example, under the

transformation-free IL-60 platform, Mozes-Koch et al. expressed an entire bacterial

operon in tomato and produced pyrollinitrin, which they observed after only two days.

A number of RNA-based silencing systems, including RNAi, have also been

engineered and applied to medicinal plants.22 Notably, RNAi, which provides a

permanent pheno- or chemotype, has been employed to block shunt pathways and

channel metabolic resources toward a desired product, enhancing our ability to engineer

in multiple dimensions.22

Lastly, promoter libraries, engineered untranslated regions (i.e. 5' untranslated

regions and intergenic regions), genetic circuit designs and biosensor regulators have

been tremendously helpful in microbial engineering. Applying these design principles to

the metabolic engineering of plants may greatly enrich our efforts to produce valuable

and chemically diverse alkaloids. Notably, a variety of constitutive and inducible plant

promoters and expression systems are now widely available. Synthetic RNA elements,

ribosome binding site elements and a combination of different strength promoters

strategically placed in front of stacked pathway genes could theoretically enable tunable

protein expression.2 24 These elements could potentially limit the expression of toxic

activities or the accumulation of toxic metabolites until the stationary phase (or an

appropriate stage) of growth, thereby absolving the system of unsustainable metabolic

burden.



D. Localization and Transport - Engineering in Multiple Dimensions

Many alkaloid biosynthetic pathways are highly compartmentalized at both the

inter- and intracellular levels. For example, at least three cell types are required for the

biosynthesis of many MIAs.25 The impact that localization has on product yields is not

currently well understood. The forward engineering of plant natural products will require

sifting through the increasing amount of available sequencing and expression data and

untangling the complexity of the plant cell and different tissue types. In addition to the

linear design and channeling of metabolic pathways, the successful metabolic

engineering of plant natural products will require engineering in the "third dimension,"

namely at the level of localization and cell type.

E. Physiological Relevance of Alkaloids

It is not entirely clear what role the alkaloids have evolved to fulfill, though it is

commonly postulated that the alkaloids are defense compounds that protect the plant.

Certainly that is a sensible hypothesis given that most alkaloids exhibit some degree of

bioactivity. This hypothesis could potentially be tested first by studying how generalist

herbivores feed on alkaloid-containing plants versus engineered plants devoid of

alkaloids (e.g. the C. roseus tryptophan decarboxylase RNA interference line).27

Increased feeding on lines devoid of alkaloids would suggest that the alkaloids are plant

defense compounds. Secondly, introducing a non-canonical amino acid or radio-labeled

tag into the plant may permit the direct study of what proteins are expressed in response

to insect feeding. Notably, this strategy may also require that the plant's amino acyl

tRNA synthetases be reengineered to accommodate these non-canonical amino acids.

Therefore, comparative transcriptomic, proteomic and metabolomic analyses may be

cheaper, faster and easier, but potentially less direct. Up-regulation of known alkaloid



biosynthetic enzymes and alkaloid production would strongly implicate alkaloids in plant

defense strategies.

F. Combinatorial Biosynthesis in Plants - Mixing and Matching Pathways and

Engineering New Enzyme Specificities

De novo combinatorial biosynthesis in plant systems has gone largely

underexplored. Most of the few efforts to engineer unnatural natural products have

utilized precursor feeding or mutasynthesis-based approaches, which can be costly and

time intensive., 27 The de novo biosynthesis of unnatural natural products will require

that constituent enzymes have reengineered or broad specificity. Notably, directed

evolution has been successfully used to alter enzyme specificity. However, enzyme-

engineering efforts are greatly enhanced if protein structure is known and the

mechanism is well understood. Then, the enzyme can be subjected to structure-guided

techniques, such as site-directed mutagenesis and domain swapping, which create

smaller protein libraries enriched with functional mutants.

Halogenation-particularly fluorination-is a typical lead editing strategy 28

Despite its value, chemical halogenation often suffers from low regio- and

stereospecificity and is oftentimes non-catalytic. 27 Moreover, these reactions require

harsh, anhydrous reactions conditions.27 Notably, however, Halex reactions can be

performed at room temperature, but still require anhydrous reaction conditions. For

these reasons, enzymatic fluorination is highly attractive as it presumably would require

only the addition of simple salts, and the reaction can be run under aqueous

conditions.27,28 Though fluoride ions are potent nucleophiles, they are tightly solvated by

water, which makes them effectively inert in aqueous media.29 The binding of substrate

SAM in the fluorinase (5'-fluoro-5'-deoxyadenosine synthase) from Streptomyces



cattleya-the only as yet characterized fluorinase-is predicted to desolvate fluoride and

enable fluoride's SN2 displacement of methionine on the SAM substrate.

No nucleophilic aromatic fluorinase has yet been reported. To the best of our

knowledge, no naturally occurring aromatic fluorometabolites have been reported either,

suggesting that the enzymatic repertoire for nucleophilic aromatic fluorination either does

not exist in nature or is very rare. Because of our interest in medicinally useful MIAs, we

include as a future challenge the development of a nucleophilic aromatic fluorinase that

A. Design of Substrate Activated for Nucleophilic Aromatic Fluorination
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Sigma complex demonstrating why electron withdrawing groups should be palced at positions 6 (middle) and 4 (right)
to balance charge

B. Enzymatic Nucleophilic Aromatic Fluorination
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Figure 5.4: A. Design of Substrate Activated for Nucleophilic Aromatic Fluorination.

The Sigma complex suggests that electron withdrawing groups should be placed at

positions 6 and 4, which are ortho and para to position 7, respectively. Position 7 has

been selected as the position of fluorination because RebH-the well-characterized

enzyme we propose to reengineer-regioselectively chlorinates at that position,

though notably through an electrophilic aromatic substitution mechanism. B.

Enzymatic nucleophilic aromatic fluorination mechanism. The first step is

nucleophilic attack followed by a restoration of aromaticity. X represents a good

leaving group whereas A and B represent electron withdrawing groups.



accepts tryptamine 11, a direct MIA precursor. It is likely that if such an enzyme can be

engineered, early engineered versions would require tryptamine analogs strongly

activated for nucleophilic aromatic substitution (Figure 5.4). Therefore, we propose as

one possible strategy the synthesis of a tryptamine analog with a good leaving group at

position 7 (the proposed site of fluoride substitution), and strong electron withdrawing

groups at positions 6 and 4, which are para and ortho to position 7, respectively, to help

distribute the negative charge upon nucleoplhilic attack (Figure 5.4). After synthesizing a

library of activated tryptamine analogs, RebH-a 7-tryptophan chlorinase that operates

via electrophilic aromatic substitution-would need to be reengineered to function

instead via nucleophilic aromatic substitution to accept these substrates. Alternatively,

since the structure and mechanism of 5'-fluoro-5'-deoxyadenosine synthase are known

and relatively well understood, it may be plausible to reengineer this fluorinase to accept

non-native, aromatic substrates.

As we seek further to convert plants and microbes into the chemical factories to

meet our medicinal needs, we should remember that, although many plant natural

products are bioactive and serve as important lead compounds, they often require

modification before making it to the clinic. Therefore, the forward engineering of

"unnatural" or "new-to-nature" natural products must also be a grand challenge if plant

natural products are to be shuttled from the annals of human tradition into the drug

development programs and clinics of tomorrow.
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Appendix A - Chapter 2

Discovery of 1 0-hydroxygeraniol Oxidoreductase Activity in C. roseus

1. Candidate DNA and Protein Sequences - Page 166

II. TLC Controls - Page 172

lil. GC-MS Spectra - Page 174

Candidate 1786 open reading frame sequence from clone

ATGCAGATCATAACTTGCAAGGCTGTGGTGTGCTGGGCGGCCGGAGAGCCACCGGTGGT

TGAGGAGATACTGGTAGAACCTCCGAGGTCAGGCGAAGTCAGGATTAAGATTTTGTTTG

CTAGTCTTTGCCACACTGATGTCCTCGCCTGCAAGGGCTTCCCAACGCCCATGTTTCCT

CGAGTTCTGGGACATGAAGGTGTCGGCGTGGTGGAGTGTGTGGGTGAAGGAGTTTCAGA

ACTGAGAGAGGGAGACGTGGTGATCCCCACATACTTGGGAGAATGCGGAGAATGTGAGA

ATTGTGAGTCAGGAAGAACGAATCTATGCCGAACTTACCCTTTGCAAGCATTCACAGGC

TTAATGCCTGATGGTTCCTCAAGAATGTCTTCCGCCAAAGGAGGGGAAATGTTGTACCA

ATTCCTTAGCTGCTCCACTTGGTCTGAGTATACTGTTATTGACGCCAACTATGCCGTGA

AGATAGACTCCAGAATACCTCTGCCCCATGCTAGCTTCCTTTCTTGCGGCTTCACCACT

GGGTTTGGGGCAACCTGGAAGGAAGCCAAGCTTCAAGAGGGATCCAGCACCGTTGCTGT

TCTGGGTCTTGGGGCAGTTGGACTTGGAGCTGTGGAGGGAGCTCGAGTGCAGGGAGTAA

CTCAAATAATAGGAATAGACATTAACGACAACAAACGTGAGAAAGGAGAAGCCTTCGGA
ATGACTCATTTCATCAACCCCAAAAAAGATAATAATAAATCCATTTCAGAATTAGTTAA

AGAGTTAACAAAAGGACAAGGTGTGGACGTCTGTTTTGAATGCACGGGAGTCCCTGACT

TGGTTAATGAAGCTCTTGAATCCACAAAGATCGGAACAGGAAATATGATAATGCTAGGA

GCAGGAACCCAGAAAAGCATGACCATAAACTTCGTTTCACTATTGGGCTGCAGAACTTT

CAAGTATTCTGTTTTCGGCGGGGTTAAGGTCCAATCCGACCTTCCTCTCATTATTCAGA

AATGCTTAAATAAGGAAATACAGAAAATTGAGCAGCTTTTAACTCATCAAGTTCAACTG

GAAGACATAAATAGAGCCTTTGAGCTGCTTAAGGAACCTGATTGCGTGAAGGTTCTCAT

CACATTGTGA

Candidate 1786 protein sequence

M Q I I T C K A V V C W A AGE PPVVEE I LVEPPRS

G E V R I K I L F A S L C H T D V L A C K G F P T P M F P R

V L G HE G V G VV E CV GE G VS EL RE GD V VIP T Y

LGECGECENCESGR TNL CR TY P LQ AFTGLM

P D G S S R M S S A K G G E M L Y Q F L S C S T W S E Y T V

I D A N Y A V K I D S R I P L P H A S F L S C G F T T G F G

A T W K E A K L Q E G S S T V A V L G L G A V G L G A V E G

A R V Q G V T Q I I G I D I N D N K R E K G E A F G M T H F

I N P K K D N N K S I S E L V K E L T K G Q G V D V C F E C

T G V P D L V N E A L E S T K I G T G N M I M L G A G T Q K

S M T I N F V S L L G C R T F K Y S V F G G V K V Q S D L P
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L I I Q K C L N K E I Q K I E Q L L T H Q V Q L E D I N R A

F E L L K E P D C V K V L I T L Stop

Residues predicted to be involved in zinc binding are shown in red, bolded and
underlined.

Candidate 26 open reading frame sequence from clone

ATGGCCGCCATGGGTACCTCGGAAAAATATGCAGTTGTTACGGGATCAAACAAAGGTAT
TGGATTTGAAACCTGCAAGAAATTGGCTTCTCAAGGGATCACTGTGGTCCTTACTGCTA
GAGATGAAAAAAGAGGGCTCGATGCTCTTGAGAAGCTCAAAGAATTGGGTCTCTCTGGT
AAGGTGCTATTTCATCAGCTTGATGTGACCGATTCATCCAGCGTTGCTTCCCTTGCAGA
ATTTGTCAAGAAACAATTTGGAAGACTTGATATCTTGGTAAACAATGCAGGGGTTAATG
GAGTGATTACTGATGTTGAAGCTGTGAAAAAGCTAAATCCTGCAGAAGATCCGGCCGAT
GTCGACTTTAGCAAGATATACAAGGAAACATATGAGTTGGCTGAAGAATGCATTCAAAT
TAACTACTTTGGAACAAAAAGAACCACTGATGCACTTCTTCCTCTTCTCCAATTATCTG
CATCACCAAGAATCGTAAATATTTCCTCCATCATGGGACAGTTAAAGAACATACCAAGT
GAATGGGCTAAAGGAATCCTGGGAGATGCTAGCAACCTCACAGAAGATAGATTGGATGA
GGTGATCAATAACTTCTTGAAGGACTTCAAGGAAGGATCCCTTGCAGCTAAGGGATGGC
CTCCATCCTTTTCAGCTTATATAGTCTCAAAAGTTGTGGTGAATGCCTACACAAGAATT
CTGGCCAAGAAGTATCCCAATTTCAAGATCAATTGTGTTTGTCCAGGGTTTGCCAAGAC
AGATTTGAATCATGGCTTAGGCTTATTAACTGCAGAAGAAGCTGCTGAAAACCCTGTGA
AACTCGCTTTGCTGCCTGATGATGGTCCTTCGGGTTTGTTCTTTGATCGCAGCGAGGAG
TCATCGTTTGAATGA

Candidate 26 protein sequence

M A A M G T S E K Y A V V T G S N K G I G F E T C K K L A S

Q G I T V V L T A R D E K R G L D A L E K L K E L G L S G K

V L F H Q L D V T D S S S V A S L A E F V K K Q F G R L D I

L V N N A G V N G V I T D V E A V K K L N P A E D P A D V D

F S K I Y K E T Y E L A E E C I Q I N Y F G T K R T T D A L

L P L L Q L S A S P R I V N I S S I M G Q L K N I P S E W A

K G I L G D A S N L T E D R L D E V I N N F L K D F K E G S

L A A K G W P P S F S A Y I V S K V V V N A Y T R I L A K K

Y P N F K I N C V C P G F A K T D L N H G L G L L T A E E A

A E N P V K L A L L P D D G P S G L F F D R S E E S S F E

Stop

Candidate 4319 open reading frame sequence from clone

ATGGCCAGAAAATCACCAGAAGATGAACATCCCGTGAAGGCTTACGGATGGGCCGTCAA
AGATGGAACAACTGGAATTCTTTCTCCCTTCAAATTTTCCATAAGGGCAACAGGTGATA
ATGATGTTCGAATCAAGATCCTCTATTGTGGAGTTTGTCGTACCGATCTTGCGGCAACC
AAGAACGCATTCGGGTTTCTTTCTTATCCTCTTGTGCCTGGTAGAGAGATCGTGGGAAT
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AGTGAGCGAGATAGGGAAAAATGTGAAAAAAGTTAAAGTTGGAGAAAAAGTTGGAGTAG

CCCCGCATGTGGGTAGCTGTGGCAAATGCAAGAGTTGTGTGAATGAGGTGGAGAATTTC

TGTCCGAAACTGATCATCCCTTATGGCACCCCATACCACGATGGTACTATTTGCTACGG

TGGTTTCTCCAACGAGACTGTCAGAGATGAACGCTTTGTTTTTCGTTTTCCTGAAAATC

TTTCGCTGCCTGGCGGAGCTCCCTTGGTTAGTGCTGGGGTTACCACGTACGGTGCATTG

AGAAATAATGGCCTCGACAAGCCCGGATTACACGTGGGAGTCGTCGGTCTAGGTGGACT

AGGTCATCTGGCTGTTAAATTTGCTAAGGCTTTAGGCGTCAAAGTAACTGTTATTAGTA

CCAATCCTAGCAAGGAGCATGATGCTATAAATGGTTTCGGTGCTGATGCCTTCATCCTC

ACCCACCATGAGGAACAAATGAAGGCTGCCATGGGAACTTTAGATGGAATTCTTTATAC

AGTGCCTGTTGTTCATGCCATTGCACCATTACTTAGTCTACTGGGAAGTCAAGGGAAAT

TTGTGTTGATTGGGGCACCATCTCAATTACTTGAGGTGCCACCTATTCAATTATTATTT

GGTGGAAAATCTATTATTGGAAGTGCGGCTGGAAATGTGAAGCAAATCCAAGAAATGCT

TGAATTTGCAGCAAAACATGATATAATTGCGAATGTTGAGATTATCCAAATGGATTATA

TAAATACTGCAATGGAACGTCTAGACAAAGGTGATGTTAGATATCGATTTGTAATTGAT

ATCGAAAACTCTCTCACTCTTCCATCAGAGGTGTGA

Candidate 4319 protein sequence

MARKS PE DEHPVK A Y G W A V K D G T T G I L S P F

K F S I R A T G D N D V R I K I L Y C G V C R T D L A A T K

N A F G F L S Y P L V P G R E I V G I V S E I G K N V K K V

K V G E K V G V A P H V G S C G K C K S C V N E V E N F C P

K L I I P Y G T P Y H D G T I C Y G G F S N E T V R D E R F

V F R F P E N L S L P G G A P L V S A G V T T Y G A L R N N

G L D K P G L H V G V V G L G G L G H L A V K F A K A L G V

K V T V I S T N P S K E H D A I N G F G A D A F I L T H H E

E Q M K A A M G T L D G I L Y T V P V V H A I A P L L S L L

G S Q G K F V L I G A P S Q L L E V P P I Q L L F G G K S I

I G S A A G N V K Q I Q E M L E F A A K H D I I A N V E I I

Q M D Y I N T A M E R L D K G D V R Y R F V I D I E N S L T

L P S E V Stop

Candidate 5743 open reading frame sequence from clone

ATGACCAAGACCAATTCCCCTGCTCCTTCTGTCATCACTTGCAAAGCTGCTGTGGTATG

GAAATCAGGGGAGCCACCAAAGGTGGAAGAGATACAAGTTGATCCACCAAAGGCCTCAG

AAGTTAGGATTAAGATGCTTTGTGCCAGTTTGTGCCACACTGATTTCCTTGCCTGCAAT

GGCCTTCCTGTTCCATTGTTCCCTCGCATTCCTGGACACGAAGGAGTCGGAATGATCGA

GAGCGTTGGAGAAAATGTTACGAACCTAAAAGAAGGAGACATAGTGATGCCACTTTACT

TGGGAGAATGTGGGGAATGCTTGAATTGCAAATCAGGAAGGACAAATTTGTGCCACAAA

TATCCTTTAGGTTTTAGTGGATTATTGCTTGATGGAACATCAAGAATGTCAATTGGAGA

GCAAAAAGTATATCACCATTTCAGCTGTTCGACATGGTCAGAGTATATAGTGATTGAAG

CAGCTTATGCAGTGAAGGTAGATCCAAGGGTTTCTCTTCCACATGCTAGCTTTCTTTGC

TGTGGATTCACCACTGGTTTTGGTGCTACTTGGAGAGATGTCAATGTTGTCAAGGGCTC

TACTGTGGCTGTTCTAGGCCTTGGTGCTGTTGGACTTGGGGCTGTGCAAGGAGCTAAAT

CACAAGGAGCATCAAGAATTATAGGTTTGGATATCAACGACAAGAAACGTGAAAAGGGA

GAAGCATTTGGAATGACTGAATTTATAAATCCAAAAGGTTCAAACAAATCAATTTCTGA
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ACTAATAAATGAAGCAACTGGTGGATTAGGACTTGACTATGTCTACGAATGCACTGGAG

TTCCAGCTTTACTCAATGAAGCCATTGAATCCTCTAAAGTGGGACTTGGAACTGCAGTA

TTGATTGGGGCAGGACTTGAAACAAGTGGAGAAATCAAATTCATTCCTCTTCTGTGTGG

TAGAACTGTTAAAGGTTCAATTTATGGTGGAGTAAGACCTAAATCAGACCTCCCCACTT

TAATTGAAAAGTGCATAAACAAGGAAATTCCAATGGATGAACTAATGACTCATGAAGTT

TCATTGTCTGAGATAAACAAAGGATTTGAGTACCTTAAGCATCCTGATTGTGTCAAAGT

TGTTATCAAGTTCTAA

Candidate 5743 protein sequence

M T K T N S P A P S V I T C K A A V V W K S G E P P K V E E
IQ VDP PKASEVRIKML CASL CH TDFL ACNG
L P V P L F P R I P G H E G V G M I E S V G E N V T N L K E
GD I VMP L Y L GE C GE CL N C K S G R TN L C HK Y P

L G F S G L L L D G T S R M S I G E Q K V Y H H F S C S T W

S E Y I V I E A A Y A V K V D P R V S L P H A S F L C C G F
T T G F G A T W R D V N V V K G S T V A V L G L G A V G L G
A V Q G A K S Q G A S R I I G L D I N D K K R E K G E A F G
M T E F I N P K G S N K S I S E L I N E A T G G L G L D Y V
Y E C T G V P A L L N E A I E S S K V G L G T A V L I G A G
L E T S G E I K F I P L L C G R T V K G S I Y G G V R P K S
D L P T L I E K C I N K E I P M D E L M T H E V S L S E I N
K G F E Y L K H P D C V K V V I K F Stop

Residues predicted to be involved in zinc-binding are shown in red, bolded and
underlined.

Candidate 7220 open reading frame from clone

ATGGAGATTAATGTTGAAGTTGCTCCAGTAAGGTATGCAGTCGTTACTGGAGCAAACAA

GGGCATTGGTCTTGAGACTGTCCAACAGCTAGCAGCCTCAGGTGTGACTGTCGTGTTAA

CAGCTCGAAATGAGAAGAGAGGCATGGAGGCCACTTCTTTGCTGCATGAATCAGGTTTG

TCAAATGTAATTTTCCATCAGCTTGATGTTCAAGACAAAGAAAGCATCAAATCATTGGC

CGAGTTTATACAAAAAGAGTTTGGAAGACTTGACATTTTGGTAAATAATGCCGGTGCTT

CAGGAGTGGCAGTTGACAAAGATGGACTAAGGGCCTTAAATATAGACACTGCATCTTGG

TTAGCCGGAAAGGTTGTTAATGTGGTAGCTGATGTAATCAAAACTACATATGAAAAAGC

CAAAGAATGTCTGGAGACCAACTATTATGGTGTTAAGGATGTAACCGAAGCTCTTCTTC

CACTGCTGCAACTTTCAACTTCAGGAGCAAGGATTGTAAACGTCTCTTCTCTAAGGAGT

GAATTAAGTAGGATCCCTAACGAGCAAAGAAGAAAAGTACTAGCGGATATTGAGACTCT

AACAGAAAACAAAATCAATGAGATTCTTCAACAGTTTTTGCATGATCTGAAGCATGATG

CTTTAGAAGCAAACGGATGGCAAAAGATGTTGCCGGCCTACAGCATATCAAAAGCAACA

CTTAATGCTTATACAAGAATTCTTGCAAAGAAGTATCCTCATATGTGTATAAACTGTGT

TCATCCGGGATATGTTAACACAGACATCAATTGGCATACAGGACCATTGCCGGTGGAAG

AGGGAGCTGCCGGACCTGTTATGCTGGCTCTTCTACCAGAAGGAGGTCCTACTGGTTGC

TACTTTGATCAGACAAAACTATCCGAGTTTTGA

Candidate 7220 protein sequence
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M E I N V E V A P V R Y A V V T G A N K G I G L E T V Q Q L

A A S G V T V V L T A R N E K R G M E A T S L L H E S G L S

N V I F H Q L D V Q D K E S I K S L A E F I Q K E F G R L D

I L V N N A G A S G V A V D K D G L R A L N I D T A S W L A

G K V V N V V A D V I K T T Y E K A K E C L E T N Y Y G V K

DV TE AL L P L L Q L ST S GA RI VN V S S L R SE L S

R I P N E Q R R K V L A D I E T L T E N K I N E I L Q Q F L

H D L K H D A L E A N G W Q K M L P A Y S I S K A T L N A Y

T R I L A K K Y P H M C I N C V H P G Y V N T D I N W H T G

P L P V E E G A A G P V M L A L L P E G G P T G C Y F D Q T

K L S E F Stop

Candidate 8694 open reading frame from clone

ATGACGTCGTCATCCTCGCCGTCGCCGTCGCCGTTGAAGGGAAAAGCTGTGGATAAAGA
CGGCGATCACAAGGTGAAGAAGAAAGAGGCATTAGGATGGATGGAGTGGCTTAGAGGAT

GGATGTATATAGTGTACGAAATGCTGTTCCAGCGGATCATGGCCAGTCATTTATCTAAT
CCAATGCCTCTTCCGCCTCTGAATGAGCTTACTTTTGTAGTCACCGGCTCCACCAGCGG

TATTGGCCGCGAAATCGCCCGTCAATTGGCAGAGTCCGGCGGGCACGTGATAATGGCTG

TTAGAAATACCAAGGCAGCTAATGAATTAATTCGCAAATGGCAAGAGGAATGGTCTGGT

CGCGGACTACCTCTTAATATTGAGGTGATGGAGCTGGATCTTCTATCATTGGATTCGGT

TGTGAGATTTGCTGAGGCATTTAACGCACGTTCCGGACCTTTGAATGTGCTCATTAACA

ATGCTGGCATATTTTCAATCGGAGAACCACAGAGGTTTTCAAAGGATGGTTATGAAGAA

CACCTGCAAGTGAATCATCTAGCTCCAGCACTGTTGTCTATATTGCTCTTACCTTCTCT

TATTAGAGGCTCTCCAAGCCGAATAGTTAATGTGAACTCTATAATGCATTATGTTGGAT

TTGTTGATACGGAAGATATGAATGTTACATCTGGGAGAAGAAAGTACAGCAGTTTAGTT

GGATACTCTGGCAGCAAACTGGCAGAGGTGATGTTCAGTAGTGTCCTGCACAAACGGCT

GCCTGCCGAATCTGGCATAAGTGTACTATGCGTATCGCCTGGAATAGTACACACAAATG

TGGCTAGGGATCTTTCAAAAATTGTTCAAGCTGCTTATCATCTAATTCCCTATTTTATT

TTTAGTCCTGAAGAAGGCTCTAGAAGCGCACTTTTTGCAGCTACAGATCCACAAGTTCC

GGAGTACACTGAGATGTTAAAAGCAGATGAGTGGCCAGTTTGTGCTTTCATATCTCAAG
ATTGCCGTCCAACAAATCCATCTGAAGAAGCACATAATGTTGAAACTTCTTACAAAGTC

TGGGAGAAGACCTTGGAAATGGTTGGACTTCCATCAGATGTTGTGGAGAAGCTTATAGA

AGGGGAAGAAGTTAAATGCAGATATGGGGCTTCTCAAGAGTAA

Candidate 8694 protein sequence

M T S S S S P S P S P L K G K A V D K D G D H K V K K K E A

L G W M E W L R G W M Y I V Y E M L F Q R I M A S H L S N P

M P L P P L N E L T F V V T G S T S G I G R E I A R Q L A E

S G G H V I M A V R N T K A A N E L I R K W Q E E W S G R G

L P L N I E V M E L D L L S L D S V V R F A E A F N A R S G

P L N V L I N N A G I F S I G E P Q R F S K D G Y E E H L Q

V N H L A P A L L S I L L L P S L I R G S P S R I V N V N S

I M H Y V G F V D T E D M N V T S G R R K Y S S L V G Y S G

S K L A E V M F S S V L H K R L P A E S G I S V L C V S P G

I V H T N V A R D L S K I V Q A A Y H L I P Y F I F S P E E

G S R S A L F A A T D P Q V P E Y T E M L K A D E W P V C A
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F I S Q D C R P T N P S E E A H N V E T S Y K V W E K T L E

M V G L P S D V V E K L I E G E E V K C R Y G A S Q E Stop

Candidate 2041 open reading frame from clone

ATGGGATACTACCATTATTATATTAGACAACCACTCACCACTGACCAATTGGTTTTATC

TCTTCCTTCTATAATGGCAGTTCCATCGGCAGAAACAGCAAAGACAATCGAGGCCTATG

GATGGGCAGCCAGAGACTCATCTGGGCTTCTCTCTCCCTTCAAGTTCCAGAGACGGGCC

ACAACGGAGCATGATGTCCAGCTCAAAATATTGTATTGTGGGATGTGCGATTGGGATCT

ACATGTAGTCAAGAATTGGTTTGGCACCACCAACTATCCCATTGTACCTGGGCACGAGG

CAGTGGGCGTGGTGACTGAAATCGGCAACAAGGTACAGAAATTCAAGATTGGGGACATA

GTAGGCGTTAGTACTTACATTCGAACATGTCGGAGCTGCGAGAGATGTAAAGAAGGTGA

AGACAGTTACTGTCCCAGCTTAATAACAGGAGATGGAACTTCATTTAGTGATGGAAAAG

ATGCATTTTTCTATGATCCAAATGATGATAATACAAAAGAGACAACAAAAACATATGGC

TCATATTCCAATTTCACAGTTGTGGATGAATATTACGTTATTCGTTGGCCAGAAAACTT

TCCTTTGGCTGCTGGAGTACCTCTTCTTTGTGCTGGTACAGTTCCTTATAGTCCAATGA

GGCACTTTGGATTTGATAAACCTGGAATTCATATTGGTGTGGTTGGATTTGGTGGGATT

GGCAAATTAGTTGTTAAATTTGCTAAGGCTTTTGGAGTTAAAGTAACAGTGATTAGTAC

CTCCATTGATAAGAAGCATGAAGCTATTCATGAATATGGTGCTCATGGATTCTTACTCA

GCAAAGAACCTCAGCAGCTTCAGGCTGCTATTAATACTATGGAAGGTATAGTTGATACA

GTTCCTAAAGTTCACCCTATTCTTCCATTGATCAAATTGTTGAAATTCGATGGTACCCT

TCTTATGCTCGGAGCACCGCCGGAGCCATATGAGTTTCCAATCTCCACATTGCTTATGG

GGAGGAAGAGGGTGGTGGGAAGTGCTGGAGCGAGCATGAAGGAAACACAAGAAATGATG

GATTTTGCAGCGAAGCACAACATAGTTGCAGATGTTGAATTAAACCTCAGCAAGCTTGC

GGCCGCACTCGAGCACCACCACCACCAACCACTGAGATCCGGCTGCTAA

Candidate 2041 protein sequence

M G Y Y H Y Y I R Q P L T T D Q L V L S L P S I M A V P S A

E T A K T I E A Y G W A A R D S S G L L S P F K F Q R R A T

T E H D V Q L K I L Y C G M C D W D L H V V K N W F G T T N

Y P I V P G H E A V G V V T E I G N K V Q K F K I G D I V G

V S T Y I R T C R S C E R C K E G E D S Y C P S L I T G D G

T S F S D G K D A F F Y D P N D D N T K E T T K T Y G S Y S

N F T V V D E Y Y V I R W P E N F P L A A G V P L L C A G T

V P Y S P M R H F G F D K P G I H I G V V G F G G I G K L V

V K F A K A F G V K V T V I S T S I D K K H E A I H E Y G A

H G F L L S K E P Q Q L Q A A I N T M E G I V D T V P K V H

P I L P L I K L L K F D G T L L M L G A P P E P Y E F P I S

T L L M G R K R V V G S A G A S M K E T Q E M M D F A A K H

N I V A D V E L N L S K L A A A L E H H H H Q P L R S G C

Stop
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0 Substrate

Hexanes: EtOAc (1:1)

Figure A.1 - No NAD(P)+ and no enzyme controls. No product formation is
observed when either enzyme or NAD(P)+ is missing from the assay mixture.

Candidates

Product

Substrate

Hexanes: EtOAc (1:1)

Figure A.2 - No zinc controls. Product formation is still observed when zinc is
omitted from the reaction, suggesting zinc binds during protein folding.
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Product

4- Substrate

Hexanes: EtOAc (1:1)

Figure A.3 - Chelator controls. 1 mM EDTA was added to the assay mixture and
zinc was omitted. Product formation is only quelled with the Candidate 1786-
NADP+ assay, suggesting the zinc binds less tightly under those conditions.

Candidates

Substrate

Hexanes: EtOAc (1:1)

Figure A.4: Authentic standard of 10-hydroxygeraniol oxidoreductase substrate
10-hydroxygeraniol 8.
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Figure A.5: GC-MS chromatogram of 10-hydroxygeraniol authentic standard. 10-hydroxgeraniol is the substrate
for 10-hydroxygeraniol oxidoreductase.
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Figure A.6: Mass spectrum of 10-hydroxygeraniol authentic standard.
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Figure A.7: GC-MS chromatogram of 10-oxogeranial authentic standard. 10-oxogeranial is the enzymatic product of 10-
hydroxygeraniol oxidoreductase.
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Figure A.8: Mass spectrum of 10-oxogeranial authentic standard.
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Figure A.9: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 1786 and

cofactor NAD+. The peak that co-elutes with the authentic 10-oxogeranial standard is highlighted in purple.
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Figure A.10: Mass spectrum of highlighted peak from Candidate 1786
spectrum of authentic 10-oxogeranial enables positive assignment.

and cofactor NAD+ assay. Similarity to the mass
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Figure A.11: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 1786 and

cofactor NAD+ without the addition of ZnCl2 to the assay mixture. The peak that co-elutes with the authentic 10-
oxogeranial standard is highlighted in purple.
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Figure A.12: Mass spectrum of highlighted peak from Candidate 1786 and cofactor NAD+ assay when ZnCl2 is omitted from
the assay mixture. Similarity to the mass spectrum of authentic 10-oxogeranial enables positive assignment
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Figure A.13: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 1786 and
cofactor NAD+ when EDTA to a final concentration of 1 mM was added to the reaction mixture and ZnCl2 was omitted.
The peak that co-elutes with the authentic 10-oxogeranial standard is highlighted in purple.
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Figure A.14: Mass spectrum of highlighted peak from Candidate 1786 and cofactor NAD+ assay when EDTA is
added to a final concentration of 1 mM in the assay mixture and ZnCl2 is omitted. Similarity to the mass spectrum
of authentic 10-oxogeranial enables positive assignment.
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Figure A.15: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 1786 and
cofactor NADP+. The peak that co-elutes with the authentic 10-oxogeranial standard is highlighted in purple.
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Figure A.16: Mass spectrum of highlighted peak from Candidate 1786 and cofactor NADP+ assay. Similarity to the
mass spectrum of authentic 10-oxogeranial enables positive assignment.
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Figure A.17: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 1786 and
cofactor NADP+ without the addition of ZnCl2 to the assay mixture. The peak that co-elutes with the authentic 10-
oxogeranial standard is highlighted in purple.



Jill11111~ i

Candidate 1786 - NADP
No ZnCl2 control

(highlighted peak)

102

02V

IS 0 10-oxogeranial
in -Ac- AS le

M/z

Figure A.18: Mass spectrum of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 1786+ and cofactor
NAD when ZnCl2 was omitted from the reaction. The peak that co-elutes with the authentic 10-oxogeranial standard is
highlighted in purple.
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Figure A.19: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screening with Candidate 1786 and

cofactor NADP+ when EDTA to a final concentration of 1 mM was added to the reaction mixture and ZnCI2 was omitted. The

peak that co-elutes with the authentic 10-oxogeranial standard is highlighted in purple.
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Figure A.20: Mass spectrum of highlighted peak from Candidate 1786 and cofactor NAD+ assay when EDTA is added to
a final concentration of 1 mM and ZnCl2 is omitted. Similarity to the mass spectrum of authentic 10-hydroxygeraniol
enables positive assignment as starting substrate, not product.
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Figure A.21: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 1786 in the absence of
either NAD+ or NADP+. No peak co-elutes with the authentic 10-oxogeranial standard; the region of 10-oxogeranial elution is
highlighted in purple.
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Figure A.22: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 26 and
cofactor NAD+. No peak co-elutes with the authentic 10-oxogeranial standard; the region of 10-oxogeranial elution is
highlighted in purple.
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Figure A.23: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 26 and cofactor

NADP+. The peak that co-elutes with the authentic 10-oxogeranial standard is highlighted in purple.

^ 14

11"vVic it 0 low I'M

I

MOMMOMMO " OR - - - - - -Ila ills if -V



0

-4

I

I

II 63 II01

12

740

4 3 ~
7

U?

I

Candidate 26 - NADP
(highlighted peak)

1.1 ItI

1092

111062i T i~

14. 14.

10

1O-owvgeranial
1V2

02

M/z

Figure A.24: Mass spectrum of highlighted peak from Candidate 1786 and cofactor NADP+ assay. Similarity to the
mass spectrum of authentic 10-oxogeranial enables positive assignment.
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Figure A.25: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 26 and cofactor
NADP+ without the addition of ZnCl2 to the assay mixture. The peak that co-elutes with the authentic 10-oxogeranial standard
is highlighted in purple.
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Figure A.26: Mass spectrum of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 26 and cofactor NADP+
when ZnCl2 was omitted from the assay mixture. Similarity to the mass spectrum of authentic 10-oxogeranial enables positive
assignment.
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Figure A.27: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 26 and cofactor
NADP+ when EDTA to a final concentration of 1 mM was added to the reaction mixture and ZnCl2 was omitted. The peak
that co-elutes with the authentic 10-oxogeranial standard is highlighted in purple.
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Figure A.28: Mass spectrum of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 26 and cofactor

NADP+ when ZnCl2 was omitted from the assay mixture. Similarity to the mass spectrum of authentic 10-
oxogeranial enables positive assignment.
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Figure A.29: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 26 in
the absence of either NAD+ or NADP+. No peak co-elutes with the authentic 10-oxogeranial standard; the region
of 10-oxogeranial elution is highlighted in purple.
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Figure A.30: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 4319 and

cofactor NAD+. No peak co-elutes with the authentic 10-oxogeranial standard; the region of 10-oxogeranial elution is

highlighted in purple.
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Figure A.31: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 4319 and
cofactor NADP+. No peak co-elutes with the authentic 10-oxogeranial standard; the region of 10-oxogeranial elution is
highlighted in purple.
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Figure A.32: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 5743 and

cofactor NAD+. The peak that co-elutes with the authentic 10-oxogeranial standard is highlighted in purple.
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Figure A.33: Mass spectrum of highlighted peak from Candidate 5743 and cofactor NADP+ assay. Similarity to the mass

spectrum of authentic 10-oxogeranial enables positive assignment.
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Figure A.34: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 5743 and

cofactor NAD+ without the addition of ZnCl2 to the assay mixture. The peak that co-elutes with the authentic 10-
oxogeranial standard is highlighted in purple.
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Figure A.35: Mass spectrum of highlighted peak from Candidate 5743 and cofactor NAD+ assay when ZnCl2 is
omitted from the assay mixture. Similarity to the mass spectrum of authentic 10-oxogeranial enables positive
assignment.
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Figure A.36: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 5743 and

cofactor NAD+ when EDTA is added to a final concentration of 1 mM and ZnCl2 is omitted from assay mixture. The peak that

co-elutes with the authentic 10-oxogeranial standard is highlighted in purple.
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Figure A.37: Mass spectrum of highlighted peak from Candidate 5743 and cofactor NAD+ assay when EDTA is added to a

final concentration of 1 mM and ZnCl2 is omitted from the assay mixture. Similarity to the mass spectrum of authentic 10-

oxogeranial enables positive assignment.
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Figure A.38: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 5743 and
cofactor NADP+. The peak that co-elutes with the authentic 10-oxogeranial standard is highlighted in purple.
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Figure A.39: Mass spectrum of highlighted peak from Candidate 5743 and cofactor NADP+ assay. Similarity to the mass
spectrum of authentic 10-oxogeranial enables positive assignment.

00CU

0 10-oxogeranial

@12

1111

I

I

772

~M1 h ~11
1 P2 11
lii I I a

11iI

M/z

- 9-A , -

IV2

I
1 4 - 165 ift Ih I k , IJS , 1:1 - lis tk



U,

U

C

MUM

Candidate 5743 - NADP
No ZCl2 control

low" te

Time (min)

Figure A.40: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 5743 and
cofactor NADP+ when ZnC12 is omitted from the assay mixture. The peak that co-elutes with the authentic 10-
oxogeranial standard is highlighted in purple.
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Figure A.41: Mass spectrum of highlighted peak from Candidate 5743 and cofactor NADP+ assay when ZnC12 is omitted
from the assay mixture. Similarity to the mass spectrum of authentic 10-oxogeranial enables positive assignment.
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Figure A.42: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 5743 and

cofactor NADP+ when EDTA is added to a final assay concentration of 1 mM and ZnCI2 is omited. The peak that co-elutes

with the authentic 10-oxogeranial standard is highlighted in purple.
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Figure A.43: Mass spectrum of highlighted peak from Candidate 5743 and cofactor NADP+ assay when EDTA is added to
the assay mixture to a final concentration of 1 mM and ZnCl2 is omitted. Similarity to the mass spectrum of authentic 10-
oxoeeranial enables nositive assignment.
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Figure A.44: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 5743 in the
absence of either NAD+ or NADP+. No peak co-elutes with the authentic 10-oxogeranial standard; the region of 10-
oxogeranial elution is highlighted in purple.
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Figure A.45: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screen with Candidate 7220 and
cofactor NAD+. No peak co-elutes with the authentic 10-oxogeranial standard; the region of 10-oxogeranial elution is
highlighted in purple.
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Figure A.46: GC-MS chromatogram of 10-hydroxygeraniol oxidoreductase candidate screening with Candidate 7220 and
cofactor NADP+. The peak that co-elutes with the authentic 10-oxogeranial standard is highlighted in purple.
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Figure A.47: Mass spectrum of highlighted peak from Candidate 7220 and cofactor NADP+ assay. Similarity to the
mass spectrum of authentic 10-hydroxygeraniol enables positive assignment as starting substrate, not product.
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Figure A.48: No enzyme control with NAD+ cofactor. No 10-oxogeranial product is observed. The single peak shown

co-elutes with substrate 10-hydroxygeraniol.
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Figure A.49: Mass spectrum of no enzyme control with cofactor NAD+. Averaging of the single peak in the GC-MS
chromatogram displays a mass spectrum signature consistent with 10-hydroxgeraniol, the substrate.
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Figure A.50: No enzyme control with NADP+ cofactor. No 10-oxogeranial product is observed. The single peak
shown co-elutes with substrate 10-hydroxygeraniol.
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Figure A.51: Mass spectrum of no enzyme control with cofactor NADP+. Averaging of the single peak in the GC-MS
chromatogram displays a mass spectrum signature consistent with 10-hydroxgeraniol, the substrate.
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Weslee S. Glenn
The John Innes Centre
Department of Biological Chemistry
Norwich, UK NR4 7UH

Phone: +44 07909 024 014
E-Mail: wsglenn@mit.edu

Education

2011-present

2008-present

2004-2008

The John Innes Centre, Norwich, UK
Visiting Postgraduate Student, Department of Biological Chemistry
Laboratory of Professor Sarah E. O'Connor
Massachusetts Institute of Technology, Cambridge, MA
Ph.D. Candidate in Biological Chemistry, Department of Chemistry
National Science Foundation Predoctoral Scholar (2010-13)
Hampton University, Hampton, VA
Bachelor of Science in Chemistry, 2008 - Summa cum laude
Honors College, 2008 - Summa cum laude
Cumulative GPA: 4.01 GPA in major: 4.06
(A+= 4.1, A = 4.0)
National Science Foundation - Historically Black College Undergraduate
Program Scholar (2005-2008)
Presidential Scholar (2004-2008)

Research Experience

1/2009-present

6/2008-7/2008

6/2007-8/2007

1/2007-5/2007

6/2006-8/2006

9/2005-5/2007

Laboratory of Professor Sarah E. O'Connor
The John Innes Institute, Department of Biological Chemistry
Massachusetts Institute of Technology, Department of Chemistry
Metabolic engineering ofplant alkaloid metabolism
Laboratory of Professor Shanthi Paranawithana
Hampton University, Department of Chemistry
Gene expression and activity assay development of a putative
transcriptional regulator in Mycobacterium tuberculosis
Laboratory of Professor Sarah E. O'Connor
Massachusetts Institute of Technology, Department of Chemistry
Substrate specificity of Tabersonine 16-Hydroxylase from C. roseus
Laboratory of Professor Edmund Ndip
Hampton University, Department of Chemistry
Computational research on two photon absorbers - optical switching
Laboratory of Robert H. Grubbs
California Institute of Technology, Division of Chemistry and Chemical
Engineering
Development of a more active and stable ruthenium catalyst for
tetrasubstituted olefin formation
Laboratory of Professor Charles Bump
Hampton University, Department of Chemistry
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Toward the development of a morphing wing - computational research on
piezoelectric polymers and smart materials

Publications

Recent Progress in the Metabolic Engineering of Alkaloids in Plant
Systems
Weslee S. Glennt, Weerawat Runguphant and Sarah E. O'Connor (t -
equal authorship)
Current Opinion in Biotechnology, 2013, 24(2), pp. 354-65.
An Alternative Route to Cyclic Terpenes by Reductive Cyclization in
Iridoid Biosynthesis
Fernando Geu-Flores, Nathaniel H. Sherden, Vincent Courdavault,
Vincent Burlat, Weslee S. Glenn, Cen Wu, Ezekiel Nims, Yuehua Cui
and Sarah E. O'Connor
Nature, 2012, 492(7427), pp. 138-42.
Redesign of a Dioxygenase in Morphine Biosynthesis
Weerawat Runguphant, Weslee Glennt and Sarah E. O'Connor (t - equal
authorship)
Chemistry and Biology, 2012, 19, pp. 674-678
Reengineering a Tryptophan Halogenase to Chlorinate a Direct
Alkaloid Precursor
Weslee S. Glenn, Ezekiel Nims and Sarah E. O'Connor
Journal of the American Chemical Society, 2011, 133 (48), pp. 19346-
19349

Research and Academic Grants

Massachusetts Institute of Technology

9/2010-9/2013
5/2010-8/2010
9/2009- 5/2010
9/2008-5/2009
9/2008-5/2009

National Science Foundation Predoctoral Fellowship (bioorganic)
Walter L. Hughes Graduate Fellowship in Biochemistry
Henry A. Hill Fellowship
Chemistry/ Biology Interface Program Training Grant
Institute Fellowship

Hampton University

5/2005-5/2008

9/2004-5/2008

Historically Black College/ University Undergraduate Program
Scholarship (sponsored by the National Science Foundation)
Presidential Scholarship (Full tuition, room and board)
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Other Awards

Massachusetts Institute of Technology and the John Innes Centre

3/2012 Friends of John Innes Outreach presentation voted "Most worthy of
additional funding"
Getting Plants to Make Medicines

2/2011 Massachusetts Institute of Technology Martin Luther King, Jr.
Leadership Award
(awarded for work on reducing stereotype threat in the science
classroom)

Hampton University

5/2008 Chemistry Excellence in Service Award
5/2008 Merck Index Excellence in Undergraduate Chemistry Award
5/2008 School of Science flag bearer for 2008 Commencement Exercises
4/2008 All-Virginia Collegiate Honors Council Poster Award Winner
4/2008 Honors Council Award 2008 - Chemistry
4/2008 Honors Council Award 2008 - Honors College
12/2007 ACS Award for Achievement in Physical Chemistry
12/2006 Beta Kappa Chi Scientific Honor Society Inductee
12/2006 ACS Award for Achievement in Organic Chemistry
11/2006 Golden Key International Honour Society Inductee
10/2006 Alpha Kappa Mu Honors Society Inductee
3/2006 "Future Nobel Prize Nominee - Chemistry" 2006 Honors Council

Award
12/2005 ACS Award for Freshman Achievement in Chemistry

Professional Activities

Massachusetts Institute of Technology and the John Innes Centre

3/2012-present

6/2011
6/2010-8/2010

9/2009-7/2010

9/2008-9/2009

Contract science editor (for scientists who are non-native English
speakers)
American Journal Experts
Future Faculty Workshop of MIT
Developed an interactive workshop to mitigate the effects of
stereotype threat in teaching assistants at the Massachusetts
Institute of Technology
Howard Hughes Medical Institute Professor Program
Professor Catherine L. Drennan (MIT)
Mentor for middle school-aged children interested in STEM
Office of Education and Outreach Programs (MIT)
Co-chair of National Organization for the Professional Development
of Black Chemists and Chemical Engineers
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Hampton University

9/2007-5/2008 Chemistry Club - Co-President
9/2006-5/2008 Department of Chemistry - Head Tutor
9/2006-5/2007 Chemistry Club - Special Projects Chair
9/2005-5/2008 Honors College - Winner's Circle Chair

Conferences and Presentations

3/2012 Getting Plants to Make Medicines
(Invited outreach lecture)
Friends of John Innes

11/2011 Hijacking Monoterpene Indole Alkaloid Biosynthesis for the
Production of Unnatural Natural Products
John Innes Institute, Department of Biological Chemistry

12/2010 Optimizing Engineered Halogenation in Periwinkle Plant Culture
(Invited lecture)
Hampton University, Department of Chemistry

11/2010 Optimizing Engineered Halogenation in Periwinkle Plant Culture
National Organization of Black Chemists and Chemical Engineers
Northeastern Regional Conference

10/2009 Engineering Halogenation into Periwinkle (poster)
National Organization for the Professional Development of Black
Chemists and Chemical Engineers Regional Conference

7/2008 Toward a Fluorescence Based Activity Assay of Rv 1151c in
Mycobacterium tuberculosis

Hampton University Center for Research Excellence in Science and
Technology - Internal Review

4/2008 Substrate Specificity of Tabersonine 16-Hydroxylase-Reducatase in
Catharanthus roseus (poster)
All Virginia Honors Council Conference

4/2008 Substrate Specificity of Tabersonine 16-Hydroxylase-Reductase in
Catharanthus roseus (Poster)
American Chemical Society Southeast Regional Meeting

3/2008 Substrate Specificity of Tabersonine 16-Hydroxylase-Reducase in
Catharanthus roseus (Invited lecture-selected paper in the Rohm and
Haas National Undergraduate Competition)
National Organization for the Professional Development of Black
Chemists and Chemical Engineers Conference

10/2007 Development of a More Active and More Stable Ring-Closing
Metathesis Catalyst
Historically Black College/ University Undergraduate Program
National Conference
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Teaching and Education Experience

Massachusetts Institute of Technology and the John Innes Centre

10/2011-5/2012

9/2010-3/2011

6/2010-9/2010

9/2009-5/2010

8/2009-12/2009

Postgraduate Mentor to Master's Student
Laboratory of Professor Sarah E. O'Connor
Certificate in Teaching College Science and Engineering
Teaching and Learning Laboratory (MIT)
Diversity training - Reducing Stereotype Threat
Professor Catherine Drennan's Howard Hughes Medical Institute
Professor's Program
Middle School Counselor
Office of Engineering Outreach Programs (MIT)
General Chemistry (5.111) Teaching Assistant

Hampton University

6/2008-7/2008

6/2008-7/2008
6/2008-7/2008
9/2005-8/2008
9/2005-12/2005

Mentor to High School Science Student
Laboratory of Professor Shanthi Paranawithana
Organic Chemistry Laboratory Teaching Assistant
Middle school counselor for the "Young Doctors' Program"
General Chemistry and Organic Chemistry Tutor
Elementary School Tutor
Read: For the Future
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