Promoting Collaborative Systems Thinking Through the Alignment of Culture and Process: Initial Results

Presenting Author: Caroline Twomey Lamb
Doctoral Research Assistant
Massachusetts Institute of Technology
cmtwomey@mit.edu

Research Advisor: Donna H. Rhodes
Senior Lecturer
Massachusetts Institute of Technology
rhodes@mit.edu
Agenda

• Motivation
• Research Framework
• Key Constructs
• Objectives
• Research Methods
• Current Progress
• Conclusions and Next Steps
Motivation

- Aging demographics within engineering
 - Average age of engineer within US = 45 (NA Report, 2006)
 - Average age of engineer at NASA = 49 (Lemos, 2006)
- Increasing system complexity and development time (Murman, et.al, 2002)
 - 48 military aircraft program starts in 1950’s
 - 7 program starts in 1990’s
- Experiential learning best for systems thinking development (Davidz, 2006)
- Process certification increasingly contractually required
- Team is the primary working unit
Research Framework

• 3 key concepts
 – Standardized process
 – Culture
 – Systems thinking

• Desire to explore construct interactions

• Identify enablers and barriers to collaborative systems thinking
Standardized Process

Process: a logical sequence of tasks performed to achieve some objective. Process defines what is to be done without specifying how it is to be done.

--James Martin, 1997

• Codify best practices and facilitate effective coordination and communication.
• Drive interactions within teams and between teams
• Reduce ambiguity and unpredictability (Schein, 2004)
• Process alone insufficient to guarantee success in product development (Dougherty, 1990; Spear and Bowen, 1999)
Culture: a dynamic phenomenon and a set of structures, routines, and norms that guide and constraint behavior.

--Edgar Schein, 2004

• Components of culture
 – Norms of behavior
 – Espoused beliefs
 – Basic underlying assumptions
• Norms most visible component of culture
• Effective team norms do not evolve naturally and must be fostered (Hackman, 2002)
• Team norms constitute unwritten set of standardized processes
Systems Thinking

System thinking: the analysis, synthesis, and understanding of interconnections, interactions, and interdependencies that are technical, social, temporal, and multi-level.

--Heidi Davidz, 2006

- Experientially developed skill that facilitates system design
- Five types of systems thinking (Roberts, 1999)
 - Open: flows and constraints
 - Social: relationships
 - Systems dynamics: causal loops
 - Process: ways in which information flows
 - Living: interactions
Collaborative Systems Thinking

Collaborative systems thinking: systems thinking as a property of an engineering team or organization.

- Term coined to refer to higher-level systems thinking in engineering contexts
- Systems dynamics/organizational learning current context for most organizational systems thinking research
- How might collaborative systems thinking differ from individual systems thinking?
 - Teams and organizations produce products
 - Borrow ideas of value and efficiency from lean thinking
Research Objectives

- Operational definition of collaborative systems thinking (CST)
- Identify enablers and barriers to CST
 - Standardized process
 - Culture
- Explain how CST develops
- Identify best practices, heuristics for aligning culture and process
 - Ways to tailor process
 - Feedback mechanisms
 - Best practices
Research Methods

- Grounded theory based research
 - Characterized by concurrent and systematic data collection, analysis, and theory development (Glaser and Strauss, 1967)

- Pilot interviews
 - Identify and define key concepts

- Secondary case study analysis
 - Identify linkages between concepts
 - Drive interview and survey questions development

- Case studies
 - Interviews
 - Primary document
 - Focus groups (simulations)
 - Surveys
Progress to Date

- Wrapping up pilot interviews
- Completing secondary case study analysis
- Depth case study selected
 - Collecting background information
 - Will collect team-based data starting April/May
- Breadth case studies still to be identified
Preliminary Results

- Process tools (value stream mapping, process roadmaps) facilitate forming mental models of development process
- Process facilitates communication—necessary precursor for CST
- Identifying with product an enabler of CST
 - Startups
 - Black programs
- Leadership is key component of CST
 - Leader with systems thinking capabilities
 - Leader working closely with systems thinkers on team
- CST requires a critical mass of systems thinkers
Conclusions and Next Steps

- Links do exist between systems thinking and standard process
- Culture plays a mediating role in success of standard process
- Next steps
 - Complete pilot interview and secondary case study analysis stage
 - Design interview and survey tools for case studies
 - Complete case studies
 - Data coding and analysis
Selected References