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ABSTRACT  
 

 
MSA-level estimates of a housing supply schedule must offer a solution to the twin 
problems of simultaneity and stationarity that plague the time series data for local housing 
prices and stock. An Error Correction Model (ECM) is shown to provide a solution to 
stationarity, but not simultaneity. A Vector Error Correction Model (VECM) is suggested 
to handle both the stationarity and endogeneity problems. Such models also nicely 
distinguish between (very) long run elasticities and a variety of short term impacts. We 
estimate these models separately for 68 US MSA using quarterly data on housing prices 
and residential construction permits since 1980. The results provide long run supply 
elasticity estimates for each market that are better bounded than previous panel-based 
attempts and also correspond with much conventional thought. We find these elasticities 
are well explained by geographic and regulatory barriers, and that inelastic markets exhibit 
greater price volatility over the last two decades.  Using the models’ short run dynamics 
we make several forecasts of prices over the next decade. In current dollars, some MSA 
will still not recover to recent peak (2007) house price levels by 2022, while others should 
exceed it by as much as 70%.   



 

3 
 

I. Introduction 

 There has been a revival of interest in the supply schedule that characterizes urban 

housing markets. It has been argued that variation in the elasticity of this schedule may 

explain the wide differences observed across US metropolitan statistical areas (MSA) in 

house price levels,  their growth and also volatility [(Campbell-Davis-Martin (2009), 

Capozza-Hendershott-Mack (2004), Cannon-Miller-Pandher (2006), Glaeser-Gyourko-

Saiz (2005), Paciorek (2013), Davidoff (2013)]. It has also been argued that housing 

supply elasticities impact the allocation of labor across MSAs and can affect aggregate 

productivity [Nieuwerburgh-Weil (2009), Eckhout-Pinheiro-Schmidheiny (2010)]. Thus 

there is much interest in the possible “determinants” of local housing supply elasticities, 

be they related to intrinsic geographic land supply [Saiz (2010)], local land use regulations 

[Gyourko-Saiz-Summers (2008)], or the organizational structure of the homebuilding 

industry [Somerville (1999)]. Despite all this interest, much of the discussion is conducted 

in an empirical vacuum, for there are no individual time series estimates of long or short 

run housing supply elasticities in San Francisco versus Dallas or any of the other 300 US 

MSAs. The literature review section that follows will make this more apparent.  

 One purpose of this study therefore is to apply modern time series analysis to 

quarterly data on MSA constant dollar (repeat sale) house prices, new housing 

construction and the growth of the stock – covering 1980:1 through 2012:2. We do this 

individually for each of the largest 68 MSA. At the start, we find that (real) house price 

levels and stock are not stationary - in all but a few MSA. This calls into question much of 

the early empirical research on this topic. Both series, however, are stationary in 

differences, or I(1). Most importantly house prices and stock (measured in levels) are 

cointegrated (again in all but a handful of markets). This suggests that an error-correction 

methodology is the proper framework for understanding the relationship between these 

two variables – at least at the MSA level.  

 Within this framework we estimate a single equation Error Correction Model 

(ECM) in which stock determines prices, and then a Vector Error Correction Model 

(VECM) in which both variables are simultaneously determined as well as determining. 

The cointegrating vector between the two variables yields a consistent estimate of the long 
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run elasticity of supply and across our 68 MSA the results are extremely plausible: 

ranging from .2 to 3.1. The short run dynamic impacts estimated through both models are 

also significant however and provide us with an alternative short-run measure of housing 

supply elasticity. With the ECM we ask what recovery in prices – from their current 

(2012:2) levels - will be needed to support anticipated new supply over the next decade. 

To allow for the possibility that demographic aging will slow long run growth of housing 

demand from its historic trend, we set the anticipated new supply at 80% of that built in 

previous decades. With the VECM we simply do an out-of-sample forecast of both stock 

and price for the next 10 years. The ratio of the stock/price forecasts then provides a 

measure of the effective short run elasticity to be observed over the next decade.  

 We find great consistency between these supply elasticities, with correlations in 

the .9 range. We also find that they relate statistically to those “determinants” of supply 

elasticity recently hypothesized in the literature. Larger cities, with geographic land 

constraints, that have high scores on a survey of regulatory barriers have significantly 

lower supply elasticities – as we have measured them.   

 We then investigate the role of supply elasticity in an MSA’s price experiences 

over the 2001-2012 period characterized by the housing “boom” and “bust”. Consistent 

with the conventional thinking that this period was marked by housing demand shocks, 

markets with more inelastic supply exhibit both greater price increases over 2001-2007, 

and greater price declines from 2007 to 2012.  

 Finally, we use the short run forecasts generated by the models to assess the degree 

of housing price growth and eventual price recovery that is likely across our 68 MSA, 

beginning in 2012:3. We find that markets with inelastic supply will experience faster 

price growth between 2012 and 2022, thus exhibiting similar dynamics to the prior 

decade. That said inelastic markets generally have no greater tendency to recover or 

exceed their 2007 “bubble” peak levels – in constant dollars. We suspecte that this finding 

is due to the fact that areas with inelastic supply generally experience slower demand 

growth than areas with more elastic supply.   
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 In the next section we review the empirical literature on housing supply and its 

determinants. Section III reviews the standard model of land development that underlies 

much of the supply elasticity discussion, while Section IV then examines the data series 

available on prices, construction and the stock – testing for stationarity and cointegration. 

Section V lays out our ECM and VECM models, along with some alternative estimation 

strategies. Section VI presents results from estimating the various models, and displays 

their long and short run implied elasticities. In section VII we examine whether these 

elasticities line up with often used supply “instruments”. Section VIII examines the 

relationship between these elasticity estimates and market behavior from 2001 through 

2012, while Section IX examines the magnitude and patterns in housing price recovery 

over the next decade that is likely across our 68 MSA.  

II. Housing Supply Literature 

There is an early literature on housing supply [Alberts (1962), Burns-Grebbler 

(1982)] that looks at housing construction as a “business” in which the level of price 

relative to some opportunity cost (including credit) drives housing “investment” or unit 

flows (permits, starts or completions). The most recent elaboration of this approach is 

Topel-Rosen (1988) in which great attention is given to the expectation mechanism for 

future prices. Following Abel-Blanchard (1986), DiPasquale-Wheaton (1992, 1994) add to 

this approach with the notion that expected price levels determine a “desired” stock 

towards which the actual stock adjusts slowly with new investment. In this approach the 

existing stock is a critical additional variable (to prices) in explaining new investment. 

Much of this early literature is summarized in Blackley (1999), who notes that it contains 

little or no application of true time series analysis. For example the series are rarely tested 

for stationarity or cointegration, and regressions contain mixed I(0) and I(1) series.   

Mayer-Somerville (2000) redefines the entire discussion of supply elasticity and 

links it more explicitly to land development. In their framework the key ingredient 

necessary for cities to grow through new construction is the development of additional 

land. Following a long and voluminous literature on urban spatial models - this requires 

higher land values which are simply a residual from housing prices. Thus like DiPasquale-

Wheaton the underlying “supply” relationship is between housing price levels and housing 
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stock, rather than price levels and housing flows. They also argue that any empirically 

estimated  relationship between house price levels and stock is likely to be miss specified 

as both variables are I(1) and not I(0). They present estimates of a relationship between 

changes in both housing stock and price that they argue is reflective of that between 

housing price and stock levels. We return to this specification issue in the next section.  

All of the literature above uses US national data to estimate some supposed 

national supply elasticity. But if the supply elasticity is really about land development, 

then surely there should be significant variation across cities of different sizes, with 

different geographies, transportation systems and regulatory processes. The availability of 

widespread MSA-level housing price indices has prompted a series of more recent 

analysis of differences in price movements across MSA. Capozza-Hendershott-Mack 

(2004), Cannon-Miller-Pandher (2006) and Campbell-Davis-Martin (2009) all examine 

the movement in prices to see if there is any relationship between price appreciation and 

price volatility across (respectively) MSA, ZIP codes and US census regions. None of 

these studies explicitly include study of housing supply or stock. 

Harter-Drieman (2004) opens up a new line of inquiry by using panel data analysis 

from 1980 to 1998 to compare 49 MSA. She develops a VECM model relating prices to 

income (rather than stock or households) and does not test for cointegration between these 

two variables. By allowing for a market specific constant term in the long run 

cointegrating relationship, she is able to calculate a price response to an income shock that 

is unique to each market. Then assuming a common price elasticity of demand, she is able 

calculate an implicit estimate of each market’s supply elasticity. Not surprising, the result 

is a very narrow range of implicit supply elasticities; for example, she finds that no 

markets are inelastic.  

Saiz (2010) adopts a similar panel approach, but with limited time series: there are 

only 3 decadal changes (observations) for each MSA. He develops an estimating equation 

wherein price changes are predicted using household (housing stock) changes, fixed 

effects, and two variables that logically would impact a supply elasticity: the Wharton 

Land Use Regulatory Index (WLURI) [Gyourko-Saiz-Summers (2008)] and a newly 

constructed measure of geographic land unavailability. By interacting these variables with 
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household changes he again is able to calculate an implicit supply elasticity for each 

market – yielding estimates of between .6 and 5.0. 

Over this time span there is only one attempt to separately estimate a supply 

elasticity uniquely by market: Green-Malpezzi-Mayo (2011). Their paper simply presents 

the elasticity resulting from a series of simple bivariate regressions with no statistical 

specification tests, and no resulting statistics. The elasticities vary widely (-.3 to 29.0) and 

half are reported as insignificant. A second stage cross-section regression explaining the 

elasticities contains 9 variables, most of which likely to be endogenous to a housing 

supply process. The approach of this paper is in principle similar to Green-Malpezzi-

Mayo, but with far greater series detail and testing. Such testing suggests the need for a 

very different model – one following an error correction framework.   

III. Long-Run models of Local Housing Supply. 

 As discussed above, newer models of housing supply are actually models of land 

development and city expansion – rather than of “investment” in housing.  In this 

literature, monocentric land use models yield relationships between equilibrium city size 

(housing stock) and the difference between central housing prices and edge housing 

prices1. This latter can be thought of as a crude “average” city price. This relationship 

begins with the set of variable definitions in (1) below.  

                                  

(1)                                  edevelopabl is that locations) all(at  land offraction :

n)(populatio housing ofstock :

 edge andcenter urban at  Prices house :,

circle  theoutside land alagricultur ubiquitous of price:

location) across (fixed house a ofcost  Capital:K

location) across (fixed house of sizelot  :

locations) across (fixed distanceunit  a  travelingofcost   dcapitalize:

city.circular ain edgecenter tourban   thefrom distance  travel:

0

A

S

PP

r

L

T

B

B

a

                  

                                                            
1 Here we use the most simple of monocentric models where transport costs are constant and exogenous, and 
where land consumption is similarly. The voluminous literature on such models often has land consumption 
determined by agent utility and prices, while congestion can make transport costs non-linear and 
endogenous.  
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 The equations below derive a set of equilibrium relationships between these 

variables. Equation (2) requires that house price differences between the center and edge 

equal the capitalized value of traveling from the edge to center. This is a spatial 

equilibrium condition. Equation (3) links edge prices to replacement costs using capital 

and agricultural land (both exogenous), while (4) links the urban border with total housing 

stock. Combining equations, we get the result in (5) where equilibrium average house 

prices (the difference between center and edge prices) depend positively on the size of the 

housing stock. While (5) expresses price as a function of stock, it is equally true that to 

provide a larger stock of urban land prices must rise and hence stock is a function of price; 

in other words equilibrium implies joint causality. Expression (5) has often been 

interpreted as an inverse housing “supply” schedule [Saiz (2010), Mayer and Somerville 

(2000)]. Expression (5) illustrates that the long term relationship between house prices and 

stock may also depend on land availability and the efficiency of the city transportation 

system (Saiz, 2010).  

 

 (5)                         )(

   (4)                                       )(

(3)                                     

(2)                                     
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Economists also have modeled a competitive system of cities [Weil and 

Nieuwerburgh-Weil (2009), Eckhout-Pinheiro-Schmidheiny (2010)]. In these models a 

“national” population selects where to reside among cities. Jobs or employment do 

likewise. In addition to productivity and amenity considerations, these choices are 

influenced in no small part by house prices. Thus through the migration of population and 

the relocation of employment there can arise a parallel (but negative) “demand” 

relationship D(…) between prices and stock. Ceteris paribus, lower prices eventually 

attract an expanding population and job base (E). In equilibrium this base must equal the 

stock (S). Expressions (6) and (7) can be combined with (5) to complete any full model of 

a system of cities.  



 

9 
 

(7)                                              

(6)                          0D'   , )( 0

ES

PDE




 

In recent years monocentric models have given away to “polycentric” theory 

wherein a city has multiple centers or locations of economic activity. Each such center 

however behaves like a “sub-center” – following similar conditions as in (2)-(5). The main 

difference from the monocentric framework is that some sub centers compete with each 

other over land, rather than just with agricultural uses. Some theory of “agglomeration” is 

also necessary to determine whether the city is composed of many small sub centers or a 

few very large ones. With endogenous employment location, this family of models does 

not always yield the same comparative static results as with single centered city models. 

For example, in monocentric models higher transportation costs raise land rent and 

generate more dense cities. In polycentric models, higher transportion costs lead to greater 

employment dispersal and little or no increase in land rents [McMillen-Smith (2003), 

Helsley-Sullivan (1991)]. The empirical implication of these models is that often they 

have almost infinite long run housing (land) supply. With a single fixed center, increasing 

the supply of land requires greater commuting and hence land rent. With multiple 

endogenous centers more land can be had by expanding the number of centers with little 

attendant increase in commuting since the dominant pattern of commutes is within a 

center and not between centers. Hence land rents also need not increase.   

 Finally, it is important to remember that (1) – (7) inform us only about long run 

equilibrium relationships and provide very little guidance in terms of short term dynamics. 

Short run dynamics are often thought to involve the capital portion of housing rather than 

land: the difficulty of constructing new structures and their durability once built. Glaeser-

Gyourko (2005) for example convincingly show that even over decade long intervals the 

derivative of house prices with respect to stock is asymmetric: falling prices do little to 

shrink the stock, but rising prices are needed to expand it. Put differently, the identity 

between S and E in (6) rarely holds over short run intervals, when the stock of housing 

adjusts slowly.    
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 While this discussion is certainly not new, it does highlight a range of important 

issues that any empirical study of local housing supply elasticities must address. The first 

such issue is that estimation must be flexible enough to accommodate a full range of 

potential long run elasticity values, matching the variation anticipated from polycentric as 

opposed to monocentric urban models. Secondly, the estimation should allow for short run 

dynamic effects that may be distinct from long run equilibrium impacts. For example, if 

the stock increases from a true “shock” then prices may fall in the short run rather than 

rise along the long run schedule. Finally, stock and prices are jointly determined in 

equilibrium and so there is a high likelihood of simultaneity between the series Using 

local economic data as an instrument to resolve this simultaneity is certainly not valid in 

the long run. Given that structural identification is difficult, non-structural macroeconomic 

time series analysis may offer more viable solutions.  

 
IV. Empirical Tests of MSA House Price and Housing Stock Series  
 

The data used in this analysis consists of two time series for each of 68 US 

metropolitan areas, at quarterly frequency, covering 1980:1 through 2012:2. The first is 

the Federal Housing Finance Agency’s (FHFA) all-transactions house price index (HPI) 

based on repeat transactions involving conventional mortgages purchased or securitized 

by Fannie Mae and Freddie Mac. The second is a series of total housing stock, starting 

with the 2010 Decennial Census and adding (for post 2010) or subtracting (for pre 2010) 

housing permits each quarter. It should be noted that this estimated stock series will not 

produce values for 1980, 1990 or 2000 stock that match the Decennial Census unit counts 

for those years, due largely to the effects of demolitions and undercounting. It would be 

possible to calculate a 3-decade average quarterly stock adjustment for each MSA and 

apply this to the estimated stock series, but such scalar adjustment would not impact the 

statistical results, although it could alter slightly the estimated elasticities.  

To test for stationarity we undertake augmented Dickey-Fuller tests (ADF) of 

house price and stock in levels, using 4 and then 8 lags. For house prices, we can reject the 
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null of a unit root in only 15 of 68 MSA – using 4 lags and a liberal 10% criterion2. With 8 

lags the null is rejected in only 16 of 68 MSA. With the housing stock, the results are not 

much better, with only 18 of 68 MSA exhibiting stationarity using 4 lags and 14 of 68 

using 8 lags (again applying a 10% criterion). However, the first differences of both the 

stock and price series are stationary in all but a handful of MSA (7 and 6 with the 4 and 8 

lags respectively). These are clearly very noisy series with surprisingly little mean 

reversion in levels. We note that this contrasts sharply with the much smoother national 

time series on prices and stock (Case and Shiller (1988)). 

 With two non-stationary series any direct regressions of prices on stock would be 

subject to a range of problems – as would any derived estimates of a long run elasticity 

(such as in much early literature). Recognizing this possibility Mayer-Somerville (2000) 

suggest a regression (using national data) in first differences, but obtain a very small short 

run elasticity since only a few lags of price (changes) are included. With a model 

estimated in differences a permanent alteration of price levels has an impact on stock that 

lasts only as long as the number of lagged price changes included in the model. In our 

MSA level data the vast majority of the series are I(1), or stationary in differences, but 

using such an approach would preclude estimating our main objective - a true long run 

elasticity.  

 An alternative approach for using statistical analysis with variables that are still 

measured in levels would be to apply an error-correction framework. This approach does 

not require that each variable be stationary in levels, but does necessitate that they exhibit 

co-integration. To this end, Appendix 1 presents the results of several augmented 

cointegration tests. The first two columns essentially test for whether the errors from a 

regression of price on stock – a simplified version of equation (5) - are stationary. 

Differences in the errors (of price predicted by stock) are regressed against previous error 

levels controlling for lagged changes in the errors. The results depend considerably on the 

number of lags used – a common dilemma with such tests. We experimented using both 

the Akaike Information Criteria (AIC) for the number of lags, as well as selecting the 

                                                            
2 For these ADF tests we used the following critical values from Mackinnon, (1996): 1% 3.49, 5% 2.89, 10% 

2.58, 20% 2.21.  
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number of lags that gives the highest test statistic. These two criteria yielded very similar 

results in terms of lag selection which is shown in the 1st column of Appendix 1. In the 2nd 

column we present the R2 of the error regression and in the next two columns the 

coefficient on lagged error level (the cointegration test) and its T value. It’s clear that in 10 

of 68 markets, the series are just not cointegrated, while in 49 they are (at 10% or higher 

criteria). In 9 markets the results suggest some weak cointegration (passing at between 

10% and 20%). 3  

 

V. Error Correction Models of Housing Supply.    
 

With these tests validating cointegration for virtually all of the markets, the first 

approach would be to estimate a simple version of equation (5) directly – ignoring the 

possible specification issue raised by equations (6) and (7). This has not been done in the 

literature, despite the fact the application of an ECM not only gets around the issue of non-

stationarity, but also nicely separates long run relationships from short run dynamics. Our 

statistical ECM version of equation (5) is illustrated in (8), where the β parameters 

represent the long run cointegrating relationship between the variables in levels. The 

parameter α0 estimates the speed (or degree) of reversion back to the cointegrating 

relationship. The αi and λi account for short run impacts on price movements that arise 

from lagged price movements or stock changes.  
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The issue with this single equation ECM is that it assumes that the right hand 

variable (stock) is exogenous. There are two reasons why this is not likely to be true. First, 

while (5) expresses price as a function of stock (households must be compensated for 

farther commutes), it is equally true that to provide a larger stock of urban land prices 

must be higher. Here stock is a function of price. Secondly, if long run equilibrium exists 

between cities, equations (6) and (7) suggest a negative relationship between prices and 
                                                            
3 We use the following test statistic critical values [MacKinnon (1996)] : 1% 4.02, 5% 3.39, 10% 3.07, 20% 

2.71. 
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stock. An approach that is far more agnostic regarding causality is the application of a 

Vector Error Correction Model (VECM). This is represented in (9). In this system, we 

allow for the same single cointegrating vector (with parameters β), but there are two sets 

of adjustment coefficients (with parameters α, λ versus α’, λ’).   
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 The estimation of equation (8) or the pair of equations (9) generally can be done in 

one of two ways, both of which are found in the literature. The first is to estimate the β 

parameters with a 1st stage OLS, and then use the actual residuals in a 2nd stage equation to 

estimate the α (and λ) parameters, again by OLS. This 2-step procedure, originally 

suggested by Engle and Granger (1987) provides super-consistent estimates of the β 

values – provided that P and S are cointegrated controlling for their own autocorrelation. 

Hence the number of lags in either (8) or (9) should be the same or similar to that which 

was used to establish cointegration (for example in the previous section). This same 2-

stage procedure is suggested more recently by Lutkepohl (2007) as a simple and consistent 

way to estimate the vector system in (9). He refers to this an OLS-VECM.  

 

An alternative has been developed by Johansen (1995) who devises a single step 

Maximum Likelihood Estimator (MLE) since both (8) and (9) are nonlinear in their 

parameters. The one-step procedure has the advantage of also testing for cointegration at 

the same time as estimating the model. In this procedure the model is often re-estimated 

multiple times, each with a different lag structure, until some criteria is met and 

cointegration determined (or not). A problem with the Johansen MLE estimator, however, 

is that its statistical properties are known only under the assumption that the errors of (8) 

and (9) are normally distributed. We initially experimented with the MLE estimator with 

results that were often insignificant, and with model parameters that frequently led to 

instability. To further investigate we applied a test for error normality (Jarque and Bera 
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(1987)). The p-values for this test statistic are reported in Appendix 2 and they represent 

the probability that the null (normality) is true given observed data. It is clear that there are 

just a very few market/equations that have even a modest likelihood of normal error. More 

than 90% of the market/equations fail the test by a wide margin.  

Since OLS estimation in general is quite robust to the assumption of error 

normality, we proceed to estimate both models (8) and (9) with the OLS 2-step procedure 

originally suggested by Engle and Granger (1987) and then subsequently by Lutkepohl 

(2007). Our OLS VECM results exhibit none of the stability or significance problems we 

encountered with the Johansen procedure.  

 

VI. Estimation Results: ECM, VECM.    
 

Appendix 3 presents the OLS estimates of the ECM model for 68 MSA. We 

present the R2, the convergence coefficient αo, and its t statistic, as well as the number of 

lags used on lagged stock and price changes (the same as used to establish cointegration). 

We also provide two measures of the “elasticity of supply”. The first elasticity measure is 

simply equal to the coefficient β2, estimated in the first stage by OLS, and converted into 

an elasticity using current stock and price values. 

 The second is a more a “short run” elasticity and is derived from undertaking a 40 

period price forecast - that begins in 2012:2 – using an assumed trajectory for the housing 

stock. The trajectory assumed is the same as the average growth in each market’s housing 

stock during the decade before the recent housing “bubble”- 1993:1-2003:1 – but scaled 

by 80%. This latter figure is derived from national estimates of household formation 

expected over the coming decade relative to that of 1993-2003 [U.S. Census (2012)]. In 

effect we ask what increase in price will be required to get the stock to grow in the next 

decade at 80% of the amount it did during the pre-bubble decade – starting from where 

prices and stock are in 2012:2. The required price change relative to assumed supply is 

then converted into a “short run” forecast elasticity. It is important to remember that if 

current prices are below the long run cointegrating relationship, they will have to “catch 

up” a bit to provide the targeted new supply. Conversely, if current prices are above the 

cointegrating relationship, little if any price increases may be needed to generate the 
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assumed supply. Thus this short run elasticity could differ considerably from the long run 

estimates.   

 On the surface, the ECM elasticities look gratifyingly reasonable. Looking over the 

results we draw the following observations. 

 1). There are 6 negative elasticities, which occur in most Texas markets and two 

other south central cities. All these markets display continual real price declines over the 

last 30 years despite significant stock increases. This negative relationship, however still 

exhibits cointegration. Presumably cities like Dallas are able to expand with just nominal 

appreciation because the real cost of travel, construction costs, or the value of edge rural 

land has fallen over time.  

 2). There also are 3 “anomalies”. Baton Rouge has a positive very elastic long run 

(LR) cointegrating relationship but a small negative forecast price increase. This is 

because current prices are actually above the values implied by the cointegrating 

relationship and anticipated supply needs no further price increase. Charlotte’s ECM is 

dynamically unstable. Finally the large elasticity in Memphis is possibly due to the fact 

that stock and price are not well cointegrated in that market.  

 3). As for the rest of the markets, the short run elasticities (SR) are all well below 

their long run elasticity value. Without the anamolies, the R2 between short and long run is 

.43 and at the means the average market short run elasticity is 32% of its long run value. 

This results because virtually all markets have prices that are currently well below values 

implied by their cointegrating relationship; therefore to meet even modest target increases 

in supply, the forecast of price growth has to be quite pronounced (generating a lower 

forecast elasticity).  

 4). The adjustment coefficient is statistically significant at the 5% level or higher 

in all but 2 markets and even in these MSA it passes a 10% test. Adjustment speeds back 

to the underlying cointegrating relationship average about 5% per quarter or 20% per 

annum. “Error correction” is an important feature of the relationship between stock and 

price. 

 5). The estimated elasticity values seem readily plausible. The long run values 

generally are between .20 and 3.1, with the usual list of hypothesized inelastic markets 
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(New York, Boston, the LA and San Francisco regions). Many markets in the South and 

Mid-West region have much more elastic supply.   

           With respect to the results of the OLS-VECM, the LR cointegrating relationship is 

by construction the same as with the ECM. The forecast however could be quite different 

as now the stock is endogenous. In Figures 1 and 2 below, we illustrate the ECM and 

OLS-VECM forecasts for two very different markets: Boston and Houston. Boston is like 

many coastal markets with a strong long run positive price trend, while Houston is like 

most Texas and South Central markets. Despite a negative relationship, prices and stock 

are well cointegrated in most of these areas. In Appendix 4 we compare the OLS-VECM 

model with the ECM. Our observations continue below.  

 

Figure 1:  ECM, VECM Forecasts  
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Figure 2:  ECM, VECM Forecasts  
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6). We find that the stock equation within the OLS-VECM does not have the stock 

re-equilibrating around the cointegrating relationship - as do prices in the price equation.  

In 62 of 68 markets the cointegrating coefficient in the stock equation is insignificant. In 6 

markets it is significant negative and in 1 market significant positive. A significant 

negative coefficient implies that when prices are above the value implied by the long term 

cointegrating value the stock tends to grow more slowly (or declines). This would be 

illustrative of the migration relationship hypothesized in (6)-(7). A significant positive 

relationship would be consistent with supply “mean reversion”. In general there is no 

strong pattern as to how the stock behaves - other than to short run price shocks and its 

own momentum.  

7). Despite the estimation results for the stock equation, the overall OLS-VECM 

produces remarkably similar forecast elasticity estimates to the ECM model with its 

exogenous stock targets. Excluding two “anomalies” (Baton Rouge and Charlotte again) 

the simple average forecast price appreciation between 2012:2 and 2022:3 is 29.5% with 

the ECM using an assumed average stock growth of 10.9% (based on the 80% rule 
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discussed in the previous section). Under the OLS-VECM framework the average forecast 

price appreciation is 39.2%, with an endogenous average forecast growth in stock of 

13.3%. The OLS-VECM has generally greater price appreciation since it forecasts slightly 

greater stock growth - as opposed that we assumed based on a national demographic 

slowdown in household formation.  

8). The small differences in the supply forecasts translate into very similar short 

run supply elasticity estimates between the two models. The average forecast-based 

supply elasticity with the ECM is .276 as opposed to .257 with the OLS-VECM. 

Furthermore the correlation between the two elasticities (across 66 markets) is .92.  This 

degree of similarity is interesting because the OLS-VECM derived elasticity is 

theoretically a different concept from the ECM one. The former is an equilibrium –based 

derivative as opposed to a partial derivative for a structural equation in the ECM. This 

suggests that joint endogeneity just makes little difference.  

 

VII. Correlates of Market Supply Elasticity  

 This paper presents several alternative ways of estimating supply elasticities at the 

MSA level when the underlying data is non-stationary, and arguably subject to bi-

directional causality. The error-correction framework also allows us to distinguish 

between true long run elasticities and short run ones (here 10 years). The results provide a 

wide range of elasticities across our 68 MSA, and again open up the question of what 

determines the housing market elasticity in any given area.  

 The literature on this question completely focuses on barriers to the development 

of land: Saiz (2010) on natural geographic barriers, and Gyourko et. al (2008) on 

regulatory barriers. Several authors also argue that larger metropolitan markets have 

inherently smaller elasticities, although in a simple circular monocentric model (such as in 

equation 5), the elasticity turns out to be scale invariant.  

 In Table 1, we examine how our elasticity estimates vary with these three common 

variables. WRI is the Gyourko et. al regulatory index and the land constraint variable is 

the Saiz measure of land unavailability. Population is measured as of 2012.  We report 

equations for each of our three elasticities: the long run and the two short run measures 
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based on the ECM and OLS-VECM 10 year forecasts. The results are all significant, and 

in the anticipated direction. The fact that the LR elasticity is more highly explained also 

seems plausible as it filters out short run market dynamics, and disequilibrium.  Using the 

equation for the long run elasticity, the difference in geographic land unavailability 

between Boston (index value of 33.9) and Washington DC (index value of .14) lowers the 

Boston housing supply by -.24. Similarly the regulatory differences between these two 

markets (1.7 versus .3) generate a further reduction in the elasticity of -.63. The actual 

elasticity in the Boston MSA is .36 versus Washington’s .70 

                        Table 1: Cross Section Determinants of Elasticities 

      (t statistics in parenthesis) 

Equation  LR Elasticity ECM Elasticity VEC Elasticity  

R2 0.463 0.309 0.254 

Constant 1.77  (10.4) .694  (7.78) .712  (6.55) 

WRI -.447  (-3.65) -.144  (2.190) -.177 (2.25) 

Land Constraints (Saiz) -.012  (3.56) -.0043 (-2.45) -.0038  (-1.76) 

MSA Population -.000071 (-2.1) -.000040 (-2.23) -.000042 (-1.93) 

 

VIII. House Price Elasticities and the Housing “Bubble”.   

In virtually all of our 68 markets, the period from 2000:1 through 2007:2 exhibits 

an unprecedented rise in real house prices, followed by a huge decline over 2007:2 to 

2012:2. There is consensus that this resulted from a positive shock to housing ownership, 

although there is disagreement over whether this shock originated with the relaxation of 

mortgage underwriting standards, or simply changed expectations about the returns from 

housing [Foote-Gerardi-Willen (2012)]. With a national housing finance system, these 

shocks are widespread, impacting all markets to some extent. In such a case we should 

expect that the degree of housing price rise and then fall would naturally depend 

(negatively) on the supply elasticity of each market. The relationship, however, could be 

quite imperfect as there were nuances to the rise and fall that were unique to each area. For 
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example second home havens seem to have experienced a larger “bubble [Chinco-Mayer 

(2012)].  

In Figures 3 and 4, we compare each market’s price rise (2000:1–2007:2) and then 

fall (2007:2–2012:2) against their supply elasticity. In this comparison we have excluded 

the 6 markets with negative elasticities located in Texas and the south central US. In some 

sense a downward sloping supply curve (in real prices) is most similar in economic 

behavior to a horizontal curve (a high elasticity). Numerically, however a negative 

elasticity is proximate to a small positive (inelastic) value. The relationships become much 

clearer if we restrict our sample to those 62 MSA with estimated positive elasticities.    

 It is quite apparent in both figures that markets with generally lower supply 

elasticities have both higher increases in prices over this period and also greater 

subsequent declines. In this sample of MSA, the average increase in real prices over 

2000:1-2007:1 is 48%. The decline from 2007:1 to 2012:2 is 30% - leaving the average 

market value in 2012:2 at about 4% above 2000:1 levels (in constant dollars). Both 

Paciorek (2013) and Davidoff (2013) attempt link recent housing volatility to metrics that 

approximate a local supply elasticity.  

Figure 3: Prices 2007/2000 versus Elasticities 
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Figure 4: Prices 2012/2007 versus Elasticities 

 

 

 

IX. House Price Recoveries from the Great Recession  

 The advantage of the error correction approach is not confined solely to its ability 

to provide unbiased estimates of long run parameters, but also in the fact that it offers an 

excellent mechanism for out of sample forecasting with its flexible handling of short run 

dynamics. The unprecedented rise in house prices from 2000 to 2007 and the almost equal 

fall over 2007-2012 has many asking whether, when and by how much prices will recover. 

This is not just of academic interest, for as many as 21% of American homes may have 

mortgage balances that exceed their current prices (Core Logic, 2012). Furthermore, the 

future balance sheets of many financial institutions, as well as Federal housing policy 

certainly will be influenced by the shape and extent of the housing price recovery. 

 Against this background, we take our preferred model (the OLS-VEC approach) 

with its joint forecast of housing stock and housing prices in each of our 68 MSA. The 

forecast is for a decade beginning in 2012:3. In almost all markets the forecasts look as 

realistic and plausible as the right hand frames of Figures 1 and 2. The results for each 
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market are presented in Appendix 5. Here we display the peak level of prices (uniformly 

assumed to occur in 2007:1), and trough price levels (assumed to occur close to the base 

period of 2012:2).  Following this are two ratios. The first is the forecast of 2022:2 price 

levels relative to 2007:1 in real dollars (used throughout the models). The second is the 

same in nominal dollars. This conversion uses actual CPI inflation from 2007.1 to 2012:2 

and assumes 2% annual CPI inflation from 2012:2 through 2022:2. Given current yields 

on Treasuries and TIPS this estimate of future inflation is a bit conservative, but our 

analysis is only meant to be illustrative of what might happen to nominal house prices 

over the next decade. This is the more relevant metric for assessing the future of US 

mortgage leverage ratios.  

 In Appendix 5 we can see that out of 68 markets, nominal prices will fail to get 

back to 2007:1 levels by 2022:2 in only 7 markets. Four of these markets are in Florida, 

while the other three are in Arizona, Nevada and inland California. Adjusted for expected 

CPI inflation, however, 30 out of 68 markets will fail to recover in real price levels. This 

includes many markets in California, Florida, Arizona and Nevada as well as Texas and 

some of the South Atlantic states.  

To help see patterns across markets we present Figures 5 and 6. In Figure 5 we see 

that the average market will appreciate about 40% - in real terms -over the next decade 

and that those markets which are forecast to have the highest rates of price appreciation 

from 2012:2 to 2022:2 are again those with lower supply elasticity. This relationship is 

quite significant statistically and is consistent with the historic pattern of greater volatility 

for such markets over the last decade (Figures 3 and 4).  In Figure  6 we see that by 2022:2 

the average market will be back to 2007 price levels (adjusted for inflation), but that there 

is no relationship between this rate of price recovery and a market’s long run supply 

elasticity. Markets with inelastic supply should appreciate more in real terms over the long 

run – but only if demand growth is the same as in elastic markets. The OLS-VECM 

forecasts tend to have the stock growing somewhat faster in elastic markets – generating 

comparable price levels relative to 2007:1 as in inelastic markets with slower forecast 

stock growth.   
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Figure 5: Forecast Price Growth 2022/2012 versus Elasticity 

 

 

 

Figure 6: Forecast Price Recovery 2022/2007 versus Elasticity 
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 Finally, these forecasts suggest that housing will generally be a fine investment in 

most cases over the coming decade. Across our 68 markets cumulative nominal price 

inflation will average around 60% - ranging from just 10% in many Texas markets to 80% 

or more in many areas hard hit by the “bubble” years.  With housing capital gains largely 

untaxed, mortgage rates in the 5% range and the mortgage interest deduction continuing, 

the annual long run cost of owning a home [Poterba, (1984)] should again turn negative as 

it did in the late 1970s, late 1990s and mid-2000s. This should help to spur future home 

ownership, housing consumption and new housing construction.             
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    Appendix 1: Cointegration Tests: Price on Stock 

MSA  Lags       R2  lagged error  T value 

Albuquerque  6  0.32182  ‐0.07382  ‐3.75322 

Atlanta  8  0.39813  ‐0.05132  ‐2.97339 

Austin  8  0.16753  ‐0.07921  ‐3.54801 

Baltimore  5  0.51591  ‐0.03355  ‐3.47419 

Baton Rouge  12  0.21416  ‐0.04549  ‐3.12046 

Birmingham  11  0.12486  ‐0.11224  ‐2.80686 

Boston  7  0.61054  ‐0.0331  ‐3.51572 

Buffalo  9  0.14666  ‐0.06008  ‐3.23303 

Charlotte  7  0.23287  ‐0.08845  ‐3.00548 

Chicago  8  0.492  ‐0.06016  ‐3.53879 

Cincinnati*  10  0.28526  ‐0.03867  ‐1.80048 

Cleveland*  11  0.2556  ‐0.0299  ‐1.67525 

Colorado Spngs  14  0.26735  ‐0.04719  ‐2.63407 

Columbia SC*  9  0.08946  ‐0.07726  ‐2.37317 

Columbus*  8  0.22169  ‐0.02977  ‐1.45949 

Dallas  7  0.32058  ‐0.02799  ‐2.75523 

Dayton*  4  0.05905  ‐0.02003  ‐0.85016 

Denver  6  0.32533  ‐0.0329  ‐3.15138 

Detroit  7  0.57542  ‐0.02799  ‐3.39546 

Edison  4  0.63562  ‐0.02579  ‐3.20937 

Fort Lauderdale  4  0.61672  ‐0.03888  ‐4.12673 

Fort Worth  11  0.27923  ‐0.03372  ‐2.83133 

Greensboro  9  0.24299  ‐0.07625  ‐2.6233 

Hartford  4  0.51344  ‐0.03281  ‐3.29003 

Honolulu  5  0.57453  ‐0.03878  ‐3.71806 

Houston  6  0.40003  ‐0.0348  ‐3.82529 
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Indianapolis*  6  0.06938  ‐0.02519  ‐1.25753 

Jacksonville  6  0.42635  ‐0.04323  ‐3.36352 

Kansas City*  10  0.32971  ‐0.03311  ‐2.48574 

Las Vegas  5  0.60541  ‐0.04853  ‐3.9346 

Long Island  5  0.55352  ‐0.02982  ‐3.51836 

Los Angeles  3  0.69955  ‐0.02562  ‐3.35974 

Louisville*  9  0.11283  ‐0.04123  ‐1.55918 

Memphis*  10  0.28225  ‐0.10314  ‐2.34424 

Miami  4  0.61705  ‐0.03812  ‐3.82371 

Minneapolis  7  0.4976  ‐0.04257  ‐3.90853 

Nashville  7  0.24371  ‐0.07104  ‐3.36986 

New Orleans  12  0.20986  ‐0.0392  ‐2.85223 

New York  5  0.59282  ‐0.03524  ‐3.50882 

Newark  5  0.58935  ‐0.03517  ‐3.59795 

Norfolk  6  0.5859  ‐0.02802  ‐3.39632 

Oakland  3  0.6412  ‐0.02878  ‐3.31458 

Oklahoma City  11  0.33104  ‐0.03903  ‐3.43076 

Orange County  3  0.67135  ‐0.02594  ‐3.28562 

Orlando  4  0.5732  ‐0.03685  ‐3.33139 

Philadelphia  6  0.56465  ‐0.03396  ‐3.376 

Phoenix  6  0.5947  ‐0.04463  ‐3.53703 

Pittsburgh*  5  0.14086  ‐0.10237  ‐2.26634 

Portland  6  0.53734  ‐0.07097  ‐4.5241 

Providence  8  0.61632  ‐0.03522  ‐3.37841 

Raleigh  7  0.27244  ‐0.08183  ‐3.39137 

Richmond  7  0.40169  ‐0.0481  ‐3.67429 

Riverside  4  0.67266  ‐0.02865  ‐2.95214 

Sacramento  4  0.66132  ‐0.03168  ‐3.39783 

Salt Lake City  6  0.35949  ‐0.05817  ‐3.53722 

San Antonio  11  0.42625  ‐0.05384  ‐3.38143 

San Diego  3  0.5963  ‐0.02542  ‐3.02031 
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San Francisco  3  0.55827  ‐0.02835  ‐2.87109 

San Jose  3  0.52396  ‐0.03471  ‐2.87714 

Seattle  6  0.61215  ‐0.04901  ‐3.7719 

St Louis  9  0.43173  ‐0.04925  ‐3.45583 

Tampa  5  0.50151  ‐0.03809  ‐3.27913 

Tucson  5  0.3685  ‐0.07383  ‐3.56841 

Tulsa  6  0.17807  ‐0.03803  ‐3.22059 

Ventura  3  0.62227  ‐0.03067  ‐3.33343 

Washington DC  5  0.58547  ‐0.03289  ‐3.2196 

West P Beach  4  0.64575  ‐0.02888  ‐3.24114 

Wilmington  6  0.48793  ‐0.04235  ‐3.74964 

 

(* market not cointegrated) 
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Appendix 2:  Jarque‐Bera Test on Null of Normality in Residuals* 
 

Market 
P‐Value for Eqn 

D_rhpi 
P‐Value for Eqn 

D_stk  P‐Value for Joint Test on Both Eqns 

Albuquerque  0.002264966  6.01E‐86  2.77E‐86 

Atlanta  4.8299E‐05  0.382991668  0.000220088 

Austin  2.3787149211e‐316  0.007115151  1.2400815401e‐315 

Baltimore  5.81E‐06  1.49E‐47  1.05E‐50 

Baton Rouge  0.960285202  1.32E‐65  1.90E‐63 

Birmingham  0.006731155  0.000753312  6.68924E‐05 

Boston  1.28E‐08  1.04E‐27  1.09E‐33 

Buffalo  0.262237226  0.010431756  0.018879451 

Charlotte  9.49E‐12  0.009049121  2.67E‐12 

Chicago  7.06E‐12  0.005474005  1.23E‐12 

Cincinnati  5.99716E‐05  6.80E‐13  1.58E‐15 

Cleveland  0.008833102  0.023350473  0.001956635 

Colorado Sprgs  0.001259587  0.093055686  0.001178157 

Columbia SC  0.000169894  0.784358993  0.00132235 

Columbus  0.00543286  0.287783242  0.011664915 

Dallas  6.31E‐06  7.85E‐08  1.45E‐11 

Dayton  0  1.47E‐08  0 

Denver  2.62E‐06  0.000890351  4.87E‐08 

Detroit  3.71E‐94  9.12E‐07  7.79E‐98 

Edison  8.40E‐06  0.002533053  3.97E‐07 

FortLauderdale  5.90E‐11  5.84E‐111  9.60E‐119 

FortWorth  0.889067301  0.00141103  0.009635842 

Greensboro  0.122385037  0.865577726  0.343748837 

Hartford  0.936205833  3.16E‐34  2.31E‐32 

Honolulu  0  6.41995E‐05  0 

Houston  0.003938721  7.45E‐06  5.39E‐07 

Indianapolis  6.64E‐224  0.244704997  8.39E‐222 

Jacksonville  0.000735122  0.26168822  0.001838328 

Kansas City  0.000881334  0.20280275  0.001721165 

Las Vegas  4.24E‐11  0.001066571  1.44E‐12 

Long Island  4.56E‐10  1.09467E‐05  1.69E‐13 

Los Angeles  2.11E‐34  1.03E‐54  4.41E‐86 

Louisville  1.69803E‐05  0.944645102  0.000193132 

Memphis  0.000121858  0.292256695  0.000400398 

Miami  1.22E‐15  2.88E‐83  7.94E‐96 
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Minneapolis  0.122685371  0.629407004  0.274985414 

Nashville  1.44E‐21  0.020202206  1.54E‐21 

New Orleans  0.056541011  1.04E‐18  2.67E‐18 

New York  7.94E‐14  0  0 

Newark  3.36E‐08  0.005575325  4.38E‐09 

Norfolk  0.00177531  0.333603315  0.004993599 

Oakland  1.88E‐19  0.002270435  2.14E‐20 

Oklahoma City  0.184399551  2.75E‐06  7.85E‐06 

Orange County  9.13E‐33  0.429493243  2.97E‐31 

Orlando  3.42E‐06  0.73614544  3.4949E‐05 

Philadelphia  0.000325059  0.285431848  0.000954289 

Phoenix  3.73E‐08  0.003743776  3.30E‐09 

Pittsburgh  0.277957752  0.235160837  0.243664971 

Portland  3.48E‐08  0.030131595  2.27E‐08 

Providence  0.002348382  5.20E‐31  9.38E‐32 

Raleigh  0.005760123  0.000339034  2.76258E‐05 

Richmond  0.001199553  0.002920793  4.75154E‐05 

Riverside  4.03E‐14  6.26E‐22  2.04E‐33 

Sacramento  1.43E‐09  5.73E‐12  3.87E‐19 

Salt Lake City  4.31E‐33  0.128949954  4.31E‐32 

San Antonio  4.45E‐38  0.000912799  3.82E‐39 

San Diego  7.67E‐34  2.31E‐10  1.77E‐41 

San Francisco  5.50E‐14  0.589145806  1.04E‐12 

San Jose  2.26E‐08  0.000314474  1.89E‐10 

Seattle  1.04E‐29  0.043541031  3.22E‐29 

St Louis  5.33E‐11  0.000339227  5.90E‐13 

Tampa  1.03E‐12  0.535734153  1.62E‐11 

Tucson  1.02E‐29  0.297427577  2.10E‐28 

Tulsa  2.68256E‐05  9.76E‐13  1.03E‐15 

Ventura  2.35E‐64  0.02918028  1.04E‐63 

Washington DC  4.05E‐13  0.897212944  1.08E‐11 

West P Beach  4.61E‐07  0.230991055  1.81E‐06 

Wilmington  0.117280726  4.82E‐14  1.91E‐13 

* This test is based on the test as discribed in Lutkepohl (2005, p 174‐ 181) as applied to the 
augmented VAR in first differences (i.e. VECM) and is implemented in Stata software. 
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                 Appendix 3: ECM with Lags, Elasticities, forecast prices 

MSA  lags  R2  α coef  T  LR 

Elast. 

Stock 

Forcst 

Price 

forcst 

ECM 

Elast 

Albuquerque  6  0.351  ‐0.066  ‐3.08  1.549  0.126  0.195  0.649 

Atlanta  8  0.469  ‐0.072  ‐2.81  2.848  0.209  0.503  0.415 

Austin  8  0.272  ‐0.094  ‐3.31  2.163  0.174  0.082  2.116 

Baltimore  5  0.511  ‐0.033  ‐3.28  0.585  0.081  0.341  0.238 

Baton Rouge  12  0.383  ‐0.170  ‐4.39  2.458  0.092  ‐0.019  ‐4.839 

Birmingham  11  0.116  ‐0.087  ‐1.59  0.999  0.090  0.268  0.337 

Boston  7  0.685  ‐0.029  ‐2.61  0.358  0.053  0.360  0.148 

Buffalo  9  0.173  ‐0.065  ‐2.51  1.015  0.043  0.096  0.448 

Charlotte  7  0.282  ‐0.127  ‐2.68  2.193  0.190  0.146  1.300 

Chicago  8  0.555  ‐0.043  ‐1.96  0.508  0.086  0.542  0.158 

Cincinnati*  10  0.398  ‐0.063  ‐2.18  1.633  0.109  0.205  0.534 

Cleveland*  11  0.338  ‐0.046  ‐1.99  0.896  0.058  0.224  0.259 

Colorado Sprgs  14  0.350  ‐0.065  ‐1.91  1.387  0.169  0.310  0.545 

Columbia SC*  9  0.109  ‐0.080  ‐1.95  2.304  0.116  0.162  0.718 

Columbus*  8  0.284  ‐0.067  ‐2.18  1.761  0.136  0.279  0.488 

Dallas  7  0.350  ‐0.041  ‐3.06  ‐2.518  0.151  ‐0.123  ‐1.227 

Dayton*  4  0.131  ‐0.137  ‐3.66  1.343  0.078  0.327  0.239 

Denver  6  0.373  ‐0.058  ‐3.46  0.969  0.165  0.329  0.502 

Detroit  7  0.556  ‐0.028  ‐2.21  0.517  0.083  0.853  0.098 

Edison  4  0.677  ‐0.021  ‐2.41  0.550  0.090  0.323  0.280 

Fort Lauderdale  4  0.606  ‐0.040  ‐3.90  0.746  0.127  0.390  0.325 

Fort Worth  11  0.387  ‐0.050  ‐2.44  ‐1.764  0.114  ‐0.126  ‐0.906 

Greensboro  9  0.298  ‐0.164  ‐3.38  3.140  0.096  0.151  0.640 

Hartford  4  0.582  ‐0.032  ‐2.51  0.958  0.054  0.084  0.643 

Honolulu  5  0.345  ‐0.048  ‐2.55  0.391  0.064  0.627  0.101 

Houston  6  0.462  ‐0.049  ‐3.62  ‐31.10  0.117  ‐0.123  ‐0.952 

Indianapolis*  6  0.068  ‐0.072  ‐2.00  2.261  0.146  0.266  0.549 

Jacksonville  6  0.569  ‐0.076  ‐4.56  1.061  0.142  0.354  0.401 
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Kansas City*  10  0.403  ‐0.037  ‐2.41  2.294  0.121  0.180  0.673 

Las Vegas  5  0.609  ‐0.055  ‐4.02  2.596  0.267  0.733  0.364 

Long Island  5  0.597  ‐0.028  ‐3.05  0.213  0.041  0.426  0.096 

Los Angeles  3  0.715  ‐0.027  ‐3.34  0.287  0.029  0.241  0.119 

Louisville*  9  0.164  ‐0.121  ‐2.68  0.936  0.109  0.251  0.434 

Memphis*  10  0.356  ‐0.183  ‐3.31  20.038  0.133  0.179  0.741 

Miami  4  0.678  ‐0.049  ‐4.34  0.489  0.097  0.439  0.221 

Minneapolis  7  0.557  ‐0.042  ‐3.65  0.779  0.123  0.464  0.265 

Nashville  7  0.380  ‐0.129  ‐4.72  1.509  0.144  0.180  0.798 

New Orleans  12  0.260  ‐0.039  ‐1.87  1.432  0.067  0.126  0.537 

New York  5  0.709  ‐0.037  ‐3.14  0.186  0.029  0.453  0.065 

Newark  5  0.637  ‐0.045  ‐3.09  0.337  0.051  0.219  0.234 

Norfolk  6  0.563  ‐0.027  ‐3.08  0.965  0.101  0.225  0.448 

Oakland  3  0.662  ‐0.031  ‐3.48  0.360  0.070  0.463  0.151 

Oklahoma City  11  0.384  ‐0.030  ‐1.83  ‐1.839  0.083  ‐0.179  ‐0.461 

Orange County  3  0.682  ‐0.027  ‐3.37  0.483  0.081  0.328  0.246 

Orlando  4  0.632  ‐0.036  ‐3.01  1.519  0.187  0.455  0.411 

Philadelphia  6  0.620  ‐0.025  ‐2.28  0.435  0.057  0.253  0.227 

Phoenix  6  0.581  ‐0.047  ‐2.86  1.273  0.190  0.556  0.341 

Pittsburgh*  5  0.140  ‐0.112  ‐2.44  0.667  0.047  0.111  0.423 

Portland  6  0.549  ‐0.050  ‐2.67  0.571  0.141  0.431  0.326 

Providence  8  0.644  ‐0.034  ‐3.09  0.327  0.050  0.468  0.106 

Raleigh  7  0.360  ‐0.056  ‐1.70  2.451  0.191  0.225  0.852 

Richmond  7  0.444  ‐0.040  ‐2.99  1.127  0.118  0.266  0.443 

Riverside  4  0.709  ‐0.040  ‐3.39  0.911  0.107  0.368  0.290 

Sacramento  4  0.695  ‐0.039  ‐3.73  0.682  0.126  0.594  0.213 

Salt Lake City  6  0.348  ‐0.075  ‐3.56  1.344  0.219  0.324  0.675 

San Antonio  11  0.440  ‐0.061  ‐2.48  ‐4.071  0.103  ‐0.151  ‐0.678 

San Diego  3  0.597  ‐0.026  ‐2.97  0.494  0.080  0.402  0.199 

San Francisco  3  0.612  ‐0.032  ‐3.14  0.171  0.037  0.419  0.088 

San Jose  3  0.562  ‐0.036  ‐2.90  0.322  0.080  0.459  0.173 



 

35 
 

Seattle  6  0.642  ‐0.043  ‐3.09  0.570  0.116  0.575  0.202 

St Louis  9  0.415  ‐0.038  ‐2.40  1.061  0.081  0.211  0.385 

Tampa  5  0.558  ‐0.046  ‐3.34  0.847  0.111  0.393  0.283 

Tucson  5  0.298  ‐0.068  ‐2.77  0.907  0.134  0.463  0.289 

Tulsa  6  0.196  ‐0.036  ‐1.96  ‐2.444  0.079  ‐0.098  ‐0.803 

Ventura  3  0.644  ‐0.032  ‐3.38  0.460  0.085  0.425  0.199 

Washington DC  5  0.607  ‐0.029  ‐2.55  0.692  0.120  0.315  0.382 

West P Beach  4  0.653  ‐0.030  ‐3.29  1.079  0.131  0.435  0.302 

Wilmington  6  0.510  ‐0.039  ‐3.26  0.738  0.093  0.405  0.230 

 

 

 (* market not cointegrated) 
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Appendix 4: VECM Results, ECM comparison 

MSA  lags  Price  stock   Price 

forcst 

 Stock 

forcst 

ECM 

elast 

 Price 

forcst 

 Stock 

forcst 

VECM 

elast 

Albuquerque  6  151.1  377152  0.195  0.126  0.649 0.200  0.142  0.712 

Atlanta  8  136.1  2170510  0.503  0.209  0.415 0.976  0.332  0.340 

Austin  8  199.4  733804  0.082  0.174  2.116 0.102  0.221  2.160 

Baltimore  5  198.6  1143581  0.341  0.081  0.238 0.346  0.093  0.269 

Baton Rouge  12  187.6  335636  ‐0.019  0.092  ‐4.83  0.021  0.101  4.871 

Birmingham  11  158.7  504057  0.268  0.090  0.337 0.390  0.149  0.381 

Boston  7  214.6  2388271  0.360  0.053  0.148 0.483  0.083  0.172 

Buffalo  9  149.7  522031  0.096  0.043  0.448 0.126  0.046  0.369 

Charlotte  7  153.3  754279  0.146  0.190  1.300 ‐0.108  0.197  ‐1.824 

Chicago  8  146.8  3509432  0.542  0.086  0.158 0.824  0.142  0.172 

Cincinnati*  10  144.5  921843  0.205  0.109  0.534 0.528  0.174  0.330 

Cleveland*  11  125.0  958195  0.224  0.058  0.259 0.631  0.081  0.128 

Colorado Spgs  14  164.3  269065  0.310  0.169  0.545 0.399  0.197  0.494 

Columbia SC*  9  158.1  338654  0.162  0.116  0.718 0.252  0.163  0.646 

Columbus*  8  142.9  802415  0.279  0.136  0.488 0.511  0.199  0.389 

Dallas  7  162.9  1694792  ‐0.123  0.151  ‐1.22  ‐0.091  0.161  ‐1.762 

Dayton*  4  124.9  385647  0.327  0.078  0.239 0.317  0.067  0.211 

Denver  6  189.5  1189418  0.329  0.165  0.502 0.411  0.184  0.448 

Detroit  7  117.1  1950634  0.853  0.083  0.098 1.267  0.123  0.097 

Edison  4  208.3  959312  0.323  0.090  0.280 0.453  0.119  0.262 

Fort Lauderdale  4  173.1  802706  0.390  0.127  0.325 0.386  0.106  0.274 

Fort Worth  11  155.8  851801  ‐0.126  0.114  ‐0.90  ‐0.117  0.132  ‐1.129 

Greensboro  9  143.5  683361  0.151  0.096  0.640 0.190  0.120  0.630 

Hartford  4  172.0  508007  0.084  0.054  0.643 0.281  0.080  0.284 

Honolulu  5  142.2  338121  0.627  0.064  0.101 0.889  0.084  0.095 

Houston  6  190.1  2363262  ‐0.123  0.117  ‐0.95  ‐0.098  0.134  ‐1.376 

Indianapolis*  6  139.3  828284  0.266  0.146  0.549 0.213  0.103  0.484 
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Jacksonville  6  168.0  604706  0.354  0.142  0.401 0.669  0.212  0.317 

Kansas City*  10  158.0  888461  0.180  0.121  0.673 0.304  0.152  0.500 

Las Vegas  5  102.1  850974  0.733  0.267  0.364 0.745  0.296  0.397 

Long Island  5  238.3  1039320  0.426  0.041  0.096 0.484  0.051  0.105 

Los Angeles  3  221.1  3443531  0.241  0.029  0.119 0.362  0.052  0.144 

Louisville*  9  162.8  564779  0.251  0.109  0.434 0.350  0.129  0.369 

Memphis*  10  135.8  554287  0.179  0.133  0.741 0.235  0.166  0.704 

Miami  4  185.3  978620  0.439  0.097  0.221 0.652  0.138  0.212 

Minneapolis  7  173.8  1359734  0.464  0.123  0.265 0.764  0.176  0.231 

Nashville  7  174.3  681477  0.180  0.144  0.798 0.213  0.184  0.866 

New Orleans  12  192.4  537951  0.126  0.067  0.537 0.062  0.073  1.190 

New York  5  223.4  4709602  0.453  0.029  0.065 0.619  0.057  0.092 

Newark  5  200.0  856319  0.219  0.051  0.234 0.497  0.076  0.152 

Norfolk  6  207.1  695910  0.225  0.101  0.448 0.257  0.118  0.461 

Oakland  3  199.5  983336  0.463  0.070  0.151 0.580  0.088  0.152 

Oklahoma City  11  176.4  544264  ‐0.179  0.083  ‐0.46  ‐0.171  0.084  ‐0.493 

Orange County  3  227.4  1050749  0.328  0.081  0.246 0.370  0.097  0.263 

Orlando  4  146.5  949420  0.455  0.187  0.411 0.631  0.259  0.411 

Philadelphia  6  190.0  2155803  0.253  0.057  0.227 0.344  0.073  0.213 

Phoenix  6  154.8  1805925  0.556  0.190  0.341 0.595  0.204  0.343 

Pittsburgh*  5  167.9  1106759  0.111  0.047  0.423 0.134  0.053  0.395 

Portland  6  183.5  931818  0.431  0.141  0.326 0.408  0.154  0.378 

Providence  8  193.9  694077  0.468  0.050  0.106 0.489  0.058  0.119 

Raleigh  7  157.1  710975  0.225  0.191  0.852 0.163  0.255  1.568 

Richmond  7  179.2  534662  0.266  0.118  0.443 0.380  0.157  0.414 

Riverside  4  166.3  1502454  0.368  0.107  0.290 0.642  0.168  0.262 

Sacramento  4  152.8  870028  0.594  0.126  0.213 0.822  0.160  0.194 

Salt Lake City  6  169.9  420299  0.324  0.219  0.675 0.336  0.206  0.611 

San Antonio  11  174.8  851659  ‐0.151  0.103  ‐0.67  ‐0.147  0.091  ‐0.618 

San Diego  3  212.5  1166392  0.402  0.080  0.199 0.463  0.101  0.217 

San Francisco  3  236.5  761108  0.419  0.037  0.088 0.573  0.054  0.094 
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San Jose  3  241.2  653581  0.459  0.080  0.173 0.546  0.104  0.190 

Seattle  6  189.0  1478542  0.575  0.116  0.202 0.493  0.161  0.326 

St Louis  9  166.7  1245842  0.211  0.081  0.385 0.346  0.111  0.320 

Tampa  5  167.1  1349189  0.393  0.111  0.283 0.512  0.135  0.264 

Tucson  5  149.7  442037  0.463  0.134  0.289 0.523  0.165  0.316 

Tulsa  6  167.0  414963  ‐0.098  0.079  ‐0.80  ‐0.092  0.088  ‐0.955 

Ventura  3  200.9  279572  0.425  0.085  0.199 0.506  0.103  0.203 

Washington DC  5  213.5  2243342  0.315  0.120  0.382 0.387  0.150  0.387 

West P Beach  4  163.5  651102  0.435  0.131  0.302 0.501  0.148  0.297 

Wilmington  6  174.1  288029  0.405  0.093  0.230 0.430  0.126  0.292 

 

(* market not cointegrated) 
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Appendix 5: Prices Declines and Forecast Recoveries 

MSA  2007:1  2012:2  2012/2007 2022/2007 2022/2007 nom 

Albuquerque  199.74  151.11  0.75653  0.90766  1.18903 

Atlanta  204.07  136.10  0.66694  1.31789  1.72644 

Austin  208.66  199.38  0.95552  1.05342  1.37998 

Baltimore  281.88  198.59  0.70453  0.94861  1.24268 

Baton Rouge  207.13  187.59  0.90567  0.92441  1.21098 

Birmingham  194.60  158.65  0.81527  1.13327  1.48458 

Boston  279.11  214.55  0.76872  1.13986  1.49322 

Buffalo  157.59  149.73  0.95013  1.06961  1.40119 

Charlotte  191.01  153.26  0.80236  0.71557  0.9374 

Chicago  224.25  146.83  0.65474  1.19442  1.56469 

Cincinnati  177.05  144.47  0.81599  1.24673  1.63322 

Cleveland  168.42  125.04  0.74243  1.21094  1.58634 

Colorado Sprngs  208.63  164.26  0.78734  1.10114  1.44249 

Columbia SC  186.91  158.05  0.84560  1.05865  1.38683 

Columbus  175.19  142.87  0.81550  1.23252  1.6146 

Dallas  180.95  162.89  0.90019  0.81787  1.0714 

Dayton  157.57  124.86  0.79243  1.0437  1.36725 

Denver  221.30  189.51  0.85634  1.20866  1.58335 

Detroit  193.88  117.08  0.60389  1.36888  1.79323 

Edison  294.66  208.32  0.70697  1.02707  1.34546 

Fort Lauderdale  358.49  173.05  0.48272  0.66893  0.87629 
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Fort Worth  174.69  155.78  0.89175  0.78781  1.03204 

Greensboro  170.71  143.52  0.84075  1.00061  1.3108 

Hartford  221.80  171.95  0.77527  0.99305  1.3009 

Honolulu  213.86  142.20  0.66492  1.25605  1.64542 

Houston  197.83  190.14  0.96113  0.86737  1.13625 

Indianapolis  164.52  139.25  0.84643  1.02703  1.3454 

Jacksonville  298.45  167.96  0.56277  0.93898  1.23007 

Kansas City  199.86  158.04  0.79074  1.03147  1.35123 

Las Vegas  284.17  102.09  0.35926  0.62702  0.8214 

Long Island  330.79  238.26  0.72027  1.06916  1.40061 

Los Angeles  374.44  221.06  0.59037  0.80435  1.0537 

Louisville  186.65  162.76  0.87200  1.17708  1.54198 

Memphis  174.48  135.82  0.77843  0.96142  1.25946 

Miami  381.50  185.31  0.48575  0.80252  1.05131 

Minneapolis  259.89  173.82  0.66882  1.1798  1.54553 

Nashville  204.61  174.28  0.85175  1.03279  1.35295 

New Orleans  232.92  192.37  0.82592  0.87685  1.14867 

New York  302.80  223.43  0.73787  1.19474  1.56511 

Newark  275.71  200.02  0.72548  1.08604  1.42271 

Norfolk  281.84  207.07  0.73470  0.92337  1.20961 

Oakland  344.68  199.48  0.57875  0.91433  1.19777 

Oklahoma City  191.79  176.37  0.91958  0.76279  0.99926 

Orange County  369.07  227.39  0.61612  0.84406  1.10572 

Orlando  314.46  146.49  0.46584  0.75966  0.99515 
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Philadelphia  245.04  190.04  0.77554  1.04266  1.36589 

Phoenix  326.13  154.84  0.47478  0.75706  0.99175 

Pittsburgh  177.35  167.94  0.94694  1.07402  1.40696 

Portland  266.24  183.53  0.68934  0.97051  1.27137 

Providence  284.35  193.87  0.68181  1.01487  1.32948 

Raleigh  182.53  157.12  0.86078  1.00092  1.3112 

Richmond  242.55  179.17  0.73868  1.01914  1.33507 

Riverside  366.25  166.34  0.45417  0.74566  0.97681 

Sacramento  303.10  152.75  0.50395  0.9184  1.20311 

Salt Lake City  223.67  169.90  0.75959  1.01516  1.32986 

San Antonio  188.72  174.84  0.92646  0.79053  1.03559 

San Diego  348.00  212.47  0.61055  0.89309  1.16995 

San Francisco  334.47  236.45  0.70694  1.11196  1.45667 

San Jose  346.14  241.22  0.69689  1.07751  1.41154 

Seattle  284.08  188.99  0.66525  0.99293  1.30073 

St Louis  208.49  166.72  0.79964  1.07648  1.41019 

Tampa  322.21  167.13  0.51870  0.78451  1.02771 

Tucson  267.11  149.72  0.56052  0.85381  1.11849 

Tulsa  181.76  167.02  0.91893  0.83426  1.09289 

Ventura  347.83  200.85  0.57744  0.86971  1.13932 

Washington DC  307.20  213.52  0.69504  0.96413  1.26301 

West P Beach  343.20  163.49  0.47637  0.7148  0.93639 

Wilmington  239.12  174.06  0.72792  1.04125  1.36404 
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