14.581 MIT PhD International Trade — Lecture 6: Ricardo-Viner and Heckscher-Ohlin Models (Theory II) —

Dave Donaldson

Spring 2011

- Integrated equilibrium
- Heckscher-Ohlin Theorem
- High-dimensional issues
 - Classical theorems revisited
 - Heckscher-Ohlin-Vanek Theorem
- Assignment models (briefly)

- Results derived in previous lecture hold for small open economies.
 - Relative good prices were taken as exogenously given.
- We now turn world economy with two countries, North and South.
- We maintain the two-by-two HO assumptions:
 - There are two goods, g = 1,2, and two factors, k and l.
 - Identical technology around the world, $y_g = f_g(k_g, l_g)$.
 - Identical homothetic preferences around the world, $d_g^c = \alpha_g(p)I^c$.

Question

What is the pattern of trade in this environment?

- Start from **Integrated Equilibrium** ≡ competitive equilibrium that would prevail if *both* goods and factors were freely traded.
- Consider **Free Trade Equilibrium** ≡ competitive equilibrium that prevails if goods are freely traded, but factors are not.
- Ask: Can free trade equilibrium reproduce integrated equilibrium?
 - Answer turns out to be yes, *if factor prices are equalized through trade*.
- In this situation, one can then use homotheticity to go from differences in factor endowments to the pattern of trade

• Integrated equilibrium corresponds to (p, ω, y) such that:

$$(ZP)$$
 : $p = A'(\omega)\omega$ (1)

$$(GM)$$
 : $y = \alpha (p) (\omega' v)$ (2)

$$(FM)$$
 : $v = A(\omega) y$ (3)

where:

- $p \equiv (p_1, p_2), \omega \equiv (w, r), A(\omega) \equiv [a_{fg}(\omega)], y \equiv (y_1, y_2)$ is the vector of total world output, $v \equiv (I, k)$ is the vector of total world endowments, and $\alpha(p) \equiv [\alpha_1(p), \alpha_2(p)]$.
- $A(\omega)$ derives from cost-minimization.
- $\alpha(p)$ derives from utility-maximization.
- So this is the equilibrium of the world economy if factors were allowed to be mobile.

• Free trade equilibrium corresponds to $(p^t, \omega^n, \omega^s, y^n, y^s)$ such that:

$$(ZP)$$
 : $p^{t} \leq A'(\omega^{c}) \omega^{c}$ for $c = n, s$ (4)

$$GM) : \qquad y^{n} + y^{s} = \alpha \left(p^{t}\right) \left(\omega^{n'} v^{n} + \omega^{s'} v^{s}\right) \tag{5}$$

$$(FM) : v^{c} = A(\omega^{c}) y^{c} \text{ for } c = n, s$$
(6)

where (4) holds with equality if good is produced in country c.

• **Definition:** Free trade equilibrium replicates integrated equilibrium if $\exists (y^n, y^s) \ge 0$ such that $(p, \omega, \omega, y^n, y^s)$ satisfy conditions (4)-(6)

Two-by-two-by-two Heckscher-Ohlin model Factor Price Equalization (FPE) Set

- Definition (vⁿ, v^s) are in the FPE set if ∃ (yⁿ, y^s) ≥ 0 such that condition (6) holds for ωⁿ = ω^s = ω.
- Lemma If (vⁿ, v^s) is in the FPE set, then the free trade equilibrium replicates the integrated equilibrium
- **Proof:** By definition of the FPE set, $\exists (y^n, y^s) \ge 0$ such that

$$v^{c} = A(\omega) y^{c}.$$

So Condition (6) holds. Since $v = v^n + v^s$, this implies

$$\mathbf{v}=A\left(\omega\right)\left(\mathbf{y}^{n}+\mathbf{y}^{s}\right).$$

Combining this expression with condition (3), we obtain $y^n + y^s = y$. Since $\omega^{n'}v^n + \omega^{s'}v^s = \omega'v$, Condition (5) holds as well. Finally, Condition (1) directly implies (4) holds.

Integrated equilibrium: graphical analysis

• Factor market clearing in the integrated equilibrium:

Two-by-two-by-two Heckscher-Ohlin model The Parallelogram

• **FPE set** \equiv (v^n , v^s) inside the parallelogram

- When v^n and v^s are inside the parallelogram, we say that they belong to the same **diversification cone.**
- This is a very different way of approaching FPE than FPE Theorem.
 - Here, we have shown that there can be FPE iff factor endowments are not too dissimilar, whether or not there are no FIR.
 - Instead of taking prices as given—whether or not they are consistent with integrated equilibrium—we take factor endowments as primitives.

Heckscher Ohlin Theorem: graphical analysis

- Suppose that (v^n, v^s) is in the FPE set.
- **HO Theorem** In the free trade equilibrium, each country will export the good that uses its abundant factor intensively.

• Outside the FPE set, additional technological and demand considerations matter (e.g. FIR or no FIR).

- The HO Theorem can also be derived using the Rybczynski effect:
 - Rybczynski theorem $\Rightarrow y_2^n/y_1^n > y_2^s/y_1^s$ for any p.
 - Homotheticity $\Rightarrow c_2^n/c_1^n = c_2^s/c_1^s$ for any p.
 - This implies $p_2^n / p_1^n < p_2^s / p_1^s$ under autarky.
 - Solution Law of comparative advantage \Rightarrow HO Theorem.

Two-by-two-by-two Heckscher-Ohlin model Trade and inequality

- Predictions of HO and SS Theorems are often combined:
 - HO Theorem $\Rightarrow p_2^n / p_1^n < p_2 / p_1 < p_2^s / p_1^s$.
 - SS Theorem ⇒ Moving from autarky to free trade, real return of abundant factor increases, whereas real return of scarce factor decreases.
 - If North is skill-abundant relative to South, inequality increases in the North and decreases in the South.
- So why may we observe a rise in inequality in the South in practice? Perhaps:
 - Southern countries are not moving from autarky to free trade.
 - Technology is not identical around the world.
 - Preferences are not homothetic and identical around the world.
 - There are more than two goods and two countries in the world.

- Let us define trade volumes as the sum of exports plus imports.
- Inside FPE set, iso-volume lines are parallel to diagonal (HKa p.23).
 - The further away from the diagonal, the larger the trade volumes.
 - Factor abundance rather than country size determines trade volume.

• If country size affects trade volumes in practice, what should we infer?

- Integrated equilibrium
- Heckscher-Ohlin Theorem
- High-dimensional issues
 - Classical theorems revisited
 - Heckscher-Ohlin-Vanek Theorem
- Assignment models (briefly)

High-Dimensional Predictions

 $\mathsf{FPE}(\mathsf{I})$: More factors than goods

- Suppose now that there are F factors and G goods.
- By definition, (v^n, v^s) is in the FPE set if $\exists (y^n, y^s) \ge 0$ s.t. $v^c = A(\omega) y^c$ for c = n, s.
- If F = G ("even case"), the situation is qualitatively similar.
- If F > G, the FPE set will be "measure zero": $\{v|v = A(\omega) y^c \text{ for } y^c \ge 0\}$ is a *G*-dimensional cone in *F*-dimensional space.
- Example: "Standard Macro" model with 1 good and 2 factors.

- If F < G, there will be indeterminacies in production, (yⁿ, y^s), and so, trade patterns, but FPE set will still have positive measure.
- Example: 3 goods and 2 factors:

• By the way, are there more goods than factors in the world?

- SS Theorem was derived by differentiating the zero-profit conditions.
- With an arbitrary number of goods and factors, we still have

$$\widehat{p}_g = \sum_f \theta_{fg} \widehat{w}_f,$$
 (7)

where w_{f} is the price of factor f and $\theta_{fg} \equiv w_{f} a_{fg}(\omega) / c_{g}(\omega)$.

- Now suppose that $\widehat{p}_{g_0} > 0$, whereas $\widehat{p}_g = 0$ for all $g \neq g_0$.
- Equation (7) immediately implies the existence of f_1 and f_2 s.t.

$$\begin{array}{rcl} \widehat{w}_{f_1} & \geq & \widehat{p}_{g_0} > \widehat{p}_g = 0 \text{ for all } g \neq g_0, \\ \widehat{w}_{f_2} & < & \widehat{p}_g = 0 < \widehat{p}_{g_0} \text{ for all } g \neq g_0. \end{array}$$

 So every good is "friend" to some factor and "enemy" to some other (Jones and Scheinkman 1977)

- Ethier (1984) also provides the following variation of SS Theorem.
- If good prices change from p to p', then the associated change in factor prices, $\omega' \omega$, must satisfy

$$(\omega'-\omega) A(\omega_0) (p'-p) > 0$$
, for some ω_0 between ω and ω' .

Proof:

Define $f(\omega) = \omega A(\omega) (p' - p)$. Mean value theorem implies

$$f\left(\omega'\right) = \omega A\left(\omega\right) \left(p'-p\right) + \left(\omega'-\omega\right) \left[A\left(\omega_{0}\right) + \omega_{0} dA\left(\omega_{0}\right)\right] \left(p'-p\right)$$

for some ω_0 between ω and ω' . Cost-minimization at ω_0 requires

$$\omega_0 dA(\omega_0) = 0.$$

High-Dimensional Predictions

Stolper Samuelson type results (II): Correlations

• Proof (Cont.):

Combining the two previous expressions, we obtain

$$f(\omega') - f(\omega) = (\omega' - \omega) A(\omega_0) (p' - p).$$

From the zero profit conditions, we know that $p = \omega A(\omega)$ and $p' = \omega' A(\omega')$. Thus

$$f(\omega') - f(\omega) = (p' - p)(p' - p) > 0.$$

The last two expressions imply

$$(\omega'-\omega) A(\omega_0) (p'-p) > 0.$$

Interpretation:

Tendency for changes in good prices to be accompanied by raises in prices of factors used intensively in goods whose prices have gone up.

But what is ω₀?

- Rybczynski Theorem was derived by differentiating the factor market clearing conditions.
- If G = F > 2, same logic implies that increase in endowment of one factor decreases output of one good and increases output of another (Jones and Scheinkman 1977).
- If *G* < *F*, increase in endowment of one factor may increase output of all goods (Ricardo-Viner).
- In this case, we still have the following correlation (Ethier 1984)

$$(v'-v) A(\omega_0) (y'-y) = (v'-v) (v'-v) > 0.$$

• If *G* > *F*, inderteminacies in production imply that we cannot predict changes in output vectors.

High-Dimensional Predictions

Heckscher Ohlin type results

- Since HO Theorem derives from Rybczynski effect + homotheticity, problems of generalization in the case G < F and F > G carry over to the Heckscher-Ohlin Theorem.
- If G = F > 2, we can invert the factor market clearing condition

$$y^{c}=A^{-1}\left(\omega\right) v^{c}.$$

• By homotheticity, the vector of consumption in country c satisfies

$$d^c = s^c d$$

where $s^c \equiv c$'s share of world income, and $d \equiv$ world consumption.

Good and factor market clearing requires

$$d=y=A^{-1}\left(\omega\right) v.$$

• Combining the previous expressions, we get net exports

$$t^{c} \equiv y^{c} - d^{c} = A^{-1}(\omega) \left(v^{c} - s^{c} v \right).$$

High-Dimensional Predictions

Heckscher Ohlin Vanek Theorem

- Without assuming that G = F, we can derive sharp predictions if we focus on the G ≧ F case and on the *factor content of trade* rather than *commodity trade*.
- We define the *net exports of factor f* by country *c* as

$$au_{f}^{c}=\sum_{g}a_{fg}\left(\omega
ight)t_{g}^{c}.$$

• In matrix terms, this can be rearranged as

$$\tau^{c}=A\left(\omega\right)t^{c}.$$

• HOV Theorem In any country c, net exports of factors satisfy

$$\tau^c = v^c - s^c v.$$

 So countries should export the factors in which they are abundant compared to the world: v_f^c > s^cv_f.

- Integrated equilibrium
- Heckscher-Ohlin Theorem
- High-dimensional issues
 - Classical theorems revisited
 - Heckscher-Ohlin-Vanek Theorem
- Assignment models (briefly)

- With 2 goods and 2 factors, neoclassical trade models lead to sharp comparative static predictions.
- With more than 2 goods and 2 factors, however, their predictions become weak and unintuitive.
- "Assignment approach" consists in imposing more structure on technology in order to transform analysis into an assignment problem (which has more success in high dimensions).

• Main assumption:

Constant marginal product for all factors (as in a Ricardian model).

• Main benefit:

Side-step many mathematical difficulties to derive strong and intuitive predictions in high-dimensional environments.

- Consider a world economy with two countries, Home and Foreign.
- There is a continuum of goods with skill-intensity $\sigma \in \Sigma \equiv [\underline{\sigma}, \overline{\sigma}]$.
- There is a continuum of workers with skill $s \in S \equiv [\underline{s}, \overline{s}]$.
- $V(s), V^*(s) > 0$ is the inelastic supply of workers with skill s.
- Home is skill-abundant relative to Foreign:

$$rac{V(s')}{V(s)} > rac{V(s')}{V(s)} ext{ for any } s' \geq s.$$

Example: Costinot and Vogel (2009) Technology and preferences

- Technology is the same around the world.
- Workers are perfect substitutes in the production of each task:

$$Y(\sigma) = \int_{s \in S} A(s, \sigma) L(s, \sigma) \, ds.$$

• $A(s, \sigma) > 0$ is strictly log-supermodular:

$$\frac{A(s,\sigma)}{A(s,\sigma')} > \frac{A(s',\sigma)}{A(s',\sigma')}, \text{ for all } s > s' \text{ and } \sigma > \sigma'.$$

• Consumers have identical CES preferences around the world:

$$U = \left\{ \int_{\sigma \in \Sigma} \left[C\left(\sigma\right) \right]^{\frac{\varepsilon-1}{\varepsilon}} d\sigma \right\}^{\frac{\varepsilon}{\varepsilon-1}}.$$

Example: Costinot and Vogel (2009) Results

- Generalizations of all two-by-two results: FPE, Stolper-Samuelson, Rybczynski, Heckscher-Ohlin.
- More importantly, model can be used to look at new phenomena.
- Example: North-North trade

$$\begin{array}{ll} \displaystyle \frac{V(s')}{V(s)} & > & \displaystyle \frac{V^*(s')}{V^*(s)} \ \text{for any } s' \ge s \ge \widehat{s}, \\ \displaystyle \frac{V(s')}{V(s)} & < & \displaystyle \frac{V^*(s')}{V^*(s)} \ \text{for any } \widehat{s} \ge s' \ge s. \end{array}$$

• One can show that trade integration leads to *wage polarization* in the more "diverse" country and *wage convergence* in the other country.

14.581 International Economics I Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.