14.581 MIT PhD International Trade —Lecture 15: Gravity Models (Theory)—

Dave Donaldson

Spring 2011

Introduction to 'Gravity Models'

- Recall that in this course we have so far seen a wide range of trade models:
 - Neoclassical:
 - Ricardo; basic, DFS (1977), Eaton and Kortum (2002), and Costinot, Donaldson and Komunjer (2011).
 - Ricardo-Viner; we saw general version; but easy to imagine a 'gravity' version that would be CDK (2011) with > 1 factor of production and some factors immobile across sectors.
 - Heckscher-Ohlin; we saw general version; but again, easy to imagine 'gravity version' as CDK (2011) with > 1 factor of production and all factors mobile across sectors.
 - Monopolistic Competition:
 - Krugman (1979, 1980)
 - Melitz (2003)
 - Extensions of Melitz (2003) like Bernard, Redding and Schott (2007), Chaney (2008) or Arkolakis (2011)

Introduction to 'Gravity Models'

- A surprising number of these models generate effectively the same 'gravity equation' prediction for trade flows.
- In this lecture we will:
 - Define the statement 'gravity equation'
 - Discuss which of the above models do and do not deliver 'gravity'; we'll call these 'gravity models'
 - Discuss other features that are common to these 'gravity models'.
- In the next lecture we will discuss empirical estimation of gravity equations (and in particular their use for inferring the magnitude of trade costs).

What Do We Mean by 'Gravity Equation'?

• Short answer: When predicted trade flows (expenditures) can be written in the following form:

$$\ln X_{ij}^k(\boldsymbol{\tau}, \mathbf{E}) = A_i^k(\boldsymbol{\tau}, \mathbf{E}) + B_j^k(\boldsymbol{\tau}, \mathbf{E}) + \varepsilon^k \ln \tau_{ij}^k$$
(1)

- Where:
 - *i* is the exporting country, *j* is the importing country, and *k* is the industry.
 - τ_{ii}^k is some measure of bilateral trade costs.
 - The terms A^k_i(τ, E) and B^k_j(τ, E) are terms that vary only at the *ik* and *jk* levels. That is, they are not bilateral. However, they may depend on the full set of bilateral objects (ie the full matrix of bilateral trade costs τ).
 - Note that the A^k_i(τ, E) and B^k_j(τ, E) terms are (at least potentially) endogenous (they depend on the vector of equilibrium total expenditures E). So the above expression for trade flows is not closed-form.
 - Note, equivalently, that the parameter ε^k only captures the 'partial equilibrium' (ie holding A^k_i(τ, E) and B^k_j(τ, E) constant) effect of τ^k_{ii} on ln X^k_{ii}.

What Do We Mean by 'Gravity Equation'?

• Short answer: When predicted trade flows (expenditures) can be written in the following form:

$$\ln X_{ij}^k(\boldsymbol{\tau}, \mathbf{E}) = A_i^k(\boldsymbol{\tau}, \mathbf{E}) + B_j^k(\boldsymbol{\tau}, \mathbf{E}) + \varepsilon^k \ln \tau_{ij}^k \qquad (2)$$

• Clearly this definition incorporates the 'simple (naive)' gravity equation we have discussed in this course so far:

$$\ln X_{ij}^{k} = \alpha \ln Y_{i}^{k} + \beta \ln E_{j}^{k} + \varepsilon \ln \tau_{ij}^{k}$$

• Tinbergen (1962) is often credited as the first empirical exploration of an expression like this.

- Anderson (1979), and Anderson and van Wincoop (AER, 2003) highlight how this 'simple' gravity equation lacks theoretical justification:
 - 1. It does not respect market clearing (that is, the output produced in *i* needs to equal the sum of purchases of these goods: $Y_i^k = \sum_j X_{ij}^k$).
 - 2. It does not incorporate fact that consumers may view goods as substitutes. In particular, if appealing to a CES preference system (which begins to nicely justify the constant coefficient ε^k in front of $\ln \tau_{ij}^k$) then one should also include a price index that involves the prices of <u>all</u> countries' goods (ie the substitues for country *i*'s goods.)

What Do We Mean by 'Gravity Equation'? $\ln X_{ij}^{k}(\tau, \mathbf{E}) = A_{i}^{k}(\tau, \mathbf{E}) + B_{j}^{k}(\tau, \mathbf{E}) + \varepsilon^{k} \ln \tau_{ij}^{k}$

Anderson (1979), and Anderson and van Wincoop (AER, 2003) derive the following system of equations which incorporates the above two points:

$$X_{ij}^{k} = \frac{E_{j}^{k}Y_{i}^{k}}{Y^{k}} \left(\frac{\tau_{ij}^{k}}{P_{j}^{k}\Pi_{i}^{k}}\right)^{1-\epsilon^{k}}$$
$$(\Pi_{i}^{k})^{1-\epsilon^{k}} = \sum_{j} \left(\frac{\tau^{k}}{P_{j}^{k}}\right)^{1-\epsilon^{k}} \frac{E_{j}^{k}}{Y^{k}}$$
$$(P_{j}^{k})^{1-\epsilon^{k}} = \sum_{i} \left(\frac{\tau^{k}}{\Pi_{i}^{k}}\right)^{1-\epsilon^{k}} \frac{Y_{i}^{k}}{Y^{k}}$$

• Clearly this, too, fits into our general definition.

Which Models Generate a 'Gravity Equation'?

- Neoclassical:
 - Eaton and Kortum (2002) with one industry. Then gravity equation describes aggregate trade flows.
 - Models like Costinot, Donaldson and Komunjer (2011) which feature EK (2002) set-up within each of multiple industries. Then gravity equation relates to each industry one industry at a time.
 - Could also add multiple factors of production easily (and retain gravity) but the Frechet-distributed productivity shock (if EK or CDK) needs to be Hicks-neutral.
- Monopolistic Competition:
 - Krugman (1980)
 - Melitz (2003) with Pareto-distributed productivities (as in Chaney (2008)).

Why Do These (and Only These) Models Generate 'Gravity'?

- One answer due to Deardorff (1998):
 - Gravity will arise whenever you have complete specialization, homothetic CES preferences, and iceberg trade costs.
- Similar answer in Anderson and van Wincoop (2004):
 - Gravity will arise whenever you have:
 - CES preferences
 - Iceberg trade costs
 - And a 'trade separable' set-up: in which the decision of how much of a good category to consume is separable from the decision about where to buy it from (two-stage budgeting); and a similar condition holds on the supply side.

What Is to Like About Models Featuring the 'Gravity Equation'?

- 1. As we shall see in the next lecture, these models fit the data well.
 - Though exactly how well, and how many degrees of freedom are used up in that good fit, are typically not mentioned. (There are a lot of unspecified fixed effects in the above definition. And direct data on \(\tau_{ii}^k\) is very hard to get.)
- There is a very strong correspondence between the set of models that generate a gravity equation, and the set of models that are particularly tractable (when asked to include real-world features like multiple countries, multiple industries, and trade costs.)
 - Note that every model we've seen in this course that can handle these features is a gravity model.

• Arkolakis, Costinot and Rodriguez-Clare (AER 2011) introduce the phrase 'gravity models' to refer to models that (in addition to a few other conditions that we will see shortly) generate a gravity equation.

What Else is Implied by 'Gravity Models'?

- ACRC (2011) then show that, for any model satisfying these conditions, a number of additional features are common to all of these models. Conditional on the trade flows we observe in the world today, and one observed parameter:
 - Weak ex-ante equivalence: The 'gains from trade' (GT) in the model (that is, the losses that would obtain if a country in the model went to autarky) are the same. (Title: "New Trade Models, Same Old Gains?")
 - Strong ex-ante equivalence: Under (somewhat) stronger conditions, the response of any endogenous variable to a change in any exogenous variable will be the same in all models.
 - Weak ex-post equivalence: If we see a country's trade flows change between two equilibria, we can back out the welfare change associated with this change, and it will be the same in all models.
- We now go through this in detail.

Start with a Simple Example

- Consider first a simple example: the Armington model (as formalized by Anderson (1979) and Anderson and van Wincoop (2003)):
 - Countries produce unique goods, by assumption. (The only country that can produce 'French goods' is France.) "Armington differentiation."
 - Consumers have CES preferences over all of these different country-specific goods.
- Notes:
 - Specialization in this model is completely by assumption (and is therefore very boring).
 - But this modeling trick is of great help, since now one only has to solve for where the goods will end up.
 - "Armington" is often thought of as something to do with preferences. But I find it more natural to think of "Armgington" as a supply-side restriction, where countries have extremely different sets of relative productivities across all goods in the world. In this sense, Armington is just an extreme Ricardian model.

The Armington Model: Equilibrium

Labor endowments

$$L_i$$
 for $i = 1, \dots n$

• Dixit-Stiglitz preferences \Rightarrow consumer price index

$$P_j^{1-\sigma} = \sum_{i=1}^n \left(w_i \tau_{ij} \right)^{1-\sigma}$$

Aggregate bilateral demand

$$X_{ij} = \left(\frac{w_i \tau_{ij}}{P_j}\right)^{1-\sigma} Y_j$$

Labor market equilibrium

$$\sum_{j} X_{ji} = w_j L_j$$

• Trade shares and real income

$$\lambda_{ij} \equiv X_{ij}/Y_j$$

 $W_i \equiv Y_i/P_i$

The Armington Model: Weak Ex-Post Welfare Result

Step 1: changes in real income depend on changes in ToT $(c_{ij} \equiv w_i \tau_{ij})$

$$d \ln W_j = d \ln Y_j - d \ln P_j = -\sum_{i=1}^n \lambda_{ij} \left(d \ln c_{ij} - d \ln c_{jj} \right).$$

Step 2: changes in relative imports depend on changes in ToT

$$d \ln \lambda_{ij} - d \ln \lambda_{jj} = (1 - \sigma) (d \ln c_{ij} - d \ln c_{jj}).$$

Step 3: combining these two equations yields

$$d \ln W_j = -rac{\sum_{i=1}^n \lambda_{ij} \left(d \ln \lambda_{ij} - d \ln \lambda_{jj}
ight)}{1 - \sigma}.$$

Step 4: noting that $\sum_{i} \lambda_{ij} = 1 \Longrightarrow \sum_{i} \lambda_{ij} d \ln \lambda_{ij} = 0$ then $d \ln W_j = \frac{d \ln \lambda_{jj}}{1 - \sigma}.$

Step 5: integration yields ($\hat{x} = x'/x$)

$$\widehat{W}_{j} = \widehat{\lambda}_{jj}^{1/(1-\sigma)}$$

- We showed that, for any change in trade flows $(\widehat{\lambda}_{jj})$, the change in welfare in this model is: $\widehat{W}_j = \widehat{\lambda}_{jj}^{1/(1-\sigma)}$
- To show the 'weak ex-ante welfare result', just note that if we are interested in the Gains From Trade (ie losses of going to autarky) this can be computed by evaluating $\hat{\lambda}_{jj} = \lambda_{jj} 1$ since $\lambda_{jj} = 1$ under autarky.

- We now step way back and (following ACRC, 2011) consider a much more general model that will be sufficient to derive results, and is general enough to encompass many widely-used trade models.
- The approach in ACRC (2011) was to:
 - Consider a 'micro structure' that is extremely broad. The idea here is that the vast majority of microfoundations that (trade) economists use will fit in here.
 - And then introduce 3 'macro restrictions' that are sufficient to generate their results. Note, though, that not all of the above microfoundations will always satisfy these macro restrictions (ie the macro restrictions do restrict!)

• Dixit-Stiglitz preferences

• Consumer price index,

$$P_i^{1-\sigma} = \int_{\omega \in \Omega} p_i(\omega)^{1-\sigma} d\omega,$$

• One factor of production: labor

- $L_i \equiv$ labor endowment in country *i*
- $w_i \equiv wage in country i$

• Linear cost function:

$$C_{ij}(\omega, t, q) = \underbrace{qw_i\tau_{ij}\alpha_{ij}(\omega) t^{\frac{1}{1-\sigma}}}_{\text{variable cost}} + \underbrace{w_i^{1-\beta}w_j^{\beta}\xi_{ij}\phi_{ij}(\omega) m_{ij}(t)}_{\text{fixed cost}},$$

q : quantity,

 τ_{ij} : iceberg tansportation cost,

 $\alpha_{\textit{ij}}\left(\omega\right)$: good-specific heterogeneity in variable costs,

 ξ_{ij} : fixed cost parameter,

 $\phi_{ij}(\omega)$: good-specific heterogeneity in fixed costs.

• Linear cost function:

$$C_{ij}(\omega, t, q) = q w_i \tau_{ij} \alpha_{ij}(\omega) t^{\frac{1}{1-\sigma}} + w_i^{1-\beta} w_j^{\beta} \xi_{ij} \phi_{ij}(\omega) m_{ij}(t)$$

where $m_{ij}(t)$ is the cost for endogenous, destination specific technology choice, t,

$$t \in [\underline{t}, \overline{t}]$$
, $m'_{ij} > 0$, $m''_{ij} < 0$

• Linear cost function:

$$C_{ij}(\omega, t, q) = q w_i \tau_{ij} \alpha_{ij}(\omega) t^{\frac{1}{1-\sigma}} + w_i^{1-\beta} w_j^{\beta} \xi_{ij} \phi_{ij}(\omega) m_{ij}(t)$$

• Heterogeneity across goods drawn from CDF:

$$G_{j}(\alpha_{1},...,\alpha_{n},\phi_{1},...,\phi_{n}) \equiv \{\omega \in \Omega \mid \alpha_{ij}(\omega) \leq \alpha_{i}, \phi_{ij}(\omega) \leq \phi_{i}, \forall i\}$$

Perfect competition

- Firms can produce any good.
- No fixed exporting costs.

Monopolistic competition

- Either free entry: firms in *i* can pay $w_i F_i$ for monopoly power over a random good.
- Or fixed entry: exogenous measure of firms, N
 i < N
 , receive monopoly power.
- Let N_i be the measure of goods that can be produced in i
 - Perfect competition: $N_i = \overline{N}$
 - Monopolistic competition: $N_i < \overline{N}$

Bilateral trade flows are, by definition:

$$X_{ij} = \int_{\omega \in \Omega_{ij} \subset \Omega} x_{ij}(\omega) \, d\omega$$

R1 For any country *j*,

$$\sum_{i\neq j} X_{ij} = \sum_{i\neq j} X_{ji}$$

Note that this is trivial if perfect competition or $\beta = 0$. But non-trivial if $\beta > 0$.

Macro-Level Restriction (II): Profit Share is Constant

• R2 For any country j,

$$\Pi_j / \left(\sum_{i=1}^n X_{ji}
ight)$$
 is constant

- Where Π_j : aggregate profits gross of entry costs, w_jF_j, (if any).
 - Trivial under perfect competition.
 - Direct from Dixit-Stiglitz preferences in Krugman (1980).
 - Non-trivial in more general environments.

Macro-Level Restriction (III): CES Import Demand System

• Import demand system defined as

 $(\mathbf{w}, \mathbf{N}, \tau) \rightarrow \mathbf{X}$

• R3

$$\varepsilon_{j}^{ii'} \equiv \partial \ln \left(X_{ij} / X_{jj} \right) / \partial \ln \tau_{i'j} = \begin{cases} \varepsilon < 0 & i = i' \neq j \\ 0 & otherwise \end{cases}$$

Note: symmetry and separability.

- Note that the trade elasticity ε is an upper-level elasticity: it combines
 - $x_{ij}(\omega)$ (intensive margin)
 - Ω_{ij} (extensive margin).
- Note that R3 \implies complete specialization.
- Also note that R1-R3 are not necessarily independent
 - Eg, if $\beta = 0$ then R3 \implies R2.

• R3' The IDS satisfies,

$$X_{ij} = \frac{\chi_{ij}M_i (w_i \tau_{ij})^{\varepsilon} Y_j}{\sum_{i'=1}^{n} \chi_{i'j}M_{i'} (w_{i'} \tau_{i'j})^{\varepsilon}}$$

where χ_{ij} is independent of $(\mathbf{w}, \mathbf{M}, \tau)$.

• Same restriction on $\varepsilon_j^{ii'}$ as R3 but, but additional structural relationships.

State of the world economy:

$$\mathsf{Z} \equiv (\mathsf{L}, \tau, \xi)$$

Foreign shocks: a change from Z to Z' with no domestic change.

Proposition 1: Suppose that R1-R3 hold. Then

$$\widehat{W}_j = \widehat{\lambda}_{jj}^{1/\varepsilon}.$$

Implication: 2 sufficient statistics for welfare analysis $\widehat{\lambda}_{jj}$ and ε

New margins affect structural interpretation of $\boldsymbol{\varepsilon}$

...and composition of gains from trade (GT)...

... but size of GT is the same.

- Proposition 1 is an *ex-post* result... a simple *ex-ante* result:
- Corollary 1: Suppose that R1-R3 hold. Then

$$\widehat{W}_{j}^{\mathcal{A}} = \lambda_{jj}^{-1/arepsilon}$$

A stronger ex-ante result for variable trade costs under R1-R3':

Proposition 2: Suppose that R1-R3' hold. Then

$$\widehat{W}_{j} = \widehat{\lambda}_{jj}^{1/arepsilon}$$

where

$$\widehat{\lambda}_{jj} = \left[\sum_{i=1}^n \lambda_{ij} \left(\hat{w}_i \hat{ au}_{ij}
ight)^arepsilon
ight]^{-1}$$
 ,

and

$$\widehat{w}_{i} = \sum_{j=1}^{n} \frac{\lambda_{ij} \widehat{w}_{j} Y_{j} (\widehat{w}_{i} \widehat{\tau}_{ij})^{\varepsilon}}{Y_{i} \sum_{i'=1}^{n} \lambda_{i'j} (\widehat{w}_{i'} \widehat{\tau}_{i'j})^{\varepsilon}}.$$

 ε and $\{\lambda_{ij}\}$ are sufficient to predict \widehat{W}_j (ex-ante) from $\hat{\tau}_{ij}$, $i \neq j$.

- We have considered models featuring:
 - (i) Dixit-Stiglitz preferences;
 - (*ii*) one factor of production;
 - (iii) linear cost functions; and
 - (*iv*) perfect or monopolistic competition;
- with three macro-level restrictions:
 - (*i*) trade is balanced;
 - (*ii*) aggregate profits are a constant share of aggregate revenues; and
 - (iii) a CES import demand system.
- Equivalence for ex-post welfare changes, under R3' equivalence carries to ex-ante welfare changes

- Examples that (one can show) fit into the above framework:
 - Armington model (Anderson, 1979)
 - Krugman (1980)
 - Eaton and Kortum (2002)
 - Anderson and Van Wincoop (2003)
 - Variations and extensions of Melitz (2003) including Chaney (2008), Arkolakis (2009), and Eaton, Kortum and Kramarz (2010).

- Now consider Melitz (2003) as a special case.
- We will see how the general Melitz (2003) model does not fit into the above framework, but how very the very commonly used Pareto parameterization of Melitz (2003) does.

- To simplify, here we assume $\underline{t} = \overline{t} = 1$ and $\phi = 1$ for all i, j, ω .
- Let $c_{ij} \equiv w_i \tau_{ij}$. Monopolistic competition implies

$$p_j(\omega) = rac{\sigma}{\sigma-1} c_{ij} lpha_{ij}(\omega) ext{ for } \omega \in \Omega_{ij}$$

with

$$\Omega_{ij} = \left\{ \omega \in \Omega | \alpha_{ij} \left(\omega \right) \le \alpha_{ij}^* \right\}$$

The import demand system

• Dixit-Stiglitz preferences imply:

$$X_{ij} = \frac{N_i \int_0^{\alpha_{ij}^*} [c_{ij}\alpha]^{1-\sigma} g_i(\alpha) d\alpha}{\sum_{i'=1}^n N_{i'} \int_0^{\alpha_{i'j}^*} [c_{i'j}\alpha]^{1-\sigma} g_{i'}(\alpha) d\alpha} Y_j.$$

The elasticity of the *extensive margin* is

$$\gamma_{ij} \equiv \frac{d \ln \left(\int_{0}^{\alpha_{ij}^{*}} \alpha^{1-\sigma} g_{i}\left(\alpha\right) d\alpha \right)}{d \ln \alpha_{ij}^{*}}$$

We now have

$$\frac{\partial \ln X_{ij}/X_{jj}}{\partial \ln \tau_{i'j}} = \varepsilon_j^{ii'} = \begin{cases} 1 - \sigma - \gamma_{ij} + (\gamma_{jj} - \gamma_{ij}) \left(\frac{\partial \ln \alpha_{jj}^*}{\partial \ln \tau_{ij}}\right) & \text{for} \quad i' = i\\ (\gamma_{jj} - \gamma_{ij}) \left(\frac{\partial \ln \alpha_{jj}^*}{\partial \ln \tau_{i'j}}\right) & \text{for} \quad i' \neq i \end{cases}$$

The logic behind Proposition 1

• Recall the result for Armington

$$d \ln W_j = d \ln Y_j - d \ln P_j = d \ln Y_j - \sum_{i=1}^n \lambda_{ij} d \ln c_{ij}$$

Now, in Melitz (2003), we have

$$d \ln W_j = d \ln Y_j - d \ln P_j = d \ln Y_j - \sum_{i=1}^n \lambda_{ij} d \ln c_{ij}$$
$$+ \sum_{i=1}^n \lambda_{ij} \left[\frac{d \ln N_i + \gamma_{ij} d \ln \alpha^*_{ij}}{1 - \sigma} \right].$$

But $d \ln N_i + \gamma_{ij} d \ln \alpha^*_{ij}$ related to $d \ln \lambda_{ij} - d \ln \lambda_{jj} \dots$

• Change in welfare

$$d \ln W_j = d \ln Y_j$$

- $\sum_{i=1}^n \left(\frac{\lambda_{ij}}{1 - \sigma - \gamma_j} \right) \cdot [d \ln \lambda_{ij} - d \ln \lambda_{jj}]$
- $\sum_{i=1}^n \left(\frac{\lambda_{ij}}{1 - \sigma - \gamma_j} \right) \cdot [-(\gamma_{ij} - \gamma_{jj}) d \ln \alpha_{jj}^* + d \ln N_j].$

• R1 and R2 \implies d ln $Y_j = d \ln N_j = 0$ and hence

$$d \ln W_j = 0$$

- $\sum_{i=1}^n \left(\frac{\lambda_{ij}}{1 - \sigma - \gamma_j} \right) \cdot [d \ln \lambda_{ij} - d \ln \lambda_{jj}]$
- $\sum_{i=1}^n \left(\frac{\lambda_{ij}}{1 - \sigma - \gamma_j} \right) \cdot [-(\gamma_{ij} - \gamma_{jj}) d \ln \alpha_{jj}^* + 0].$

• R1 and R2 \implies d ln $Y_j = d \ln N_j = 0$ and hence

$$d \ln W_j = -\sum_{i=1}^n \left(\frac{\lambda_{ij}}{1-\sigma-\gamma_j}\right) \cdot \left[d \ln \lambda_{ij} - d \ln \lambda_{jj}\right] \\ -\sum_{i=1}^n \left(\frac{\lambda_{ij}}{1-\sigma-\gamma_j}\right) \cdot \left[-(\gamma_{ij} - \gamma_{jj}) d \ln \alpha_{jj}^*\right].$$

The logic behind Proposition 1

$$R3 \implies \gamma_{ij} = \gamma_{jj} \text{ and } 1 - \sigma - \gamma_j = \varepsilon \text{ and hence}$$

$$d \ln W_j = -\sum_{i=1}^n \left(\frac{\lambda_{ij}}{1 - \sigma - \gamma_j}\right) \cdot \left[d \ln \lambda_{ij} - d \ln \lambda_{jj}\right]$$

$$-\sum_{i=1}^n \left(\frac{\lambda_{ij}}{1 - \sigma - \gamma_j}\right) \cdot \left[-(\gamma_{ij} - \gamma_{jj}) d \ln \alpha_{jj}^*\right]$$

$$= -\sum_{i=1}^n \left(\frac{\lambda_{ij}}{\varepsilon}\right) \cdot \left[d \ln \lambda_{ij} - d \ln \lambda_{jj}\right]$$

$$\sum_{i} \lambda_{ij} = 1 \Longrightarrow \sum_{i} \lambda_{ij} d \ln \lambda_{ij} = 0 \text{ and hence}$$
$$d \ln W_j = -\sum_{i=1}^n \left(\frac{\lambda_{ij}}{\varepsilon}\right) \cdot [d \ln \lambda_{ij} - d \ln \lambda_{jj}]$$
$$= \frac{d \ln \lambda_{jj}}{\varepsilon}.$$

• We thus have the local result

$$d\ln W_j = \frac{d\ln\lambda_{jj}}{\varepsilon}$$

• R3 $\implies \varepsilon$ constant across equilibria,

$$\widehat{W}_j = \widehat{\lambda}_{jj}^{1/arepsilon}$$

The Pareto density implies R1-R3

Productivity distributed Pareto,

$$g_i(\alpha_1,...,\alpha_n) = \prod_{i'} \alpha_{i'}^{\theta}$$

- Pareto + Free Entry \implies R1 + R2
- Pareto $\Longrightarrow \gamma_{ij} = \gamma_{jj} = \theta (\sigma 1) \Longrightarrow R3$,

$$\frac{\partial \ln X_{ij}/X_{jj}}{\partial \tau_{i'j}} = \begin{cases} 1 - \sigma - \gamma_{ij} + (\gamma_{jj} - \gamma_{ij}) \left(\frac{\partial \ln \alpha_{jj}^*}{\partial \ln \tau_{ij}}\right) = -\theta & \text{if } i' = i\\ (\gamma_{jj} - \gamma_{ij}) \left(\frac{\partial \ln \alpha_{ji}^*}{\partial \ln \tau_{i'j}}\right) = 0 & \text{if } i' \neq i \end{cases}$$

The Pareto density also implies

$$X_{ij} = \frac{N_i w_i^{-\theta + (1-\beta)[1-\theta/(\sigma-1)]} \tau_{ij}^{-\theta}}{\sum_{i'} N_{i'} w_{i'}^{-\theta + (1-\beta)[1-\theta/(\sigma-1)]} \tau_{i'j}^{-\theta}} Y_j.$$

R3' is satisfied iff $\beta = 1$. Otherwise, need β and σ for counterfactuals.

- ACRC (2011) then go on to discuss 2 extensions:
 - 1. Multiple sectors/industries.
 - 2. Tradable intermediate goods.
- They also discuss how different models, which will have different implications for exactly *what* the trade elasticity parameter ε is composed of, will nevertheless all have the feature that this parameter can be estimated in the same way.

- Multiple sectors: Goods $\omega \in \Omega$ are separated into s = 1, ..., S sectors
 - Country j spends a constant share η_j^s of their income on sector s
 - ε^s : trade elasticity of that sector

Multiple Sectors

• Under PC changes in real income are given by

$$\hat{W}_{j} = \overset{\mathsf{S}}{\underset{s=1}{\overset{\mathsf{S}}{=}}} \left(\hat{\lambda}^{s}_{jj} \right)^{\eta^{s}_{j} / \varepsilon^{s}} - 1$$

• Under MC with free entry changes in real income are given by

$$\hat{W}_{j} = \stackrel{S}{_{s=1}} \left(\hat{\lambda}_{jj}^{s} / \hat{L}_{s} \right)^{\eta_{j}^{s} / \varepsilon^{s}} - 1$$

where L_s is total employment in sector s.

- Reallocations across sectors imply $\widehat{N}_{i}^{s} \neq 0$
 - Equivalence between PC and MC no longer holds.
 - This is due to a general result (in, eg, Dixit and Stiglitz, 1977) that the MC model with CES is allocatively efficient iff the economy sector faces inelastic factor supply.

• Tradable intermediate goods:

• Variable production cost of good ω in country *i* is equal to

$$c_{i}\left(\omega
ight)=rac{w_{i}^{eta}P_{i}^{1-eta}}{z\left(\omega
ight)}$$

Under MC, firms from country *i* must incur:

 (*i*) a fixed entry cost, *w_iF_i* in order to produce in country *i* (*ii*) a fixed marketing cost , *w_i^βP_i^{1-β}ξ_{ij}*, in order to sell in country *j*

• Under PC, changes in real income are:

$$\hat{W}_{j} = \left(\hat{\lambda}_{jj}
ight)^{1/(etaarepsilon)} - 1$$

• Under MC, changes in real income are

$$\hat{W}_{j} = \left(\hat{\lambda}_{jj}
ight)^{1/\left[etaarepsilon+(1-eta)\left(rac{arepsilon}{\sigma-1}+1
ight)
ight]} - 1$$

• Thus, sizes distribution of firms also matters, through $arepsilon/(\sigma-1)$

• If models satisfy

$$X_{ij} = \frac{\chi_{ij} \cdot N_i \cdot w_i^{\eta} \tau_{ij}^{\varepsilon} \cdot Y_j}{\sum_{i'=1}^{n} \chi_{i'j} \cdot N_{i'} \cdot w_{i'}^{\eta} \tau_{i'j}^{\varepsilon}},$$

with χ_{ij} being orthogonal to $\tau_{i'j'}$ for any i, i', j, j' then ε can be estimated from a gravity OLS regression of $\ln X_{ij}$ on $\ln \tau_{ij}$ and fixed effects.

- Consider Belgium (a very open economy).
- What do the trade data say?
 - 1. Share of domestic expenditure: $\lambda_{BEL} = 0.73$
 - 2. Trade elasticity: $\overline{\varepsilon} = -5$
- How large are the gains from trade?
 - **Example 1**: Gravity trade models: $\alpha = \beta = 0$
 - $GT \equiv (0.73)^{-1/5} 1 \simeq 6.5\%$
 - **Example 2**: *Models* with $\beta = 0.5$:
 - GT under PC and MC $\equiv (0.73)^{-1/(0.5 \times 5)} 1 \simeq 13\%$

14.581 International Economics I Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.