

Standardizing Product Development Processes

Sid Rupani, Presenter LAI Web Knowledge Exchange Event December 1, 2010

We Share A Goal: Enterprise Excellence

Agenda

- Motivation and Overarching Question
- Map of Research Project
- □ Phase 1 Immersion in Phenomenon Case Studies
- Phase 2 Detailed Project-Level Analysis
- Conclusions and Future Work

Product Development Process

"A product development process is the sequence of steps or activities which an enterprise employs to conceive, design, and commercialize a product"

Ulrich and Eppinger 2000

Browning, Fricke, and Negele 2006

Processes can be regarded and treated as systems that should be engineered purposefully and intelligently, facilitated by useful models."

The issue

"Companies made up of many different business units will face an important question as they make the shift to a process enterprise:

Should all units do things the same way, or should they be allowed to tailor the process to their own needs?

In a process enterprise the key structural issue is...process standardization versus process diversity.

There's no one right answer."

Hammer and Stanton Harvard Business Review, 1999

Research Goal: To provide companies with guidance for effectively managing standardization and customization of their product development processes across multiple different projects

Overarching Question: What is the influence of process standardization on performance?

What is the influence of process standardization on performance?

"On both sides of the question, complex causal mechanisms play out in diverse ways in diverse situations. This might imply that we should not be aspiring to general conclusions with respect to the overall question, but rather seeking to sort out the mechanisms and the contingencies."

> Sid Winter in Adler et al. (2008)

Under what conditions and how does process standardization influence performance on project-level and organization-level outcomes?

Map of Research Project

Phase 1 – Immersion in Phenomenon: Case Studies

- □ Selected Cases (Theoretical Sample):
 - 5 large companies (\$5B+ annual sales)
 - Develop electromechanical assembled products
 - Different industries (Computer Hardware, Aviation Electronics and Communication Equipment, Automobiles, Electronic Equipment)
 - Different approaches to process standardization
- Data Collection
 - Interviews (48 total) with various roles
 - Process documentation

Lessons from Case Studies: Individual Process Dimensions

"The biggest benefit is that because of the standard deliverables at the reviews, we all talk the same language and expect to see the same things in the same format. It's easy for the Senior Management Team to know when a red flag comes up or when a project is moving into exception."

Process Manager at Company E

"One good thing was that since we started using the same tools, it allows us to easily move between projects. We didn't have to retrain every time we switched."

Engineer at Company E

"Because of the tools, we can get engineers from other projects in crunch time and they don't spend too much time ramping up. They can be integrated relatively seamlessly."

Project Manager at Company E

Lessons from Case Studies: Individual Process Dimensions

Process Design

- Activities/Tasks
- Order, Flow, and Dependencies
- Timing
- Roles/Agents
- Tools/Methods
- Deliverables/
 Outputs

Project Performance

- Product Cost
- Product Quality
- Development Time
- Development Cost

Process Standardization

- Activities/Tasks
- Order, Flow, and Dependencies
- Timing
- Roles/Agents
- Tools/Methods
- Deliverables/ Outputs

Organizational Performance

- Efficiency
- 🖌 Knowledge Transfer
- Creativity/ Innovation
- Decision making / Resource Allocation
- Adaptation/ Learning over time
- Employee Satisfaction

Lessons from Case Studies: Variation in Standardization Approach

All companies

- Acknowledged and controlled some amount of process variation, left some free to the discretion of project team
- □ Companies differed on:
 - What project characteristics they took into consideration to customize their process
 - Which process dimensions were centrally specified and which were left to project team's discretion

Company A Computer Hardware

Inputs	Algorithm	Outputs
 Hardware/Software balance Extent of In-House Development 	Table - each product archetype column, activities as rows. yes/no indicated.	 Activities
8 Product 'Archetypes'		

Company A - Project Archetypes

	Product Type							
	Hardware	Software (not MNL, not ABC)	Hardware & Software	Software OEM-in	Hardware OEM-in	Hardware Reseller	ABC Software	ABC XYZ Software
Examples:	AB4000, AB5000, some Tape	none, except RST going to POR	SVC		AB3000, Brokeman 20	Sysco POR	Note: These are are closely tied software of whi	e special in that to system ch ABC is a part
Developmen	t							
Accessibility Checklist(s)							NA - handled by pDA	NA - done at major release. Not required for SPE maint
Anti-Smike - HW only		NA - not HW		NA - not HW			NA - not HW	NA - not HW
Cost of Originality (COO & VOO)						NA - not required for reseller	NA - handled by pDA	NA - done at release level
Chemical Emissions Data							36,394,24811340	
Finance						1		

Company B

Avionics and Communication Equipment

Inputs	Algorithm	Outputs
 Complexity Newness Cost Certifications Technology Readiness Business Unit Testing Requirements Support Requirements Hardware/Software Extent of Outsourcing Supplier Quality Production Needs 	Logic Table – each activity decision made by referring to answers for pertinent questions	 Activities (required and suggested) Deliverables Templates ~80 technical activities ~50 management
		activities

Company B

А	В	С	D	E
	Q1		What is the projected cost of this project?	Select
				one.
	а		At or Above \$ABC	
×	b		Below \$ABC	
	Q2		Please indicate maturity of technology on the project	Select
				one.
	а		Risky technology - unproven or limited application;	
			emerging within market	
×	b		Mature technology - proven and applied in similar	
			applications; established within market	

А	В	С	D	E
"x"=YES	Req/ Audit	Cust Reqd	ACTIVITIES AND TASKS	DELIVERABLE
×			Capture Originating Requirements	
X			1. Capture stakeholders needs	stakeholder needs
×			2. Capture source requirements.	source requirements
\mathbf{X}			3. Capture architectural context.	architectural context(s)
\mathbf{X}			4. Define most important	most important requirements
×			5. Define technical performance	technical performance measures (TPMs)
			Define Concepts	
			1. Define concept.	concept
			2. Perform conceptual analysis.	conceptual analysis document
×	M		Define Requirements	
			1. Perform requirements trade	trade studies
\mathbf{X}	V		2. Define product requirements.	product requirements
\mathbf{X}	V		3. Conduct traceability analysis from	requirements trace/ analysis
X			4. Perform functional hazard	functional hazard assessment

Company C

Automotive

Inputs	Algorithm	Outputs
"Degree of Product Change" in three key subsystems	Three digit code maps to a "timing template"	 Activities Sequence Timing (Reviews) Deliverables Templates Roles
Rated from 1-6		

Why do companies differ in process standardization approach?

- Because they differ on:
 - Variation in project characteristics across portfolio
 - Strategic priorities across performance outcomes

Map of Research Project

Link to Phase II

Process Standardization's impact on Project Performance

Why Project Performance?

- Contested: Oft-cited negative performance effect of process standardization, in literature and practice. Prior literature inconclusive – studied process standardization at high level
- Salient: Project performance outcomes are directly relevant and very familiar to managers.
- Important: Other outcomes translate into improvement on project performance and organizations actively manage project performance.
- Data Available: Data on organizational performance outcomes unavailable or subjective. Objective data on project performance available.

Phase 2 Electronic Equipment Co.

Detailed examination of project level process data within one company

Detailed data on 15 projects (18 products)

MIT ES

Analysis Strategy

Control Variables

Independent Variables of interest

Project Characteristics

- Complexity

- Newness

- Extent of supplier development

- Resources

- Project Manager

Process Design

- Reviews/Gates

- Deliverable Waivers

- Activities (Testing)

- Time spent in Phases

Dependent Variables

Project Performance

Quality (Service Cost Overrun)

Development Cost (and overrun)

> Schedule (and overrun)

Unit Manufacturing Cost Overrun

Explaining Development Time

Results of Regression Analysis for Development Time in Weeks

Variable	Model 1	Model 2	Model 3	Model 4	Model 5
Newness Low Dummy	-20.72***	-17.48**	-20.18***	-13.51	-16.30*
Newness High Dummy	-7.08	-7.91	-6.49	-5.67	-5.72
Complexity Low Dummy	-2.75	-2.01	-3.93	-4.60	-0.75
Complexity High Dummy	8.88	15.07*	16.71**	17.65*	16.47*
Ext. of dev. done by supplier Low Dummy		-6.43			
Ext. of dev. done by supplier High Dummy		3.48			
Resources (FTEs)			-0.15	-0.20	-0.15
Project Manager 1 Dummy				-9.29	-4.65
Project Manager 2 Dummy				-9.82	-3.41
Project Manager 3 Dummy				-8.25	-4.23
Combined Gates Dummy					-7.32
Intercept	51.91***	49.36***	57.77***	62.69***	62.58***
Adjusted R ²	0.723	0.712	0.749	0.763	0.778

* p < .10 ; ** p < .05; *** p < .01

Explaining Development Cost

Results of Regression Analysis for Engineering Spend in \$m

Variable	Model 1	Model 2	Model 3	Model 4	Model 5
Newness Low Dummy	-1.59	1.38	0.86	2.52	0.84
Newness High Dummy	-0.64	-1.66	-1.61	-1.34	-1.18
Complexity Low Dummy	-1.10	-1.19	-0.96	-1.54	-0.29
Complexity High Dummy	8.89***	11.22***	9.55***	10.22**	9.46***
Ext. of dev. done by supplier Low Dummy		3.63***	2.92*	3.18	4.98***
Ext. of dev. done by supplier High Dummy		5.76***	4.88**	4.60	4.34***
Resources (FTEs)			.027		
Project Manager 1 Dummy				-1.08	
Project Manager 2 Dummy				-2.76	
Project Manager 3 Dummy				-0.76	
Combined Gates Dummy					-2.60**
Intercept	5.97***	2.35**	1.85	3.60	4.50***
Adjusted R ²	0.714	0.940	0.937	0.930	0.967

* p < .10; ** p < .05; *** p < .01

Explaining Service Cost Overrun - \$

Results of Regression Analysis for Service Cost	t Overrun in	i \$ (per mac	hîne per ye	ar)	
Variable	Model 1	Model 2	Model 3	Model 4	Model 5
Newness Low Dummy	-41.9	-178.3	-28.8	-86.9	-122.6
Newness High Dummy	-142.0	-137.9	-139.1	-145.3	-168.9*
Complexity Low Dummy	53.6	39.1	65.5	77.1	-54.02
Complexity High Dummy	172.8	101.5	111.3	188.4	125.7
Ext. of dev. done by supplier Low Dummy		93.4			
Ext. of dev. done by supplier High Dummy		-117.8			
Resources (FTEs)			1.44		
Project Manager 1 Dummy				9.84	
Project Manager 2 Dummy				77.9	
Project Manager 3 Dummy				-12.2	
Combined Gates Dummy					201.7**
Testing (Prototypes and Software Builds)					
Intercept	2.97	127.0	-70.8	-7.98	-37.4
Adjusted R ²	0.076	0.065	-0.007	-0.516	0.601

* p < .10 ; ** p < .05; *** p < .01

For service cost overrun, n= 12

Consequences of Process Customization: Gate Combination

- □ Gate combination associated with:
 - reduced development time by 10.5 weeks
 - reduced development cost by \$2.6m
- □ Gate combination associated with reduced testing
 - When gates are combined projects do 3.66 less tests
- Testing is strongly negatively related to service cost overrun
 - Each unit of testing associated with reduction in service cost overrun of \$33.91 (no other significant predictors of service cost overrun)
 - Each unit of testing reduces total service cost overrun/year (each product overrun multiplied by 80% of intended sales for that product) by \$0.77m
 - Gate combination is associated with an increased service cost overrun of \$2.81m/year (0.77m x 3.66). This is a conservative estimate. Direct regression shows increase of \$4.34m/year.
- Products are serviced for at least two, often three, years.
- The negative spillover effects of gate combination in terms of increased service cost easily outweigh the benefits.

Conclusions from Phase 2

- Variation on different process dimensions associated with different performance effects
- Results indicate that variations from the process standard (specific variations, not all) are associated with net negative project performance outcomes.
- Results support that process standardization can be beneficial for project performance even across varied projects

Contributions and Future Work

- Importance of individual process dimensions
- Framework to aid organizations in decision making about process standardization
- Evidence from one company that standard process can be associated with better performance across varied projects
- Need to extend work to other companies
 - Seeking generalizability
 - Seeking understanding of company contingencies

Thank You!

Questions? Comments?

