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15.053 Tuesday, April 10 

The Network Simplex Method for 
Solving the Minimum Cost 

Flow Problem 



Quotes of the day 

I think that I shall never see 
A poem lovely as a tree. 

-- Joyce Kilmer 

Knowing trees, I understand the meaning of 
patience. 

-- Unknown 

Every man has his price. 

-- Robert Walpole 
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A Minimum Cost flow Problem
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Here is the min cost assignment problem from the previous lecture. 
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We will be tre
algorithm that
capacities.  Bu
level of comp

The Minimum Cost Flow Problem

Directed Graph G = (N, A).
– Node set N, arc set A;
– Lower bound of 0 on arc (i,j)
– No upper bounds on arc flows 

in this lecture
– Cost cij on arc (i,j)
– Supply/demand bi for node i.  (Positive 

indicates supply)
Minimize the cost of sending flow
s.t. Flow out of i - Flow into i   =   bi

xij ≥ 0 for all (i,j)∈ A
ating the min cost flow problem in which there are no capacities.  The 
 we present here readily generalizes to the problem in which there are 
t we do not include the generalization here because it adds one extra 

lexity, and it is difficult to follow the first time around. 
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LP Formulation 
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Here is an LP formulation of the generic min cost flow problem with no capacities. 



The Network Simplex Algorithm 

z	 We will present the simplex algorithm as it 
applies to the min cost flow problem 

z	 NO TABLEAUS (except next two slides) 
–	 We compute the primal solution directly on the 

network 
–	 We compute the simplex multipliers directly on the 

network 
–	 We compute reduced costs directly on the 

network. 

The Network simplex algorithm provides another opportunity to visualize the 
simplex algorithm.  In this case, one can visualize the algorithm in multiple 
dimensions (that is lots of variables), as opposed to the lectures on geometry where 
we were restricted to two or three dimensions (that is, two or three variables). 

We will not be using tableaus.  Nevertheless, we will still compute basic feasible 
solutions as well as reduced costs. To carry out these computations, we will work 
directly on the network. 
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x14 x23 x32 x34 x42x12 RHS 

1 0 0 0 01 
0 1 -1 0 -1-1 
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Formulating a min cost flow problem 

1 

2 

4 

3 zxij = flow in (i, j) 
zarc costs cij 
zno arc capacities today 
znode supply/demands  bi 

( ,  )  
Minimize ij iji j  A  

c x
∈∑ 

xij ≥ 0 

for all arcs 
(i, j) ∈ A 

b(1) 
b(2) 
b(3) 
b(4) 

To recall how to compute prices, it helps to write a minimum cost flow problem as a 
linear program. 
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Prices and Pricing Out 
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0 
Prices 

Reduced Costs of the Arcs 

x23 xijx12 
c12 

- (y1 × 1)  
- (y2 × -1)  
c12 – y1 + y2 

b(3) 
b(4) 

c12 
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We use the usual rule for pricing out.  Note that we have used -1 as the coefficient 
of z in the z-row, and so the costs are all original costs. 

Assuming that the prices are denoted by the vector y, the reduced cost of cij is cij – yi 
+ yj. It’s an unusually simple form for a reduced cost. 
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Pricing Out Again 
Let yi be a “price” associated with node i. 

Let ⎯cij = cij - yi + yj = reduced cost of (i, j) wrt to y. 

1 2 3 

0 3 0arc 
costs 

21 
prices 

1 2 3 
reduced 
costs 

1 - 0  + 3  2 - 3  + 0  

12 12 3Note:   = +c c 

23 23 3= −c c 

Costs are increased coming 
into a node. They are 
decreased going out. 

We illustrate the reduced costs on a network with two arcs, one directed into node 2 

and one directed out of node 2.  The point of this diagram is that an increase in the 


and a decrease of the reduced costs of arcs leaving node 2.

price of node 2 leads to an increase of the reduced costs of arcs coming into node 2 




A Real Example of Pricing Out 
Deposits on bottles as a type of pricing out. 

The change in reduced costs can be thought of in terms of bottle deposits from a 
store’s perspective.  Every bottle leaving the store results in the store receiving a 
nickel. The cost to the store went down.  Every bottle entering the store results in 
the store having to pay a nickel. The cost to the store went up. 

Assume for now that the number of bottles sold is equal to the number of bottles 
returned. Then the price of a bottle deposit has no net impact on the store’s 
revenue. (Let’s also ignore the time value of money and discounting.)  If the 
deposit charge were $.10 per bottle, the store would still have the same amount of 
money being paid in bottle deposits as it pays in bottle deposits. 

coke coke 
store 
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When the store sells a bottle of Coke, it receives a 
nickel and the Coke leaves the store. 

When an empty bottle of Coke is returned to the 
store, it costs the store 1 nickel. 

Note, assuming the number of returns is equal to 
the number of purchases, this pricing out has 
essentially no impact on the finances of a store. 
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Important Fact: optimizing wrt costs c 
gives the same optimal solutions as 
optimizing wrt reduced costs ⎯c. 

Using reduced costs will change the cost of each 
solution by a constant. 

Increasing the price of the node 
from $0 to $10 will result in a net 
decrease in cost of any feasible 
flow by 200 x $10.  (Why?) 

Recall ⎯cij = cij - yi + yj 

200 
supply 

1 

As with all linear programs with equality constraints, prices do not affect the 
optimum solution.  A solution is optimum with respect to the original costs if and 
only if it is optimum with respect to the reduced costs.  

This is illustrated by focusing on node 1, which has a supply of 200 units.  If we 
increase the price of node 1 by $10, then every solution will have a net decrease in 
cost by $10 × 200 = $2,000.  Since the cost of each feasible solution is changed by 
the constant $2,000, the change in price does not affect which solutions are optimal. 
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x14 x23 x32 x34 x42x12 RHS 

b(1) 
b(2) 

= 
= 
= 
= 

There is always a redundant constraint 

1 

2 

4 

3 

0 

Can we eliminate constraint 1? 

How many basic variables will there be? 

Add the last three constraints to the first 
constraint.  What happens to the first 
constraint? 

b(3) 
b(4) 

c12 

z 

1 
-1 
0 
0 

-1 c14 c23 c32 c34 c42 

In network flow problems, we write out the supply/demand constraint for each node.  
Each column has exactly one -1 and one +1, with other elements being 0.  If we sum 
the rows, we obtain a value of 0 in each column. 

We also assume that b(1) + … b(n) = 0, and so the RHS also sums to 0.  This 
implies that there is a redundant constraint. 

We can eliminate any of the constraints and obtain an equivalent problem.  For 
convenience, we drop constraint 1 corresponding to node 1. 

There is usually a price for each constraint.  But if we drop constraint 1, there is no 
need to have a price for this constraint.  Equivalently, we can just set y1 to 0. 
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The simplex algorithm (for min problems) 

Start with a basic 
feasible solution 

Is it 
optimal? 

quit with 
optimal solution 

Is the optimum 
unbounded 

from below? 

quit with 
proof of 

unboundedness 

find an 
improved 

corner point 
solution 

No 

Yes 

No 

Yes 

We are now ready to explain the network simplex algorithm.  We first review a 
slide used in an earlier lecture on the simplex method.  Note that we are minimizing, 
and so the relevant question concerning unboundedness is whether the optimum 
objective is unbounded from below. 
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The Network Simplex Algorithm 
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A minimum cost flow problem. 

• The arc numbers are costs. 

• The node numbers are supplies/demands 

Here is the min cost flow problem that we will solve. 
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Fact: the basic variables 
of a basic solution will 
correspond to arcs 
of a spanning tree 

Here is spanning tree.  We will next 
compute the basic solution for this 
spanning tree. 

Spanning Tree Flows 

Recall that one constraint can be eliminated, and so a basic solution should have n-1 
basic variables.  It turns out that there is a 1-1 correspondence between basic 
solutions and spanning trees. Note that I did not say basic feasible solutions.  It is 
possible that the basic solution associated with a spanning tree will be infeasible. 
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Spanning Trees and Leaves 

A leaf of the tree is 
a node with one 
incident arc. 

Fact: every 
spanning tree has 
at least 1 leaf 
node. (Otherwise 
it would have a 
cycle.) 

Nodes 3, 5, and 7 are all leaf nodes. 

We first define leaves, which are needed for the algorithm. 
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Spanning Trees and Basic Solutions 

There is a unique 
way of assigning 
flows in tree arcs 
to satisfy the 
supply/demand 
constraints. 

Start with a leaf node and assign it a unique 
flow.  Iteratively choose leaves of the tree 
obtained by ignoring all arcs with flow.  

If a node j is a leaf node, then the flow in the arc incident to node j is either b(j) or – 
b(j) depending on whether the arc is directed from node j or into node u.  So, the 
flow in arc (3, 4) must be 6.  If we focus on the green nodes (as per the slide show), 
then the green nodes always form a spanning tree, and we can always select a leaf of 
this spanning tree and determine the flow on the arc incident to the leaf. 
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Basic Feasible Solutions 

If all arc flows are 
nonnegative, then 
the spanning tree 
flow is a basic 
feasible solution. 
(We are assuming 
no capacity 
constraints.) 

This spanning tree flow is a bfs. 

The simplex method starts with a feasible 
spanning tree flow. 

Fortunately, the spanning tree flow was nonnegative, and so it corresponded to a 
basic feasible solution of the linear program.  If one selected an arbitrary spanning 
tree, one would not expect that the corresponding spanning tree flow would be 
nonnegative. 

As you recall, the simplex method starts with a bfs.  So, it is a legitimate question 
on how to find an initial spanning tree whose flow will be feasible.  We will pass on 
this question for now, just as we passed on it when discussing the simplex algorithm 
for the first time; however, we will return to the question near the end of the lecture. 
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Start with a basic 
feasible solution 

Is it 
optimal? 

To determine optimality, we need to compute reduced costs. 

To determine reduced costs, we need to compute the 
simplex multipliers. 

The simplex multipliers are prices for which the reduced 
costs of the basic variables are 0. 

Once one has a feasible spanning tree solution (that is, a bfs), one needs to check 
whether it is optimal.  In the simplex method, this is accomplished by calculating 
the reduced costs of all of the variables. 

We will break up the computation of the reduced costs into two phases.  In the first 
phase, we calculate the simplex multipliers associated with a spanning tree.  In the 
second phase, we use the simplex multipliers to calculate the reduced costs of the 
nontree arcs (that is, the nonbasic variables). 
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Step 2A. Find the simplex multipliers 

1 

2 

43 

65 

7 

2 

1 

5 

31 

2 

Choose the y’s so that all of the arcs in the spanning tree 
have a reduced cost of 0. 

There are 6 equations, and 7 variables. 
We can set y1 = 0 because constraint 1 was redundant. 

Is it 
optimal? 

⎯c12 = 1 – y1 + y2 

⎯c24 = 2 – y2 + y4 

⎯c25 = 2 – y2 + y5 

⎯c34 = 1 – y3 + y4 

⎯c61 = 3 – y6 + y1 

⎯c67 = 5 – y6 + y7 

In general, the simplex multipliers are the unique prices so that the reduced costs of 
the basic variables are all 0.  But for the prices to be unique, we need to deal with 
the fact that there is a redundant constraint.  So, we eliminate constraint 1, and we 
accordingly set y1 = 0. Once we know that y1 = 0, the other prices are uniquely 
determined. 
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Step 2A.  Find the simplex multipliers 
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0 = 1 – 0 + y2 

0 = 2 – y2 + y4 

0 = 2 – y2 + y5 

0 = 1 – y3 + y4 

0 = 3 – y6 + y1 

0 = 5 – y6 + y7 

0 

0 

y7y6y5y4y3y2y1 

In fact, simplex multipliers are associated with equality constraints of the LP.  
However, since each equality constraint of the LP is a supply/demand constraint for 
a node, we associate the simplex multipliers with nodes. 

The simplex multiplier for node 1 is 0, by the discussion on the last slide.  We now 
compute the simplex multipliers for all other nodes so that the reduced costs of arcs 
in the spanning tree are all 0. 

y7y6y5y4y3y2y1 

0 



-423

-23-3-3-2-10

y7y6y5y4y3y2y1

22 

2 

1 

2 

Find the reduced costs for the non-
basic arcs. 
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⎯c65 = 2 – y6 + y5 

⎯c47 = 1 – y4 + y7 

⎯c32 = 2 – y3 + y2 

The current flow is not 
optimal. (Why?) 

Choose as the entering 
variable one that has a 
negative reduced cost 
(since we are 
minimizing.) 

0 

y7y6y5y4y3y2y1 

Once we know the simplex multipliers for each node, we can compute the reduced 
costs of the three nontree arcs.  Note that the reduced cost of (6, 5) is negative.  This 
means that if we try to increase the flow on arc (6, 5) we can adjust the flows on 
other tree arcs and strictly improve the objective function, assuming non-
degeneracy. 

Accordingly, arc (6, 5) will enter the basis at the next iteration; that is, it will 
become an arc of the basic spanning tree. 

0 

y7y6y5y4y3y2y1 
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Time for a mental break 

Tales of Induhviduals from Scott Adams. 
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Choose the entering arc 
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Entering arc for min 
cost flows:  an arc with 
negative reduced cost. 

Flow will adjust on the arcs of the cycle created 
by adding the nontree arc to the tree. 

Increase the flow in arc 
(6,5) and adjust the 
flows in other arcs to 
satisfy supply/demand  
constraints. 

The following slides carry out the steps of the algorithm, and are self contained. 
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Send flow around the cycle 

1 

2 

43 

65 

7 

+ Δ- Δ 

- Δ - Δ2 
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7 

To adjust flows in the 
basic arcs, modify 
them along the cycle 
created by adding (6, 5) 

Send as much flow as possible until one of the 
basic arcs has a flow of 0. How large can Δ be? 

Add Δ to the forward 
arcs of the basic cycle 
and subtract Δ from the 
backward arcs. 



+ Δ

2 - Δ

3 - Δ

5 - Δ
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Determine the exiting arc and the new 
spanning tree flow. 

5 

6 

At this point, we have a 
new spanning tree 
solution. We then 
compute the simplex 
multipliers and iterate. 

2 

7 

0 

1 

3 

1 

2 

43 

65 
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Δ = 2. Determine the 
new flows. 

Arc (6, 5) enters the 
basis. Arc (1, 2) leaves. 



  

Review of the simplex algorithm 

z	 Step 1. Start with a feasible spanning tree flow. 

z	 Step 2. Compute the simplex multipliers and the 
reduced cost. If all reduced costs are non
negative, then the flow is optimal.  Otherwise, go 
to step 3. 

z	 Step 3. Choose an arc (i, j) with negative reduced 
cost. Send as much flow as possible around the 
“basic cycle”.  Then return to Step 2. 

27 
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Choose the simplex multipliers 
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0 = 3 – y6 + 0 

0 = 2 – y6 + y5 

0 = 2 – y2 + y5 

0 = 1 – y3 + y4 

0 = 2 – y2 + y4 

0 = 5 – y6 + y7 

y7y6y5y4y3y2y1 

0 0 

y7y6y5y4y3y2y1 
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Determine the reduced costs 
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⎯c47 = 1 – y4 + y7 

⎯c32 = 2 – y3 + y2 

⎯c12 = 1 – y1 + y2 

The current flow is not 
optimal. (Why?) 

Choose as the entering 
variable one that has a 
negative reduced cost.0 

y7y6y5y4y3y2y1 
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Send flow about the basic cycle 
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+ Δ 

- Δ 

+ Δ 

+ Δ 

- Δ 

To adjust flows in the 
basic arcs, modify them 
along the cycle created 
by adding (4, 7) 

Send as much flow as 
possible until one of the 
basic arcs has a flow of 0. 

How large can Δ be? 
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Determine the exiting arc and the new 
spanning tree flow 

6 

3 

1 

2 

43 

65 

7 At this point, we have a 
new spanning tree 
solution. We then 
compute the simplex 
multipliers. 

Δ = 1. Determine the 
new flows. 

Arc (4, 7) enters the 
basis. Arc (2, 5) leaves. 



-231-1010

32 

1 

2 

43 

65 

7 

2 

1 1 

5 

3 

2 

Find the simplex multipliers. 

0 = 3 – y6 + 0 

0 = 2 – y6 + y5 

0 = 5 – y6 + y7 

0 = 1 – y4 + y7 

0 = 2 – y2 + y4 

0 = 1 – y3 + y4 

y7y6y5y4y3y2y1 

0 0 

y7y6y5y4y3y2y1 



-231-1010
y7y6y5y4y3y2y1

2 2 3

33 

1 

2 

43 

65 

7 

Find the reduced costs 

⎯c32 = 2 – y3 + y2 

⎯c25 = 2 – y2 + y5 

⎯c12 = 1 – y1 + y2 

2 

1 

2 

The current flow is 
optimal. 

0 

y7y6y5y4y3y2y1 

The algorithm continues until there is an optimum spanning tree flow or a proof of 
unboundedness. In this case, it ended with an optimum spanning tree flow. 
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Recognizing when the solution is 
unbounded from below 

5 7 

21
1 

5 

32 

4 
+ Δ 

+ Δ 

+ Δ 

+ Δ 

+ Δ If the basic cycle is 
directed, then the min 
cost flow is unbounded 
from below. 

The proof of unboundedness is when there is a negative cost cycle in which one can 
send an infinite amount of flow.  The solution will never be unbounded from below 
if each arc has a finite capacity.  But we are assuming infinite capacities for this 
lecture. 



Contrast with the simplex algorithm 
z	 The network simplex algorithm is the simplex 

algorithm, but without the tableaus 

z	 Bases correspond to spanning trees 

z	 The basic feasible solution is found by sending 
flow in arcs 

z	 The reduced costs are found by finding the 
simplex multipliers explicitly. 

z	 The leaving arc is found by sending flow around a 
cycle. 

Of course, this is the simplex algorithm.  And so, the issues are how can we 
interpret the simplex algorithm in this case, and why are there computational 
differences? 
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Other properties of network simplex 

z How does one find an initial bfs? 

z A property of flows in spanning trees 

z A property of simplex multipliers 

z A property of reduced costs 

36 
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Getting started with network simplex 
-3 -3 

3 3 

2 

43 

6 6 
6 

7 

6 

11 
7 

12 

1 5 Take any node, and 
make it the “root.” 
Create “artificial” 
arcs to the root from 
nodes with supplies.  

Create “artificial” 
arcs from the root to 
arcs with demand. 

6 -11 -7 

Put a high cost on artificial arcs, say 1000 in this 
example. The optimal flow will have no flow on 
artificial arcs, and so will be optimal for the original 
problem. 

In the lecture on the simplex algorithm, we described the Phase 1 method in which 
one tries to obtain a basic feasible solution.  If we carried out the Phase 1 method, 
we would put a cost of 1 on each of the artificial arcs and a cost of 0 on all other 
arcs. 

But in this case, we can put a high cost on all artificial arcs in the expectation that 
none of them would have flow in an optimum solution.  In fact, if c* is the largest 
cost of an arc in the original network, and if one puts a cost of nc* on all of the 
artificial arcs, one can guarantee that no artificial arc will have positive flow in an 
optimum solution except in the case that there is no feasible flow. 
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Flows in spanning tree arcs 

What is the flow on 
arc (1, 2) 

Let S = {1, 6, 7}. 

Let T = {2, 3, 4, 5} 

The flow on arc (1, 2) 
is the net supply of 
nodes of S, which is 
the negative of the 
supply of nodes of T. 

1 

6 

7 

Deleting arc (i, j) splits the tree 
into two subtrees, Ti and Tj. 
The flow on arc (i, j) is the net 
supply in Ti. 

What is the flow 
on (6, 1)? 

For a given spanning tree flow, one can compute the flow in each arc of the 
spanning tree iteratively.  However, there is also a more direct method.  For 
example, the flow on arc (1, 2) is the total supply of the red nodes of this diagram.  
This is because the only way to satisfy the supply constraints at the red nodes is to 
ship the supply via arc (1, 2).  The red nodes are obtained by removing arc (1, 2) 
from the network and finding all nodes that are connected to node 1. 

If one wants to understand an algorithm, it helps to understand it in more than one 
way. In this case, one can understand the flow in an arc from a global perspective 
such as above, or by considering the algorithm itself and how flows are allocated. 



Costs and Reduced Costs of Cycles 

Adding an arc to a 
spanning tree creates 1

2 

43 

65 

7

2

2

1 3 a unique cycle. 

cost = 2 

5 

1 1 

The cost of the cycle is the sum of the costs in 
the forward direction of the cycle minus the 
sum of the costs in the reverse direction. 

It is standard to interpret the cost of a backward arc as the negative of the cost of an 
arc going in the other direction.  

If this point is confusing, think of sending flow around the cycle.  To send one unit 
of flow around the basic cycle, we would need to 

1. increase the flow in (4, 7), (6, 7), (1, 2), and (2, 4) by one unit, and 
2. decrease the flow in (6, 7) by one unit. 

The net impact will be to increase the cost by $7 because of the forward arcs of the 
cycle, and also to decrease the cost by $5 because we are decreasing the cost in 
(6, 7) by $5. So, the net increase is $2. 
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Costs and Reduced Costs of Cycles 
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The reduced cost of a 
cycle is the same as 
the cost of the cycle 

cost = 2 

0 

0 0 

0 

2 

reduced 
cost = 2 

If we choose the prices as the simplex multipliers, then all basic arcs have a cost of 
0. Then the reduced cost of the cycle containing any nontree arc (i, j) is also the 
reduced cost of the cycle. 

For example, the reduced cost of the cycle 4-7-6-1-2-4 is $2, which is the reduced 

cost of (4, 7). 

We claim here that this is also the cost of the cycle.  


The simplex algorithm works by sending flow around negative cost cycles.  Recall 

that to send a flow around a cycle C is to send increase the flow by Δ in the forward 

arcs of C and to decrease the flow by Δ in the backward arcs of C.


0

y7y6y5y4y3y2y1
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y7y6y5y4y3y2y1 
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Reduced Costs of 
Cycles 

z ⎯cij = cij - yi + yj for 
each arc (i,j).  

z The reduced cost of 
a directed cycle is 
equal to the cost of 
the cycle. 

$3 - $4 + $1 

-$2 -$0 + $4 

$3 

$1-$2 

$4 $1 

$0 

1 2 

3 

1 2 

3 

$1 - $1 + $0 

This diagram shows why the cost of a cycle is the same as the reduced cost of a 
cycle.  If we increase the price of node 1 by $k, then the price of the arc entering 
node 1 increases by $k and the price of the arc leaving node 1 decreases by $k.  So 
changing the price of node 1 (or any other node) does not change the reduced cost 
of the cycle. 
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Another method for finding simplex 
multipliers for spanning tree flows 
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Assume the multiplier 
for node 1 is 0. 

-2311230 
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The multiplier for node j 
is the length of the path 
from node j to node 1 in 
the tree. 

e.g., the length of the 
path from node 4 to 
node 1 is 5 - 4 = 1. 

We compute the simplex multiplier for each node iteratively.  But there is also a 
direct method for computing the simplex multiplier for node j. It is the cost of the 
unique path in the tree from node j to node 1.  (This assumes that the multiplier for 
node 1 is 0.) 

We can illustrate why this works by focusing on node 3.  The path from node 3 to 
node 1 passes through node 4. If we let yj be the cost of the path from node j to 
node 1, then we can conclude that y3 = y4 + 1. This implies that the reduced cost of 
(3, 4) is 0. Similarly, the reduced cost of every other arc of the tree is 0.  But since 
the simplex multipliers are the unique values that make the reduced costs of tree 
arcs equal to 0, it follows that vector y is the vector of simplex multipliers. 



The significance of the network 
simplex algorithm 

1.	 It is a lot faster than the usual simplex algorithm.  
The number of pivots is the same, but each pivot 
is much faster 

2.	 It gives another view of the simplex algorithm, 
and its operations. 

3.	 It shows how network algorithms can be much 
faster. 
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And now, it’s time for ….. 


