
1

15.053 Tuesday, April 10

The Network Simplex Method for
Solving the Minimum Cost

Flow Problem

Quotes of the day

I think that I shall never see
A poem lovely as a tree.

-- Joyce Kilmer

Knowing trees, I understand the meaning of
patience.

-- Unknown

Every man has his price.

-- Robert Walpole

2

A Minimum Cost flow Problem

1
$ 0200

-4006
MIT1

2
4

$.01

7

$. 01
London

0
$. 01

$.01300 satellite1

MIT2

5
$.01 0 $. 03

$. 04
$.02 satellite2

100
-2003 $ 0

ChinaMIT3

Here is the min cost assignment problem from the previous lecture.

3

We will be tre
algorithm that
capacities. Bu
level of comp

The Minimum Cost Flow Problem

Directed Graph G = (N, A).
– Node set N, arc set A;
– Lower bound of 0 on arc (i,j)
– No upper bounds on arc flows

in this lecture
– Cost cij on arc (i,j)
– Supply/demand bi for node i. (Positive

indicates supply)
Minimize the cost of sending flow
s.t. Flow out of i - Flow into i = bi

xij ≥ 0 for all (i,j)∈ A
ating the min cost flow problem in which there are no capacities. The
 we present here readily generalizes to the problem in which there are
t we do not include the generalization here because it adds one extra

lexity, and it is difficult to follow the first time around.

4

5

LP Formulation

1 1

1 1

, 1, ,

0

= =

= =

− = ∀ =

≥

∑∑

∑ ∑ …

n n

ij ij
i j

n n

ij ki i
j k

ij

c x

x x b i n

x

Minimize

subject to

Here is an LP formulation of the generic min cost flow problem with no capacities.

The Network Simplex Algorithm

z	 We will present the simplex algorithm as it
applies to the min cost flow problem

z	 NO TABLEAUS (except next two slides)
–	 We compute the primal solution directly on the

network
–	 We compute the simplex multipliers directly on the

network
–	 We compute reduced costs directly on the

network.

The Network simplex algorithm provides another opportunity to visualize the
simplex algorithm. In this case, one can visualize the algorithm in multiple
dimensions (that is lots of variables), as opposed to the lectures on geometry where
we were restricted to two or three dimensions (that is, two or three variables).

We will not be using tableaus. Nevertheless, we will still compute basic feasible
solutions as well as reduced costs. To carry out these computations, we will work
directly on the network.

6

7

x14 x23 x32 x34 x42x12 RHS

1 0 0 0 01
0 1 -1 0 -1-1
0 --1 1 1 00
-1 0 0 --1 10

=
=
=
=

Formulating a min cost flow problem

1

2

4

3 zxij = flow in (i, j)
zarc costs cij
zno arc capacities today
znode supply/demands bi

(,)
Minimize ij iji j A

c x
∈∑

xij ≥ 0

for all arcs
(i, j) ∈ A

b(1)
b(2)
b(3)
b(4)

To recall how to compute prices, it helps to write a minimum cost flow problem as a
linear program.

0

00

0
00

0
0

1

1 1
1

-1 -1
-1

-1 -1

-1

8

Prices and Pricing Out

1

2

4

3

x14 x23 x32 x34 x42x12 RHS

b(1)
b(2)

=
=
=
=

0
Prices

Reduced Costs of the Arcs

x23 xijx12
c12

- (y1 × 1)
- (y2 × -1)
c12 – y1 + y2

b(3)
b(4)

c12

z

1
-1
0
0

-1 c14 c23 c32 c34 c42

y1

y2

y3

y4

We use the usual rule for pricing out. Note that we have used -1 as the coefficient
of z in the z-row, and so the costs are all original costs.

Assuming that the prices are denoted by the vector y, the reduced cost of cij is cij – yi
+ yj. It’s an unusually simple form for a reduced cost.

1 0 0 0 0
0

00

0
00

0
0

1

1 1
1

-1 -1
-1

-1 -1

-1
1

9

Pricing Out Again
Let yi be a “price” associated with node i.

Let ⎯cij = cij - yi + yj = reduced cost of (i, j) wrt to y.

1 2 3

0 3 0arc
costs

21
prices

1 2 3
reduced
costs

1 - 0 + 3 2 - 3 + 0

12 12 3Note: = +c c

23 23 3= −c c

Costs are increased coming
into a node. They are
decreased going out.

We illustrate the reduced costs on a network with two arcs, one directed into node 2

and one directed out of node 2. The point of this diagram is that an increase in the

and a decrease of the reduced costs of arcs leaving node 2.

price of node 2 leads to an increase of the reduced costs of arcs coming into node 2

A Real Example of Pricing Out
Deposits on bottles as a type of pricing out.

The change in reduced costs can be thought of in terms of bottle deposits from a
store’s perspective. Every bottle leaving the store results in the store receiving a
nickel. The cost to the store went down. Every bottle entering the store results in
the store having to pay a nickel. The cost to the store went up.

Assume for now that the number of bottles sold is equal to the number of bottles
returned. Then the price of a bottle deposit has no net impact on the store’s
revenue. (Let’s also ignore the time value of money and discounting.) If the
deposit charge were $.10 per bottle, the store would still have the same amount of
money being paid in bottle deposits as it pays in bottle deposits.

coke coke
store

10

When the store sells a bottle of Coke, it receives a
nickel and the Coke leaves the store.

When an empty bottle of Coke is returned to the
store, it costs the store 1 nickel.

Note, assuming the number of returns is equal to
the number of purchases, this pricing out has
essentially no impact on the finances of a store.

11

Important Fact: optimizing wrt costs c
gives the same optimal solutions as
optimizing wrt reduced costs ⎯c.

Using reduced costs will change the cost of each
solution by a constant.

Increasing the price of the node
from $0 to $10 will result in a net
decrease in cost of any feasible
flow by 200 x $10. (Why?)

Recall ⎯cij = cij - yi + yj

200
supply

1

As with all linear programs with equality constraints, prices do not affect the
optimum solution. A solution is optimum with respect to the original costs if and
only if it is optimum with respect to the reduced costs.

This is illustrated by focusing on node 1, which has a supply of 200 units. If we
increase the price of node 1 by $10, then every solution will have a net decrease in
cost by $10 × 200 = $2,000. Since the cost of each feasible solution is changed by
the constant $2,000, the change in price does not affect which solutions are optimal.

0 0 0 0 00 00

12

x14 x23 x32 x34 x42x12 RHS

b(1)
b(2)

=
=
=
=

There is always a redundant constraint

1

2

4

3

0

Can we eliminate constraint 1?

How many basic variables will there be?

Add the last three constraints to the first
constraint. What happens to the first
constraint?

b(3)
b(4)

c12

z

1
-1
0
0

-1 c14 c23 c32 c34 c42

In network flow problems, we write out the supply/demand constraint for each node.
Each column has exactly one -1 and one +1, with other elements being 0. If we sum
the rows, we obtain a value of 0 in each column.

We also assume that b(1) + … b(n) = 0, and so the RHS also sums to 0. This
implies that there is a redundant constraint.

We can eliminate any of the constraints and obtain an equivalent problem. For
convenience, we drop constraint 1 corresponding to node 1.

There is usually a price for each constraint. But if we drop constraint 1, there is no
need to have a price for this constraint. Equivalently, we can just set y1 to 0.

1 0 0 0 0
0

00

0
00

0
0

1

1 1
1

-1 -1
-1

-1 -1

-1
1

13

The simplex algorithm (for min problems)

Start with a basic
feasible solution

Is it
optimal?

quit with
optimal solution

Is the optimum
unbounded

from below?

quit with
proof of

unboundedness

find an
improved

corner point
solution

No

Yes

No

Yes

We are now ready to explain the network simplex algorithm. We first review a
slide used in an earlier lecture on the simplex method. Note that we are minimizing,
and so the relevant question concerning unboundedness is whether the optimum
objective is unbounded from below.

14

The Network Simplex Algorithm

1

2

43

65

7

2 2

1 1

5

31

2 2

-3

12

-7-116

6
-3

A minimum cost flow problem.

• The arc numbers are costs.

• The node numbers are supplies/demands

Here is the min cost flow problem that we will solve.

15

1

2

43

65

7

2 2

1 1

5

31

2 2

-3

12

-7-116

6
-3

Fact: the basic variables
of a basic solution will
correspond to arcs
of a spanning tree

Here is spanning tree. We will next
compute the basic solution for this
spanning tree.

Spanning Tree Flows

Recall that one constraint can be eliminated, and so a basic solution should have n-1
basic variables. It turns out that there is a 1-1 correspondence between basic
solutions and spanning trees. Note that I did not say basic feasible solutions. It is
possible that the basic solution associated with a spanning tree will be infeasible.

6

5

2 5

3

7

16

1

2

43

65

7

Spanning Trees and Leaves

A leaf of the tree is
a node with one
incident arc.

Fact: every
spanning tree has
at least 1 leaf
node. (Otherwise
it would have a
cycle.)

Nodes 3, 5, and 7 are all leaf nodes.

We first define leaves, which are needed for the algorithm.

523756

17

1

2

43

65

7

-3

12

-7-116

6
-3

Spanning Trees and Basic Solutions

There is a unique
way of assigning
flows in tree arcs
to satisfy the
supply/demand
constraints.

Start with a leaf node and assign it a unique
flow. Iteratively choose leaves of the tree
obtained by ignoring all arcs with flow.

If a node j is a leaf node, then the flow in the arc incident to node j is either b(j) or –
b(j) depending on whether the arc is directed from node j or into node u. So, the
flow in arc (3, 4) must be 6. If we focus on the green nodes (as per the slide show),
then the green nodes always form a spanning tree, and we can always select a leaf of
this spanning tree and determine the flow on the arc incident to the leaf.

18

6

5

2 5

3

7

1

2

43

65

7

-3

12

-7-116

6
-3

Basic Feasible Solutions

If all arc flows are
nonnegative, then
the spanning tree
flow is a basic
feasible solution.
(We are assuming
no capacity
constraints.)

This spanning tree flow is a bfs.

The simplex method starts with a feasible
spanning tree flow.

Fortunately, the spanning tree flow was nonnegative, and so it corresponded to a
basic feasible solution of the linear program. If one selected an arbitrary spanning
tree, one would not expect that the corresponding spanning tree flow would be
nonnegative.

As you recall, the simplex method starts with a bfs. So, it is a legitimate question
on how to find an initial spanning tree whose flow will be feasible. We will pass on
this question for now, just as we passed on it when discussing the simplex algorithm
for the first time; however, we will return to the question near the end of the lecture.

19

Start with a basic
feasible solution

Is it
optimal?

To determine optimality, we need to compute reduced costs.

To determine reduced costs, we need to compute the
simplex multipliers.

The simplex multipliers are prices for which the reduced
costs of the basic variables are 0.

Once one has a feasible spanning tree solution (that is, a bfs), one needs to check
whether it is optimal. In the simplex method, this is accomplished by calculating
the reduced costs of all of the variables.

We will break up the computation of the reduced costs into two phases. In the first
phase, we calculate the simplex multipliers associated with a spanning tree. In the
second phase, we use the simplex multipliers to calculate the reduced costs of the
nontree arcs (that is, the nonbasic variables).

20

Step 2A. Find the simplex multipliers

1

2

43

65

7

2

1

5

31

2

Choose the y’s so that all of the arcs in the spanning tree
have a reduced cost of 0.

There are 6 equations, and 7 variables.
We can set y1 = 0 because constraint 1 was redundant.

Is it
optimal?

⎯c12 = 1 – y1 + y2

⎯c24 = 2 – y2 + y4

⎯c25 = 2 – y2 + y5

⎯c34 = 1 – y3 + y4

⎯c61 = 3 – y6 + y1

⎯c67 = 5 – y6 + y7

In general, the simplex multipliers are the unique prices so that the reduced costs of
the basic variables are all 0. But for the prices to be unique, we need to deal with
the fact that there is a redundant constraint. So, we eliminate constraint 1, and we
accordingly set y1 = 0. Once we know that y1 = 0, the other prices are uniquely
determined.

-23-3-3-2-10

y7y6y5y4y3y2y1

21

Step 2A. Find the simplex multipliers

1

2

43

65

7

2

1

5

31

2

0 = 1 – 0 + y2

0 = 2 – y2 + y4

0 = 2 – y2 + y5

0 = 1 – y3 + y4

0 = 3 – y6 + y1

0 = 5 – y6 + y7

0

0

y7y6y5y4y3y2y1

In fact, simplex multipliers are associated with equality constraints of the LP.
However, since each equality constraint of the LP is a supply/demand constraint for
a node, we associate the simplex multipliers with nodes.

The simplex multiplier for node 1 is 0, by the discussion on the last slide. We now
compute the simplex multipliers for all other nodes so that the reduced costs of arcs
in the spanning tree are all 0.

y7y6y5y4y3y2y1

0

-423

-23-3-3-2-10

y7y6y5y4y3y2y1

22

2

1

2

Find the reduced costs for the non-
basic arcs.

1

2

43

65

7

0

⎯c65 = 2 – y6 + y5

⎯c47 = 1 – y4 + y7

⎯c32 = 2 – y3 + y2

The current flow is not
optimal. (Why?)

Choose as the entering
variable one that has a
negative reduced cost
(since we are
minimizing.)

0

y7y6y5y4y3y2y1

Once we know the simplex multipliers for each node, we can compute the reduced
costs of the three nontree arcs. Note that the reduced cost of (6, 5) is negative. This
means that if we try to increase the flow on arc (6, 5) we can adjust the flows on
other tree arcs and strictly improve the objective function, assuming non-
degeneracy.

Accordingly, arc (6, 5) will enter the basis at the next iteration; that is, it will
become an arc of the basic spanning tree.

0

y7y6y5y4y3y2y1

23

Time for a mental break

Tales of Induhviduals from Scott Adams.

24

Choose the entering arc

1

2

43

65

7

3

2

-4

Entering arc for min
cost flows: an arc with
negative reduced cost.

Flow will adjust on the arcs of the cycle created
by adding the nontree arc to the tree.

Increase the flow in arc
(6,5) and adjust the
flows in other arcs to
satisfy supply/demand
constraints.

The following slides carry out the steps of the algorithm, and are self contained.

25

Send flow around the cycle

1

2

43

65

7

+ Δ- Δ

- Δ - Δ2

5

6

3

5

7

To adjust flows in the
basic arcs, modify
them along the cycle
created by adding (6, 5)

Send as much flow as possible until one of the
basic arcs has a flow of 0. How large can Δ be?

Add Δ to the forward
arcs of the basic cycle
and subtract Δ from the
backward arcs.

+ Δ

2 - Δ

3 - Δ

5 - Δ

26

Determine the exiting arc and the new
spanning tree flow.

5

6

At this point, we have a
new spanning tree
solution. We then
compute the simplex
multipliers and iterate.

2

7

0

1

3

1

2

43

65

7

Δ = 2. Determine the
new flows.

Arc (6, 5) enters the
basis. Arc (1, 2) leaves.

Review of the simplex algorithm

z	 Step 1. Start with a feasible spanning tree flow.

z	 Step 2. Compute the simplex multipliers and the
reduced cost. If all reduced costs are non
negative, then the flow is optimal. Otherwise, go
to step 3.

z	 Step 3. Choose an arc (i, j) with negative reduced
cost. Send as much flow as possible around the
“basic cycle”. Then return to Step 2.

27

-2311230

28

Choose the simplex multipliers

1

2

43

65

7

2

2

1
5

3

2

0 = 3 – y6 + 0

0 = 2 – y6 + y5

0 = 2 – y2 + y5

0 = 1 – y3 + y4

0 = 2 – y2 + y4

0 = 5 – y6 + y7

y7y6y5y4y3y2y1

0 0

y7y6y5y4y3y2y1

3 -24

-23-11230
y7y6y5y4y3y2y1

29

2

1

1

Determine the reduced costs

1

2

43

65

7

⎯c47 = 1 – y4 + y7

⎯c32 = 2 – y3 + y2

⎯c12 = 1 – y1 + y2

The current flow is not
optimal. (Why?)

Choose as the entering
variable one that has a
negative reduced cost.0

y7y6y5y4y3y2y1

3 - Δ

5 - Δ

30

Send flow about the basic cycle

5

6

7

21

3

1

2

43

65

7
+ Δ

- Δ

+ Δ

+ Δ

- Δ

To adjust flows in the
basic arcs, modify them
along the cycle created
by adding (4, 7)

Send as much flow as
possible until one of the
basic arcs has a flow of 0.

How large can Δ be?

+ Δ

2 + Δ1 - Δ

5 + Δ 7 - Δ

5 - Δ

31

1

30

6 6

Determine the exiting arc and the new
spanning tree flow

6

3

1

2

43

65

7 At this point, we have a
new spanning tree
solution. We then
compute the simplex
multipliers.

Δ = 1. Determine the
new flows.

Arc (4, 7) enters the
basis. Arc (2, 5) leaves.

-231-1010

32

1

2

43

65

7

2

1 1

5

3

2

Find the simplex multipliers.

0 = 3 – y6 + 0

0 = 2 – y6 + y5

0 = 5 – y6 + y7

0 = 1 – y4 + y7

0 = 2 – y2 + y4

0 = 1 – y3 + y4

y7y6y5y4y3y2y1

0 0

y7y6y5y4y3y2y1

-231-1010
y7y6y5y4y3y2y1

2 2 3

33

1

2

43

65

7

Find the reduced costs

⎯c32 = 2 – y3 + y2

⎯c25 = 2 – y2 + y5

⎯c12 = 1 – y1 + y2

2

1

2

The current flow is
optimal.

0

y7y6y5y4y3y2y1

The algorithm continues until there is an optimum spanning tree flow or a proof of
unboundedness. In this case, it ended with an optimum spanning tree flow.

3 - Δ

34

Recognizing when the solution is
unbounded from below

5 7

21
1

5

32

4
+ Δ

+ Δ

+ Δ

+ Δ

+ Δ If the basic cycle is
directed, then the min
cost flow is unbounded
from below.

The proof of unboundedness is when there is a negative cost cycle in which one can
send an infinite amount of flow. The solution will never be unbounded from below
if each arc has a finite capacity. But we are assuming infinite capacities for this
lecture.

Contrast with the simplex algorithm
z	 The network simplex algorithm is the simplex

algorithm, but without the tableaus

z	 Bases correspond to spanning trees

z	 The basic feasible solution is found by sending
flow in arcs

z	 The reduced costs are found by finding the
simplex multipliers explicitly.

z	 The leaving arc is found by sending flow around a
cycle.

Of course, this is the simplex algorithm. And so, the issues are how can we
interpret the simplex algorithm in this case, and why are there computational
differences?

35

Other properties of network simplex

z How does one find an initial bfs?

z A property of flows in spanning trees

z A property of simplex multipliers

z A property of reduced costs

36

6

Getting started with network simplex
-3 -3

3 3

2

43

6 6
6

7

6

11
7

12

1 5 Take any node, and
make it the “root.”
Create “artificial”
arcs to the root from
nodes with supplies.

Create “artificial”
arcs from the root to
arcs with demand.

6 -11 -7

Put a high cost on artificial arcs, say 1000 in this
example. The optimal flow will have no flow on
artificial arcs, and so will be optimal for the original
problem.

In the lecture on the simplex algorithm, we described the Phase 1 method in which
one tries to obtain a basic feasible solution. If we carried out the Phase 1 method,
we would put a cost of 1 on each of the artificial arcs and a cost of 0 on all other
arcs.

But in this case, we can put a high cost on all artificial arcs in the expectation that
none of them would have flow in an optimum solution. In fact, if c* is the largest
cost of an arc in the original network, and if one puts a cost of nc* on all of the
artificial arcs, one can guarantee that no artificial arc will have positive flow in an
optimum solution except in the case that there is no feasible flow.

37

6

1

6

7

38

2

2

43

5

-3

12

-7-116

6
-3

Flows in spanning tree arcs

What is the flow on
arc (1, 2)

Let S = {1, 6, 7}.

Let T = {2, 3, 4, 5}

The flow on arc (1, 2)
is the net supply of
nodes of S, which is
the negative of the
supply of nodes of T.

1

6

7

Deleting arc (i, j) splits the tree
into two subtrees, Ti and Tj.
The flow on arc (i, j) is the net
supply in Ti.

What is the flow
on (6, 1)?

For a given spanning tree flow, one can compute the flow in each arc of the
spanning tree iteratively. However, there is also a more direct method. For
example, the flow on arc (1, 2) is the total supply of the red nodes of this diagram.
This is because the only way to satisfy the supply constraints at the red nodes is to
ship the supply via arc (1, 2). The red nodes are obtained by removing arc (1, 2)
from the network and finding all nodes that are connected to node 1.

If one wants to understand an algorithm, it helps to understand it in more than one
way. In this case, one can understand the flow in an arc from a global perspective
such as above, or by considering the algorithm itself and how flows are allocated.

Costs and Reduced Costs of Cycles

Adding an arc to a
spanning tree creates 1

2

43

65

7

2

2

1 3 a unique cycle.

cost = 2

5

1 1

The cost of the cycle is the sum of the costs in
the forward direction of the cycle minus the
sum of the costs in the reverse direction.

It is standard to interpret the cost of a backward arc as the negative of the cost of an
arc going in the other direction.

If this point is confusing, think of sending flow around the cycle. To send one unit
of flow around the basic cycle, we would need to

1. increase the flow in (4, 7), (6, 7), (1, 2), and (2, 4) by one unit, and
2. decrease the flow in (6, 7) by one unit.

The net impact will be to increase the cost by $7 because of the forward arcs of the
cycle, and also to decrease the cost by $5 because we are decreasing the cost in
(6, 7) by $5. So, the net increase is $2.

39

0

y7y6y5y4y3y2y1

40

Costs and Reduced Costs of Cycles

1

2

43

65

7

2

1

5

31

2

1

The reduced cost of a
cycle is the same as
the cost of the cycle

cost = 2

0

0 0

0

2

reduced
cost = 2

If we choose the prices as the simplex multipliers, then all basic arcs have a cost of
0. Then the reduced cost of the cycle containing any nontree arc (i, j) is also the
reduced cost of the cycle.

For example, the reduced cost of the cycle 4-7-6-1-2-4 is $2, which is the reduced

cost of (4, 7).

We claim here that this is also the cost of the cycle.

The simplex algorithm works by sending flow around negative cost cycles. Recall

that to send a flow around a cycle C is to send increase the flow by Δ in the forward

arcs of C and to decrease the flow by Δ in the backward arcs of C.

0

y7y6y5y4y3y2y1

-23-3-3-2-10

y7y6y5y4y3y2y1

41

Reduced Costs of
Cycles

z ⎯cij = cij - yi + yj for
each arc (i,j).

z The reduced cost of
a directed cycle is
equal to the cost of
the cycle.

$3 - $4 + $1

-$2 -$0 + $4

$3

$1-$2

$4 $1

$0

1 2

3

1 2

3

$1 - $1 + $0

This diagram shows why the cost of a cycle is the same as the reduced cost of a
cycle. If we increase the price of node 1 by $k, then the price of the arc entering
node 1 increases by $k and the price of the arc leaving node 1 decreases by $k. So
changing the price of node 1 (or any other node) does not change the reduced cost
of the cycle.

0

y7y6y5y4y3y2y1

42

Another method for finding simplex
multipliers for spanning tree flows

1

2

43

65

7

2

2

1
5

3

2

Assume the multiplier
for node 1 is 0.

-2311230

y7y6y5y4y3y2y1

The multiplier for node j
is the length of the path
from node j to node 1 in
the tree.

e.g., the length of the
path from node 4 to
node 1 is 5 - 4 = 1.

We compute the simplex multiplier for each node iteratively. But there is also a
direct method for computing the simplex multiplier for node j. It is the cost of the
unique path in the tree from node j to node 1. (This assumes that the multiplier for
node 1 is 0.)

We can illustrate why this works by focusing on node 3. The path from node 3 to
node 1 passes through node 4. If we let yj be the cost of the path from node j to
node 1, then we can conclude that y3 = y4 + 1. This implies that the reduced cost of
(3, 4) is 0. Similarly, the reduced cost of every other arc of the tree is 0. But since
the simplex multipliers are the unique values that make the reduced costs of tree
arcs equal to 0, it follows that vector y is the vector of simplex multipliers.

The significance of the network
simplex algorithm

1.	 It is a lot faster than the usual simplex algorithm.
The number of pivots is the same, but each pivot
is much faster

2.	 It gives another view of the simplex algorithm,
and its operations.

3.	 It shows how network algorithms can be much
faster.

43

44

And now, it’s time for …..

