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15.053 February 13, 2007 

z The Geometry of Linear Programs 
– the geometry of LPs illustrated 



Quotes of the day 

You don't understand anything 
until you learn it more than one 
way. 

Marvin Minsky 

One finds limits by pushing 

them. 


Herbert Simon 
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Goal of this Lecture


z	 Present the Geometry of Linear Programs 
–	 A key way of looking at LPs 

•	 Others are algebraic and economic 
–	 Some basic concepts 
–	 2-dimensional (2 variable) linear programs) 
–	 3-dimensional (3 variable) linear programs 
–	 Properties of the set of feasible solutions and of optimal 

solutions 
•	 generalizable to all linear programs 
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A Two Variable Linear Program

(a variant of the DTC example)


z = 3x + 5y objective 

2x + 3y ≤ 10 

x + 2y ≤ 6 

x + y ≤ 5 

x ≤ 4 

y ≤ 3 
x, y ≥ 0 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

We could have used the original variable names of K and S, but it is simpler to use x 
and y since we usually think of the two axes as the x and y axis. 
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Finding an optimal solution 

z	 Introduce yourself to your partner 

z	 Try to find an optimal solution to the linear 
program, without looking ahead. 

Finding an optimal solution to a 2-variable LP can be challenging until you have 
seen the theory.  Finding an optimal solution to an LP with more than a few 
variables and constraints is very hard to do by hand (or at least prone to errors) and 
we typically use a computer. 
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Some Basic Concepts 

1 2 3 4 5 6 

1 

2 

3 

4 

5 A point is represented as a pair 
(x, y).  For example, (2, 3). 

x 

y 

Sometimes, we will call (x, y) 
a vector. In that case, it is 
often represented with a line 
segment directed from the 
origin. 

We go through this review pretty quickly 
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Lines 

1 2 3 4 5 6 

1 

2 

3 

4 

5 

x 

y 

Every pair of (distinct) points determines a 
unique line. 

p1 = (1, 5) 

p2 = (4, 2) 

L: x + y = 6. 

p1 

Alternative representation 
of the line: (1-λ)p1 + λp2 

for -∞ ≤ λ ≤ ∞. 
p2 

L = (1, 5) + λ(3, -3) 
for -∞ ≤ λ ≤ ∞. 

The alternative representation is really important, as we shall see on the next few 
slides. 
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Rays 

1 2 3 4 5 6 

1 

2 

3 

4 

5 

x 

y 

Every pair of (distinct) points determines a 
unique ray beginning at the first point. 

p1 = (1, 5) 

p2 = (4, 2) 
p1 

Ray:  (1-λ)p1 + λp2 
for 0 ≤ λ ≤ ∞. 

= (1, 5) + λ(3, -3) 
for 0 ≤ λ ≤ ∞. 

p2 
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Line segments 

1 2 3 4 5 6 

1 

2 

3 

4 

5 

x 

y 

Every pair of points determines a unique 
line segment. 

p1 = (1, 5) 

p2 = (4, 2) 
p1 

Segment: (1-λ)p1 + λp2 
for 0 ≤ λ ≤ 1. 

p2 
= (1, 5) + λ(3, -3) 

for 0 ≤ λ ≤ 1. 

We keep seeing (1-λαμβδα)p1 + lambda p2 as the formula.  But the representation 
of the line segment is the most useful for our purposes.  
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Inequalities 

1 2 3 4 5 6 

1 

2 

3 

4 

5 

x 

y 
An inequality with two variables 
determines a unique half-plane 

x+ 2y ≤ 6 

A half plane contains the line as well as all points on one side of the line. 



Graphing the Feasible Region 

We will construct 
and shade the 
feasible region 
one or two 
constraints at a 
time. 

111 2 3 4 5 6 
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2 
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4 
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x 

y 
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Graph the Constraints: 
2x+ 3y ≤ 10 (1) 

x ≥ 0 , y ≥ 0. (6) 

x 

y 

2x + 3y = 10 

OK. This is really three constraints despite what was said on the last slide. 
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Add the Constraint: 
x + 2y ≤ 6 (2) 

x 

y 

x + 2y = 6 



Add the Constraint: 
x + y ≤ 5


y 
5


y = 5

4


3


2


1


x + 

A constraint is 
called redundant 
if deleting the 
constraint does 
not increase the 
size of the 
feasible region. 

“x + y = 5” 
is redundant 

1 2 3 4 5 6 x

14


We don’t concern ourselves much with redundant constraints 15.053.  In principle, 
we could delete a redundant constraint because it might make the problem easier to 
solve. But in reality, it doesn’t help much. But it is a widely used concept. 



151 2 3 4 5 6 
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4 

5 

Add the Constraints: 
x ≤ 4; y ≤ 3 

x 

y 

We have now 
graphed the 
feasible 
region. 
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How do we maximize z = 3x + 5y ? 

y 

x 
Let’s avoid adding a 3rd dimension. 

Find a feasible solution such that 3x + 5y = p 
for different values of p. 

Choose p as large as possible. 

If you can do so, try to maximize the objective function before looking ahead. 
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x 

y 

1 2 3 4 

1 

2 

3 

How do we maximize 3x + 5y ? 

Is there a feasible solution 
such that 3x + 5y = 8? 

3x + 5y = 11 

Is there a feasible solution 
such that 3x + 5y = 11? 

3x + 5y = 8 

The lines such as “3x + 5y = 8” are often called “isoquant lines” or “isoprofit lines” 
or “isocost lines”.  Note that if the objective function is linear, then all isoprofit 
lines are parallel to each other. 
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x 

y 

1 2 3 4 

1 

2 

3 

Find the maximum value p such that there is a 
feasible solution with 3x + 5y = p. 

Move the line with profit p parallel as much as 
possible. 

This is called the geometric 
method for optimizing in 2D 

3x + 5y = 8 

3x + 5y = 11 

3x + 5y = 16 
The optimal 
solution 
occurs at a 
corner point. 

The geometric method for solving a 2-variable LP is to move the isoprofit line so 
that 

(1) there is still at least one feasible point on the line 
(2) moving it any further would make all points on the line infeasible. 

If there is exactly one feasible point on the line it will be a “corner point,” which is 
defined on the next slide. 



Corner Points 

z	 A corner point of the feasible region is a point 
that is not the midpoint of two other points of the 
feasible region. 

Where are the 
corner points of 
this feasible 
region? 
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Note that this is a very simple definition of a corner point.  It also leads to some 
unintuitive aspects. 

First of all, a corner point only makes sense if the feasible region is convex, that is, 
if two points p1 and p2 are feasible, then every point on the line segment [p1, p2] is 
also feasible.  We will discuss convexity later in this lecture. 

Second, if the feasible region is a disk, then every point on the outside of the disk is 
a corner point even though there are no “corners” to a disk. 
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Solving for the Corner Point 

x 

y 

1 2 3 4 

1 

2 

3 

In two dimensions, a corner point lies at 
the intersection of two lines. 

2x +3y = 10 

x +2y = 6 

x + 2y =  6 
2x + 3y = 10 

2x + 4y = 12 
2x + 3y = 10 

y = 2 

It’s very useful that the corner point lies at the intersection of two lines.  Then 
solving a system of equations with two variables and two equations will give the 
value of the corner point. 



Solving for Corner Points 
In three dimensions, a corner point is the 
intersection of three constraints. (3 planes) 

x y 

0 ≤ x ≤ 2


0 ≤ y ≤ 2


z


x - y  + z ≤ 3 


What is the red corner point? 

0 ≤ z ≤ 2


The red corner point is the intersection of three planes


x = 2


z = 

The unique solution is x = 2, y = 1, z = 2.


2


x - y + z = 3
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An important difference between the 
geometry and the algebra 

Usually, corner points can be 
described in a unique way as an 
intersection of two lines 
(constraints). But not always. 

2x + y = 9 

x + 2y = 9 

2x + y ≤ 9 
x + 2y ≤ 9 
0 ≤ x ≤ 3 
0 ≤ y ≤ 3 

The point (3, 3) can be 
written as the 
intersection of two 
lines in 6 ways. 

This turns out to be very important in later lectures when we consider the simplex 
algorithm, which is the algebraic technique for solving a linear program.  Within the 
simplex algorithm, there may be many structural descriptions (bases) that 
correspond to the same solution.  This leads to a number of technical issues that 
need to be resolved. 

We’ll return to this slide later in the subject when we discuss degeneracy. 



  

   

 

Remainder of the lecture: Corner Points. 

Does every linear program with a feasible solution 
have a corner point? 

No. Consider the LP: 

Maximize y 

subject to 0 ≤ y ≤ 1 

no constraints on x 

Even a person who has studied linear programming for a long time can forget that 
not all linear programs have corner points.  Fortunately, all linear programs with 
non-negativity constraints do have corner points. 

We will generally deal with linear programs that have non-negativity constraints.  
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Theorem. If there is a feasible solution, and if there is 
no feasible line, then there is a corner point. 

Corollary. Any LP in which each variable is 
non-negative has a corner point. 

y 

1 

2 

3 

4 

5 

1 2 3 4 5 6 x 24 
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1 2 3 4 

1 

2 

3 

If there is an optimal solution, and if there is a 
corner point, is there always an optimal 

solution that is a corner point? 

YES! 

It is true even if 
there is an entire 
line segment that is 
optimal. 

It is also possible that the entire feasible region is optimal, but this can only happen 
when the objective is to maximize (or minimize) 0x + 0y.  In this case, all corner 
points are optimal. 
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z If there is an optimal solution, then there is an 
optimal solution that is a corner point. 

set of points 

s.t. profit = a 

In three dimensions, the isoprofit points form a plane.  For example, we may have 
an objective of 2x + 3y + w =. 

We’ll try to avoid having z as one of the variables since z usually denotes the value 
of the objective function. 
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What types of Linear Programs are there? 

There is a feasible 
solution and an 
optimal solution. 

There is a feasible 
solution and the 
objective value is 
unbounded from 
below 

There is no 
feasible solution. 

max x 
s.t. x + 2y ≤ -1 

x ≥ 0, y ≥ 0 

max x 
s.t. x + 2y ≤ 1 

x ≥ 0, y ≥ 0 

max 
s.t. x - 2y ≤ 1 

x ≥ 0, y ≥ 0 

Case 1 unfortunately happens too frequently, often because of an error.  
Sometimes it comes because the decision maker is trying to 

accomplish too much with too little.  For example, in the application to radiation 
therapy to destroying brain tumors, a doctor may require a very large dose of 
radiation to the tumor while requiring a very low dose to non-tumor cells.  But this 
may lead to a linear program with no feasible solution. 

Case 2 will always occur when the feasible region is non-empty and bounded.  
However, it can also occur with the feasible region is unbounded.  For example, min 
{x : x >= 1}. 

Case 3 can only happen when the feasible region is unbounded. 



  

 

Any other types 

z	 Is it possible to have an LP such that the feasible 
region is bounded, and such that there is no 
optimal solution? 

No. But it could happen if we

permitted strict inequality

constraints.


Maximize x


subject to 0 < x < 1
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It might seem obvious that if an LP feasible region is bounded, then it must have an 
optimal solution.  But this relies on the fact that the inequalities are not strict, as the 
example above shows. 

From a mathematical perspective, an LP feasible region is closed; that is, if a 
sequence of feasible points converges then it converges to a point that is feasible.  
But this is a digression, and is not used elsewhere in 15.053. 
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Convex Sets 

A set S is convex if for every two points in the 
set, the line segment joining the points is also in 
the set; that is, 

p1 

p2 

Theorem. The feasible 
region of a linear program is 
convex. 

if p1, p2 ∈ S, then so is(1-λ)p1 + λp2 for λ ∈ [0,1] 

Convexity is of some use for linear programming. It is critically important in non
linear programming.  Non-linear programs are extremely hard to solve in general 
(impossible may be a better word); however, when the objective function is convex, 
they are often tractible. 

We will use properties of convexity a number of times in the remainder of this 
lecture and in the next lecture. 

Notice that we are using the same description of a line segment as earlier. 
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notnotnotnotconvexconvex

More on Convexity 

convexWhich of the following are ?convexconvex or notnot ? 

The doughnut (object 5) is not convex because it contains a hole in it.

The 8 points (object 8) is not convex because it only contains those 8 points and not 

points in between.
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Which shapes are convex 

Which regions are LP feasible regions? 

Which are the corner points of each shape? 

Not convex: heart and moon


Not LP: heart and moon and circle.  (The circle cannot be expressed as a finite

number of linear inequalities.)

Corner points:  those that are not the midpoints of two other points of the object.


The top of the heart is not a corner point since it is the midpoint of two other points 

of the heart.  The points on the outside curve are corner points except for the points 

below the top two curves.


All outside points on the circle are corner points, despite the fact that in common 

usage we would not think of a circle as having any corners.

The cube has 8 corner points.

The outside points on the left of the moon are corner points.  The outside on the 

right side are not.

The infinite region has 4 corner points.




On corner points 

z	 Corner points make more sense if the region is 
convex. 

z	 We are only concerned about corner points of 
linear programs. 

When we use corner points in linear programming, it will make intuitive sense. 
It is not very useful to talk of corner points of non-convex regions. 

32 



33 

A Theorem on Corner Points 

z Theorem. Every corner point of an LP is an 
optimal solution for some linear objective. 

www.mathematica.com 

All one has to two in two dimensions is to find a line that goes through the corner 

point but doesn’t touch any other feasible point.

In three dimensions, one needs to find a plane that goes through a corner point and 

doesn’t touch any other feasible point.


Intuitively, this is quite easy to do.  However, it is not so easy to prove that it is 

always possible, even though it is.


In fact, in an n-variable LP, every corner point is an optimal solution for some linear 

objective.
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Theorem: The feasible region of an LP is convex. 

Proof illustrated.  Let p1 = (1, 2). Let p2 = (3, 1). 

Suppose that both points satisfy one of the constraints:  
say    ax + by ≤ c. 

Then 1a + 2b ≤ c and 3a + 1b ≤ c. 

x 

y 

1 2 3 4 

1 

2 

3 

p3 

Suppose that p3 = (1-λ)p1 + λp2 
= (1 - λ)(1, 2) + λ(3, 1) = (1 + 2λ, 2 - λ) 

Claim: p3 satisfies the inequality. 

1a + 2b ≤ c 

3a + 1b ≤ c × λ  

× (1-λ) 

(1 + 2λ)a + (2 - λ)b ≤ c 

p1 

p2 

To prove that a set is convex, one goes back to the definition. One shows that is p1 
and p2 are both in the set and if p3 is on the line segment joining p1 and p2, then p3 
must also be in the set. 

In the case of a linear programming feasible region, one needs to show that p3 
satisfies each of the linear equalities and inequalities.  The above is an outline of the 
proof why this is true with two variables.  Indeed, the proof idea can be generalized 
to show that it is true regardless of the number of variables. 
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The proof continued 

z Every inequality is satisfied by p3. So, p3 is 
feasible. 

z Equalities are also satisfied. 
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And now, it’s time for ….. 

“Who wants a piece of candy” is not stored on the web. 



Summary: 2D Geometry helps guide 
the intuition 

z 2D visualization 
z infeasibility and unboundedness 
z Corner Points and their significance 
z Convexity of the feasible region 
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