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Abstract
Introduction—Obesity and obesity-related disease have reached pandemic proportions and are
prevalent even in developing countries. Adipose tissue is increasingly being recognized as a key
regulator of whole-body energy homeostasis and consequently as a prime therapeutic target for
metabolic syndrome. This review discusses the roles of miRNAs, small endogenously expressed
RNAs that regulate gene expression at a post-transcriptional level, in the development and
function of adipose tissue and other relevant metabolic tissues impacted by obesity. Several high-
throughput studies have identified hundreds of miRNAs that are differentially expressed during
the development of metabolic tissues or as an indication of pathophysiology. Further investigation
has functionalized the regulatory capacity of individual miRNAs and revealed putative targets for
these miRNAs. Therefore, as with several other pathologies, miRNAs are emerging as feasible
therapeutic targets for metabolic syndrome.

Areas covered—This review provides a comprehensive view of miRNAs involved in
adipogenesis, from mesenchymal stem cell lineage determination through terminal adipocyte
differentiation. We also discuss the differential expression of miRNAs among adipose depots and
the dysregulation of miRNAs in other metabolic tissues during metabolic pathophysiology.
Finally, we discuss the therapeutic potential of targeting miRNAs in obesity and give a perspective
on the challenges and advantages of miRNA-based drugs.

Expert opinion—miRNAs are extensive regulators of adipocyte development and function and
are viable therapeutic targets for obesity. Despite the broad-spectrum and redundancy of miRNA–
target interactions, sophisticated bioinformatic approaches are making it possible to determine the
most physiologically relevant miRNAs to target in disease. In vivo delivery of miRNAs for
therapeutic purposes is rapidly developing and has been successful in other contexts. Additionally,
miRNAs can be used as prognosis markers for disease onset and progression. Ultimately, miRNAs
are prime therapeutic targets for obesity and its consequent pathologies in other metabolic tissues.
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1. Introduction
Metabolic syndrome, which is characterized by overweight and obesity and their associated
non-communicable diseases (NCDs), has become pandemic in scale and now poses an
immense threat on global health. Overweight (body mass index (BMI) 25 – 30) and obesity
(BMI > 30) are highly associated with type II diabetes, hypertension, cardiovascular disease,
and several cancers and are largely attributable to poor diet (i.e., increased dietary energy
intake) and sedentary lifestyle [1]. In 2000, poor diet and physical inactivity were recorded
as the second leading cause of death in the USA (16.6%) [2]. This is a rapidly increasing
epidemic in the USA as mortality associated with poor metabolic health only accounted for
14% of annual deaths 10 years precviously and is expected to soon become the leading
cause of death [2]. According to the Center for Disease Control (CDC), in 2003 the costs for
medical expenses related to overweight and obesity in the USA were approximately $75
billion and were largely financed by Medicare and Medicaid. Over 50% of American adults
are overweight or obese [3], and, according to the World Health Organization (WHO), of
over a billion adults worldwide who are overweight at least 300 million are obese.

The growing obesity pandemic is not exclusive to the industrialized world; developing
countries are heavily affected by this trend due to increased sweetening of foods, the rapid
increase of consumption of animal-source foods, dramatic shifts of work forces from
agriculture and other physically-demanding jobs to service sector jobs, and various other
factors [4]. This is also facilitated by the increase in distribution of affordable motorized
transportation and labor-saving mechanized devices by large, multinational companies [4].
Developing countries are ill equipped to counter such trends, which are conducive to the
development of poor metabolic health.

miRNAs are a class of small non-coding RNAs (approximately 22 nucleotides in length)
that are increasingly being recognized as viable therapeutic targets for a host of diseases.
miRNAs can be transcribed by either RNA polymerase II or III into primary transcripts
called pri-miRNAs. These transcripts are cleaved in the nucleus by the enzyme Drosha and
its cofactor Pasha at the bottom of their stem loops to make ~ 70 nucleotide precursors
called pre-miRNA. Pre-miRNAs are exported to the cytosol and are processed by other
enzymes such as Dicer to generate an approximately 22 nucleotide mature miRNA duplex
that can be incorporated into an RNA-induced silencing complex (RISC) to be active as a
post-transcriptional regulator. miRNA biogenesis is reviewed in [5]. miRNAs silence
transcripts by facilitating Argonaut-dependent cleavage of mRNAs and/or by acting as a
physical barrier to translation, depending on the level of complementarity with their targets
[6]. The 5′ proximal seed sequence of miRNAs hybridizes with a sequence in the 3′
untranslated region of the mRNA [6]. Computational and experimental analyses have
revealed that individual miRNAs each target approximately 400 mRNAs and almost half of
the mammalian transcriptome is targeted by miRNAs [7].

miRNAs have been proposed as therapeutic targets against cancer, HCV, HIV, and
cardiovascular disease [8–11]. This review discusses miRNAs involved in the development
and function of adipose tissue and suggests their novel therapeutic potentials in mitigating
obesity and its associated NCDs. Adipose tissue is increasingly being recognized as a key
regulator of energy homeostasis not only because it acts as a chemical energy store but also
due its production of multiple cytokines with activities that influencc whole-body
metabolism [12]. The increase in adiposity associated with weight gain causes chronic
inflammation of adipose tissue, which has been linked to insulin resistance and
hyperlipidemia that causes detrimental steatosis in other tissues. Several studies have
elucidated the roles of miRNAs in adipocyte development and metabolic function and thus
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implicate them as therapeutic targets for re-establishing proper energy homeostasis and
countering the pathological consequences of adipose tissue expansion.

2. MicroRNAs and adipocyte development
There are two key steps to mature adipocyte development: determination and terminal
differentiation [13]. In the determination step, multipotent mesenchymal stem cells (MSCs)
are induced to become preadipocytes, which are morphologically similar to MSCs but have
lost the ability to differentiate into non-adipocyte cell types [13]. MSCs can also develop
into osteoblasts (bone forming cells) and chondrocytes (cartilage forming cells) and express
discrete amounts of factors specific to each of the three lineages that inhibit each other to
maintain the undifferentiated state. For example, the adipocyte-specific PPARγ protein
binds the runt related (RUNX2) protein, a transcription factor that transactivates osteogenic
genes, to inhibit osteogenesis [14]. Lineage determining conditions cause factors of one
lineage to overshadow the others and commit the MSC to that cell fate.

In addition, several evolutionarily conserved signaling pathways, such as wingless-related
MMTV integration site (WNT), bone morphogenetic protein (BMP), and TGF-β signaling,
regulate this determination step. The WNT and TGF-β signaling pathways disfavor
adipogenic fate in MSCs. As an example, ectopic expression of Wnt10b in the ST2 murine
stromal cell line favors osteogenesis at the expense of adipogenesis [15]. TGF-β signaling
activates small and mothers against decapentaplegic (Smad) proteins, transcriptional
regulators that migrate to the nucleus and activate osteogenic and chondrogenic genes.
Accordingly, RNA interference-mediated repression of Smad3 in human adipose-tissue-
derived mesenchymal stem cells (hASCs) promotes adipogenesis [16]. Unlike the activity of
WNT and TGF-β signaling in MSC development, which elicits a more or less binary
response, other signaling pathways operate through more complex mechanisms. Of these,
BMPs are notable. Like TGF-β proteins, BMPs activate Smad transcription factors. BMPs
have been reported to regulate MSC determination depending on the concentration and type
of the BMP involved. For instance, BMP-2 promotes adipogenesis in C3H10T1/2, a murine
MSC cell line, at low concentrations, whereas higher concentrations of BMP-2 favor
osteogenic and chondrogenic phenotypes [17].

Following commitment to the adipocyte lineage, preadipocytes undergo terminal adipocyte
differentiation, acquire a mature adipocyte morphology, and express mature adipocyte
markers such as fatty acid binding protein 4 (FABP4) and glucose transporter type 4
(GLUT4). Hormonally induced preadipocytes reenter the cell cycle and may undergo a few
more rounds of mitotic expansion before acquiring the cellular machinery necessary for lipid
storage and metabolism. PPARγ is a master transcriptional regulator of adipogenesis that
activates genes involved in terminal differentiation and mature functions of adipocytes.
Continued expression of PPARγ is necessary for maintaining the differentiated state, and
adenoviral infection of a dominant negative PPARγ in 3T3-L1 adipocytes results in ‘anti-
differentiation’, or a loss of distinctive adipocyte morphology and function [18]. An isoform
of PPARγ, PPARα, also contributes to adipogenesis but performs a more ancillary role [19].

Members of the CCAAT-enhancer-binding protein (C/EBP) family are also important in
adipogenesis. C/EBPα is transcriptionally activated by PPARγ, [20] and genome-wide
analysis by Lefterova et al. [21] revealed that C/EBPα DNA binding in mature adipocytes
greatly overlaps with the binding of PPARγ, suggesting that its transcriptional activity is
also necessary for adipogenesis. Additionally, C/EBPβ and C/EBPδ contribute to the
transcriptional activation of PPARγ in early adipogenesis [21], and C/EBPβ redundantly
activates adipogenic genes targeted by C/EBPα [22]. While knockdown of PPARγ or both
C/EBPα and C/EBPβ markedly decreases the expression of several adipocyte genes,
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knockdown of all three results in an even more dramatic decrease in the expression of these
genes [21]. These data suggest that the three transcription factors function synergistically to
regulate adipogenesis. The activity of C/EBPs is further regulated by the extracellular-
signal-regulated kinase (ERK) signaling cascade which, when activated, results in the
phosphorylation and inactivation of C/EBPβ [23]. Recently, it has been demonstrated that
miRNAs are another class of factors regulating adipocyte development (Table 1), which are
discussed in detail below.

2.1 miRNAs involved in MSC fate determination
miRNAs play critical roles in regulating in the lineage fate of MSCs. For example, miR-204
targets and downregulates Runx2 and thereby promotes the adipogenic lineage [24]. Huang
et al. determined that knockdown of miR-204 by a miR-204 sponge increased the expression
of osteogenic markers in C3H10T1/2 cells and murine bone marrow stromal cells (BMSCs).
Conversely, overexpression of miR-204 and miR-211, its human homologue, using either
retroviral infection or by transfection of microRNA oligonucleotides promoted adipogenesis
as confirmed by the increased expression of mature adipocyte markers and lipid droplet
accumulation [24].

Multiple studies have shown that miRNAs are extensively involved in WNT signaling. A
genetic screen in Drosophila revealed that miR-8 is a negative regulator of WNT signaling
that directly targets the mRNAs encoding two pathway elements, the wntless and CG32767
genes [25]. Additionally, the mammalian miR-8 homologues miR-141, miR-200a/b/c, and
miR-429 demonstrated a conserved regulation of WNT signaling in ST2 cells. These
homologues are transcribed from two genomic clusters, one containing miR-200c and
miR-141 and the other containing miR-200a/b and miR-429. Ectopic expression of either
cluster in ST2 cells promoted lipid droplet formation and a marked increase in the
production of FABP4, a crucial indicator of mature adipocyte function. Additionally,
Kennell et al. found that the over-expression miR-8 homologues partially rescued an
adipogenic phenotype in ST2 cells expressing recombinant Wnt3a [25].

In a related study by Qin et al. [26], 18 additional miRNAs were shown to be possible
repressors of WNT signaling via high-throughput microarray analysis in 3T3-L1 cells, and
29 others were identified as possible activators of WNT signaling. Glycogen synthase kinase
(GSK)-3β inhibits WNT signaling by phosphorylating β-catenin, a transcriptional activator
of WNT target genes, and thus promoting its degradation. LiCl inhibits GSK-3β and
consequently activates intracellular WNT signaling elements. The rationale of Qin et al.’s
study was that miRNAs differentially expressed between control and LiCl-treated cells are
probably involved in WNT signaling. The probable targets of these miRNAs were
determined by bioinformatic analysis. MiR-210, which was confirmed to target the Tcf712
gene via a luciferase reporter assay, was chosen for further study. TCF712 protein is a
transcription factor that activates WNT target genes in association with β-catenin.
Accordingly, overexpression of miR-210 was also shown to accentuate an adipogenic
phenotype in hormonally induced 3T3-L1 preadipocytes.

Similarly, miR-21 has been implicated as a mediator of TGF-β signaling in hASCs [16].
MiR-21 was found to downregulate a TGFBR2 luciferase reporter construct, and therefore is
a likely negative regulator of TGF-β signaling. Supporting this notion, levels of
phosphorylated Smad3 protein were inversely correlated to miR-21 levels when the
microRNA was overexpressed via lentiviral transduction or suppressed by antisense
oligonucleotides. Phosphorylated Smad3 forms a complex with Smad4 and travels to the
nucleus where it activates gene transcription [27]. Therefore, miR-21 affects TGF-β
signaling by impairing the phosphorylation of Smad3. Accordingly, miR-21 was transiently
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upregulated upon hormonal induction of adipogenesis in hASCs, and overexpression of
miR-21 enhanced adipogenesis [16].

Lastly, Lin et al. [28] found that ectopic expression of miR-199a in either C3H10T1/2 or
ATDC5 mouse prechondrogenic cell lines inhibits early chondrogenesis by targeting Smad1,
a downstream target of BMP-2. These findings were supported by the reduced expression of
chondrogenic markers (cartilage oligomeric matrix protein (COMP), type II collagen, and
sexdetermining region on the Y chromosome-related homeobox 9 (Sox9)) and an increased
expression of these markers upon antisense suppression of miR-199a. These experiments
demonstrate that miRNAs are intricately involved in MSC fate determination through both
regulation of lineage-specific transcription factors and evolutionarily conserved signaling
pathways.

2.2 miRNAs in terminal differentiation and mature adipocyte function
A preponderance of evidence shows that miRNAs are indispensable for terminal adipocyte
differentiation and function. One such study by Mudhasani et al. [29] revealed that miRNAs
are globally important for adipogenesis in vitro. This group affected a total knockdown of
miRNAs in mouse embryonic fibroblast (MEFs) and primary preadipocytes isolated from
the subcutaneous adipose depot. This system involved the use of a conditional Dicer gene
that is floxed by loxP sequences; such LoxP-floxed genes are excised from the genome upon
adenoviral infection of Cre recombinase [30]. As Dicer is an essential enzyme for miRNA
maturation, without it pre-miRNAs cannot be further processed to become functional
miRNAs. Homozygous ablation of Dicer in preadipocytes before induction dramatically
impaired lipogenesis and downregulated several fold adipocyte markers such as PPARγ,
Fas, GLUT4, and FABP4. [29] Furthermore, Mudhasani et al. showed that the observed
impairment of adipogenesis was not due to a non-specific repression of cellular
proliferation: knockout of the cyclin-dependent kinase 4 inhibitor A (ink4a) locus in Dicer-
ablated cells prevented premature cellular senescence but did not rescue an adipogenic
phenotype, thus indicating that miRNA knockdown in preadipocytes specifically obstructs
adipocyte differentiation. In a more recent study from the same group, Mudhasani et al.
generated DicerLox/Lox: Ap2-Cre transgenic mice (Cre recombinase is expressed under the
control of the adipocyte protein 2, also known as Fabp4, promoter) to explore the role of
Dicer in vivo [31]. These mice displayed a severe depletion of adipose tissue. This study
provides genetic evidence for the physiological importance of miRNAs in regulating
adipocyte development. Unfortunately, most of the adipose conditional Dicer knockout mice
succumbed between one to three weeks postnatally, preventing further characterization of
the roles of miRNAs in adult murine adipose tissue.

To profile the global changes of miRNA expression during adipogenesis, Ortega et al.
performed a miRNA expression array study using total RNA extracted from human-derived
preadipocytes and adipocytes [32]. This study showed that of 799 miRNAs assayed, the
expression of approximately 70 miRNAs (8.8%) was significantly changed between non-
induced and induced cells, implying the importance of miRNAs in adipocyte development.

Several individual miRNAs have been implicated in adipogenic processes. For instance,
Let7 and miR-17-92 have been shown to regulate the clonal expansion of preadipocytes
preceding the acquisition of mature adipocyte morphology [33,34]. Let-7 is upregulated
during 3T3-L1 adipogenesis, and its ectopic expression inhibits both the clonal expansion
and terminal differentiation of 3T3-L1 preadipocytes [33]. Let-7 targets cyclin-dependent
kinase 4 inhibitor A (Hmga-2), which regulates growth and proliferation of other cell types,
and when ectopically expressed reduces HMGA-2 protein levels as much as three-fold.
Hmga-2 knockout in mice leads to markedly less adiposity [35], while transgenic
overexpression of truncated HMGA-2 is conducive to uncontrolled clonal expansion of
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preadipocytes characterized by increased adipose mass and higher incidence of lipomas
[36]. Thus, Let-7 regulates adipogenesis by negatively regulating the clonal expansion of
preadipocytes. The miR-17-92 cluster, which in several cancers promotes cell proliferation,
targets tumor suppressor retinoblastoma2 (Rb2)/p130 mRNA and accelerates adipogenesis
when ectopically expressed in 3T3-L1 cells [34]. The cluster is upregulated during the
preadipocyte clonal expansion stage, and siRNA-mediated knockdown of Rb2/p130 at this
stage correspondingly accelerates adipocyte differentiation similar to that seen with
miR-17-92 overexpression.

Another pertinent study by Yang et al. [37] showed that miR-138 targets EP300 interacting
inhibitor of differentiation 1 (Eid-1), which is thought to be involved in coupling re-entry
into the cell cycle with transcriptional activation of genes responsible for cell differentiation,
and is a negative regulator of adipogenesis that is downregulated upon hormonal induction
of adipogenesis in hASCs. EID-1 binds the retinoblastoma protein and promotes cell cycle
re-entry in skeletal muscle [38], so miR-138-mediated repression of EID-1 impedes the
development of growth-arrested preadipocytes. Also, overexpression of miR-138 in hASCs
reduced lipid droplet accumulation, inhibited expression of key adipogenic transcription
factors C/EBPα and PPARγ2 (one of the two PPARγ isoforms found in humans and mice),
and also blocked induction of several other adipogenic markers including FABP4 and
lipoprotein lipase (LPL). Knockdown of EID-1 by RNA interference recapitulated this
phenotype [37]. Thus, miR-138 is a negative regulator of adipogenesis at least partially
through targeting EID-1.

miR-27a and miR-27b are negative regulators of adipogenesis, and both have been shown to
directly target PPARγ mRNA [39–41]. Both miRNAs are downregulated upon hormonal
induction of adipogenesis in vitro. Transfection of either miRNA in 3T3-L1 or OP9 cells, a
mouse stromal cell that undergoes adipogenesis after treatment with the same adipogenic
stimulants as 3T3-L1 cells, inhibited adipocyte formation as characterized by a blockage of
the expression of adipogenic markers, [39]; overexpression of miR-27b in hASCs has
similar effects [41]. miR-27a is expressed more abundantly in the stromal vascular fraction
of murine adipose tissue than in mature adipocytes [40].

miR-378/378*, two miRNAs transcribed from the same locus, promote lipogenesis [42].
The miR-378/378* locus is contained within the intron of PPARγ-coactivator-1 (PGC-1) β,
and both are highly induced during adipogenesis. Overexpression of miR-378/378* in ST2
cells enlarged lipid droplets and increased the incorporation of [14C] acetate into
triglycerides. Quantitative RT-PCR analysis revealed that levels of PPARγ and C/EBPs
were not appreciably affected by miR-378/378* overexpression; however, there was
upregulation of PPARγ2 and lipogenic genes. Oddly, this overexpression appeared to
increase the transcriptional activity of C/EBPα and -β on adipogenic target promoters.

Also, miRNAs that positively and negatively impact C/EBP activity have been identified.
miR-31 directly targets C/EBPα, and levels of this miRNA are downregulated in
adipogenesis as assessed by microarray analysis and qRT-PCR in hASCs [43]. In the
context of macrophage studies, miR-155 directly targets C/EBPβ [44]. miR-143 targets
ERK5 and thus accelerates adipogenesis in 3T3-L1 cells [45,46] presumably by preventing
the phosphorylation and inactivation of C/EBPβ. Additionally, miR-143 enrichment in
mature murine adipose tissue is several fold higher than in 3T3-L1 adipocytes [46]. Also,
miR-448 negatively regulates adipogenesis by targeting Kruppel-like factor 5 (Klf5) [47], a
transcription factor that is induced by C/EBPβ and -δ and drives adipogenesis by
contributing to the induction of PPARγ [48].
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There are several miRNAs that have been implicated as regulators of mature adipocyte
metabolic functions. A comprehensive study by Kajimoto et al. [49] found 21 miRNAs that
are differentially expressed between 3T3-L1 preadipocytes and 3T3-L1 adipocytes 9 days
post induction (well after terminal differentiation occurs in vitro). Upregulated miR-NAs
include miRs-10b, -15, -26a, -34c, -98, -99a, -101, -101b, -152, -183, -185, and -224;
miRs-103, -181a, and -182 were downregulated in the day 9 samples. However, none of
these were differentially expressed at 1, 2, or 5 days post induction. Also, antisense
inhibition of the upregulated miRNAs at day 3 and day 5 post induction did not detectably
impair the upregulation of adipocyte markers or lipid droplet formation associated with
adipogenesis. The authors therefore proposed that these miRNAs are somehow involved in
mature adipocyte function and not in differentiation.

Indeed, some miRNAs have been implicated in the specialized metabolic functions of
mature adipocytes. miR-14 is important in lipid metabolism in Drosophila [50]. miR-14
knockout Drosophila displayed a roughly two-fold increase in triglyceride content, and
diglyceride content was also noticeably increased but to a lesser extent. Consequently, the
lipid droplets from the adipocytes of these knockout flies were significantly larger as
triglycerides are the major component of adipose lipid droplets. Interestingly, the levels of
several other classes of lipids, including free fatty acids (FFAs), cholesterol esters,
lysophosphatidylcholine, phosphatidylcholine, sphingomyelin, and total phospholipids were
not significantly affected. These data indicate that miR-14 is specifically a dose dependent
regulator of triglyceride and diglyceride content in Drosophila.

miR-278, which has also been characterized in Drosophila, regulates energy homeostasis
and insulin sensitivity [51]. miR-278 targets the expanded transcript, and miR-278-knockout
flies display a large reduction in total body triglyceride content and fat body mass. Expanded
regulates cell growth; knockout of expanded results in tissue overgrowth and overexpression
conversely causes a decrease in tissue mass [52]. Intriguingly, miR-278 mutants were
insulin-resistant and had higher levels of insulin and circulating sugar mobilized from
adipose tissue stores [51]. Although miR-14 and miR-278 have been identified in
Drosophila as crucial regulators of adipose tissue, their mammalian homologues have yet to
be discovered.

Lastly, a recent computational study predicted that miR-103 and -107 human miRNA
paralogs participate in regulating several metabolic pathways [53]. In vertebrates, these
miRNAs are located in the intronic regions of the pantothenate kinase (PANK) genes, and
bioinformatic analysis reveals that they probably act synergistically with PANK in
regulating Acetyl CoA and lipid metabolism. Another study showed that miR-103 exhibits
nine-fold upregulation in early 3T3-L1 adipogenesis and also accelerates lipid droplet
formation when ectopically expressed [46]. The possible role of miR-107 in adipogenesis
has yet to be experimentally validated.

3. MiRNAs in obesity
Obesity occurs when energy intake exceeds energy expenditure. Excess energy is stored as
triglycerides in adipocytes, which in obesity are increased in both cell number (hyperplasia)
and cell size (hypertrophy) via increased recruitment of MSCs to the adipocyte lineage and
accumulation of larger lipid droplets in mature adipocytes. In addition, excess lipid is
demobilized from adipose tissue and deposited in other organs, such as muscle and liver,
which in part causes the systemic insulin resistance associated with obesity.

Invasion of adipose depots by macrophages is a key feature of obese adipose tissue that is
conducive to its adaption to adverse conditions of such as hypoxia and mechanical strain
from hypertrophy. Macrophage infiltration clears dead cells and also exposes adipocytes to
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inflammatory cytokines that promote ‘anti-adipogenesis’, or the disassembly of distinct
adipocyte morphology and function to relieve the strain of excessive lipid uptake [54].
Macrophage infiltration also promotes the vascularization of adipose tissue [55]. Stimulation
of increased angiogenesis by adipose tissue during severe obesity is macroscopically
detectable in human visceral and subcutaneous adipose depots via angiography [56].

TNF-α is a prominent inflammatory cytokine secreted by macrophages that acts as a
negative adipogenic regulator. It prevents adipogenic differentiation in 3T3-L1
preadipocytes and causes ‘anti-adipogenesis’ in 3T3-L1 adipocytes [54]. Ectopic expression
of TNFα simulates the chronic inflammatory environment of obese adipose tissue by
blocking the expression of adipogenic genes, notably PPARγ, C/EBPα and FABP4, [57] and
inducing the expression of preadipocyte markers [58].

Adipose tissue remodeling during obesity has several pathological consequences. Insulin
resistance may be largely a consequence of the chronic inflammatory environment of obese
adipose tissue; consequently, several recent studies have proposed to address obeseity-
induced insulin resistance through anti-inflammatory methods (reviewed in [59]). Also, the
demobilization of lipid content from adipose depots leads to hyper-lipidemia and steatosis in
other tissues. Recent studies have identified several miRNAs expressed in metabolic organs
that could be used as feasible therapeutic targets for obesity and its consequent pathologies.
These are summarized in Table 2 and will be discussed in the subsequent sections.

3.1 MicroRNAs in obese adipose tissue
A groundbreaking study by Xie et al. [46] revealed that miRNAs implicated in adipogenesis
are largely inversely expressed in obese adipose tissue. For instance, miR-422b, 148a, 103,
107, 30c, 30a-5p and 143 are normally upregulated in adipogenesis but are markedly
downregulated in adipocytes taken from the diet-induced obesity (DIO) mouse model;
conversely, miR-221 and 222 levels normally decrease in adipogenesis but are upregulated
in obesity. The study also comprehensively showed that of a set of 79 miRNAs 31 out of 41
that are upregulated in 3T3-L1 adipogenesis and 26 out of 38 that are downregulated
displayed expression profiles that were inversely correlated with those of adipocytes taken
from ob/ob mice. Consistently, after induction of anti-adipogenesis by ectopic expression of
TNF-α in 3T3-L1 cells for 24 h, Xie et al. observed that the aforementioned miRNAs
displayed expression patterns resembling those of adipocytes from DIO and ob/ob mice,
thus indicating that the dysregulation of adipogenic miRNA expression in obese mice is due
to the chronic inflammatory environment of obese adipose tissue.

In another high-throughput study using human subcutaneous adipose tissue samples, Ortega
et al. [32] found that approximately 50 of 799 miRNAs tested (6.2%) were appreciably
deregulated in samples taken from obese subjects in comparison with samples taken from
lean subjects. Of these, the expression levels of 17 were highly correlated with BMI and
metabolic parameters. Most of the observed deregulated miRNAs had also been previously
identified as being differentially expressed during adipogenesis [32].

In addition to these high-throughput studies, several recent studies provided functional
analyses of individual miRNAs in obese adipose tissue. MiR-519d is aberrantly expressed in
subcutaneous adipose tissue taken from obese subjects [60]. MiR-519d targets PPARα,
which was noted earlier to be an activator of adipogenesis subsidiary to PPARγ. PPARα
transcriptionally regulates genes required for maintaining the redox balance of the oxidative
catabolism of fatty acids. Essentially, enrichment of miR-519d in adipocytes disrupts fatty
acid metabolism and contributes to cellular hypertrophy.
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Other miRNAs function as inducers of inflammatory signaling in obese adipose tissue.
Strum et al. [60] showed that miR-132 promotes the production of pro-inflammatory
secretion factors in human adipose tissue in response to nutritional stress. Using primary
human adipose tissue-derived preadipocytes and adipocytes differentiated in vitro, they
showed that miR-132 is rapidly induced when cells are switched to serum-free medium,
which mimics the nutrient-deficient microenvironment of obese adipose tissue. Cells also
displayed an increased secretion of inflammatory factor IL-6 and monocyte chemoattractant
protein-1 (MCP-1) under these conditions. MiR-132 was shown to target sirtuin 1 (SirT1)
and thereby reduce the deacetylation of p65. This induces NF-κB-mediated activation of
IL-6 and MCP-1 expression.

Microarray expression profile studies have identified several miRNAs that are differentially
expressed between normoglycemic rats and Goto-Kakizaki (GK) spontaneous type II
diabetic rats in insulin target tissues [61–63]. In particular, He et al. [61] demonstrated that
miRNA paralogs miR-29a/b/c promote insulin resistance by antagonizing AKT signaling. In
addition to being upregulated in diabetic insulin target tissues, overexpression of any of
these miRNAs in 3T3-L1 adipocytes repressed insulin-mediated glucose uptake, and
miR-29a/b were upregulated in 3T3-L1 adipocytes upon insulin treatment. Similarly,
miR-125a is overexpressed in the liver and adipose tissue of GK rats [62]. In silico analysis
of probable miR-125a target genes revealed an overrepresentation of genes involved in
MAPK signaling and lipid and glucose metabolism. miR-222, -27a, -195, -103, and 10b are
also differentially expressed between normoglycemic and GK rats in insulin target tissues
and in cultured adipocytes in response to increases in intracellular glucose [63].

3.2 Differential expression of miRNAs among different adipose depots and its implications
for obesity

Clinical studies have shown that the risk of obesity-associated disease is specifically
correlated with increased adiposity of particular adipose depots. An illuminating study by
O’Connell et al. [64] demonstrated that a subset severely obese subjects, deemed
‘metabolically healthy obese’ (MHO), had essentially normal metabolic profiles in
comparison with other obese subjects. The MHO subjects had a significantly lower mean
omental adipocyte size than other subjects, and yet the size of subcutaneous adipocytes was
similar between the groups. While both the size of omental and subcutaneous adipocytes
positively correlated with fatty liver, only omental adipocyte size was correlated with the
progression of hepatic steatosis to fibrosis and the degree of insulin resistance.

With regard to this, a study by Klöting et al. [65] showed that differential miRNA
expression between these depots in humans may contribute to the observed differences in
metabolic profiles. Of 106 miRNAs assayed, none were exclusively expressed in human
omental or subcutaneous adipose tissue, indicating a common developmental origin of these
adipocytes. However, 16 of these miRNAs (most notably miRs -17-5p, -132, -99a, -134,
181a, -145 and -197) exhibited depot-specific expression patterns that correlate with
adipocyte size, visceral fat area, fasting glucose level and concentration of adipose-secreted
cytokines. Such differential miRNA expression between adipose depots can be exploited
therapeutically by identifying and targeting intrinsic differences among adipose depots that
contribute the most to pathology during obesity.

In addition to white adipose tissue (WAT), brown adipose tissue (BAT), is also detectable in
adult humans [66]. BAT dissipates the stored chemical energy of lipids in a process termed
adaptive thermogenesis [66], and brown adipocytes are therefore morphologically very
distinct from white adipocytes; they contain several, small lipid droplets instead of one large
droplet and significantly more mitochondria for energy-dissipative metabolism [67]. BAT is
closer in lineage to skeletal muscle than it is to WAT, and these two cell types arise from a
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myogenic factor 5 (Myf5)-positive precursor [68]. While the primary function of adaptive
thermogenesis is necessary for warmth in infants and small mammals [69] the process
known as diet-induced thermogenesis may occur as a defense against obesity [70]. BAT
ablation in mice via transgenic, tissue-specific expression of diphtheria toxin under the
control of the promoter of uncoupling protein 1 (UCP1), a highly BAT-enriched
mitochondrial proton transporter and the chief facilitator of adaptive energy dissipation,
significantly increases the propensity for diet-induced obesity [71]. However, whether BAT
has similar anti-obese properties in humans is not yet clear [72].

Revisiting Mudhasani et al.’s study [31] where Dicer was genetically ablated in the adipose
tissue of mice, the group found that while WAT depots were depleted no apparent depletion
of BAT was observed; however, the brown adipocytes from these mice displayed a
decreased expression of genes involved in thermoregulation. Also, Walden et al. [73] have
identified several miRNAs that are differentially expressed between WAT and BAT.
miR-143, mentioned previously as being highly enriched in murine WAT, [46] is not
enriched in murine BAT [73]. Furthermore, three myogenic miRNAs, miRs-1, -133a and
-206, are also expressed in both brown preadipocytes and mature adipocytes but not WAT
[73], supporting the notion that BAT and skeletal muscle arise from a common precursor.
Also, miR-455 expression was specifically upregulated during brown adipogenesis, and its
expression pattern correlates with UCP1 [73]. MiR-455 is one of several miRNAs that show
over twofold upregulation in skeletal muscle as a consequence of various myopathies [74];
miR-455 may accelerate brown adipogenesis in a fashion similar to miR-17-92’s
acceleration of 3T3-L1 adipogenesis [73].

3.3 Relevant miRNAs in other metabolic tissues affected by obesity
The increase in circulating lipid levels associated with obesity-induced demobilization of
adipose tissue causes improper lipid storage in other tissues, notably the liver. Non-alcoholic
fatty liver disease leads to cirrhosis of liver tissue. miRNAs have been identified as
regulators of liver cell development, [75] but also, more pertinently, in processes indicative
of fatty liver disease such as steatosis, inflammation and cell apoptosis [76–78].

Cheung et al. [76] determined that of miRNAs differentially expressed between patients
with both metabolic syndrome and nonalcoholic steatohepatitis (NASH) and control patients
with normal liver histology, the targets of the most deregulated miRNAs affect apoptosis,
inflammation, oxidative stress and metabolism. The mRNA and protein levels of several
hepatic lipogenic proteins were mostly upregulated in NASH subjects. Notably, miR-122
displayed a dramatic downregulation (> 60%) in NASH subjects and was shown to largely
target hepatic lipogenic genes. Also, miR-122 has been implicated in cholesterol
biosynthesis [77,78]. Antisense oligonucleotide inhibition of miR-122 in diet-induced obese
mice decreased plasma cholesterol levels and enhanced liver steatosis [78].

Another high-throughput study by Whittaker et al. [79] revealed miRNAs that are involved
in hepatic lipid droplet formation. In this study human hepatocytes were transiently
transfected with 327 individual miRNAs. Cell cultures were fixed, stained for lipid content,
and analyzed via automated microscopy for characteristics of lipid droplet formation on a
cell-by-cell basis. 11 miRNAs were shown to alter lipid droplet formation, and in particular
miR-181d strikingly reduced droplet size by approximately 60%.

Additionally, miR-34a and -205 levels are appreciably increased (over threefold) in murine
liver in response to obesity, whereas miR-151, -133a, -329, -201, -330, -17-3p, -298, -328,
and -380-5p levels were downregulated [80]. In the same study, profiling analysis of 290
liver samples taken from F2 ob/ob mice revealed 21 miRNAs that displayed significant
linkage (LOD > 5.3 and genome-wide p-value < 0.005). Strikingly, approximately 10% of
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the miRNAs profiled in the liver across distinct obese mice strains showed heritability and a
high copy number ratio in comparison to lean mice.

Hyperlipidemia also causes fatty acid-induced β cell dysfunction, which entails
dysregulation of insulin production and secretion and promotes apoptosis. Lovis et al. [81]
found that levels of miR-34a and -146 are enriched in the pancreatic islets of db/db diabetic
mice. These miRNAs were also upregulated in a time- and dose-dependent manner in
MIN6B1 β cells after chronic exposure to palmitate. Upregulation of miR-34a is associated
with activation of p53 by targeting bceel leukemia-lymphoma associated gene 2 (BclII),
consequent sensitization to apoptosis, and an impaired capacity for nutrient-induced
secretion. Transient overexpression of miR-34a in MIN6B1 cells antagonized the expression
of vesicle-associated membrane protein 2 (VAMP2), an essential factor for insulin secretion.
Heightened expression of miR-146 does not appreciably influence insulin secretion but
contributed to apoptosis. miR-146 negatively regulates NF-κB signaling by targeting IL-1
receptor-associated kinase 1 (Irak1) and TNF receptor-associated factor 6 (Traf6) and thus
sensitizes β-cells to apoptosis. Additionally, of the glucose-responsive miRNAs discovered
in a screen of MIN6B1 cells, miR-30d has been revealed as a positive regulator insulin
transcription [82]; also, miR-124a and miR-96 modulate insulin secretion by targeting
proteins involved in insulin exocytosis [83].

Importantly, β cell mass has been shown to vary in adult life in response to metabolic
stresses. Such processes are regulated at the transcriptional level and influence anti- or pro-
apoptotic signaling cues [84,85]. miR-375 has been implicated as a regulator of β cell mass
and proliferation [86]. β cells taken from miR-375-knockout mice display decreased size and
an impaired proliferative capacity. Intriguingly, miR-375 was enriched in the pancreatic
islets taken from ob/ob mice, and genetic deletion of miR-375 in obese mice caused a severe
diabetic response.

Other miRNAs involved in insulin signaling include miR-126, -145 and the
miR-183-96-182 cluster [87–89]. miR-126 and -145 target insulin receptor substrate-1
(IRS-1) in breast and colon cancer cells respectively [87,88]. The miR-183-96-182 cluster
targets insulin signaling pathway elements IRS-1, RAS p21 protein activator (Rasa1), and
growth factor receptor-bound protein 2 (Grb2) as determined by a computational screen of
mouse signaling pathways [89]. This demonstrates the novel nature of miRNA action in that
members of a single cluster can coordinately target components of a signaling pathway and
therefore exert a more significant influence on signal transduction.

4. Conclusion
miRNA microarrays and other high-throughput assays have revealed hundreds of miRNAs
that are differentially expressed as a consequence of metabolic tissue development or
dysfunction. miRNAs are crucial regulators of adipogenesis and are involved in both the fate
determination of pluripotent MSCs and the terminal differentiation of preadipocytes.
miRNA expression profiling reveals that miRNA levels are significantly inversely correlated
between the adipose tissue of control and obese mouse models. miRNAs are also involved in
obesity-induced pathologies in adipose tissue such as disruption of fatty acid metabolism,
cellular hypertrophy, inflammation and systemic insulin resistance. miRNAs contribute to
liver development and, as a consequence of adipose tissue demobilization by inflammatory
processes, are deregulated in hepatic steatosis. Lastly, miRNAs regulate pancreatic β cell
development, insulin transcription and secretion and are differentially expressed between
normoglycemic and diabetic rats. Additional characterization of pertinent miRNAs in vivo
will be highly conducive to the further development of the field and will provide more
insight into feasible therapeutic strategies that target miRNAs.
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5. Expert opinion
Significant progress has been achieved in understanding the physiological roles of miRNAs
in adipocytes and other metabolic cell types and in pathological roles in obesity and
metabolic syndrome. However, how miRNAs affect metabolism in vivo, particularly in
mammals, remains poorly understood because only a few such animal models are currently
available. Fortunately, the Sanger Institute in Cambridge, UK announced that they would
generate a library of knockouts of each of the ~ 500 miRNAs identified in the mouse
genome, which will be eventually available to all researchers [90]. An alternative approach
employs intravenous injection of antagomiRs, antisense oligonucleotide constructs, to block
a specific miRNA or a combination of miRNAs [77]. This approach is still very expensive,
but we believe that it will become more affordable to more labs, as RNA technologies
develop very quickly.

The dysregulation of miRNAs as a result of hypoxic stress in obese adipose tissue has yet to
be studied. Several hypoxia-regulated miRNAs (HRMs) have been studied in carcinogenesis
and have been shown to help cells adapt to oxygen-poor microenvironments [91–93].
miR-210 responds to hypoxia by antagonizing pro-apoptotic signaling, decreasing
mitochondrial activity, and promoting a transition to glycolysis [91,92]. Also, studies have
elucidated the roles of miRNAs involved in angiogenesis (reviewed in [94]). In vivo tissue-
specific knockdown of endothelial miRNA in mice via Dicer ablation reduces angiogenic
responses to a variety of stimuli including ectopic VEGF expression, tumors, and wound
healing [95]. Recent studies have proposed that modulating the angiogenesis of adipose
tissue can be used as a therapy for obesity [96]. Because adipose tissue expansion is
dependent on angiogenesis, studies have suggested that anti-angiogenic therapeutics may
prove effective. Endogenous anti-angiogenic factors, such as angiostatin and endostatin,
have been shown to reduce the body of weight of obese mice when ectopically expressed
[97]. Perhaps further investigation of hypoxia-regulated miRNAs and angiomiRs in the
specific context of obesity can illuminate their roles as potential targets for angiogenesis-
targeting therapies.

A huge challenge lies in developing safe and efficient methods of delivering miRNA-
targeting therapeutics, which has been pioneered to some extent in cancer and hepatitis C
infection. For instance, delivery of miR-26a via an adeno-associated viral vector (AAV)
halts tumor progression in hepatocellular carcinoma (HCC) mice [98]. AAV is a burgeoning
therapeutic tool that has no apparent pathology in humans [99], and the miR-26a vector
proved to be an effective therapeutic in the HCC mice that not only promoted tumor
apoptosis in a highly specific manner but also displayed little toxicity [98]. However, such
delivery strategies have a long way to go before they are clinically viable. Also, the drug
SPC3649 contains a locked nucleic acid (LNA) inhibitor against miR-122 [100], a miRNA
that has been shown to aid hepatitis C virus replication in the liver [101]. SPC3649 is
currently undergoing Phase I clinical trials [100].

In addition to using miRNAs as potential therapeutic targets in metabolic disease, recent
findings have shown that circulating miRNAs can be used as novel prognosis tools.
Zampetaki et al. [102] found that plasma expression levels of miRs-20b, -21, -24, -15a,
-126, -191, -197, -223, -320 and -486 were lower in a diabetic cohort when compared with
normal subjects and that miR-28-3p was moderately upregulated. Significantly, changes in
the expression of several of these miRNAs preceded the development of disease, and most
of the expression patterns observed in the diabetic cohort were observed in serum taken
from the leptin-deficient obese mouse model when compared with normoglycemic mice.
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Another inevitable issue that needs to be addressed is how to integrate the effects of multiple
miRNAs that are dysregulated in the disease state. Each miRNA targets multiple mRNAs,
which may coordinate or antagonize each other’s functions. In addition, miRNA-target
interactions depend not only on the sequence of the target site but also on the cellular
context in which the interactions occur. In light of such complexity, sophisticated
bioinformatic methods must be used to determine the combined effects of multiple altered
miRNAs in a tissue specific manner, and a recent study by Gallagher et al. [103] bridged
this gap. To investigate the roles of miRNAs in muscle insulin resistance in type 2 diabetes,
they compared the gene expression profiles of both mRNAs and miRNAs between 71
patients versus 47 controls. The tissue-specific gene and miRNA expression data were
combined with miRNA target site prediction data from the TargetScan database (available
at: http://www.targetscan.org/) to generate a weighted cumulative context score (wCCS) for
miRNA-target interactions that accounts for physiological context. Gene ontology analysis
showed that the genes most strongly targeted by the collective net changes in miRNA
expression are enriched for six canonical pathways, five of which are related to insulin
resistance or muscle metabolism. Such a ranking system that takes into account miRNA and
mRNA activity and cellular context can be a useful tool for future studies.

The broad-spectrum and redundancy of miRNA–target interactions seems to pose a great
difficulty in developing miRNA therapeutics, and the modulation of a single micro-RNA
changes the expression of hundreds of genes. However, if dysregulation of a microRNA
significantly contributes to a disease in which all miRNA targets are consequently
dysregulated, restoring the normal expression of that miRNA would be the best method, if
not the only method, of therapy.

Taken together, these innovations illustrate that while the development of miRNA-based
therapeutics is in its infancy, there is an inherent potential to the field because of well-
characterized miRNA overexpression and inhibition methods and the potency of miRNAs as
genetic regulators. miRNAs can be used as prognosis markers for disease progression and in
the case of metabolic syndrome can be used synergistically with other treatments (such as
anti-inflammatory and anti-angiogenic therapies) to mitigate obesity and its consequent
pathologies. The development of miRNA-targeting therapeutics for metabolic syndrome is
warranted not only because of innovations mentioned in this review but also because of the
central problem that metabolic disease poses to society.
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Article highlights

• MiRNAs are key and extensive regulators of mesenchymal stem cell lineage
determination and regulate both lineage-specific transcriptional networks and
evolutionary conserved signaling pathways.

• MiRNAs are globally important for terminal adipocyte differentiation and
mature adipocyte function.

• MiRNAs are largely dysregulated in obesity as a result of the chronic
inflammatory environment of obese adipose tissue.

• Different adipose depots display distinct miRNA expression patterns, which
may have implications for the different metabolic properties of these depots
during obesity.

• Several miRNAs are dysregulated in other metabolic tissues during obesity-
related diseases such as fatty liver, pancreatic β cell dysfunction, and systemic
insulin resistance.

This box summarizes key points contained in the article.
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Table 1

MicroRNAs involved in adipogenesis and mature adipocyte function.

MiRNAs System Direct targets Function Ref.

miRs-204, -211 C3H10T1/2, BMSC Runx2 Pro-adipogenic; blocks osteogenesis in MSCs [24]

miR-8, -210 ST2, 3T3-L1 wntless, CG32767, Tcf712 Pro-adipogenic; antagonize WNT signaling [25,26]

miR-21 hASC Tgfbr2 Pro-adipogenic; antagonizes TGF-β signaling [16]

miR-199a C3H10T1/2, ATDC5 Smad1 Pro-adipogenic; blocks chondrogenesis [28]

Let7, miR-17-92 3T3-L1 Hmga-2, Rb2/p130 Regulate the clonal expansion of preadipocytes [33,34]

miR-138 hASC Eid-1 Anti-adipogenic; conducive to growth arrest [37]

miR-27a/b 3T3-L1, OP9, hASC Pparγ Anti-adipogenic [39–41]

miR-378/378* ST2 – Pro-adipogenic; promotes lipogenesis [42]

miR-31 hASC C/ebpα Anti-adipogenic [43]

miR-155 Macrophage C/ebpβ Not verified in adipogenesis [44]

miR-143 3T3-L1 Erk5 Pro-adipogenic; highly enriched in murine
adipose tissue in vivo

[45,46]

miR-448 3T3-L1 Klf5 Pro-adipogenic [47]

miRs-10b, -15, -26a,
-34c, -98, -99a, -101,
-101b, -152, -183, -185,
-224

3T3-L1 – Up-regulated after terminal adipogenesis; likely
involved in mature adipocyte function

[49]

miRs-103, -181a, -182 3T3-L1 – Down-regulated after terminal adipogenesis;
likely involved in mature adipocyte function

[49]

miR-14 Drosophila – Dose-dependent regulator of intracellular
triglyceride and diglyceride content

[50]

miR-278 Drosophila expanded Involved in insulin sensitivity and energy
homeostasis

[51]

miRs-103, -107 In silico, 3T3-L1 – Predicted to regulate acetyl coA and lipid
metabolism. MiR-103 experimentally confirmed
as pro-adipogenic

[46,53]

3T3-L1: Murine preadipocyte cell line; ATDC5: Murine prechondrogenic cell line; BMSC, ST2, and OP9: Murine bone marrow stromal cell lines;
C3H10T1/2: Murine mesenchymal stem cell line; hASC: Human adipose-derived stem cells.
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Table 2

Relevant miRNAs in obesity and its related diseases.

MiRNAs Tissue Direct targets Function/dysregulation Ref.

miRs-422b, -148a, -103,
-107, -30c, -143, -30a-5p,
-221, -222

Adipose – Display inverse expression patterns during obesity
and analogously after TNFα treatment in 3T3-L1
cells

[46]

miR-519d Adipose Ppparα Overexpression disrupts fatty acid metabolism;
promotes cellular hypertrophy

[59]

miR-132 Adipose Sirt1 Promotes production of inflammatory cytokines in
response to nutritional stress

[60]

miR-29a/b/c Adipose – Contribute to insulin resistance by antagonizing
AKT signaling

[61]

miR-125a Adipose, Liver – Predicted to target genes involved in MAPK
signaling and lipid and glucose metabolism;
enriched in diabetic mice

[62]

miRs-222, -27a, -195, -103,
-10b

Adipose, Liver, Muscle – Differentially expressed between normoglycemic
and diabetic rats

[63]

miRs-17-5p, -132, -99a,
-134, -181a, -145, -197

Adipose – Differentially expressed between subcutaneous and
omental depots in humans

[65]

miRs-1, -133a, -206 Brown adipose – Myogenic miRNAs that are expressed in brown but
not white preadipocytes and adipocytes

[73]

miR-455 Brown adipose – Up-regulated in brown adipogenesis [73]

miR-122 Liver (see [77]) Targets hepatic lipogenic genes. Downregulated in
fatty liver disease. Involved in cholesterol
biosynthesis

[76–78]

miR-181d Liver – Negatively regulates hepatic lipid droplet formation [79]

miR-205, -151, -34a, -133a,
-329, -201, -330, -17-3p,
-298, -328, -380-5p

Liver – Dysregulated in response to obesity [80]

miR-34a Pancreas BclII, Vamp2 Promotes apoptosis in response to fatty acid-
induced β cell dysfunction; impairs insulin
secretion

[81]

miR-146 Pancreas Irak1, Traf6 Promotes apoptosis in response to fatty acid-
induced β cell dysfunction

[81]

miR-30d Pancreas – Positive regulator of insulin transcriptional
activation

[82]

miR-124a, -96 Pancreas Rab27A Negatively regulate insulin exocytosis [83]

miR-375 Pancreas (see [86]) Positive regulator of increased size and
proliferative capacity of β cells

[86]

miR-183-96-182 In silico Irs-1, Rasa1, Grb2 Negatively regulates insulin signaling [89]

miRs-20b, -21, -24, -15a,
-126, -191, -197, -223, -320,
-486, -28-3p

In circulation – Differentially expressed between normoglycemic
and diabetic cohorts. Feasible prognosis markers

[102]
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