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We present a lattice QCD calculation of the ground-state energy shifts of various baryons in a medium

of pions or kaons at a single value of the quark mass corresponding to a pion mass of m� � 390 MeV

and a kaon mass of mK � 540 MeV, and in a spatial volume V � ð4 fmÞ3. All systems are created using

a canonical formalism in which quark propagators are contracted into correlation functions of fixed

isospin/kaon density. We study four different systems, �þð�þÞn, �0ð�þÞn, pðKþÞn, and nðKþÞn, for up
to n ¼ 11 mesons. From the ground-state energy shifts we extract two- and three-body scattering

parameters, as well as linear combinations of low-energy constants appearing in tree-level chiral

perturbation theory.

DOI: 10.1103/PhysRevD.88.074501 PACS numbers: 12.38.Gc

I. INTRODUCTION

The field of nuclear physics is largely defined by the
study of the multihadron systems that compose much of the
Universe that we observe. Understanding how the diverse
array of multihadron systems emerges from the deceptively
simple underlying theory defining their interactions (QCD)
has become a central goal for the field. However, because
of the nonperturbative nature of QCD in the low-energy
regime, the only known method that allows first-principles
calculations is lattice QCD. Because of the well known
signal-to-noise problem [1], lattice QCD calculations of
correlation functions involving multiple baryon systems
are severely hindered, while the sign problem prohibits
calculations with nonzero baryon chemical potential
[2,3]. Thus, lattice QCD calculations of multiple hadron
systems have been largely limited to studies of mesons.
Recent results involving multiple pions [4–8], multiple
kaons [9], and mixed pion-kaon systems [10] have pro-
vided insight into the new problems faced when dealing
with multiple particles in lattice calculations and high-
lighted the importance of many-body interactions for
even moderate densities. More recently, calculations of
multibaryon systems have begun [11–15].

In addition to providing a test bed for lattice calculations
of many-body systems, multiple meson systems are of
particular interest as they may provide crucial information
about the equation of state of neutron stars and the late time
evolution of heavy ion collisions. As interacting bosonic
gases, they also allow us to study the phenomenon of Bose-
Einstein condensation. Pion condensation [16–20] and
kaon condensation [21,22] may be of phenomenological
relevance as they have been proposed to occur in the interior
of neutron stars. In this realm, lattice QCD calculations

could have a strong impact in the field of astrophysics. The
existence of a kaon condensate, for example, relies heavily
on the poorly known ‘‘strangeness’’ content of the nucleon
and on KN;KNN; . . . interactions.
As a first step toward calculations of many-body systems

involving both baryons and mesons, in this work we
calculate properties of systems with up to 11 mesons and
a single baryon. We first determine the ground-state
energies from correlation functions of appropriately
contracted quark propagators. The systems are chosen to
avoid annihilation diagrams between valence quarks and
are listed in Table I. While perhaps the most phenomeno-
logically interesting, pion-nucleon and K�-nucleon sys-
tems are absent from this study as they are computationally
prohibitive to compute given our current resources.
From these energies, we extract meson-baryon scatter-

ing lengths and present the first calculation of three-body
interactions between mesons and baryons. Finally, we use
leading order results from heavy baryon chiral perturbation
theory (HB�PT) at finite isospin and/or strangeness chemi-
cal potential to extract low-energy constants (LECs)
related to the pionic or kaonic medium contributions to
the baryon masses.

TABLE I. The simplest hadronic content of baryon-meson
systems presented in this work. For each system, we have chosen
a single baryon and n ¼ 1–11 mesons. The valence quark
content, isospin, and strangeness are also shown. These particu-
lar systems were chosen so as to avoid possible annihilation
between valence quarks.

System Quark content I S

�0ð�þÞn ussðu�dÞn nþ 1
2 �2

�þð�þÞn uusðu�dÞn nþ 1 �1
pðKþÞn uudðu�sÞn n

2 þ 1 n
nðKþÞn uddðu�sÞn n

2 þ 1
2 n*wdetmold@mit.edu

†amynn@umd.edu
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II. BARYONS IN A MESON CONDENSATE
FROM HB�PT

One may investigate the phases of QCD at finite isospin
chemical potential, �I � 1

2 ð�u ��dÞ, using two flavor

chiral perturbation theory (�PT) [23,24]. It is expected
that at zero temperature there is a phase transition at
�I ¼ m�=2 to a Bose-condensed phase. This transition
can be seen by parametrizing the chiral condensate as

h �qqi ¼ cos� � sin�

sin� cos�

 !
: (1)

In vacuum, cos� ¼ 1, giving the usual chiral condensate;
however, in a Bose-Einstein condensate, minimization
of the leading order effective potential results in cos� ¼
m2

�=�
2
I . In the condensed phase, there exists one massless

mode, corresponding to a linear combination of the vacuum
�þ and the ��. At higher�I, other modes such as a combi-

nation of �þ=� may also condense. Finally, as the chemical
potential is raised further, a crossover to a BCS phase con-
sisting of weakly interacting quark-antiquark pairs is
expected based on the asymptotic freedom of QCD [23,24].

The masses of several low-lying baryons have also been
computed using SUð2Þ HB�PT at nonzero �I [25]. The
presence of the condensate mixes the baryons; in particular,
the ground states produced by an operator with the quantum
numbers of the vacuum�þ and�0 are a linear combination
of the vacuum f�þ;��g and f�0;��g, respectively. For the
charged � state, the mass as a function of isospin chemical
potential to Oðp2Þ (tree level) is given by

M�þð�IÞ ¼ Mð0Þ
�

þ 4c�1 m
2
� cos�

þ ðc�2 þ c�3 þ c�6 þ c�7 Þ�2
I sin

2�

��I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2�þ ðc�6 þ c�7 Þ2�2

I sin
4�

q
; (2)

where, as discussed above, the angle � parametrizes the

transition from vacuum to a pion condensed phase, Mð0Þ
X is

the mass of the baryon in the chiral and zero chemical
potential limits, and all LECs, cXi , are as defined in [25].
Similarly, for the relevant � state in a pion condensate, the
mass is given by [25]

M�0ð�IÞ ¼ Mð0Þ
�

��I

2
cos�þ 4c�1 m

2
� cos�

þ
�
c�2 � g2

��

8Mð0Þ
�

þ c�3

�
�2

I sin
2�: (3)

Including the strange quark using SUð3Þ HB�PT yields the
same form for the masses, but with different combinations
of SUð3Þ parameters.
The QCD phase diagram including nonzero kaon chemi-

cal potential, �K ¼ 1
2 ð�u ��sÞ, has also been investi-

gated in Ref. [26] using methods similar to those used
for the isospin case. We may repeat the calculations of
Ref. [25] to obtain the masses of the nucleons as a function
of the kaon chemical potential. The nucleons now mix with
the hyperons when the condensate forms; in particular, the
proton mixes with the ��, while the neutron mixes with
the ��. Because of approximate SUð3Þ symmetry the
mass of the baryon sharing the quantum numbers of the
vacuum neutron has the same form as that for the � mass
with an isospin chemical potential (excluding additional
�-independent quark mass terms),

Mnð�KÞ ¼ Mð0Þ
n ��K

2
cos�þ ð2b0 þ bD � bFÞm2

K cos�

þ 1

4
ðb1 � b2 þ b3 þ b4 � b5 þ b6

þ 2b7 þ 2b8Þ�2
Ksin

2�; (4)

where the bi are LECs of the SUð3Þ HB�PT Lagrangian.
We also find that the mass of the baryon sharing the

quantum numbers of the proton as a function of �K is
similar in form to the � mass, Eq. (2), but with an addi-
tional SUð3Þ breaking term proportional to the strange and
light quark mass difference,

�Mpð�KÞ ¼ Mð0Þ
p þ 2ðb0 þ bDÞm2

K cos�þ 1

2
ðb1 þ b3 þ b4 þ b6 þ b7 þ b8Þ�2

Ksin
2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2bFðm2

K �m2
�Þ þ�K cos�Þ2 þ 1

4
ðb1 � b3 þ b4 � b6Þ�4

Ksin
4�

s
: (5)

III. EXTRACTING TWO- AND
THREE-BODY INTERACTIONS

FROM MULTIHADRON ENERGIES

The methodology for calculating scattering phase shifts
from the energy levels of two particles in a finite box was
originally established in quantum field theory by Lüscher
[27,28] (see also [29]). There have been several recent
works that calculate the ground-state energies of multiple
bosons in a periodic box as a perturbative expansion in the
size of the box (L) using the two-particle phase shifts and

three-particle interaction parameter as inputs. These calcu-
lations have been performed for identical bosons [30,31] to
OðL�7Þ, as well as mixed species of bosons [32] toOðL�6Þ.
We note that as long as there is only a single fermion that

carries the spin of the system, Fermi statistics do not play a
role and we may use the mixed species form for the energy
shift where the baryon represents one of the species and the
mesons, the other. Thus, in this work, we will use the
following relation for the energy shift of a single baryon
of mass mB and n mesons of mass mM due to their
interactions:
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�EMBðn; LÞ � EMBðn; LÞ � EBðLÞ � EMðn; LÞ
¼ 2� �aMBn

�MBL
3

�
1�

�
�aMB

�L

�
I þ

�
�aMB

�L

�
2
�
I2 þ J

�
�1þ 2

�aMM

�aMB

ðn� 1Þ
�
1þ�MB

mM

�

þ
�
�aMB

�L

�
3
�
�I3 þX2

i¼0

ðfIJi IJ þ fKi KÞ
�
�aMM

�aMB

�
i
��

þ nðn� 1Þ ��3;MMBðLÞ
2L6

þOðL�7Þ; (6)

where EMBðn; LÞ, EMðn; LÞ are the ground-state energies of
the n meson systems with and without a baryon, respec-
tively, �aMB and �aMM are the inverse of the scattering phase
shifts, ðp cot�ðpÞÞ�1, corresponding to meson-baryon and
meson-meson interactions, respectively. For a large vol-
ume, we may relate these quantities to their respective
scattering lengths, a, and effective ranges, r, using the
effective range expansion [4],

a ¼ �a� 2� �a3r

L3
: (7)

The geometric constants are given by

I ¼ �8:9136329; J ¼ 16:532316;

K ¼ 8:4019240;
(8)

and we use the following notation:

fIJ0 ¼ nþ 2; fK0 ¼ n� 2;

fIJ1 ¼ 2

�
1þ 2

�MB

mM

�
ð1� nÞ;

fK1 ¼ 2�MB

m2
M þ 9m2

B þ 4mBmM

mMm
2
B

ðn� 1Þ;

fIJ2 ¼ �MB

mB �mM

mBmM

ð1� nÞ;

fK2 ¼ �2
MB

m3
Bm

2
M

ð1� nÞðm3
Bð13n� 45Þ �m3

M

þmMm
2
Bð14n� 39Þ þ 5m2

MmBðn� 3ÞÞ: (9)

The volume-dependent, but renormalization group invari-
ant, three-body interaction, ��3;MMBðLÞ, is expected to
behave logarithmically with the volume for large volumes.
Its form is shown explicitly in [31].

IV. METHODOLOGYAND DETAILS OF
THE LATTICE CALCULATION

A. Correlation functions

Naively, the number of contractions of the quark propa-
gators necessary to form a correlation function for a single
baryon and nmesons isNu!Nd!Ns!, whereNi is the number
of quarks of flavor i in the chosen interpolating operators,
which would clearly be prohibitive for the problem at hand.
Instead, we employ a method based on the formalism
developed in [4,5,10].

Here we briefly review the method devised to perform
contractions for multiple meson propagators. The mesons
are first packaged into the following 12� 12 matrices by
contracting the quark and antiquark propagators at the
sink:

�a;�;b;�¼
X
c;	

X
x

½Suðx;t;0;0Þ	5�b;�;c;	½Syd ðx;t;0;0Þ	5�a;�;c;	

!�i;j;

Ka;�;b;�¼
X
c;	

X
x

½Suðx;t;0;0Þ	5�b;�;c;	½Sys ðx;t;0;0Þ	5�a;�;c;	

!Ki;j; (10)

where Sqðx; t; 0; 0Þ is the propagator for quark flavor q

from point ð0; 0Þ to ðx; tÞ, ða; b; cÞ indices represent color,
Greek indices represent spin, and the indices ði; jÞ run over
the 12 color/spin combinations. The sum over x projects
the meson onto zero momentum.
As shown in Ref. [10], correlation functions, Cn;mðtÞ, for

n pions and m kaons can be formed using the following
relation:

detð1þ
�þ�KÞ¼ 1

12!

X12
j¼1

Xj
k¼0

12

j

 !
j

k

 !

k�j�kCk;j�kðtÞ

¼eTr½logð1þ
�þ�KÞ�: (11)

By expanding the right-hand side of this equation and
collecting terms with n powers of 
 and m powers of �,
one finds the desired correlation function in terms of
products of traces of matrix products. Note that this method
limits the study to systems involving up to 12 quarks of a
given flavor due to the Pauli exclusion principle. Methods
for larger systems are discussed in [7,33].
To include baryon fields, we begin with the following

baryon ‘‘block’’:

Ba;�;b;�;c;	;
 ¼ X
�;h;i;j

½Sq1C	5�a;�;h;�½Sq2�b;�;i;�

� ½Sq3�c;	;j;

h;i;j; (12)

where q1;2;3 represents the flavors of the three quarks, C is

the charge conjugation matrix, and spatial coordinates have
been suppressed [all propagators are from ð0; 0Þ to ðx; tÞ,
and x is summed over as in the mesonic case]. The remain-
ing spin indices must be contracted using the proper parity
projector depending on the desired state.
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To perform the contractions for the positive parity �
system, we partially contract the s quark indices as follows:

Bð�Þ
a;�;d;� ¼ X

b;�;c;	;


Ba;�;b;�;c;	;

d;b;cðC	5Þ�;�ð1� 	4Þ	;


! Bð�Þ
i;j : (13)

With this form, the s quarks combine into a �3 color irrep
and leave a single spin index open, effectively behaving as
the antiquark in the meson blocks. Using this, we can
compose correlation functions using the multiple species

formalism, Eq. (11), where we replace K ! Bð�Þ and
collect terms involving only a single baryon (k ¼ 1).
A neutron block can be similarly constructed and
contracted with a kaon medium.

The contractions for the � and proton are more compli-
cated because each of the doubly represented up quarks
must be antisymmetrized with the corresponding up quarks
in the mesons. The solution is to embed the baryon into a
higher-dimension matrix as follows:

Bð�;pÞ
d;�;b;�;f;
;c;	 ¼ X

a;�;�

Ba;�;b;�;c;	;

a;d;fðC	5Þ�;�ð1� 	4Þ�;


! Bð�;pÞ
I;J : (14)

This is now a 144� 144 matrix, with indices I, J
running over the spin/color indices of both up quarks.
Corresponding 144� 144 matrices for the mesons can be
formed by taking an outer product of a meson block with
the 12� 12 identity matrix, f� � 1; 1 ��g, and likewise

for the kaons. We now use Eq. (11), replacing K ! Bð�;pÞ

(� ! Bð�;pÞ) and � ! � � 1þ 1 �� (K ! K � 1þ
1 � K) for a single baryon in a pion (kaon) medium.

Using this method, the computational cost is greatly
reduced by converting the index contractions into traces
of matrix products, for which we may use highly optimized
linear algebra packages. Furthermore, because we perform
the contractions for all systems with up to 12 mesons
simultaneously, we only need to calculate and store all
possible traces of matrix products once. These may then
be combined according to the expansion of Eq. (11). For
example, if we wish to calculate the nth meson correlator
and have already computed that for n� 1 mesons, we are
only required to calculate a single term, Tr½B�n�, as all
lower powers have already been computed and the matrix
product B�n�1 is also known.

B. Gauge field configurations and quark propagators

To perform the following calculation, we use gauge
configurations computed by the Hadron Spectrum
Collaboration (for details, see Ref. [34]). The gauge fields
were created using a nf ¼ 2þ 1-flavor anisotropic dy-

namical tadpole-improved clover fermion action [35] with
a Symanzik-improved gauge action [36–39]. The ensem-
bles have a spatial lattice spacing of bs ¼ 0:1227ð8Þ fm, a

pion mass of m� � 386 MeV, and a kaon mass of mK �
543 MeV. The renormalized anisotropy parameter,
� ¼ bt=bs ¼ 3:469ð11Þ, was determined in Ref. [40]. We
use configurations on a large volume (323) to ensure that we
are near threshold in our extraction of scattering parame-
ters, and a large temporal extent (T ¼ 256) to eliminate
thermal effects in our correlation functions. We use the
quark propagators from Ref. [41], which were generated
using the same fermion action as was used for gauge field
generation (for more details, see Ref. [41]).

C. Analysis

This calculation uses approximately 200 gauge configu-
rations with 150 sources on each configuration, calculated
at randomly chosen positions throughout the lattice. The
correlators from all sources on a given gauge configuration
are first averaged; the resulting set is then resampled using
the bootstrap method to enable the calculation of uncer-
tainties. To determine the energy splittings, one may cal-
culate the following ratio for each bootstrap ensemble:

�MðnÞ
eff ðtÞ ¼ ln

�
CB;nðtÞ=CB;nðtþ 1Þ

½CBðtÞ=CBðtþ 1Þ�½CnðtÞ=Cnðtþ 1Þ�
�
;

(15)

where n is the number of mesons in the system and B
indicates the presence of a baryon. In the limit of large
Euclidean time, this quantity gives the energy shift to the
baryon mass resulting from its interactions with the
mesons. To improve the statistics of our calculation, we
compute the correlation function for both parities and
average the results after performing the proper time rever-
sal. We fit the energies using a correlated �2 method for
various time intervals using a fit function taking into
account thermal effects [10], as well as a simpler constant
plus exponential fit to account for contamination from
excited states. It was determined that for the energy split-
tings on these ensembles, thermal states have negligible
effects and the best fit is given by a constant plus expo-
nential fitting function for late times; however, thermal
effects will be important on ensembles with a shorter
temporal extent. In all cases, a plateau region of several
time steps is observed and confirmed to agree with the
constant plus exponential fit, indicating that both thermal
and excited state contributions are sufficiently suppressed.
Statistical uncertainties are calculated using the bootstrap
method, and a fitting systematic uncertainty is found by
varying the fitting region within our best fit region, as well
as allowing the end points to vary by �� ¼ �2.
To determine the two- and three-body parameters, as

well as the LECs, bootstrap ensembles of fits to the
energy splittings are created for the best fit time intervals,
as well as for all time intervals beginning and ending
within �2 of the best fit. These ensembles are then used
to perform correlated �2 fits to the appropriate expressions,

WILLIAM DETMOLD AND AMY N. NICHOLSON PHYSICAL REVIEW D 88, 074501 (2013)

074501-4



Eq. (6), to extract the interaction parameters, and a fitting
systematic uncertainty is determined using the ensembles
for different time intervals. In some cases, the statistics of
the extraction can be improved by performing simulta-
neous fits to both the baryon plus mesons systems and

the pure many mesons systems. Finally, the effects of the
uncertainty in the anisotropy parameter � are included by
varying � within its uncertainty and reevaluating the fits.
These uncertainties are generally found to be negligible at
the current level of statistical precision.
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E
FIG. 1 (color online). Effective mass plots for the mass shift of the �þ þ N�-pions systems. A fit to a constant plus exponential form
is shown as a red line. The gray band represents the resulting energy extraction, with the fitting systematic uncertainty, obtained by
varying the fitting end points by �� ¼ �2, and the statistical uncertainty, combined in quadrature.
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FIG. 2 (color online). Effective mass plots for the mass shift of the�0 þ N�-pions systems. A fit to a constant plus exponential form
is shown as a red line. The gray band represents the resulting energy extraction, with the fitting systematic uncertainty, obtained by
varying the fitting end points by �� ¼ �2, and the statistical uncertainty, combined in quadrature.
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V. RESULTS

A. Energy splittings

In Figs. 1–4 we show sample effective mass plots for our
baryon plus mesons systems, including those for the largest
number of mesons for which we have a reliable signal for

the energy shift. Included in the plots are results from a
fit to a constant plus exponential, as well as an error
band showing the statistical and fitting systematic un-
certainties combined in quadrature. From these data, we
have extracted the mass splittings using the methods
outlined above. The results from these extractions as a
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FIG. 3 (color online). Effective mass plots for the mass shift of the protonþ NK-kaons systems. A fit to a constant plus exponential
form is shown as a red line. The gray band represents the resulting energy extraction, with the fitting systematic uncertainty, obtained
by varying the fitting end points by �� ¼ �2, and the statistical uncertainty, combined in quadrature.
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FIG. 4 (color online). Effective mass plots for the mass shift of the neutronþ NK-kaons systems. A fit to a constant plus exponential
form is shown as a red line. The gray band represents the resulting energy extraction, with the fitting systematic uncertainty, obtained
by varying the fitting end points by �� ¼ �2, and the statistical uncertainty, combined in quadrature.
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function of the number of mesons in the systems are
shown in Sec. VC, and numerical values are presented
in Table II.

B. Two- and three-body interactions

Two- and three-body interactions have been extracted
from the ground-state energies using Eq. (6). Results for all

two- and three-body interactions extracted from the lattice
data are presented in Table III.
We may extract the I ¼ 2 �� and I ¼ 1 KK two-body

interactions using the mixed species formula presented
above for the meson baryon systems, as well as from the
single species formula [31], using the data from CnðtÞ,
which were also computed in order to calculate the

TABLE II. Fitting results (in lattice units) for the energy shift of a single baryon in the
presence of n mesons. The first uncertainty is statistical, while the second represents a fitting
systematic uncertainty obtained by changing the fitting end points by �� ¼ �2.

n �Eð�þð�þÞnÞ �Eð�0ð�þÞnÞ �EðpðKþÞnÞ �EðnðKþÞnÞ
1 0.00219(22)(22) 0.00057(19)(13) 0.00242(22)(21) 0.00068(25)(30)

2 0.00410(46)(20) 0.00162(45)(3) 0.00481(40)(37) 0.00166(46)(61)

3 0.00670(56)(72) 0.00273(70)(13) 0.00726(57)(93) 0.0029(9)(11)

4 0.00901(80)(78) 0.00367(84)(12) 0.0103(9)(11) 0.0038(13)(11)

5 0.0113(11)(8) 0.0050(12)(5) 0.0131(11)(12) 0.0048(12)(12)

6 0.0137(14)(8) 0.0067(15)(6) 0.0165(14)(17) � � �
7 0.0169(17)(11) 0.0080(21)(15) 0.0198(17)(13) � � �
8 0.0192(14)(14) � � � 0.0224(19)(24) � � �
9 � � � � � � 0.0275(24)(20) � � �
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FIG. 5 (color online). Inverse scattering phase shifts, �a ¼ ðp cot�Þ�1 for pions (left) and kaons (right), as a function of the maximum
system size included in the fit. Error bars represent the statistical and systematic uncertainties from the individual fits combined in quadrature.
The gray band shows themean of all fits and their uncertainties, plus an additional uncertainty given by the standard deviation of all fits, added
in quadrature. The blue and green bands (outlined by dotted and dashed lines, respectively) show the results from the extraction of the same
parameters from the �þ�þ and �þ�0 systems, respectively (left), and from the Kþn and Kþp systems, respectively (right).
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energy splittings for the meson baryon systems. The
results for the two- and three-meson interactions are
shown as a function of the maximum number of mesons
included in the fit in Figs. 5 and 6. We see that the
extractions from the mixed and pure ensembles are con-
sistent, and that the parameters remain consistent as the
system size is varied.

In Fig. 7, we compare our results for the effective
scattering lengths to calculations performed by other
groups at similar pion masses. Also included in this plot
are two calculations in which the �� scattering length is

extracted from an extrapolation to threshold. We find no
significant discrepancies between this work and that of
previous efforts within the quoted uncertainties. Finally,
we find a nonzero three-pion interaction and no three-kaon
interaction within our current uncertainty. Previous work
by the NPLQCD Collaboration also found nonzero three-
pion interactions [4,5,7,10]; however, the sign of the
three-pion interaction in our case is opposite to that
found for smaller volumes in these previous works. The
volume dependence of the three-pion interaction has thus
far not been found to be consistent with the perturbative
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FIG. 7 (color online). Scattering lengths for I ¼ 2 �� (left) and I ¼ 1 KK (right) extracted by various groups with pion masses near
350 MeV. From bottom to top (left): ETMC [44], NPLQCD [40], HSC [45], this work. From bottom to top (right): NPLQCD [9],
Detmold and Smigielski [10], this work. In [40,45], the �� scattering length is extracted from an extrapolation to threshold; all other
points represent effective scattering lengths, �a.
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FIG. 8 (color online). Inverse scattering phase shifts, �a ¼ ðp cot�Þ�1, as a function of the maximum system size included in the fit.
Clockwise from upper left: �þ�þ, �þ�0, Kþn, and Kþp. Error bars represent the statistical and systematic uncertainties from the
individual fits combined in quadrature. The gray band shows the mean of all fits and their uncertainties, plus an additional uncertainty
given by the standard deviation of all fits, added in quadrature.

WILLIAM DETMOLD AND AMY N. NICHOLSON PHYSICAL REVIEW D 88, 074501 (2013)

074501-8



prediction [7] and warrants further investigation to under-
stand its behavior.

Our extracted two-body meson-baryon interactions are
shown in Fig. 8 as a function of the number of mesons

included in the fit. Again, we find no variation with system
size. In Fig. 9, we plot our extracted p cot� as a function of
the scattering momentum p, along with the results from
Ref. [42], performed at a smaller volume, and therefore a
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FIG. 9 (color online). Scattering phase shifts, k cot�, vs scattering momenta, k2, calculated in this work (red circles) and by
NPLQCD [42] (blue diamonds). Clockwise from upper left: �þ�þ, �þ�0, Kþn, and Kþp.
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correspondingly larger scattering momentum. We find that
there is still significant variation of the scattering phase
shift even at rather small momenta compared to the pion
mass. This signifies that contributions from short-distance
physics, such as the effective range, t-channel cuts, or
inelasticities, are relevant at these momenta. Extraction
of the effective range requires studies at additional
volumes and will be the subject of future work.

In Fig. 10, we plot the meson-meson-baryon three-body
interactions extracted from our ground-state energies.
These are novel results, and we find nonzero contributions
for all systems to within our uncertainties.

C. Comparison to leading order �PT
and extraction of LECs

We may extract combinations of LECs from �PT using
the expressions for the baryon masses as a function of the
chemical potential presented in Eqs. (2)–(5). To translate
between the canonical and grand canonical formulations,
we calculate the effective chemical potential as a finite
energy difference,

�I;KðnÞ ¼ E�;Kðnþ 1Þ � E�;KðnÞ; (16)

where E�;KðnÞ is the energy of the system of n pions or

kaons, respectively, and �I;K is the isospin or kaon chemi-

cal potential, respectively. This relation should be valid at
low temperatures in the thermodynamic limit. The behav-
iors of �I;K vs NI;K ¼ �I;KL

3, where �I;K is the isospin/

kaon density, for the spatial volume used in this calculation
are shown in Fig. 11. We also compare our results to the
tree-level prediction from �PT [23],

�I;K ¼ �@Lstat

@�I;K

¼ f2�;K��;K

�
1�m4

�;K

�4
�;K

�
; (17)

where f�;K and m�;K are the pion or kaon decay constant

and mass, respectively. These are shown as dashed lines in
the figures.

Because the mass relations were computed using a
combination of canonical and grand canonical methods,

we must further modify them before relating them to our
lattice data. In particular, in Ref. [25] the baryon is treated
as an external source, while the pions are produced using a
chemical potential. However, the baryon itself carries iso-
spin charge and couples to the chemical potential; thus its
mass is altered even in the absence of pions. As our data
only give us access to changes in the mass due to inter-
actions with pions, we must subtract this direct coupling to
chemical potential in vacuum. Thus for our analysis we use

�MBð�I;KÞ � MB

�
�I;K; cos� ¼ m2

�;K

�2
I;K

�

�MBð�I;K; cos� ¼ 1Þ; (18)

for a given baryon, B.
Finally, we note that the chemical potentials for our

systems are very near the condensation point, �I;K 	
m�;K. We find that expanding the mass relations,

Eq. (18), around this point gives more reliable, stable fits
for the resulting linear combinations of LECs at leading
order in the expansion. The form of the fitting function that
we use is given by
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FIG. 11 (color online). Chemical potential for pions (left) and kaons (right), as a function of the number of mesons in the system.
Data points were calculated using a finite energy difference from the lattice data, Eq. (16), while the dashed line is the tree-level
prediction from �PT, Eq. (17).

TABLE III. Two- and three-body scattering parameters
(in lattice units) extracted using Eq. (6) for the meson-baryon
systems and the result from [31] for the meson-meson systems.
For the central values we take the means of the results for each
system size, n. Quoted uncertainties include statistical, fitting
systematic uncertainties, as well as the standard deviation from
the fits for all systems of n mesons.

�aMM �aMB ��MMM=10
5 ��MMB=10

5

ð�þÞn 1.191(70) � � � �1:2ð1:1Þ � � �
�þð�þÞn 1.194(92) 4.63(33) � � � 3.4(3.4)

�0ð�þÞn 1.189(94) 1.89(71) � � � 8.0(2.7)

ðKþÞn 1.565(79) � � � �0:21ð48Þ � � �
pðKþÞn 1.562(83) 5.36(41) � � � 6.2(3.1)

nðKþÞn 1.552(84) 2.49(88) � � � 8.6(4.5)
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�MB=m�;K¼ð2QI;Kþ4aðBÞÞ
�
m�;K

�I;K

�1

�

þð�QI;Kþ2bðBÞÞ
�
m�;K

�I;K

�1

�
2þ��� ; (19)

where QI;K is the isospin/kaon charge of the baryon. The

combinations of LECs corresponding to the parameters

aðBÞ, bðBÞ in the equation above are given in Table IV, along
with our extracted values.

The ground-state energy shifts of all systems as a func-
tion of the number of mesons in the system are shown in
Fig. 12, along with the results of a fit to the form in
Eq. (19). Both one- and two-parameter fits have been

performed, shown in red and gray, respectively. We see
little improvement to the fit by including the second term.

The extracted parameters aðBÞ, bðBÞ are shown in
Figs. 13–16 as a function of the minimum number
of mesons included in the fit, with clusters of points
representing different maximum numbers of mesons.
The results for one- and two-parameter fits are shown in

red and blue, respectively. For the aðBÞ parameter in each
case we see no change by including the second parameter

in the fit. We are unable to resolve the bðBÞ parameters
within our uncertainties. Thus, we are only able to extract
the linear combinations of LECs corresponding to

the aðBÞ parameters shown in column 3 of Table IV.
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FIG. 12 (color online). Fit results for the energy splittings of the meson-baryon systems as a function of the number of mesons.
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To further isolate the individual LECs would require
either larger chemical potentials or variation of the quark
masses.

VI. CONCLUSIONS

In this study we have calculated the energy shifts of
single baryons in the presence of a meson medium using
lattice QCD. We have presented results for up to nine
mesons and have extracted two- and three-body interac-
tions from the energy splittings. By comparing our results
with previous ones from NPLQCD [42], we find that the
meson-baryon scattering phase shifts have nontrivial
momentum dependence at momenta much smaller than
the pion mass. We are able to resolve nonzero three-body
interactions for most systems within our uncertainties. We
have also compared to tree-level �PT results and extracted
certain linear combinations of LECs from our data.

While these results represent a first step toward deter-
mining the response of baryons to the presence of a meson
medium, tomake a connection to the physical limit we need
to explore both the pion mass and lattice spacing depen-

dence of these quantities. To connect with phenomenolog-
ically relevant systems we must include multiple baryons,
as well as explore channels involving disconnected dia-
grams. Both of these pursuits would require considerably
larger computational resources than those used for this
study, so we leave these systems for future exploration.
Finally, it would also be enlightening to relax the restriction
of zero momentum in the baryon systems, to explore the
nontrivial dispersion relations predicted by [43].
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