
Synthesizing a Synthesis tool

by

Rohit Singh

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Aug 30, 2013

Certified by. .
Armando Solar-Lezama

Associate Professor
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Synthesizing a Synthesis tool

by

Rohit Singh

Submitted to the Department of Electrical Engineering and Computer Science
on Aug 30, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

SMT/SAT solvers are used by many tools for program verification and analysis. Most
of these tools have an optimization layer which applies transformations (or “rewrite
rules”) to simplify the internal representation of the problem. These hard coded rules
can drastically affect the performance of the solver. They are usually hand-picked
by experts and verified using trial and error. These rules are very domain-specific as
well (the domain from which the tool receives its inputs) and leverage the recurring
patterns in the domain. The goal of this thesis is to automatically synthesize this
optimization layer by learning an optimal set of rules from a corpus of problems taken
from a given domain.

To achieve this goal, we will use two key technologies: Machine Learning and
Program Synthesis (Sketch tool). Sketch is a state of the art tool for generat-
ing programs automatically from high level specifications. We propose a Machine
Learning and Sketch based method to automatically generate “statistically signifi-
cant” optimization rules (rules that can be applied at significant number of places in
benchmarks from a particular domain) and then generate efficient code to apply the
rules for that particular domain.

In addition to using Sketch as a tool, we will also use it as a target for this
technology. Sketch uses SAT/SMT solver in its back-end, and, like any other tool
it has its own hand-built optimization layer. In particular, Sketch uses a set of pre-
determined optimization rules to modify the internal representation of the formula
in a way that results in faster SAT/SMT solving. Sketch is being used for synthe-
sizing programs in various domains like Storyboard Programming[21], SQL queries
for databases[5], MPI based Parallel Programming, Autograder for MOOCs[20]; The
current optimizer has to work well for each one of these domains and one of our goals
is to have a domain specific optimizer that can take advantage of specific features
of each domain. Hence, Sketch is an ideal use-case for our analysis and all our
experiments are conducted on the Sketch tool for various domains.

Thesis Supervisor: Armando Solar-Lezama
Title: Associate Professor

3

4

Acknowledgments

I would like to thank my adviser Prof. Armando Solar-Lezama, whose guidance

was the most important ingredient for success of this project. Without his constant

support and encouragement this thesis would not have been where it is now.

I would also like to thank my research group-mates, especially, Zhilei Xu and

Rishabh Singh, who have always given the most useful and constructive feedback,

support and have also helped me at various stages of this project.

One of the key components of this thesis which uses Machine Learning, was done

as a project in the Advanced Machine Learning class (6.867) under the guidance of

Prof. Leslie Kaelbling and Prof. Tomas Lozano-Perez. A special thanks to them as

well for letting me pursue this project and help me chose the right tools.

Last but not the least, I would like to thank my family and friends for always

being there for me and supporting me at every stage of my life.

5

6

Contents

1 Introduction 13

1.1 Sketch : A program synthesis tool 14

1.1.1 Generators . 14

1.1.2 Minimize construct . 15

1.1.3 CEGIS . 16

1.1.4 Problem transmission to the SAT/SMT Solver 17

1.2 Solvers and Tools employing solvers 19

1.3 Rewrite rules . 20

1.3.1 Challenges . 22

1.4 Impact of Rewrite Rules on Sketch 24

1.5 Problem Statement . 25

2 Related Work 27

3 Overview of the Proposed Solution 31

3.1 Obtaining recurrent sub-graphs . 32

3.2 Generating correct and effective rewrite rules 33

3.3 Code generation: Compilation . 34

4 Statistically Significant Sub-graph Search: Clustering 37

4.1 Motif discovery problem . 37

4.2 Finding recurrent patterns in Sketch benchmark DAGs 38

4.3 Clustering based approach . 38

7

4.4 Sub-graph search framework . 39

4.4.1 Input/Output specification . 39

4.4.2 Benchmarks . 41

4.4.3 Tools and algorithms used . 41

4.4.4 Feature Vectors: Properties 45

4.5 Some observations . 46

4.5.1 Graph-theoretic motif discovery algorithms: Kovash 46

4.5.2 fvk’s and the clustering based algorithm: Bayon 46

5 Synthesis based Rule Generation 51

5.1 Sketch problem formulation . 51

5.2 Sketch representation . 52

5.2.1 Predicate Pred . 52

5.2.2 Recursive function template for RHS 54

5.2.3 Representing Sketch back-end/internal semantics in the Sketch

language itself . 55

5.3 The complete picture . 58

5.4 Predicate search: Refinement . 59

5.5 Examples . 60

5.5.1 From Autograder Benchmarks 60

5.5.2 From Storyboard Benchmarks 61

6 Efficient Code Generation for Rewrite Rules’ application 65

6.1 Merging LHS DAGs’ nodes and obtaining “Matching Map” 66

6.2 The process of Matching and Replacement 68

6.3 Predicate Evaluation . 70

6.4 Hard-coding everything . 70

7 Implementation overview 73

8 Experiments 77

8.1 Setup and Methodology . 77

8

8.2 Observations . 78

8.2.1 comparison of “DagOptim + SosOptim” with “DagOptim” . . 78

8.2.2 Domain specificity . 79

9 Conclusion 83

9

10

List of Figures

1-1 A Sketch program completion example 14

1-2 A sample Sketch generator representing the grammar of Boolean ex-

pressions formed with bit-vectors . 15

1-3 A Sketch generator with a cost parameter to be minimized 15

1-4 CEGIS algorithm used in Sketch 16

1-5 A DAG, Internal representation in Sketch 17

1-6 DAG transformation in Sketch . 18

1-7 General transformation pipeline in many tools employing SAT/SMT

solvers . 19

1-8 Example transformation pipeline . 19

1-9 Some examples of Rewrite Rules . 21

1-10 Example Rewrite Rules from Sketch 23

1-11 Impact of Rewrite Rules on Sketch 24

3-1 Overall steps for the automated solution 32

4-1 Diagram depicting the sub-graph search from Sketch benchmark DAGs 39

4-2 Sketch DAG nodes visualization: parents/inputs, children/outputs . 40

4-3 Example feature vector calculation 44

4-4 Example describing the reason for choosing clustering with such feature

vectors . 45

4-5 Most recurrent Motifs for sizes 4 and 5 48

11

4-6 Most recurrent sub-structures of the benchmark DAGs. First two rows

are for data-set QBS and the second two rows are for Storyboard.

First column is for k = 1, second for k = 2 and the third one for k = 3

(depth of the window) . 49

4-7 Cluster sizes and similarity rankings for k-level parent (fvk) based

clustering . 50

5-1 Predicate refinement: graphical representation 59

5-2 Example Rewrite rule from Autograder benchmarks 61

5-3 Example Rewrite rules from Storyboard benchmarks 62

6-1 Example generation of a Matching map from merging of multiple LHS

DAGs . 67

6-2 Example matching of multiple LHS DAGs at the same time, along

with application of the rule on the fly 69

7-1 Implementation Tool-chain . 74

8-1 Dag sizes of a few benchmarks while running Sketch with and without

auto-generated optimization code (“SosOptim”) 79

8-2 Rules generated from different domains 80

8-3 Applications of existing rewrite rules from “DagOptim” on different

domains . 81

12

Chapter 1

Introduction

Existing SAT solvers can handle problems with millions of clauses and variables that

are encountered in various verification and synthesis problems. SAT solving has thus

become a major tool in automated analysis of software and hardware. Sketch is a

state of the art tool for generating programs automatically from high level specifi-

cations. Sketch uses internal DAGs (Directed Acyclic Graphs) to represent partial

programs which is then translated into constraints for the SAT solver. It also uses a set

of pre-determined optimization rules for modifying the DAG representation in a way

that results into faster SAT solving. These rules have been hand-picked by experts

and verified using trial and error methods. At the same time, Sketch is being used

for synthesizing programs in various domains like Storyboard Programming[21], SQL

queries for databases[5], MPI based parallel programming, Autograder for MOOCs[20]

etc. The problems from various domains tend to have different properties and pat-

terns which makes the synthesis process slow because of these hard-coded rules which

are kept the same across domains. We propose a Machine Learning and Sketch based

method to automatically generate “statistically significant” optimization rules (rules

that can be applied at significant number of places in benchmarks from a particular

domain) and then select the best rules for a particular domain. The following sections

will set up the exact problem with details.

13

1.1 Sketch : A program synthesis tool

Sketch [23] is a state of the art tool for generating programs from specifications

which are given as partial C programs. Sketch specifications contain special “holes”

or “controls” represented by two consecutive question marks “??”. These “holes”

represent an arbitrary integer and the purpose of Sketch tool is to instantiate these

“holes” with fixed integer values (from a bounded set usually defined by number of

bits to be used for representing the hole value) so that all assertions and constraints

specified in the program are satisfied. Figure 1-1 shows a simple Sketch program

where the partial program with a hole is completed so that the given specification

(in the form of an assertion on the output value of the function) is satisfied. Sketch

supports most of the C-like operations (including arrays and structs) and also has

some other constructs which enable us to specify requirements effectively.

Figure 1-1: A Sketch program completion example

1.1.1 Generators

Another language construct in Sketch that is relevant to this thesis is the “generators”[23].

A generator represents a mechanism in sketch to define a set of code fragments. In

particular, it can be used to give recursive specifications of a grammar of expressions.

For example, Figure 1-2 represents a grammar of expressions formed with bit-vectors

and bit-vector operations. Using generators, we can represent grammars in an elegant

and concise way. Later on we will use generators in Sketch to represent grammar of

Sketch ’s internal representation.

14

generato r b i t [W] gen (b i t [W] x , i n t bnd) {
a s s e r t bnd > 0 ;
i f (? ?) re turn x ;
i f (? ?) re turn ? ? ;
i f (? ?) re turn ! gen (x , bnd−1) ;
i f (? ?) {

re turn { | gen (x , bnd−1) (+ | & | ˆ) gen (x , bnd−1) | } ;
}

}

Figure 1-2: A sample Sketch generator representing the grammar of Boolean expres-
sions formed with bit-vectors

1.1.2 Minimize construct

Sometimes there are multiple candidate solutions (programs) which satisfy the given

Sketch specification and we would like to get the “best” one out of them. Sketch

provides a mechanism to optimize a simple user defined metric. One can use the

“minimize” keyword [20] in Sketch to inform the tool that out of all possible candi-

date solutions it should chose the one which minimizes this expression provided as a

parameter to “minimize”.

generato r b i t [W] gen (b i t [W] x , i n t bnd , r e f i n t co s t) {
a s s e r t bnd > 0 ;
i f (? ?) re turn x ;
i f (? ?) re turn ? ? ;
i f (? ?) { co s t++; return ! gen (x , bnd−1) ;}
i f (? ?) {

co s t+=2;
re turn { | gen (x , bnd−1) (+ | & | ˆ) gen (x , bnd−1) | } ;

}
}

. . . main (. . .) {
a s s e r t (gen (x , 4 , co s t) == re s (x)) ;
minimize (co s t) ;

}

Figure 1-3: A Sketch generator with a cost parameter to be minimized

15

1.1.3 CEGIS

Sketch uses Counter-Example Guided Inductive Synthesis [22] to solve these

partial programs and come up with a candidate program that satisfies the given

specification (in the form of a partial program with constraints). Abstractly, the

synthesis problem in Sketch can be seen as solving a second order formula of the

form shown in (1.1). Where, c represents the “controls” or “holes” present in the

partial program (called sketch in the equation), x is the vector of all inputs to the

sketch and spec represents a specification for the sketch which may or may not be

complete and may have some assertions inside it.

∃c.∀x.spec(x) = sketch(x, c) (1.1)

Figure 1-4: CEGIS algorithm used in Sketch

CEGIS algorithm (shown in figure 1-4) guesses a candidate set of values for c and

then gives it to the verifier to check if this value for c satisfies the specification. If

it works, then we have what we wanted: a candidate program which satisfies the

specification. If not, the verifier produces a counter-example set of values for x and

then the tool uses inductive synthesis to try and prune out candidate programs based

on the counter-example set and the cycle continues until we find a correct solution.

16

Sketch bounds the number of candidate programs by bounding the number of bits

for each “control” variable which guarantees the termination of this procedure.

One important thing to note here is that both the “Inductive Synthesis” and

“Verification” phases translate their respective problems to SAT/SMT and use a

solver for doing their job. This is where we will be focusing in this thesis report.

1.1.4 Problem transmission to the SAT/SMT Solver

Figure 1-5: A DAG, Internal representation in Sketch

Sketch stores the problem (partial programs with assertions) in an internal rep-

resentation which is a Directed Acyclic Graph. An example DAG and the complete

grammar used for representing DAGs is shown in figure 1-5. This internal represen-

tation is expressive enough to describe these problems obtained from partial C-like

programs and is similar to the representation used by other solvers. To minimize the

amount of memory used by this representation and also the amount of time taken by

the solver, Sketch does a lot of optimizations to make the size of this DAG as small as

possible, at the same time, trying to ensure that the translation to SAT/SMT results

info faster solving. This is done by using “rewrite rules” to simply the representation

and then “encoding rules” to transform the problem to the language of the constraint

solver (a SAT solver in the case of Sketch). The transformation process is shown

in figure 1-6.

17

Figure 1-6: DAG transformation in Sketch

This whole transformation process is designed in a way so that its possible to

introduce new internal representation (like adding support for arrays), new rewrite

rules (to optimize new additions to internal representation) and new encoding rules

(to make the best use of the solver) but its a tedious process given all the code one has

to write and debug, and the huge set of possible rules one could use. The state of the

art methodology to achieve this is via trial and error along with expert knowledge.

The system developer tries a particular chain and if its not of much use or makes

the solver slow, he has to go back and make changes to some parts of the pipeline or

come up with a new one.

Our aim in this thesis is to help the tool developer by automatically generating

efficient code for a part of this pipeline so that they can focus on the other features.

We will focus on the “rewrite rules” aspect of this pipeline in this thesis work (we will

explain “rewrite rules” and their properties in detail later). The idea is to automate

the process so that the rules can be generated automatically through a combination

of Synthesis and Machine Learning.

18

Figure 1-7: General transformation pipeline in many tools employing SAT/SMT
solvers

1.2 Solvers and Tools employing solvers

The picture shown in figure 1-6 is not unique to Sketch. In fact one can generalize it

to many tools (figure 1-7) which are either themselves solvers or employ solvers in the

back-end. Some such examples are KINT [24], Jeeves [27], BBR [4], UCLID [14], Z3

[6] etc. Every tool which uses solvers has a pipeline which looks like this embedded

somewhere in the system. Although, the overall idea and structure is the same across

tools, they differ in terms of the choices they make for:

1. Internal Representation

2. Rewrite Rules

3. Encoding Rules

Figure 1-8: Example transformation pipeline

19

These choices are very domain specific and hence the tools perform well in different

domains. To give an example of decisions one needs to make, lets consider the example

shown in figure 1-8. The given block of code has 4 inputs a, b, c, d and the tool

developer can chose to represent it traditionally using a MUX and EQ separately

or he can merge both of them into one node as shown in the example. Now, after

being merged into one node, we need to come up with new rewrite rules for whenever

a sub-graph contains this node. One such simple rewrite rule is also shown in the

figure 1-8 which replaces the whole node with just one input variable (c) in case the

inputs satisfy a predicate (c == d). And, finally, the tool developer has to provide

an encoding rule to translate this into a constraint for the solver. One such encoding

is also provided in the figure 1-8. These rules can depend on the source from which

the input comes to this node and thus can be very tedious to find and code/debug

manually. This is where our work comes in and eradicates the need for the developers

to think about the rewrite rules.

1.3 Rewrite rules

Rewrite rules are simple transformations which can be applied under certain assump-

tions which have to be checked before applying the rule. Every rewrite rule has three

components: the left-hand-side (LHS), the predicate Pred (in the center) and the

right-hand-side (RHS). All three of them are functions of the inputs (x).

Definition 1. A Rewrite Rule is a triple (LHS (x),Pred (x),RHS (x)) where x

is a vector of input variables from a domain D and LHS , RHS are functions whose

structure is defined by a grammar and Pred is a predicate defined over the same

input variables from a different grammar such that it satisfies the following formula:

∀x.Pred (x) =⇒ (LHS (x) = RHS (x))

20

It can be interpreted as saying that whenever the predicate Pred shown in the

center is satisfied by the inputs, one can replace such an occurrence of LHS in the

internal representation (e.g. DAG) by RHS which will potentially reduce the size

of the representation and eventually the size of the formula sent to the solver. Some

examples are shown in figure 1-9.

Figure 1-9: Some examples of Rewrite Rules

In the examples, each node represents an operation and the inputs are presented

by incoming arrows. In words, the first rule can be seen as: ”If (a == c) then we can

replace (a ∧ b) ∧ (c ∧ d) with (a ∧ b) ∧ d”. Its a simple rule but it can reduce the size

of the problem by a lot if the LHS pattern occurs often in the domain from where

the problems are being sourced.

Ideally we want the RHS to be of smaller size than LHS so that it can help us

21

reduce the overall problem size. Here we make an inherent assumption that making

local changes can lead to global effects in the same direction. This has been verified

empirically in Sketch as well. There are some examples from Sketch back-end in

figure 1-10.

1.3.1 Challenges

In this sub-section we will try to list all the challenges one faces while trying to deal

with the paradigm of rewrite rules.

Coming up with the rules

One needs to have a deep understanding of the domain from which the problems

are being fed to the tool. At the same time, the same person should know enough

about the internal representation and working of the tool so as to come up with good

candidate rules. If the LHS is complicated enough, checking correctness of the rule

can also be troublesome.

As can be seen in figure 1-10 the rules are fairly complicated and its only after one

implements and applies a particular rule, they see more patterns in the problems and

realize that some extensions of the rule can capture them as well. The rules shown

in figure 1-10 are related to each other in that sense and going from one to another

is still a lot of effort.

Coding up the rules

The tool developer has to trade-off performance versus readability. If he favors per-

formance, then its easy for him to introduce bugs and also make it difficult for a

new developer to understand what is going on in the code. On the other hand, if all

rules are separately added in a more readable format, the tool will have to consider

the rules independently which will disable opportunities for some optimizations that

22

could have been done by sharing pattern matching costs across the rules.

Figure 1-10: Example Rewrite Rules from Sketch

23

Another issue with coding up the rules is with the “symmetries” of the rule. If

there are some commutative operations, the developer has to take care of each case

of predicate evaluation with permuted inputs. He may forget to add a case and that

can result into wrong validation.

As can be seen in figure 1-10 the code for the last rule is fairly complicated and

has to take into account various symmetries of the “plus” operation. The rules are

built incrementally to avoid the bad effects of one rule being applied before other.

Finding the right order of application of rules is a challenge as well.

Trial and validation

There’s no other way to guarantee performance except for trying it out. It can be

a long and tedious cycle and combined with errors introduced while coding up the

rules, it can take years to find the best set of rewrite rules that work well.

The rules in figure 1-10 are hand-crafted but have been tested and validated on

various problems from multiple domains. Some similar rules have been removed

because their effects on size was not good enough as compared to the time it took to

match them.

1.4 Impact of Rewrite Rules on Sketch

Figure 1-11: Impact of Rewrite Rules on Sketch

24

To show how important the rewrite rules are, we conducted an experiment where

we removed all the rules present in Sketch. We measured the size of the problems

generated at the beginning of the CEGIS process and compared it with the case when

the rules were present. The times taken to solve the problem differed by a lot (minutes

vs seconds and an hour vs minutes) due to the sizes of the problems . We present

comparison of sizes of problems in figure 1-11 for the Storyboard programming [21]

and QBS query synthesis [5] domains where we are using the same tool Sketch with

and without the hand-written rewrite rules. There is approximately a 2x decrease

in size which might have a disproportionate effect on time complexity (since most

SAT/SMT solving algorithms are exponential in size of the problem). And, this is

what we observed with running time when we ran the experiments.

1.5 Problem Statement

Now that we understand the challenges one faces while working with rewrite rules,

we want to make this process easier for the developer using Machine learning and

Synthesis. We want to build a framework for automatically generating and efficiently

implementing important “rewrite rules” for a given domain for Solvers and tools which

employ solvers.

To be more specific, we are going to solve the following problem:

Problem 1. Automatically generate “rewrite rules” of the following structure:

If Pred (x) then replace LHS (x) with RHS (x)

such that the following hold:

• Correctness: Pred (x) =⇒ (LHS (x) = RHS (x))

• Relevant Rules: the generated rules are “statistically significant” for a domain

25

(benchmark problems provided)

• Code Generation: the automatically generated code is efficient and correct

26

Chapter 2

Related Work

A Pre-processing step in Solvers and tools employing solvers (like Z3, Sketch etc)

is an essential one and term rewriting has been extensively used as a part this pre-

processing step [15]. It is hard to find papers describing the pre-processing steps

used in modern SAT/SMT solvers and other tools which use them. Most SMT solver

developers agree that these pre-processing steps are very important for the specific

domains e.g. bit-vector theory or specific Sketch domains. We believe these tech-

niques are not published for several reasons: most of them are little tricks that by

themselves are not a significant scientific contribution; And, most of the techniques

only work in the context of a particular system or domain; a technique that may seem

to work very well with tool A, may not work with tool B. As a domain specific exam-

ple, [26] focuses heavily on word-level simplifications like application of rewrite rules

to avoid exponential blowup during construction of the problem (along with other

techniques for optimization). This supports our claim that a lot of time is spent in

finding simplification rules for each domain and automating the process will definitely

aid the developers.

Each part of our tool-chain solves an independent problem and is different from the

state of the art, specialized for our purposes. Identification of recurrent sub-graphs

27

from benchmark DAGs is similar in essence to the Motif discovery problem [18] which

is famous because of its application in DNA fingerprinting[11]. This is a very active

area of research and recently we have seen some attempts to use Machine learning [13]

and distributed systems [16] to compute the Motifs (statistically significant recurrent

sub-graphs) as quickly as possible. Our DAGs, on the other hand, have labeled nodes

(labeled with operation types) which makes direct translation to Motif discovery

problem much difficult. Also, to avoid using graph theoretic algorithms, we use

Machine learning (clustering) based method to search for statistically significant sub-

graphs.

In superoptimization community, people explore all possible equivalent programs

and find the most optimal one. It would not make sense to do that for formulas. But

[2] came up with this idea of packaging the superoptimization into multiple rewrite

rules similar to what we are doing here. Although it looks similar in spirit to our

work, there are a few differences. Most importantly, [2] uses enumeration of potential

candidates for optimized versions of instruction sequences and then checks if it is

indeed the most optimal version. Whereas, we use constraint based synthesis for

generating the rules which offers a possibility of specifying a structured grammar for

the functions.

The third phase which automatically generates optimizer’s code (representing an

abstract reduction system) is similar to a term or graph rewrite system like Strate-

go/XT [3][17] or GrGEN.NET [8]. Stratego/XT is a framework for the development

of program transformation systems and GrGEN.NET is a Graph Rewrite Generator.

They offer declarative languages for graph modeling, pattern matching, and rewriting.

Both of these tools generate efficient code for program/graph transformation based

on rule control logic provided by the user. We built up on their ideas and wrote our

own compiler because we already had special input graphs (DAGs with operations as

labels of nodes) and an existing framework for optimization (Sketch DAG optimiza-

28

tion class). Our strategy can be compared with LALR parser generation [9] where

the next look-ahead symbol helps decide which rule to use. In our case as well we

keep around a set of rules that are potentially applicable based on what the algorithm

has seen.

29

30

Chapter 3

Overview of the Proposed Solution

In this chapter, we will present an overview of the proposed algorithm for automation

and the technologies involved. Note that we will be using Sketch as both our target

tool for optimization and also as a tool for synthesis of rules. This will fix the “internal

representation” and “encoding rules” we will be dealing with. But the technique (and

the implementation) can be extended to other Solvers or tools which use SAT/SMT

solvers and have a pass similar to the one mentioned in section 1.2.

The input to our algorithm would be some DAGs obtained using Sketch with a

particular domain’s benchmarks. We will first try to find sub-graphs of fixed depth

in these benchmark DAGs which occur more often than others and then we will try

to find rules for these sub-graphs (rewrite rules which can simplify these sub-graphs).

Then we will use our efficient code generator to provide us with an “optimization

library” which we can plug back into Sketch and then chose a subset of rules based

on the performance on these benchmarks. We can re-iterate the process to find more

and more rules for the new patterns which are now available (the closed loop is shown

in figure 3-1.

The automation consists of three major steps (figure 3-1):

1. Obtaining recurrent sub-problems/sub-graphs: Clustering based approach

31

Figure 3-1: Overall steps for the automated solution

2. Automatically generating “correct” and “smallest” rewrite rules for the recur-

rent sub-graphs obtained in the previous step: Sketch based synthesis approach

3. Generating efficient code for pattern matching and rule application: Compila-

tion of “relevant” rules

We will give a short description of the steps in this chapter.

3.1 Obtaining recurrent sub-graphs

The motive behind this phase of the algorithm is to prune the set of all possible rules

by looking at only those which we hope might make a difference. We achieve this by

fixing the LHS of the rule as one of the most-occuring patterns in the benchmark

DAGs.

There is a mathematical characterization of the general problem of finding re-

32

current and statistically significant sub-graphs (called Motifs) in an arbitrary graph.

There are well known graph theoretic Motif discovery algorithms but none of them

scale well[18] for large graphs.

Our problem is a more specific and approximate version of the Morif discovery

problem. We have some specific “Types” of nodes which should be preserved while

finding sub-graphs. All practical algorithms for Motif discovery ignore the “Type” or

color (in graph theoretic terms) of the nodes and hence will not produce good results

for us. Also, they are fairly slow in general due to precision requirement. Since we

want something that is approximately recurrent, we would be better off using an

algorithm which gives us better insights in lesser time.

We solve this problem by using clustering based machine learning techniques.

We also compare the results with traditional Motif discovery tools available on the

internet and show why clustering is a better and faster way to solve our problem.

More details will be provided in chapter 4.

3.2 Generating correct and effective rewrite rules

We receive the LHS of the rewrite rule from the clustering based search. Now, we

need to find predicates Pred and RHS so that (LHS ,Pred ,RHS) is a valid

rewrite rule (subsection 1). We also want to ensure that the RHS is of smaller

size than LHS so that the local changes can potentially lead to global smaller sized

problems.

The correctness and size constraints along with generation of the Pred and RHS

is done using Sketch based program synthesis techniques (section 1.1). We use a

grammar for Pred and RHS , and, write templates for them in the Sketch language

using “holes” inside generators (subsection refsubsec:generators). Then, we write a

Sketch specification which ensures validity of the rules given semantics of each node,

33

again, in Sketch as a library (Note that we had to model the way Sketch internal

representation works using the external interface of the same Sketch tool). Running

this Sketch specification would give us a rule that is correct and can be applied to

replace the LHS under the assumptions given by Pred .

Although, this rule generated by Sketch would be correct, its not guaranteed

to be “good”. In fact, it may even just return an identity rule where RHS is the

same as LHS . To avoid this problem and to ensure the size constraints we use the

minimize keyword from the Sketch language (subsection 1.1.2). We associate a

cost with RHS generator and minimize the size of the RHS and at the same time

explicitly writing a constraint saying size(LHS) > size(RHS). This will ensure

that not only we get a “good” rule that will reduce the size of the problem but also

that for a given predicate it will be the “best” rule in the sense that no other smaller

RHS would work for this LHS , Pred pair.

We use some predicate refinement based techniques to have a directed search of

rules along with trying to get as many rules as possible. We will later on select

a smaller subset of rules by observing which rules have the most impact on the

benchmarks. Thus, we will have a set of rewrite rules generated automatically for a

particular domain which work well for that domain.

3.3 Code generation: Compilation

Given a set of rules, we want to automatically generate correct code for pattern

matching and replacement of sub-graphs. At the same time, we want to take benefit

of the fact that since the tool developer doesn’t even have to look at this code, we

don’t have readability constraints and hence we can try to optimize the code as much

as possible and in the process, we may make it less understandable. One of the major

optimizations that we perform is that we allow the rules to share pattern matching

34

code. The pattern matcher remembers the history of matching and tries to merge the

LHSs of all the rules as much as possible so that even if a particular rule couldn’t be

applied, the pattern matching for the other rule will not cost much

35

36

Chapter 4

Statistically Significant Sub-graph

Search: Clustering

Our aim in this chapter will be to solve the problem of finding ”significant” and

”recurrent” sub-graphs from a given set of benchmark DAGs. As mentioned earlier,

a more concrete version of the problem is known as the Motif discovery problem and

there are many state of the art algorithms for tackling it.

4.1 Motif discovery problem

Motif discovery became popular due to the problem of finding patterns in sequences

of DNA. Researchers analyze and compare many DNA strands of equal length and

find the most closely-matching sequences of a certain length in each strand. These

patterns are of great scientific interest to those doing research in genetics because

they correspond to sequences of DNA that control the activation of specific genes.

Abstractly, A Network Motif is defined as a recurrent and statistically significant

sub-graph or pattern of a larger graph or network. This definition can be stated

in probabilistic terms as well [25]. There are many algorithms for finding Motifs in

modern literature and it is currently a fairly active area of research. Finding “good”

37

motifs quickly and efficiently is very important. The state of the art algorithms can

be classified as exact counting methods, sampling methods, pattern growth methods

and so on. Recently there have been a push on using distributed systems to make

the algorithms faster [1] [19].

4.2 Finding recurrent patterns in Sketch bench-

mark DAGs

Our problem of finding significant and recurrent sub-graphs in Sketch benchmark

DAGs (from a particular domain) is different from simple Motif discovery problem

because:

1. The type information of nodes (Nodes are typed as “AND”, “OR” etc in Sketch

benchmark DAGs) is not considered in the naive translation of our problem to

Motif discovery problem. For our sub-graphs to be a part of rewrite rules, they

need to have type information which is “recurrent” along with the structure.

2. The strict requirement of “significance” is not needed for our purposes and an

approximately “significant” sub-graph might as well work.

4.3 Clustering based approach

Given the nature of the requirements, we decided to try out a clustering based ap-

proach. We assigned “feature vectors” to every node based on the local structure

around it and then tried to find out nodes which are similar using a classifier which

will cluster the similar ones together. Then we took a few samples from each class

(ordered by the number of members in the class) and then moved on to generating

rules for them. The process is outlined in figure 4-1. We will also use a graph theoretic

38

Motif discovery tool called Kavosh [12] and compare the results with the clustering

based approach.

Figure 4-1: Diagram depicting the sub-graph search from Sketch benchmark DAGs

4.4 Sub-graph search framework

We obtain the DAGs from Sketch benchmarks for a particular domain. Then, we

parse them to either feed them to the Kavosh [12] tool for finding Motifs or transform

them into feature vectors for each node. We send the feature vectors to Bayon (a fast

sparse feature vector based clustering tool [7]) and collect the results back in the form

of recurrent sub-graphs. We explain each part of the chain separately as follows:

4.4.1 Input/Output specification

We obtain the DAGs for problems obtained from three different domains:

1. Services for a responsive system (labeled QBS) [5] and

2. Storyboard programming[21]

3. Autograder for MOOCs [20]

39

The problems correspond to synthesizing a system (filling the empty holes auto-

matically) with the help Sketch [23]. The DAGs are obtained from the tool using a

specific flag as input. The grammar for internal representation which is relevant to

us is displayed in figure 1-5 (Right hand side) and Table 4.1. id represents the node

identifier in the graph and different types of nodes have different labeled operation

(TYPE) and potentially even different number of parent nodes. The parent nodes are

mentioned after TYPE. The relevant node TYPEs (or the operations they represents)

have been classified as:

1. ARR R : Array read operation

2. ARR W : Array write operation

3. UNOP : Unary operations (NOT, Unary MINUS)

4. BINOP : Binary operations (AND, OR, PLUS etc.)

5. S/CTRL/CONST: Nodes with no parents (Inputs, “holes” and constants)

6. ARRACC: Multiplexer nodes

7. ARRASS: Multiplexer + EQ (composite node)

8. ASSERT: Assertions (only one parent)

Figure 4-2: Sketch DAG nodes visualization: parents/inputs, children/outputs

40

Table 4.1: Sketch DAG node specification grammar

id = ARR R TYPE index inputarr
id = ARR W TYPE index oldarray newvalue
id = BINOP TYPE left right
// BINOP can be AND, OR, XOR, PLUS, TIMES, DIV, LT, EQ, MOD
id = UNOP TYPE parent // UNOP can be NOT, NEG
id = S TYPE NAME bits
id = CTRL TYPE NAME bits
id = ARRACC TYPE index size v0 v1 ...
id = CONST TYPE val
id = ARRASS TYPE val == c noval yesval
id = ASSERT val ”msg”

We represent the nodes with boxes (or circles) and label them by their TYPE. Some

of these nodes with labels are shown in figure 4-2.

We transform this input DAG to a nascent abstract graph with no labels for trying

out the graph theoretic Motif discovery algorithm and compute the feature vectors

for the other case when we want to use the clustering algorithm.

4.4.2 Benchmarks

We will be using the DAGs obtained from three different domains: QBS, Autograder

and Storyboard. Each benchmark consists of 14 − 20 DAGs each comprising of

3000− 10000 nodes. We merge the DAGs obtained from all benchmark in a domain

to form a huge DAG for the domain. The combined number of nodes present in

the data-sets is between 200, 000 to 600, 000 based on whether we use the previously

existing optimizations or not.

4.4.3 Tools and algorithms used

The important boxes in the system design figure 4-1 are the tools and algorithms we

used to perform the analysis. We use state of the art Motif discovery tool (Kavosh

41

[12]) and another state of the art tool for clustering based on sparse feature vectors

(Bayon [7]).

Motif discovery tool: Kavosh

Kavosh is one of the pioneering tools for discovering k-size Motifs in complex networks

for a given k as input. It enumerates all sub-graphs of size k up to isomorphism and

works in less memory as compared to any other existing graph theoretic algorithm

for Motif discovery[12]. We have to throw away the node type information before we

pass on the input to Kavosh. We present the results obtained from running Kavosh

on our inputs in section 4.5.

A simple and fast clustering tool: Bayon

Bayon[7] is a simple and fast clustering tool for large-scale data sets. It supports two

hard-clustering methods, repeated bisection clustering where you chose the largest

cluster and bisect it based on optimality of a cost/distance function and K-means

clustering where we iteratively find the new centroids for the data. It utilizes the

fact that the feature vectors are sparse and fast hashing techniques can improve the

time taken for clustering by a lot. The benefit of repeated bisection clustering over

K-means is that we don’t have to provide the number of clusters to begin with but

instead we have to provide a limit on the value of the cost function for stopping.

Now, Before we use Bayon, we have to transform our DAGs into feature vectors

which then onwards can be passed on to Bayon for clustering. We generate feature

vectors in a way so as to ensure that the structure and types of nodes is preserved

to a greater extent and at the same time the performance (speed) of clustering is not

affected much.

42

Feature Vectors: Generation

This is the most critical part for the success of this phase. We considered many

feature vector possibilities so as to find the best representation where ”closeness” in

multidimensional space corresponds to actual ”similarity” between the sub-graphs

rooted at particular nodes.

As mentioned earlier in 4.4.1, we divided our input nodes into 8 classes based on

similarity in their structure and logic. As a first attempt, we associated with every

node a ”type bit-vector” of size 8 such that only the bit corresponding to its type is

set and the others are all zero. Let’s call this feature vector fv0n for a node n. So,

fv0nk = 1 ⇐⇒ type(n) = k

(assuming all 8 types are represented by the numbers 0 − 7). Clearly, this feature

vector on its own will not help us identify any sub-graphs but it will ensure that

the type of this node is the same as any other “similar” node (if the threshold for

similarity is set fairly small).

To reach out to more nodes, we can think about appending the fv0’s of a node

with fv0’s of its parents. This will help us capture a 2nd level parent neighborhood

of each node. But clearly this method will result into an exponential blowup when we

look for a 3rd level parent neighborhood and so on. To solve this issue. We introduce

fv1n = fv0n||

 ∑
p∈pa(n)

fv0p

Here || refers to the “append” operation and

∑
is the coordinate-wise sum of each

vector. This results into 2 ∗ 8 = 16 dimensions. Note that now each dimension is

potentially an integer instead of a bit but even then its very sparse given that usually

the types and numbers of parents in our examples are small. This technique can

43

easily be extended to k-level parent neighborhood where the feature vector for a node

is computed by using the k levels of parents above it. As a policy, we do not associate

any feature vector fvk with nodes which do not have any parent in kth level.

We present an example of feature vector calculation for a node till the third level

in figure 4-3.

Figure 4-3: Example feature vector calculation

44

4.4.4 Feature Vectors: Properties

We note some important properties of these feature vector which will justify our

choice of the vectors and also potentially explain their limitations.

• These feature vectors lose some information about the structure of the DAG

because addition of vectors results into loss of ordering of parents. This is

particularly a problem for nodes which are non-commutative.

• But at the same time they help us maintain some properties like commutativity

of addition and multiplication (the order of parents may not matter in some

cases).

• At every node, we create a window of a particular height rooted at that node.

The whole window may not repeat but some smaller sub-structure of it might

and these feature vectors help us capture this because the clustering algorithm

with find “similar neighborhoods” and the “similarity” may come from a sub-

vector of the feature vector as well. When we generate rules for the whole

window, it will potentially also generate rules for the recurring part of it as

well. This phenomenon is depicted in figure 4-4.

Figure 4-4: Example describing the reason for choosing clustering with such feature
vectors

45

4.5 Some observations

4.5.1 Graph-theoretic motif discovery algorithms: Kovash

While transforming the input to a nascent DAG, we lost all the type information and

therefore as expected the results are although much more recurring in the nascent

DAG, aren’t really much useful for our optimization purposes because the recurrent

DAGs can be further classified based on the type of nodes and some of them may be

more important than others. All that the results tell us is that the structures which

are recurrent are of these particular forms.

Moreover, the tool ran out of memory for the complete DAG join of 13500 nodes.

We calculated the Motifs on a smaller subset of around 5 files i.e. 50000 nodes. Even

then the time taken for finding Motifs of sizes 4, 5 and 6 were 2 minutes, 33 minutes

and around 2 hours respectively. This processing is just a one time deal and hence

such processing times are not completely unacceptable but even then the results are

not as useful as the clustering based method (which works for fairly large sizes due

to the sparse-ness of the feature vectors). Some of the results for most recurrent

and statistically important sub-graphs are presented in figure 4-5. Although, the

sub-graphs occur frequently, all the types of the nodes may not be compatible in all

of them. For instance, the same parent value being passed to four children (most

recurrent Motif with nearly 80% occurrence) can be any value node propagating its

output and we cannot really optimize this structure unless we know what is the role

played by this value and if the parent node returns a Boolean value or an integer or

an array.

4.5.2 fvk’s and the clustering based algorithm: Bayon

We first merged all DAGs obtained from different problems from a single domain.

We then computed the feature vectors fvk’s for each eligible node and output it to a

46

file (Keeping 135, 000 8∗k dimensional integer feature vectors in memory results into

a memory overflow on a desktop computer but this file based I/O works well). The

feature vectors are provided in the sparse format (readable by Bayon). Each row of

the feature vector file looks like:

nodeid f3 2 f7 1 f12 1 f19 3

where, each fi is the feature corresponding to the feature vector fvk and only non-

zero features are mentioned. Bayon quickly provides clusters ranked by the “similar-

ity” metric (the default average euclidean distance based cost function). This whole

procedure takes around 40 seconds for k = 3 which corresponds to including 7 − 12

nodes in the recurrent sub-structure candidates. The variation of number of “similar”

sub-graphs in a cluster are displayed in figure 4-7. We can observe the following from

the graphs:

• The number of clusters are higher for larger k = 3 and the biggest cluster is not

ranked well and hence doesn’t really have good “similarity” properties. Even

if we can find some rules for some high ranking cluster, it won’t be of much

significance.

• For smaller k = 1, the number of clusters is small and the whole mass is

concentrated at the beginning i.e. the best cluster in terms of “similarity” has

most of the sub-graphs but this is still not a good result because k = 1 means

a simple 2-3 node sub-graph which will not help us do much optimizations

(figure 4-6).

• k = 2 provides many sub-graphs at higher rankings and these graphs have 4-5

nodes which do help us do some optimizations.

We present the best recurrent sub-graphs for k = 1, 2, 3 in figure 4-6 for two

data-sets QBS and Storyboard.

47

Figure 4-5: Most recurrent Motifs for sizes 4 and 5

48

Figure 4-6: Most recurrent sub-structures of the benchmark DAGs. First two rows
are for data-set QBS and the second two rows are for Storyboard. First column is
for k = 1, second for k = 2 and the third one for k = 3 (depth of the window)

49

Figure 4-7: Cluster sizes and similarity rankings for k-level parent (fvk) based clus-
tering

50

Chapter 5

Synthesis based Rule Generation

After the clustering phase, we have a set of recurrent sub-graphs in the benchmarks

from a domain. Now, we would like to find corresponding rewrite rules which can

further be used to optimize the problem representation inside Sketch .

5.1 Sketch problem formulation

We need to find “correct” rewrite rules (Section 1.3) which have their LHS from the

set of DAGs obtained after the clustering phase. This correctness constraint will be

specified in Sketch itself from where we obtained these sub-graphs. Here’s how we

can formalize this problem:

Problem 2. Given a function LHS (x) and templates for Pred (x) and RHS (x).

Find suitable candidates for Pred (x) and RHS (x) which satisfy the following

constraints:

• ∀x if (Pred (x)) then assert(LHS (x) == RHS (x))

• size(RHS) should be as small as possible for a fixed Pred (x)

The problem is to find the RHS and Pred which enable us to replace LHS

51

(obtained from the clustering phase) whenever the inputs satisfy the predicate Pred

.

5.2 Sketch representation

We realize the structure mentioned in Problem 2 in Sketch using the generators

and minimize features (??) of the Sketch language. We will use generators to

recursively define the templates for Pred and RHS . We describe both of them in

details.

5.2.1 Predicate Pred

For the predicate Pred we use a simple Boolean expression generator bgen which

can be defined as follows:

generato r bool bgen (genera tor choice , i n t bnd) {

a s s e r t (bnd > 0) ;

i f (? ?) {

//unary operator : NOT

bool xa = bgen (cho ice , bnd−1) ;

i f (? ?) re turn ! xa ;

// binary operator : OR

bool xb = bgen (choice , bnd−1) ;

r e turn xa && xb ;

}

e l s e {

// base case

a=??;

b=??;

re turn cho i c e (a) (== | <) cho i c e (b) ;

}

}

52

The generator uses NOT and AND operations with a base case as comparisons

of instantiations of another generator (called “choice”). It can produce all possible

Boolean formulas with the given base predicates. Note that we perform some sym-

metry breaking and lazy evaluation of expressions in the actual implementation but

the idea of this generator can be conveyed best with this simpler form. In practice,

we use only == operation in base case and also remove NOT operation in the upper

case because this makes the predicate evaluation easier at run-time when the actual

outputs are not available but only their types, estimates and references in the data

structure are available.

To use this generator one has to provide another “choice” generator. An example

choice generator is given below:

. . . main (i n t inputs [N]) {

. . .

g enera to r i n t cho i c e (i n t x) {

a s s e r t (x >=0 && x <= N+1) ;

i f (x < N) {

re turn inputs [x] ;

}

e l s e i f (x == N) return 0 ;

e l s e re turn 1 ;

}

. . .

}

The generator choice produces a selected value from the inputs array based on its

parameter or produces a constant expression 0 or 1. This helps us make the predicates

53

simple enough so that they can be evaluated during the synthesis process. The bound

bnd is set based on the problem size. In practice only depth 1 or 2 rules evaluate to

True during synthesis process.

5.2.2 Recursive function template for RHS

We faced two issues with representing functions within Sketch language framework:

1. The generator has to scale well easily for representing a lot of nodes (as we

witnessed some LHSs of size 15 or higher)

2. It has to be simple enough to be able to get parsed as a DAG with shell scripts.

The first requirement made us consider complicated ways to write recursive gener-

ators like the one which generates sets of outputs from each layer and then constructs

a layered version of the graph which would have been difficult to parse as a simple

DAG although potentially it could have been faster for synthesis purposes. But, since

we needed an output dag in the end, we went forward with the generator which sim-

ulates the computation of that function using temporary variables as one would do

while writing a simple program for it and the DAG naturally gets parsed. Essential

elements of the generator for RHS is shown here:

generato r fgen (i n t inputs [N] , i n t bnd) {

//bnd i s the number o f nodes a l lowed

i n t output [N+bnd] = inputs ;

// r e s t o f the va lue s beyond N−1 are i n i t i a l i z e d as 0

i n t i=N;

bool go on = true ;

r epeat (bnd) {// un r o l l s the code i n s i d e i t bnd t imes

i f (go on) {

output [i] = s impleOperat ion (outputs [0 : : i]) ;

// con s id e r a l l the va lue s in outputs array

54

// that have been computed a l ready whi l e

// computing a new value

i++;

i f (? ?) {

go on = f a l s e ; // opportunity to stop doing ope ra t i on s

now

}

}

}

minimize (i) ; // use the sma l l e s t p o s s i b l e i g iven that r e s t o f the

program va r i a b l e s are f i x ed

return output [i] ; // the l a s t computed value

}

Here simpleOperation is a generator which takes an array and generates an op-

eration as output (representing a node of the DAG, semantics explained in the next

section) and we use the minimize keyword to find the smallest possible RHS DAG.

Note that the actual implementation is a bit more complicated because of the fact

that we have to consider arrays as both inputs and outputs of the function but the

idea behind the sketch is best conveyed by the code shown here.

5.2.3 Representing Sketch back-end/internal semantics in the

Sketch language itself

The simpleOperation generator needs to take care of the operations and their seman-

tics in Sketch language. These must match what actually is assumed in the Sketch

back-end about these operations on nodes representing values (int/array). At an

abstract level its easy to define simpleOperation:

generato r s impleOperat ion (i n t inputs [N]) {

55

i n t a = ?? ;

i f (? ?) re turn someUnaryOp(inputs [a]) ;

. . . //More Unary Operat ions

i n t b = ?? ;

i f (? ?) re turn someBinaryOp (inputs [a] , inputs [b]) ;

. . . //More binary / ternary / f i x ed n−ary ope ra t i on s

i n t sz = ?? ;

i n t params [sz] ;

i n t i =0;

repeat (sz) {

params [i] = ?? ;

i++;

}

re turn someOtherOpWithArbitraryNumParams (params) ;

}

In the actual implementation we have to take care of the differences between array

and integer inputs/outputs and also break some symmetries to make the search faster

(like a < b for commutative binary operations). Now, the only thing left to explain

is how to interpret the semantics per operations.

We evaluate each operation as Sketch would interpret the nodes if it were to

“simulate” the computation (Sketch does have a simulation phase which does exactly

the same). Some operations and data structures used are shown below:

i n t BINOP(i n t type , i n t a , i n t b) {

i f (type == PLUS) return (a+b) ;

. . .

i f (type == LT) return (a < b) ;

i f (type == AND) { a s s e r t ((a==0 | | a==1) && (b==0 | | b==1)) ; r e turn

(a==1 && b==1) ;}

. . .

56

a s s e r t (f a l s e) ;

}

i n t UNOP(in t type , i n t a) {

i f (type == NOT) { a s s e r t (a==0 | | a==1) ; re turn 1−a ;}

i f (type == NEG) { re turn −a ;}

a s s e r t (f a l s e) ;

}

s t r u c t Arr{

i n t sz ; // s i z e o f the array

i n t [sz] a r r ;

i n t d f l t ; // d e f au l t va lue

}

i n t ARR R(in t idx , Arr a) {//Array read

i f (idx < a . sz && idx >=0){

re turn a . a r r [idx] ;

} e l s e {

re turn a . d f l t ;

}

}

We have to treat arrays differently from the usual notion, so, we create our own

wrapper (a struct) around the usual native array with a default value which is used

in case the index is not available in the array, and, it is also the initial value at any

index. We may have to extend an array to add a value during array writes and all

array operations were built keeping that in mind. We did a deep copy of an array

after every write operation so that it matches the semantics of immutable arrays as

interpreted by the Sketch back-end.

57

5.3 The complete picture

We already have templates for generating predicates and functions as candidates for

Pred and RHS respectively. Now, we need to put all the pieces together to specify

the correctness constraint for rules. We show the idea in the following code (for

simplicity we avoid using arrays):

//Hard−coded cons tant s based on the output o f c l u s t e r i n g phase

#de f i n e BND PRED . . . //bound on depth o f Pred

#de f i n e BND RHS . . . //bound on depth o f RHS

#de f i n e N . . . //Number o f input v a r i a b l e s

#de f i n e RHS MAX SIZE . . . //Same as number o f ope ra t i on s /nodes in LHS

in t LHS(i n t inputs [N]) {

//auto−generated a f t e r c l u s t e r i n g based phase

i n t x1 = BINOP(AND, inputs [0] , inputs [2]) ;

. . .

r e turn x7 ;

}

// templates f o r Pred and RHS genera t i on : bgen and fgen

void main (i n t inputs [N]) {

// cho i c e generator chooses a p a r t i c u l a r entry from inputs or

r e tu rn s 0 or 1

i f (bgen (choice ,BND PRED)) {

a s s e r t (LHS(inputs) == fgen (inputs , BND RHS, f s i z e)) ;

// fgen i s modi f i ed to re turn i t s s i z e in a r e f e r e n c e

va r i ab l e

a s s e r t (f s i z e < RHS MAX SIZE) ;

// Assert that f s i z e i s l e s s than RHS MAX SIZE

}

minimize (f s i z e) ; // always f i nd sma l l e s t p o s s i b l e RHS

}

58

5.4 Predicate search: Refinement

Now that we have the machinery to generate a “correct” rule, we want to find multiple

rules in a structured manner. Since, given a predicate we are already ensuring that

the RHS is the smallest possible among all possible reductions, now we want to find

rules with predicates of different strengths. We realized that there are some (Pred

,RHS) pairs which are definitely more superior (at least locally) than others. For

instance, if we know that ∀x.Pred 1(x) =⇒ Pred 2(x) and if size(RHS 1) ≥

size(RHS 2) then clearly the rule with (Pred 2,RHS 2) is better than the rule with

(Pred 1,RHS 1) as Pred 2 is true more often than Pred 1 and also more effective

in terms of size reduction.

Figure 5-1: Predicate refinement: graphical representation

To avoid capturing such rules, we use a predicate refinement based procedure

as shown in table ??. In the picture shown in figure 5-1, we see that there is an

59

incomparable boundary of (Pred ,RHS) pairs and those are the ones we want to

keep and test for their applicability (arrows show the order of generation of the rules

using our algorithm). Note that sometimes we may miss some rules because we started

too early in the chain (so its better to start from a rule with considerably larger size

so as to make it more probable to start later in the chain).

1. Start with Pred 0 = false. For i ≥ 0:
2. Find Pred i+1 such that Pred i =⇒ Pred i+1 but Pred i 6= Pred i+1

3. Find RHS i such that ∀x.Pred i(x) =⇒ (LHS (x) == RHS i(x))
4. Repeat steps 2 and 3 as long as its possible to do so.
5. Find another Pred which hasn’t been seen till now and go back to step 2.

Table 5.1: Predicate refinement: method

5.5 Examples

We conclude this section by presenting rules from two domains which we obtained

from the existing benchmark DAGs. These are special in the sense that even after

years of optimizations, we weren’t able to discover these rules manually. Also, they

are applicable with a true predicate: a free optimization available to us. Generating

and implementing such complicated rules was not possible earlier, but, due to our

automated algorithm, its now possible to efficiently generate and code up these rules.

5.5.1 From Autograder Benchmarks

Consider the rule shown in figure 5-2. It’s a simple rule based on Boolean logic.

Simple transformations using DeMorgan’s laws can give us the proof of correctness

as well. The important thing to note here is that since we know that the components

of the proof of this rule are very small local transformations, it also means that

there are multiple other transformations that can take place for the same LHS and

we would have no idea which ones to chose while trying to come up with the rule.

60

The automated method makes it very likely that this particular rule will be used

very often in this domain (since the benchmarks have the LHS -like patterns in

abundance) and it also ensures that this is the smallest possible RHS available for

transformation under the assumption Pred = true.

Figure 5-2: Example Rewrite rule from Autograder benchmarks

5.5.2 From Storyboard Benchmarks

Consider the rules shown in figure 5-3. One of the rules (bottom side) works for

Pred = True which means that it is always applicable. Moreover, the LHS pattern

is the most common one found in the Storyboard benchmarks. Note that we ran

the experiments on DAGs obtained after applying the existing optimizations. So,

we were able to find a rule which is heavily applicable (also verified by results) and

the existing optimizer couldn’t do much about it mainly because its difficult to find

such complicated patterns manually and also even when one has seen such patterns,

they are very specific to the domain. The pattern matching cost might not justify

the rule being present when looking at other domains. Analytically, the rule says

that in this pattern there is always a few nodes or operations which are redundant

61

and independent from the output (a[x0 + x1] = a[x0] statement). Also, we found

another rule for the same pattern which reduces the size of the DAG to 1 node

from 6 (not counting the inputs) when a simple predicate is true (x0 == x3). This

example brings up some important aspects of our algorithm and its comparison with

the manual process, so, we re-iterate them here:

Figure 5-3: Example Rewrite rules from Storyboard benchmarks

• We could find a rule using the automated algorithm which we couldnt find

earlier manually

• It is difficult to find huge patterns manually, its difficult to analyze them and

even observe that theres an opportunity for optimization

• Even after finding an opportunity, writing replacement code is tedious (high

chances of introducing bugs)

• The rules are very domain specific, we don’t know if we can add it for other

domains since considerable time for matching will be spent

62

• We obtain multiple rules from one pattern, now they can share the pattern

matching code for faster rule application

63

64

Chapter 6

Efficient Code Generation for

Rewrite Rules’ application

We have a set of “potentially useful” rewrite rules for each domain after running the

Sketch files and parsing the output as triples (LHS ,Pred ,RHS). We need to

generate efficient code for implementing these rules in the Sketch back-end. Earlier,

the tool developer had to add rules to the tools in a way so as to offer some readability

and modularity. Now, there is no need to stick to this constraint. The absence of this

readability and modularity constraint offers a possibility of “global” optimization by

considering all rewrite rules together. In particular, the most important one being

that now we can share the burden of pattern matching among all the rules. This is

particularly useful when the LHS is the same for multiple rules like the ones shown

in figure 5-3. Using this idea and some standard predicate evaluation techniques

we can encode the process of rule application much more efficiently than the earlier

optimization phase.

To make the process of rule application faster, we first share the pattern matching

burden across all LHS DAGs from all rules available to us and then secondly, we hard-

code all aspects of the rule application including predicate evaluation and replacement

65

procedure. These two steps ensure that we don’t spend a lot of time in pattern

matching and also apply rules quickly (avoiding recalculation of temporary variables).

We explain the steps in detail:

6.1 Merging LHS DAGs’ nodes and obtaining “Match-

ing Map”

The first step in this code generation process is to merge nodes of all the LHS

DAGs available to us in a way so that nodes with similar predecessors can become

indistinguishable and the “decision nodes”, the ones where you can be rest assured

that the matching with a rule has completed, can be marked easily. We achieve this

by going over the DAGs in a topological order one by one and whenever we see a node

such that another node of its “signature” has already been visited then we just assign

this node the same id as the matched node and continue. The “signature” of a node

is defined by the ids of its parents and the type (operation) of the node itself.So, all

source nodes with no parents will get merged together, and, if we see a node of type

“DIV” with parent’s ids being x, y (in order) then its signature is the ordered set

(DIV, x, y), we check if there is another node with this signature available in the new

merged DAG which is being constructed already (using a hash map for searching). If

yes, we just assign this node the same id as the node we just found in the map, and, if

not, then, we create a new id for this node and add its signature to the map pointing

to this newly generated id. In the end of this pass, we have a merged DAG where

each node has a unique signature and the nodes which correspond to output values

of the individual DAGs are marked special. The final result from this phase that we

need for the next phase is just the hash map which maps “signatures” to ids of nodes

and also tells which are the output node ids (for each LHS DAG). The process of

constructing this “Matching Map” is explained with the help of an example in figure

66

6-1 where we merge two maps and in the end to obtain a “signature to id map“.

Figure 6-1: Example generation of a Matching map from merging of multiple LHS
DAGs

67

6.2 The process of Matching and Replacement

Using the “Matching Map” obtained in the previous section, we can auto-generate

efficient matching code and also generate code which will make the replacements.

First we show how the matching and replacement procedure can be carried out on a

sample problem DAG if we had the “Matching Map” and details of each rule. And

then we will show how to generate code which will do the same efficiently.

The matching and replacement procedure begins with assigning a set of integers

In to each node n in the problem DAG (which we want to optimize) and initialize In

to be the set of ids of all “source” nodes (the nodes which do not have any parents

and represent the inputs to the LHS DAGs from the rules). Note that we merged

all input nodes to the same node in the previous step, so, this instantiation will just

make all Ins a singleton set (This is done for simplification, in practice there can be

multiple source nodes based on the type of output they represent like Int, Bool, Array

of Int etc).

We traverse through the DAG in a topological order and at the current node n:

• we check if any ordered set of ids from parents of n coupled with type of n

corresponds to an entry in the “Matching Map” i.e. we find for all possible

“signatures” of this node (type(n), i1, i2, ..., ik) such that ij ∈ Ipj where node pj

is the jth parent of n (in a fixed order).

• For each such entry: we add the mapped id in the “Matching Map” to the set

In of this node.

• At any stage if we find that this node matches an id which is marked as output

node of a particular rule’s LHS DAG, we try to apply the rule:

1. We first find the “inputs” of the matched LHS DAG (note that our algo-

rithm guarantees their existence)

68

2. Then we check if the predicate Pred of the rule is satisfied.

3. If it is not satisfied, we just move on to the next rule whose LHS also

matched at this node or to the next node if no rule is available.

4. If Pred is satisfied, then, we create new nodes and attach them to this

base node. Then we run the whole matching algorithm on each new node

as well and then proceed in the algorithm to the next node.

An example of this algorithm in practice is shown in figure 6-2.

Figure 6-2: Example matching of multiple LHS DAGs at the same time, along with
application of the rule on the fly

69

6.3 Predicate Evaluation

Since we do not know the exact values that the node represent, we collect some esti-

mates about them. We wrote a PredValue class which compares for “equality”, “less

than” and other predicates as best as it can (using pointer equality or estimated val-

ues) and then combines them for other operations based on a type based set of rules. A

PredValue object can be of either of these four types: Bool(b), Int(i), Pointer(p), Unknown.

All types have an associated value with them of that type except Unknown. Equal-

ity and other comparisons with the same types (or compatible types like Bool and

Int) can be easily evaluated. And, combination operations like “OR” are evaluated

differently for each pair of type based on some simple rules like ORBool(true) =

Bool(true) where represents any value.

6.4 Hard-coding everything

To avoid storing the “Matching Map” in the memory and then looking up the signa-

tures, we just hard-code the matching routine. We assign a set (of potential matched

ids) to each node. And then we generate the code which will update the set to a new

value based on the values of the node’s parents (some if...then...else statements with

hard-coded values for ids). We also generate code for checking if one of the matched

ids is an output node from one of the rules’ LHS DAG and then write predicate

evaluation and replacement code for that node (which is simply a set of statements

creating new nodes, assigning their parents and then disconnecting this node). A

sample predicate evaluation and replacement code generated by our tool is shown

here:

// c a l c u l a t e inputs to LHS DAG

inputsx0 = base−>mother−>mother ;

inputsx1 = base−>mother−>f a t h e r ;

70

inputsx3 = base−>f a ther−>mother ;

bool goahead = f a l s e ; // eva lpred

PredValue t0 (inputsx0) ;

. . .

t3 . binop (”EQ” , t2 , t0) ;

goahead = t3 . va lue ;

// r ep l a c e i f eva lua t i on o f the Pred i s True

i f (goahead) {

map<int , boo l node∗> idb ;

idb [0] = inputsx0 ;

. . .

idb [3] = new EQ node () ;

idb [3]−>mother = idb [0] ;

idb [3]−> f a t h e r = idb [2] ;

idb [3]−>addToParents () ;

. . .

}

This code is highly efficient because not only it takes the benefit of shared pattern

matching, it also avoids multiple stacks of function calls (since everything is highly

un-modular and hard coded) and creation of useless temporaries (which we usually

create only for readability).

71

72

Chapter 7

Implementation overview

We built a tool-chain for achieving the automation of the whole process. The major

steps of the tool-chain are explained with some details in this chapter. A diagram-

matic flow of the tool-chain is shown in figure 7-1.

Benchmark DAG generation (Sketch tool)

Benchmark DAGs are generated from Benchmark Sketch specifications using the

Sketch tool (binary) itself. We use the --debug-output-dag flag to get the DAGs

in a parsable format.

DAG parsing and Feature-vector generation (C++)

We wrote a simple parser of the DAG output obtained from Sketch and generated

the feature vectors as per the need of the clustering tool. We marked each node

(representing the sub-graph DAG rooted at that node) with its id so that we can

map the results back to the nodes.

73

Figure 7-1: Implementation Tool-chain

Clustering (Bayon)

The clustering tool: Bayon [7] takes the feature vector specification and outputs the

node ids with the corresponding similarity “score” and sizes of clusters. Clustering

takes about a minute for the largest data-set.

74

Sketch specifications’ generator (C++)

This tool written in C++ takes the output of clustering tool and in the order of

cluster sizes takes a (randomly selected) candidate DAG from each cluster (similarity

class) and generates a Sketch specification for it (along with the RHS and Pred

generators’ library).

Sketch solving and Predicate Refinement (Sketch Tool + Bash script)

The specifications generated by the previous step are solved in parallel using the

Sketch synthesis tool (binary) and the outputs are stored in different files. Parallel

processing is essential for faster solving. It reduced the time taken to generate the

outputs from the order of an hour to 10 minutes. We also do predicate refinement

and call the Sketch tool again a bounded number of times (parameter to the script)

with modified Sketch specifications which look for a different (refined) predicate.

Extracting the RHS DAGs (Bash script)

Again, in parallel, each Sketch output is processed and after some bash scripting

using awk,sed,grep etc, we produce the LHS DAGs in the same format as supported

by Sketch --debug-output-dag flag, shown in table 4.1.

Recomputing predicates and extracting them (Sketch tool + Bash script)

The predicates are further simplified using Sketch (recomputing them and minimiz-

ing their sizes because minimizing two costs at the same time doesn’t work well in

Sketch , so we move the Pred size minimization to this step). This is also done in

parallel for each rule.

75

Consolidation and Generating optimized code for rule application (Modi-

fied Sketch back-end in C++)

We modified the back-end code for Sketch to incorporate a new optimization class

which can be easily activated/deactivated by a flag. Some part of this class is gener-

ated automatically using the set of all rules to be considered. This set can be provided

as a sub-set of the original set of rules. We do multiple tests to figure out the best

subsets (based on which rules are applied).

Completing the loop, regenerating the benchmark DAGs

Now, we add the optimized code to Sketch back-end and again run Sketch tool on

the original benchmark sketches to generate new DAGs. We can potentially redo the

cycle but we stop when the effect of the new rules is not positive.

76

Chapter 8

Experiments

In these experiments we will show the following:

• validate our hypothesis (on two different domains) that the rewrite rules are

domain specific

• Even after years of work going into rewrite rule based optimizations in Sketch

, we were able to optimize the benchmark DAGs even further

For the latter, we ran our tool-chain on DAGs obtained from Sketch after running

existing optimizations and rewrite rules (We will call this existing phase “DagOptim”

from here on-wards). The two different domains we ran our experiments on, are: (i)

Autograder for MOOCs [20] and (ii) Storyboard examples [21]. In both cases, we

obtained new rules which are fairly complicated and also reduced the size of the

problem even beyond what the state of the art optimizer could do.

8.1 Setup and Methodology

We introduce our analysis as a separate phase of optimization (We will call this new

phase “SosOptim” from here onwards: “SOS” is an acronym for “Synthesis of Synthe-

sizer”) right at the place in Sketch back-end code where the DAGs were extracted

77

from. We follow the tool-chain shown in figure 7-1 and perform clustering while

looking for patterns of depth 3. We order the patterns obtained by their number of

occurrences (number of members in the same cluster) and took the top 150 patterns

for each domain. These patterns were converted to Sketches and fed to the Sketch

solver while implementing the predicate refinement technique on top of that. We ob-

tained 0−5 rules per pattern (most of the patterns were already optimized or required

a stronger predicate). Our choice for the grammar was only equalities among input

variables and their conjunctions. The rules produced by this phase were transformed

into code using our efficient code generator and added to Sketch code itself. Finally,

the benchmark DAGs were evaluated on the new Sketch tool and the difference in

the sizes of problem DAG before and after the “SosOptim” process were noted.

8.2 Observations

8.2.1 comparison of “DagOptim + SosOptim” with “DagOp-

tim”

We present our findings in figure 8-1. We obtained 3 − 6 rules per domain which

reduced the size of all benchmark DAGs and look fairly different from each other.

The sizes decreased by 2-10% for each benchmark in both domains. Note that we

were able to find these rules even when the existing optimization rules already use

many smaller rules which eliminate applicability of composite rules. Which means

that the new rules are either “minimal” or are independent of all composites of the

existing rules in Sketch . Some rules generated by this method are shown in figures

8-2, 5-3 and 5-2.

78

Figure 8-1: Dag sizes of a few benchmarks while running Sketch with and without
auto-generated optimization code (“SosOptim”)

8.2.2 Domain specificity

We already observed that the structure of the rules generated for different domains

were exhibiting different patterns (our fundamental hypothesis).We also verified from

the clustering phase that the statistically significant patterns in one domain and much

different from the other domain. Table 8.1 shows the effect of applying generated rules

from one domain on another. As it can be seen, the rules generated by out tool are

bigger patterns and complicated enough that they do not apply at all to the other

domain.

79

Rules from Autograder Domain

Rules from Storyboard Domain

Figure 8-2: Rules generated from different domains

Also, we present the data obtained from profiling existing rules from “DagOptim”

in figure 8-3. The x-axis shows rewrite rules which were applied significant number

of times and the y-axis tells the percentage of the number of times it was used in the

respective benchmarks. As one can observe from the graph, many rules which are

used for Autograder domain are not used for the Storyboard domain and vice versa.

There are many rules that have a huge impact and are applicable specifically to a

particular domain.

80

RULE NO. Autograder Storyboard
A1 3521 0
A2 1457 0
A3 832 0
A4 1009 0
S1 0 880
S2 0 476
S3 0 1592
S4 0 984

Table 8.1: Number of applications of rules generated from Autograder domain (Ai’s)
and rules generated from Storyboard domain (Si’s) on benchmarks from both domains

Figure 8-3: Applications of existing rewrite rules from “DagOptim” on different do-
mains

81

82

Chapter 9

Conclusion

We conclude by reiterating the contributions made in this thesis and possible future

work encompassing the long term vision. We proposed a general automated process

of generating “Rewrite Rules” for Solvers and tools employing Solvers (possessing a

pre-processing phase). We also tested it for multiple domains in Sketch showing the

following properties:

1. Relevance and Statistical significance: The rules that are generated are focused

towards applicability on the benchmark problems

2. Domain specificity: we verified our hypothesis that the rewrite rules are domain

specific and our experiments show that the rules which work for Autograder

domain did not work for the Storyboard domain and vice versa

3. Correctness guarantees: Sketch applies bounded model checking to its results,

so, we can guarantee that at least for integers up to a certain bound the rules

are correct. The rules are small enough that it is possible to do full verification

on them and we will do that in future.

4. Correct and Efficient implementation of the transformer: We automatically

generated code for the transformation phase in the Sketch back-end framework

83

which is bug-free by design and employs efficient pattern matching

This chain of methods will save time for the tool developer and eliminate chances

of introducing bugs while writing rewrite rules (since they don’t need to write the

code or even the rules anymore).

Long term vision

Rewrite rule generation is a critical part of pre-processing step for tools employing

solvers. The three steps/building blocks of this step are:

1. Internal representation

2. Rewrite rules

3. Encoding rules

In the long term we would like to automate all three of these i.e. we should

be able to suggest most optimal Internal representation, Encoding rules along with

rewrite rules for a particular domain. As we have seen in section 1.2, one can and

should make domain specific choices for each of them and they can heavily affect the

solver’s running time. We have achieved automation of Rewrite Rule generation and

in the future we want to automate the rest of the chain along with improving this

step further.

84

Bibliography

[1] Nicole E. Baldwin, Rebecca L. Collins, Michael A. Langston, Christopher T.
Symons, Michael R. Leuze, and Brynn H. Voy. High performance computational
tools for motif discovery. In IPDPS. IEEE Computer Society, 2004.

[2] Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers.
In Proceedings of the 12th international conference on Architectural support for
programming languages and operating systems, ASPLOS XII, pages 394–403,
New York, NY, USA, 2006. ACM.

[3] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser.
Stratego/XT 0.17. A language and toolset for program transformation. Science
of Computer Programming, 72(1-2):52–70, 2008.

[4] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Partial replay of
long-running applications. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software engineering,
ESEC/FSE ’11, pages 135–145, New York, NY, USA, 2011. ACM.

[5] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Inferring sql
queries using program synthesis. CoRR, abs/1208.2013, 2012.

[6] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In
Proceedings of the Theory and practice of software, 14th international confer-
ence on Tools and algorithms for the construction and analysis of systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[7] Mizuki Fujisawa. Bayon: a simple and fast clustering tool, 2012. [Online; accessed
9-Dec-2012].

[8] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam M.
Szalkowski. GrGen: A Fast SPO-Based Graph Rewriting Tool. pages 383 – 397,
2006.

[9] R. Nigel Horspool. Incremental generation of lr parsers. Computer languages,
15:205–233, 1989.

[10] Zhenjiang Hu, editor. Programming Languages and Systems, 7th Asian Sympo-
sium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings, volume
5904 of Lecture Notes in Computer Science. Springer, 2009.

85

[11] Neil C. Jones and Pavel A. Pevzner. An Introduction to Bioinformatics Algo-
rithms (Computational Molecular Biology). The MIT Press, August 2004.

[12] Zahra Kashani, Hayedeh Ahrabian, Elahe Elahi, Abbas Nowzari-Dalini, Elnaz
Ansari, Sahar Asadi, Shahin Mohammadi, Falk Schreiber, and Ali Masoudi-
Nejad. Kavosh: a new algorithm for finding network motifs. BMC Bioinformat-
ics, 10(1):318, 2009.

[13] Mark A. Kon, Yue Fan, Dustin Holloway, and Charles DeLisi. Svmotif: A ma-
chine learning motif algorithm. In Proceedings of the Sixth International Confer-
ence on Machine Learning and Applications, ICMLA ’07, pages 573–580, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[14] Shuvendu K. Lahiri and Sanjit A. Seshia. The uclid decision procedure. In
Rajeev Alur and Doron Peled, editors, CAV, volume 3114 of Lecture Notes in
Computer Science, pages 475–478. Springer, 2004.

[15] Nikolaj Bjorner Leonardo de Moura. Smt: Techniques, hurdles, applications.
SAT/SMT Summer School, MIT, 2011.

[16] Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. An ultrafast scalable
many-core motif discovery algorithm for multiple gpus. In Proceedings of the 2011
IEEE International Symposium on Parallel and Distributed Processing Work-
shops and PhD Forum, IPDPSW ’11, pages 428–434, Washington, DC, USA,
2011. IEEE Computer Society.

[17] Bas Luttik and Eelco Visser. Specification of rewriting strategies. In M. P. A.
Sellink, editor, 2nd International Workshop on the Theory and Practice of Al-
gebraic Specifications (ASF+SDF 1997), Electronic Workshops in Computing,
Berlin, November 1997. Springer-Verlag.

[18] Geir Kjetil K. Sandve and Finn Drabløs. A survey of motif discovery methods
in an integrated framework. Biology direct, 1(1):11+, April 2006.

[19] K. R. Seeja, M. Afshar Alam, and S. K. Jain. Motifminer: A table driven greedy
algorithm for dna motif mining. In De-Shuang Huang, Kang-Hyun Jo, Hong-Hee
Lee, Hee-Jun Kang, and Vitoantonio Bevilacqua, editors, ICIC (2), volume 5755
of Lecture Notes in Computer Science, pages 397–406. Springer, 2009.

[20] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feed-
back generation for introductory programming assignments. SIGPLAN Not.,
48(6):15–26, June 2013.

[21] Rishabh Singh and Armando Solar-Lezama. Synthesizing data structure ma-
nipulations from storyboards. In Tibor Gyimóthy and Andreas Zeller, editors,
SIGSOFT FSE, pages 289–299. ACM, 2011.

[22] Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS
Department, University of California, Berkeley, Dec 2008.

86

[23] Armando Solar-Lezama. The sketching approach to program synthesis. In Hu
[10], pages 4–13.

[24] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans
Kaashoek. Improving integer security for systems with kint. In Proceedings of
the 10th USENIX conference on Operating Systems Design and Implementation,
OSDI’12, pages 163–177, Berkeley, CA, USA, 2012. USENIX Association.

[25] Wikipedia. Network motif, 2012. [Online; accessed 9-Dec-2012].

[26] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça
de Moura. Efficiently solving quantified bit-vector formulas. Formal Methods
in System Design, 42(1):3–23, 2013.

[27] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for au-
tomatically enforcing privacy policies. In Proceedings of the 39th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’12, pages 85–96, New York, NY, USA, 2012. ACM.

87

