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Abstract

Measurements of the quasielastic (e,e'p) reaction have been made on 3He and 4He using the
high-duty factor beam and high-precision 3-spectrometer system at the Insitut fur Kernphysik
in Mainz, Germany. Cross sections were measured at a central momentum transfer qil = 685
MeV/c, and at a central energy transfer corresponding to the center of the quasielastic peak

(W = 228 MeV in 3He and 242 MeV in 4He). The measurements were performed in parallel
kinematics and at three incident beam energies (corresponding to three values of the virtual
photon polarization, e) to study the longitudinal/transverse behavior of the cross sections.
Coincident electrons and protons were detected in Spectrometers A and B respectively, while
Spectrometer C monitored the luminosity by continuously measuring electrons scattered from
the cold-gas Helium target. The momentum of Spectrometer B was varied in four steps to cover
a range of proton momentum from 396 to 711 MeV/c, corresponding to a broad range of missing
energy (0-150 MeV) and missing momentum (0-300 MeV/c). Calibration measurements of
elastic and quasielastic electron scattering from 12C were performed to study the solid angle
acceptance of Spectrometers A and B. Additional measurements of Helium elastic scattering
were used to determine the absolute density of the Helium gas target.

Absolute (e,e'p) cross sections for 3He and 4He were obtained as a function of missing
energy (Em) and missing momentum (pm). Radiative corrections were performed with a two-
dimensional unfolding technique, which revealed very large radiative contributions from the
two-body breakup channel to the continuum region. At high Em (> 20 MeV in 3He, > 45 MeV
in 4He) and low pm (< 100-150 MeV/c) the radiatively-unfolded measured cross sections were
consistent with zero within our precision. This result was confirmed with a Monte Carlo simula-
tion, which reproduced the shape of the measured cross section at one of the 3He kinematics by
applying radiative effects to a PWIA model. At higher pm, the measured cross sections at high
Em were found to be increasingly dominated by background, which prohibited the extraction
of detailed cross sections in the high (Em,pm) region.

At low missing energy (Em < 20 MeV in 3He, Em < 45 MeV in 4He) and low missing
momentum (pm < 100-150 MeV/c), radiative-corrected cross sections were determined with
an estimated systematic uncertainty of 5-6%. Experimental spectral functions and momentum
distributions were extracted from the data, employing de Forest's orep prescription for the
off-shell e-p cross section [18] and the free nucleon form factors of Simon et al. [46]. These
data showed excellent shape agreement with several different theoretical spectral functions and
momentum distributions, as predicted by PWIA. Accounting for an estimated 12% reduction
due to final-state interaction (FSI) effects, the magnitude of the measured spectral functions
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and momentum distributions was 3-22% below the PWIA+FSI prediction. The 4He results
indicated that the ratio (L/T) of the longitudinal (L) and transverse (T) response for both the
two-body and continuum channels is consistent with u0cci The corresponding results in 3 Heep

indicated that L/T is larger than that given by o C1, although the enhancement is comparable
to the systematic uncertainty. Overall the (e,e'p) cross sections for 3 He and 4He at these
kinematics are relatively well-described by PWIA+FSI. More detailed theoretical predictions
are required to further interpret the data.

Thesis Supervisor: William Bertozzi
Title: Professor of Physics



5

"...It seems probable to me, that God in the Beginning form'd Matter in solid,
massy, hard, impenetrable, moveable Particles, of such Sizes and Figures, and with
such other Properties, and in such Proportion to Space, as most conduced to the
End for which he form'd them.. .their Truth appearing to us by Phaenomena, though
their Causes be not yet discover'd."

Sir Isaac Newton, Opticks, 1730.
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Chapter 1

Introduction

A powerful technique for studying the structure of the nucleus is electron scattering, in which

the incident electron interacts with the nucleus via the electromagnetic (EM) interaction. The

principal advantages of the EM interaction are that it is well-understood from quantum elec-

trodynamics (QED), and it is relatively weak compared to the hadronic interaction between

nucleons. The weakness of the interaction generally allows the use of the Born Approximation,

which simplifies the form of the scattering cross section. It also means that the EM probe can

fully sample the nuclear volume, in contrast to hadronic probes which interact mostly with the

outer surface of the nucleus.

One disadvantage of electron scattering is that the highly-relativistic electrons used readily

radiate real and virtual photons. The measured cross sections therefore need to be radiatively-

corrected, or alternatively reaction models must include radiation processes. Although the

mechanisms behind radiative corrections are described by QED and are hence well-understood,

the kinematics of the radiation causes a re-distribution of the cross section that can be quite

complicated. Depending on the circumstances, the radiative corrections can also be very large.

In electron scattering, the incident electron transfers energy (W) and momentum (q) to the

target through the emission of a virtual photon. At momentum transfers of several hundred

MeV/c, the virtual photon has a wavelength of the order of 10-15 meters, so that it can resolve

objects approximately the size of a nucleon. At this scale, theoretical models are typically

based on a nucleus composed of strongly interacting individual nucleons. The effects of nucleon

structure (that is, of the quarks and gluons comprising a nucleon) are accounted for by the
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electromagnetic form factors that describe the charge and magnetization distributions of the

nucleons.

To describe a typical nucleus (A>3) at these scales, most theories start from an indepen-

dent particle model (IPM). In an IPM, the system of strongly interacting nucleons is replaced

by nucleons moving independently, within the constraints of the Pauli exclusion principle, in

a mean-field potential which represents the average effect on one nucleon of all the others.

This single-particle potential can be derived with the Hartree-Fock technique [1] using a phe-

nomenological 2-body nucleon-nucleon (NN) potential, which is determined from NN scattering

data and the measured properties of 2H. In addition, one needs to add short and long-range

properties to describe the influence of three-body forces and density dependence. The single-

particle wavefunctions can then be determined by solving the Schr6dinger equation for the

single-particle potential. For the two- and three-body systems, the single-particle wavefunc-

tions can be obtained directly from the NN potential without resorting to the IPM approach.

From these wavefunctions, a variety of nuclear properties are calculated. Experimental

measurements can then be performed to check the validity of the above picture, and to look

for currents and new degrees of freedom that go beyond the traditional picture, such as meson

exchange currents or isobar configurations.

In inclusive (e,e') electron scattering experiments, the measured cross section exhibits a

broad peak known as the quasielastic peak, which largely corresponds to the knockout of a

single nucleon by the incident electron. This description of the peak is supported by the fact

that it is centered approximately at an electron energy transfer W = q,/2M, where q, is the

4-momentum transfer of the scattered electron and M is the mass of the nucleon. This is the

same relation as for the free electron-nucleon scattering process. In addition, the width of the

quasielastic peak can be successfully interpreted as arising from the Fermi motion of a nucleon

within the nucleus. Measurements of inclusive (e,e') cross sections on a range of nuclei in this

region support the traditional mean-field view of the nucleus [2, 3, 4].

However, measurements of the separated longitudinal and transverse response functions

which comprise the (e,e') cross section reveal a problem with our current understanding of the
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reaction process in the quasielastic region. If the process is truly quasifree, the transverse and

longitudinal scaling functions fT(y) and fL(y) should be equal (where y is the scaling variable

defined in Ref. [2]). For 4He [5] and 12 C [6] they differ substantially, even for y < 0 where

the effect of the delta (A) should be negligible. For 4 He, Carlson and Schiavilla [7] were able

to reproduce the longitudinal and transverse responses in a calculation that included meson

exchange currents (MEC) and final-state interactions (FSI). In contrast to the heavier nuclei,

measurements of (e,e') on 3 He [5, 8] found fT(y) and fL(y) to be equal for y < 0, as expected

for a quasifree process.

A similar situation is seen in measurements of the (e,e'p) reaction in the quasielastic region.

For the 2-body breakup of 3 He, the longitudinal and transverse components of the spectral

function, SL and ST, were found to be equal, as expected [9, 10]. However, for 4He the longitu-

dinal strength was found to be suppressed with respect to the transverse strength by 20-40%

[10], which is similar to what has been seen in inclusive scattering. In the continuum region

(i.e. at missing energies above the 3-body breakup threshold), a suppression of SL relative to

ST was also seen in 3 He [11]. However, it should be noted that this measurement was performed

in the dip region, where meson-exchange currents and effects of the A (both transverse) are

expected to be enhanced compared to the quasielastic region.

In 12 C at quasielastic kinematics, SL and ST were found to be equal for the 2-body breakup,

but an enhancement of ST over SL was seen at higher missing energies, starting at about the

2-nucleon emission threshold [12]. This led to the speculation that the enhancement might

come from some new transverse process involving at least two nucleons.

These and other pieces of experimental evidence seem to indicate some problems in the

theoretical understanding of the quasielastic region. Whether the problem is with the dynamics

of the reaction (for example, from radiative effects) or with our understanding of the nucleus

(such as high momentum components, short-range NN correlations, or MEC) remains to be

seen. This thesis reports on a systematic study of the longitudinal and transverse responses

for the (e,e'p) reaction in 3He and 4He in the quasielastic region, which is of interest for the

following reasons:



1. Exact 3-body calculations to the continuum are now becoming available, making 3 He an

attractive testing ground for effects that are not included in conventional theory. Modern

calculations are also forthcoming on the 4-body system.

2. The difference in the scaling functions fT(y) and fL(y) measured in inclusive 4 He(e,e') is

in striking contrast to the results in 3 He(e,e'), where no difference is seen.

3. Similarly, the difference in SL and ST measured in 4 He(e,e'p) 3H is in contrast to the

measurement in 3 He(e,e'p)2 H, where no difference is seen.

4. The results on 12C(e,e'p) at high missing energy suggest multi-nucleon processes. The

difference in nuclear density between 3He and 4 He may be important when investigating

such processes.

5. The high-precision, high-duty factor setup at Mainz enables the measurement of these

cross sections to a high statistical and systematic accuracy. This is particularly important

in the high missing energy region, where previous measurements have shown that the

(e,e'p) cross section is small in these two nuclei.

In Chapter 2, an overview of the (e,e'p) reaction formalism is given and all kinematic vari-

ables are defined. The experimental setup at Mainz, where the measurements were performed,

is discussed in Chapter 3. The techniques and analysis of the various calibrations and nor-

malizations are presented in Chapter 4, and the analysis of the (e,e'p) data is discussed in

Chapter 5. The final results for the (e,e'p) cross sections are given in Chapter 6, and finally

the conclusions and summary are presented in Chapter 7.
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Chapter 2

The (e,e'p) Reaction

Overview

A brief review of the (e,e'p) reaction formalism is given. The kinematic variables are defined, and

the the most general cross section is given in the Plane Wave Born Approximation (PWBA). The

Plane Wave Impulse Approximation (PWIA), which is a simple model of the (e,e'p) reaction,

is introduced.

2.1 Kinematics

We describe the kinematics of the (e,e'p) reaction using the following four-vectors:

particle

incident electron

scattered electron

target nucleus

detected proton

residual nucleus

virtual photon

4-vector

ki = (Ei, kz)

kf = (Efkf)

PA (EA, PA)

pp = (E, p)

PB = (EB, 5 B)

q = (w, q

Figure 2-1 contains a diagram illustrating the various vectors. Note that in the figure p. is for

the scattered proton and corresponds to our pp.

In an (e,e'p) experiment, the momentum of the incident and scattered electrons and of the

detected proton are measured, so that ki, kj, and pp are known. Additionally, in the laboratory
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0 A Opg

Figure 2-1: Kinematic definitions for the (e,e'p) reaction. Figure from ref. [13]

frame the target nucleus is at rest so that PA = (MA, 0). The four-momentum of the virtual

photon can be calculated from

q = ki - kf = (wq) (2.1)

corresponding to an energy w = Ej - Ef and 3-momentum transfer q= ki - kf. Note that

q2 =W2 - qI 2 < 0 (2.2)

and we define

Q2 = 2 > 0. (2.3)

The electrons that we consider are ultra-relativistic (i.e. k > me), so that Ej = Iki and

Ef 1 Jf|I is a very good approximation.

The scattering plane is defined as the plane containing ki and kf, and the reaction plane is

similarly defined by q and p ,. The angle between the scattering and reaction planes is given

by q. The two planes coincide when q = 0, which is referred to as "in-plane" kinematics. The

angle of the detected proton with respect to q is labelled Opq, and the condition 0pq = 0 is
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referred to as "parallel" kinematics (i.e. the detected proton emerges parallel to q).

The three-momentum of the recoil nucleus, fB, can be calculated by applying conservation

of 3-momentum at the reaction vertex:

PB = q- pp (2.4)

We define the missing momentum to be equal to PB,

Pm = PB = q - pp (2.5)

Note that some authors (for example, Ref. [13]) use the opposite sign convention ( -m )

However, we will generally be dealing with the magnitude of pm so that this difference is

inconsequential.

The excitation of the system is given by the missing energy, which we define as

EmzW ( pp2+M 2 -MP)--(p B 2 +MA_1 2- MA1) (2.6)

where MA-1 is the mass of the nucleus which has a mass number (A - 1). Others (for example,

Ref. [13]) use another expression for the missing energy which differs slightly from our definition

in Eqn. (2.6). At our kinematics the two expressions yield approximately the same value, as

discussed below.

In Ref. [13], the missing energy is defined as

Sm = M + MB - MA (2.7)

where we denote this missing energy as Em to distinguish it from the Em defined in Eqn. (2.6).

In Eqn. (2.7) the recoil mass, MB, includes the excitation energy of the recoiling nucleus

and all relative kinetic energies associated with unobserved particles in the final state. In the

laboratory frame, the target nucleus is at rest, so that PA = 0 and EA = MA. Conservation of

2.1. Kinematics 29
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energy yields

w+MA = E+EB (2-8)

= Mp + Tp + MB + TB (2.9)

so that

Mp +MB-MA=W-Tp-TB (2.10)

where Tp and TB are the kinetic energies of the detected proton and recoiling nucleus, and MP

and MB are there masses. Substituting into Equation (2.7) gives

Tm = W-Tp-TB (2.11)

= w-( pp2I+-M 2 -MP)-( pB2 + MB2 MB) (2.12)

At our kinematics, PB < MB so that the kinetic energy of the recoil system (TB) is small. We

can therefore make the substitution MB e MA_1 in TB, so that TB ( PB2 + MA_ 2 -MA1).

The missing energy is then

Em W-( pp2 +±M 2 M)( pB2 + MA1 2 - M_1) (2.13)

where the RHS is equal to the definition of Em given in Eqn. (2.6).

2.2 The (e,e'p) Cross Section in the Plane Wave Born

Approximation

In calculating the (e,e'p) cross section for an arbitrary nucleus, the largest term is the one

corresponding to the exchange of a single virtual photon, as shown diagrammatically in Figure

2-2. Higher order terms contain more than one photon, and are suppressed due to the weakness

of the electromagnetic coupling constant. In calculating the cross section, these higher order
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Figure 2-2: The (e,e'p) reaction in PWBA.

terms can therefore be discarded and only the single-photon exchange process considered. This

is known as the Plane Wave Born Approximation (PWBA).

In PWBA, it can be shown that the most general (e,e'p) cross section consistent with Lorentz

covariance and conservation of the electron current is a function of only four independent

structure functions [14, 15]. This cross section can be written as (see Ref. [16]):

dwdppdedp - 2 1 1 UT + EUL + E(1 + E)TL Cos q + EUTT cos 2q#} (2.14)

where E is a measure of the transverse linear polarization of the virtual photon and F is the flux

of virtual photons emitted by the electron:

E = 1 + 22 tan2 ( (2.15)

= 1 (2.16)
27r2 E Q2 1 -

The four independent response functions (rT, OL, UTL, UTT) are related to matrix elements of
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various components of the nuclear current, f (see Ref. [16]):

Q2
UL 2 -Ijo1 2

q2

cTT cos 2 # = -2Re(JJ4 1 1 )

where Jo is the longitudinal component of the current (parallel to q) and J±1 are the transverse

components (both perpendicular to q). The response functions UL and UT are therefore due only

to longitudinal and transverse components of the current, respectively. The response function

rTL is due to the interference of transverse and longitudinal components of the current and

JTT is due to the interference of the two transverse components.

If the momentum vector of the detected proton is parallel to qj, then the angle 9 pq is zero.

This is referred to as parallel kinematics. It can be shown [16] that the response functions OcTL

and 'TT are proportional to sin(Opq) and sin 2 (Opq), respectively, so that in parallel kinemat-

ics they are both zero. The cross section then contains only the longitudinal and transverse

responses:

da 2 e 2 7
= p 2 I'{jO + C-L (2.17)

dWdppd~edGp 22|q

In general, all of the responses are functions of the four independent scalars (Q2, q - PA, q*

PpPp - PA). An equivalent and usually more convenient set of variables is (Q2, W, Pp, Opq). By

holding these four variables constant and measuring the experimental cross section in parallel

kinematics at two or more values of E, the response functions OT and UL can be determined

from Equation (2.17). This technique is referred to as a Rosenbluth Separation [17].
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2.3 The Plane Wave Impulse Approximation (PWIA)

In PWIA, the (e,e'p) cross section is derived using the PWBA and the following further as-

sumptions:

1. The single virtual photon radiated by

proton in the nucleus,

2. the proton exits the nucleus without

state interactions (FSI)), and

the scattered electron is fully absorbed by a single

undergoing any further interactions (i.e. no final

3. it is this proton which is detected.

A diagram of the (e,e'p) process in PWIA is shown in Figure 2-3. Applying conservation of

momentum to the photon-proton vertex, the initial proton momentum, i, is given by

pi = pp - qi (2.18)

Comparing to equation (2.5), we see that the initial proton momentum is related to the missing

momentum, pm, by

pi =-pM (2.19)

By measuring the missing momentum in an (e,e'p) experiment, one can therefore determine the

initial momentum that the struck proton had inside the nucleus before the scattering occurred.

Note that this interpretation is only valid within PWIA.

The (e,e'p) cross section in PWIA is given by (see Ref. [18]):

d6ci.
=Pp X ep X S(pi, Em)dQedQpdpedpp

(2.20)

where Ue, is the off-shell electron-proton cross section. S(pi, Em) is the spectral function, and

represents the probability of finding a proton of momentum pi and energy Em inside the nucleus.

332.3. The Plane Wave Impulse Approximation (PWIA)
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Figure 2-3: The (e,e'p) reaction in PWIA.

An experimental spectral function can be determined by dividing the measured (e,e'p) cross

section by the appropriate factor,

Sex(pi, Em) = x d6 (2.21)
PNjep dQedQpdpedpp

This requires a model of the off-shell electron-proton cross section, gep. We chose to use the

CC prescription of de Forest [18], which is discussed in detail in Appendix G.

If PWIA is valid, then the experimental spectral function determined from the measured

(e,e'p) cross section should be equal to the theoretical spectral function, SexP(pi, Em) = S(pi, Em).

Furthermore, in PWIA the spectral function is only a function of p and Em, so that measure-

ments of SexP at different kinematics should yield the same result if pi and Em are fixed.

This latter statement will be used to interpret the longitudinal and transverse response of the

measured (e,e'p) cross sections.
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Chapter 3

Experiment

Overview

In this chapter the main components of the experimental setup are discussed, including the

electron beam, the targets, and the three magnetic spectrometers. The kinematic settings

of the spectrometers for the Helium (e,e'p) measurements are given, and the technique for

determining the density of the Helium target gas is presented.

3.1 Electron Beam

3.1.1 The electron accelerator

The Mainz accelerator (MAMI) consists of 3 microtron accelerators in series and is capable

of delivering a 100% duty factor beam at a maximum current of 100 puamps and a maximum

energy of 855 MeV. The third and final microtron (shown schematically in Figure 3-1) increases

the energy from 180 to 855 MeV in 90 circulations of the microtron, increasing the beam energy

by 7.5 MeV per turn. Extracted beam is available in 15 MeV steps. The energy width of the

beam is approximately 30 keV FWHM at 855 MeV and the absolute centroid of the beam

energy is known to ±160 keV [19].

3.1.2 Beam Position and Rastering

The beam delivered to the spectrometer hall has a diameter of 0.5 mm (FWHM) and its

absolute position is known to approximately 1 mm [21]. At the location of the experimental
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accelerating section

ted b electron bunches

Figure 3-1: Schematic of the 3rd Mainz microtron. The electron beam passes through a series
of 5 RF cavities on each turn, and acquires 7.5 MeV per turn. Figure is from Ref. [20].

target, a BeO target on the target ladder provides a visual beam spot which is viewed in the

counting house on a video display. Whenever the electron beam was tuned, the BeO target was

subsequently moved into the beam line and the beam position adjusted to fall in the center of

the BeO. The beam spot could be visually centered on the BeO target with an accuracy of 0.5

mm.

When the Helium gas target was used, the incident electron beam was rastered at 3.6 kHz

(2.5 kHz) by t3.5 mm in the horizontal (vertical) direction to distribute the deposited heat and

to prevent large local density fluctuations in the Helium target gas. The rastering is done by a

series of coils placed in the beam line in the horizontal and vertical plane. A sinusoidal current

passes through the coils, generating a magnetic field which deflects the incident electron beam.

Calibration of the beam position is accomplished by the use of a special "SEM" target, which

consists of a metal plate with a hole in the middle that is spanned by two thin havar strips.

When the beam strikes the strips, a current is induced in the metal plate. By determining this

current as a function of the current in the rastering coils, and using the known position of the

havar strips, one can determine the absolute beam location as a function of the current in the

coils. The calibration procedure is described in detail in Ref. [22]. The calibration parameters

obtained in the raster calibration runs in this experiment are listed in Appendix E.
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3.1.3 Current Monitoring

In this experiment, two techniques were used to measure the beam current:

1. F6rster probe - The F6rster probe [23] consists of two toroidal coils that surround the

incoming beam and measure its absolute magnetic field. From the field the absolute beam

current can be calculated to 61 = ± 0.3 pamps [23]. The F6rster probe is therefore most

accurate at high currents, where the relative uncertainty (61/I) in the current is smallest.

2. Photoeffect Monitor - Synchrotron light emitted in the last steering dipole of the beam

line impinges on a stainless steel foil, producing electrons through the photoelectric effect.

The photocurrent varies linearly with the beam current, providing a measure of the current

accurate to ± 1% over a range from 1 nA to 60 pA [23]. After a few hours, changes in the

surface of the foil result in a drift in the absolute calibration of the photoeffect monitor.

The photoeffect monitor was therefore periodically re-calibrated against the F6rster probe

at high current. It can then be used reliably at low currents, where the F6rster probe is

less accurate.

3.2 Targets

3.2.1 Helium Target

The Helium target used in this experiment was a cold-gas 3 ,4He cell operating at a nominal

temperature of 21 K and pressures of 5-10 atm. The target cell was a stainless steel sphere

8 cm in diameter and approximately 82.5 pm thick. The complete target setup is shown in

figure 3-2. A compressor, which uses 4 He as its working gas, produced liquid hydrogen at a

temperature of approximately 20 K. The liquid hydrogen flows down a transfer line into the

target loop, where it cools the Helium target gas. As the hydrogen warmed and evaporated, it

flowed as gas back up the transfer line into the hydrogen reservoir. The hydrogen loop had a

nominal pressure of 2.5 atm.

The target loop is show in Figure 3-3. The liquid hydrogen entered from the top as shown
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Figure 3-2: The Helium target system.

and flowed into the bath surrounding the Helium loop. The Helium loop contained a fan which

circulated the gas in a counter-clockwise direction (for the view in Figure 3-3) down through

the cooling bath and up through the target cell. A heater at the bottom of the loop was used

for warming up the gas when the target was turned off and brought back to room temperature.

A temperature sensor (labelled Tsi in the figure) monitored the temperature of the heater.

The entire loop was enclosed in an evacuated scattering chamber with 120 Pm thick kapton

windows. The vacuum in the scattering chamber was monitored for leaks in the target cell.

The target loop contained temperature sensors (labelled TA and TB in Figure 3-3) above

and below the cell, and a pressure sensor was located at the 3 He supply. These sensors provided

an indication of the cell condition during the experiment but were not used to determine the

absolute gas density, which fluctuates with the beam current. The density was instead obtained

from measurements of elastic scattering cross sections as described in Section 4.2.

3.2.2 Other Targets

In addition to the Helium target, the scattering chamber contained several other targets mounted

on a movable ladder. The ladder could be moved vertically in an out of the incident beam as
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Figure 3-3: The Helium target loop. The symbols TA, TB and Tsi denote three temperature
sensors located as indicated.
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well as horizontally along the beam line. Targets mounted on the ladder included a 32.5 mg/cm 2

12C target, which was used for elastic and quasielastic measurements to study the solid angle

of the spectrometers as discussed in Chapter 4. Measurements of elastic scattering from 12 C

with a sieve slit were also performed to check the spectrometer reconstruction. An approx. 120

mg/cm 2 CH 2 target was used to measure 1H(e, e'p), which provided a check of the angular re-

construction of the spectrometers. The ladder also contained the BeO and SEM targets, which

were used for checking the beam position and calibrating the beam rastering as described in

Section 3.1.2.

In the 12 C(e,e') measurements, the precise location of the target along the beam line was

needed to calculate absolute cross sections. At each target position, the absolute location of

the target along the beam line was obtained from

z = (1.008 x V - 4.478 ± 0.05) cm (3.1)

where V is the voltage across a variable resistor attached to the table and z is the target location

in the beam coordinate system (see Figure 4-1 in Chapter 4). The linear coefficient (1.008) was

obtained from a series of measurements of position and voltage performed before installing the

table, and its estimated uncertainty is negligible (approx. 4 x 10-4). The offset (-4.478) was

obtained from the target position reconstructed in Spectrometers A and B during a 12 C elastic

measurement with sieve slit collimators in both spectrometers. The position was determined

from the values of ytgt and <tgt measured for the central hole of the sieve slit, with an estimated

uncertainty of 0.5 mm.

3.3 The 3-Spectrometer Setup

3.3.1 General Description

The Al Spectrometer Hall at Mainz contains 3 magnetic spectrometers, labeled A, B, and C.

Some basic properties of the spectrometers are summarized in Table 3.1 and a line drawing of

the setup is shown in Figure 3-4. Spectrometers A and C have a similar design and each consist
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spectrometer A B C

magnet configuration QSDD Dciam QSDD
maximum momentum [MeV/c] 735 870 551
maximum induction [T] 1.51 1.50 1.40

momentum acceptance [%] 20 15 25
solid angle [msr] 28 5.6 28
horizontal acceptance [mrad] t100 ±20 +100
vertical acceptance [mrad] ±70 +70 ±70
angular range [deg] 18-160 7-62 18-160
long-target acceptance [mm] 50 50 50
momentum resolution 2 x 10-4 1 x 10-4 1 x 10-4a

angular res. at target (FWHM) [mrad] < 3 < 3 < 3
position res. at target (FWHM) [mm] 6 1.5 6

Table 3.1: Properties of of the Al spectrometers, from Ref. [20].

adesign value

of a quadrupole, sextupole, and 2 dipole magnets. They have point-to-point focusing in the

dispersive plane ((xIO) = 0) for optimal momentum resolution, and parallel-to-point focusing

in the non-dispersive plane ((yjy) = 0) for optimal angle determination. Spectrometer B was

designed to reach small scattering angles, and so has a very different design from Spectrometers

A and C. It consists of a single dipole with a wedge-shaped gap, and has point-to-point focusing

in both planes. It has a reduced angular and momentum acceptance compared to the other two

spectrometers, but has improved target position resolution due to the point-to-point focusing in

the non-dispersive plane. It is also narrower than Spectrometers A and C, allowing it to reach

smaller scattering angles. A detailed description of the three spectrometers and their detector

packages can be found in Ref. [19].

3.3.2 The Detector Package

Each spectrometer contains a detector package as shown in Figure 3-5. It consists of the

following elements:

1. 2 vertical drift chambers (VDCs), each containing 2 wire planes, for precise determination

3.3. The 3-Spectrometer Setup
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Figure 3-4: The 3-Spectrometer Setup at Mainz.



of the particle track within the spectrometer,

2. 2 planes of plastics scintillators in 15 (14 in Spec. B) segments for timing and particle

identification, and

3. a freon-gas-filled Cerenkov counter for pion/electron discrimination.

A number of references cover the details of the various elements of the detector package [20,

24, 25], and an overview can be found in Ref. [19].

3.3.3 Determination of Spectrometer Central Angle

The central angle of each of the three spectrometers is adjusted with a hydraulic system which

moves them along a round platform centered on the scattering vertex. A rail along the platform

is marked with a series of grooves which indicate the angular position. An electronic readout

device on each of the three spectrometers is used to calculate their position from the grooves

to ± 0.6 mm at the rail, corresponding to an absolute angular uncertainty of ± 0.1 mrad with

respect to the scattering vertex [23]. The conversion from readout value (R) to spectrometer

angle (0) in degrees is as follows:

13382.0 - RA
78.65

13451.0 - RB
78.62

13348.9 - RC
c= 7.6(3.4)

78.66

where positive angles are on the left side of the beam line when looking downstream.

3.3.4 Momentum Calibration

The momentum p of a particle detected in one of the spectrometers is determined from

P = Pref X (1+) (3
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spectrom eter ro F1 F2 -2 13 -3[MeV/c [(MeV/c)(kG)_] [(MeV/c)(kG) 2] [(MeV/c)(kG)- 3 1
A 1.0095E+00 4.1631E+01 5.1896E-02 -2.5145E-03
B 4.4459E+00 6.1211E+01 3.3219E-01 -1.6505E-02
Ca O.OOOOE+00 3.2890E+01 O.OOOOE+00 O.OOOOE+00

Table 3.2: Reference Momentum Calibration Coefficients. The parameters for Spectrometers
A and B are from Ref. [26].

apreliminary values. This experiment did not require a precise calibration of Spec. C

where 6 is the particles dispersive coordinate (obtained from the reconstruction matrix discussed

in Section 5.4) and pref is the reference momentum (which depends on the field setting of the

spectrometer). The reference momentum for a given spectrometer at a particular field setting

was determined from either 1.) a standard calibration polynomial that relates the magnetic field

inside the spectrometer (measured by one or more NMR probes) to the reference momentum, or

2.) an absolute calibration of pref obtained experimentally for that spectrometer at a particular

field setting. This is described further below.

The standard calibration polynomial relating magnetic field to reference momentum was

determined by Ref. [26] from elastic scattering measurements performed at a variety of field

settings. In these measurements, the beam energy and scattering angle were well-known, so that

the momentum p of the scattered electron detected in the spectrometer could be predicted. The

reference momentum was then determined by solving for pref in equation (3.5). The process

was repeated for a number of different settings of the spectrometer magnetic field, B, yielding

a set of points (B, pref) that were fitted with a polynomial of the following form:

3

Pref ZJ:iB (3.6)
i=O

with pref in MeV/c and B in kG. The coefficients Fi of the polynomial are listed in Table 3.2.

Note that there is a different polynomial for each of the three spectrometers.

A check on these calibration polynomials for Spectrometers A and B was provided by ana-
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lyzing the 12 C elastic scattering measurements done during our experiment (see Section 4.1.3).

The measurements were performed with field values of 9.448 kG in Spectrometer A and 6.593

kG in Spectrometer B, corresponding to pfA = 396.85 MeV/c and p B = 418.13 MeV/c, re-

spectively (where Pref has been calculated from the calibration polynomials, and the superscript

indicates the spectrometer). As with the earlier measurements used to determine the calibration

polynomials, the energy of the incident beam and the scattering angle were well-known, so that

the momentum of the scattered electron could be predicted. The most-probable energy loss in

the windows and target was then subtracted from this value to determine the momentum of

the electron inside the spectrometer. This value is referred to as the predicted momentum.

The momentum of the electrons was then measured directly from the data using equation (3.5),

with Pref calculated from the calibration polynomial and the measured field. This is referred to

as the measured momentum. For these 12 C elastic measurements, the measured momentum

was found to be larger than the predicted momentum by 0.2 MeV in Spectrometer A and 2.1

MeV in Spectrometer B. This indicated that the calibration polynomial for Spectrometer B is

incorrect at this field setting, and raised the possibility that it might be incorrect at other field

settings at well.

The uncertainty in the calibration polynomials at the field values used in the (e,e'p) mea-

surements was resolved by absolutely calibrating the reference momentum of Spectrometers A

and B for most of the kinematic settings with the following technique:

1. In the summer of 1996 (1 year after the experiment reported in this thesis was completed),

elastic electron scattering from 12 C was measured with Spectrometer B at a field setting

of 10.441 kG, corresponding to p1
1 = 661.63 MeV/c (as calculated from the calibration

polynomial). This field setting was chosen since it corresponds to the highest p13 setting

used in the (e,e'p) measurements (see Tables 3.3 and 3.4 for a full list of the (e,e'p)

kinematics). With the analysis discussed in the last paragraph, the measured momentum

was found to be smaller than the predicted momentum by 0.68 MeV. The 'o coefficient

for Spectrometer B was therefore increased by 0.68, defining a new calibration polynomial

for Spectrometer B valid for fields around 10.4 kG.

Chapter 3. Experiment



47

2. The coincidence (e,e'p) data for pBj 660 MeV/c were analyzed and missing energy

spectra acquired. For these measurements, electrons were detected in Spectrometer A

and protons in Spectrometer B. The new value of F0 for Spectrometer B determined in

step 1.) was used in the analysis, so that the proton momentum was properly calibrated.

The position of the two-body breakup missing-energy peak (which should appear at 5.49

MeV for 3He(e,e'p) 2 H and 19.81 MeV for 4 He(e,e'p) 3H after all energy loss is accounted

for) was then used to absolutely calibrate the momentum in Spectrometer A. In all cases

the missing energy peak appeared within 0.5 MeV of its expected value when using the

standard calibration curve for ef . The missing energy peak was moved to its correct

value by decreasing 1o in Spectrometer A by 0.1-0.5 MeV/c, depending on the kinematic

setting.

3. In the next (e,e'p) kinematics, the field of Spectrometer A was unchanged and the field

of Spectrometer B was lowered to correspond to prf a 585 MeV/c. Since the field in

Spectrometer A was unchanged, the calibration from step 2.) is still valid. The position of

the two-body breakup missing energy peak was then used to calibrate Spectrometer B. The

peak was brought to its correct location by adjusting the FO coefficient of Spectrometer

B by -0.22-+0.08 MeV from its standard value.

4. At the (e,e'p) kinematics corresponding to the two lowest fields in Spectrometer B (pBef

500 and 425 MeV/c) the field of Spectrometer A was left constant at the same value as

in the pB f 660 and 585 MeV/c kinematics, so that it remained properly calibrated.

Since the field in Spectrometer B was changed it required calibration. However, the

two-body peak was not inside the acceptance at these kinematics, and so could not be

used to calibrate the momentum of Spectrometer B. The calibration polynomial for the

previous kinematics (piB ~ 585 MeV/c) was therefore used. An estimate of the maximum

uncertainty in pB is 2 MeV/c, since this was the maximum error in the momentum that

was seen using the standard calibration polynomial. (This is the error that was seen in

the 12 C elastic measurements discussed earlier in this section.) This uncertainty was not

important to the final results since these kinematic settings were dominated by background
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and no detailed cross sections were extracted from them (see Section 5.10).

With pref calibrated with the above technique, the estimated uncertainty in the absolute

momentum in the (e,e'p) measurements is 0.1 MeV/c for Spectrometer A at all kinematics, 0.1

MeV/c for Spectrometer B at the pB ~ 660 and 585 MeV/c kinematics, and 2 MeV/c for

Spectrometer B at the prBef 500 and 425 MeV/c kinematics.

3.3.5 Collimators

Each of the spectrometers has a choice of collimators that can be remotely selected. The

nominal values of the collimators used in this experiment were: 21 msr (Spectrometer A), 5.6

msr (Spectrometer B), and 22.5 msr (Spectrometer C). The detailed shape of the collimators

in Spectrometers A and B was modelled as a series of horizontal and vertical slits as described

in Appendix C.

3.4 Electronics and Data Acquisition

An overview and description of the electronics and data acquisition system for the three-

spectrometer system at Mainz has been published in Ref. [19], and the reader is directed

to that article for a complete description of the system. In the following two subsections we

discuss details specific to our experiment.

3.4.1 Event Trigger Condition

The minimum trigger condition for an individual spectrometer in this experiment was a coinci-

dence between one paddle in the AE scintillator layer and one paddle in the TOF scintillator

layer. (Note that AE and TOF are also referred to as AE1 and AE 2 .) The trigger signals from

individual spectrometers were fed into prescalers and a programmable lookup unit (PLU) to

determine the overall event trigger, which was programmed to be a logical OR of the following

two possibilities:
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1. a "prescaled single", which was a valid trigger from a single spectrometer after some

prescaling, and

2. a coincidence between Spectrometers A and B. These coincidences had no prescaling

applied.

The singles prescale value was generally set to obtain 20-50 Hz of prescaled singles along with

the coincidence data. In principle any other double or triple coincidence between the three

spectrometers also triggered an event, but these were practically removed by using a very high

prescale factor.

The maximum data rate used during this experiment was approximately 150 Hz per spec-

trometer. This rate was limited by the slave CPU of the front-end data-acquisition computers,

which could read out and format data at a maximum rate of 250 Hz. The computer dead

time increased as this rate was approached, so that at 150 Hz the individual CPUs were dead

approximately 15-20% of the time.

3.4.2 Measurement of the Computer Dead Time

As part of the data acquisition system, each of the three spectrometers has a front-end computer

that reads out and formats the data. The readout process takes approximately one millisecond,

during which time the acquisition system for that spectrometer is inhibited and any arriving

events are lost. This is referred to as the computer dead time.

The computer dead time of the front-end computer on each of the three spectrometers is

measured by a dedicated dead-time module shown schematically in Figure 3-6. A valid trigger

from an individual spectrometer sets a corresponding flip-flop, which is cleared only when that

spectrometer's front-end computer is no longer busy (uB = False). The output of the flip-

flops are then ANDed in various combinations with a clock signal, generating seven dead-time

signals that correspond to various combinations of the spectrometers. For example, the signal

'A' corresponds to the time that the front-end computer on Spectrometer A was dead; 'A &

B' corresponds to the time that both Spectrometers A and B were dead. Each of these timing

signals is input to a scaler, and all of the scalers are read out for each event.
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Figure 3-6: Schematic of the dead-time module, from ref. [25].

The values read out from the scalers are used to calculate dead-time corrections for singles

and coincidence events as discussed in Appendix H.

3.5 Kinematics and Experimental Technique

3.5.1 Helium (e,e'p) Kinematics

The kinematics of the (e,e'p) measurements on 3He and 4He are given in Tables 3.3 and 3.4

respectively. For these measurements, Spectrometer A detected electrons and Spectrometer B

detected protons. This choice was necessary because only Spectrometer B is capable of detecting

the high momentum protons required. Throughout this thesis, the kinematics given in Tables

3.3 and 3.4 are referred to by specifying the nominal value of the beam energy (540, 675 or

855 MeV) and reference proton momentum (660, 585, 500 or 425 MeV), which form a unique

combination at each kinematic setting. For example, the first line in Table 3.3 is labelled as
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the "540/660" 3 He kinematics, corresponding to a beam energy of 540.11 MeV and a reference

proton momentum of 661.59 MeV/c. These labels are given in the last column of Tables 3.3

and 3.4.

The angles given in the tables are the central angles of the spectrometers, with the electron

spectrometer on the left side of the beam line (looking downstream) and the proton spectrometer

on the right side. The spectrometers each spanned a range of momentum, p, given by p =

pref x (1 + 6) as discussed in Section 3.3.4, with 6 = ±7.4% in the proton spectrometer and

6 = -5%, +15% in the electron spectrometer. A schematic of the experimental setup in Figure

3-7 illustrates the settings of each of the spectrometers for this experiment.

The measurements were performed at a fixed central 3-momentum transfer of Iql = 685

MeV/c. The central energy transfer, w, was chosen to correspond to the center of the quasielastic

peak at this ql using the following formula from Ref. [27]:

W= I + m2 + MA1 - MA (3.7)

At q = 685 MeV/c, this gave w = 228.4 MeV for 3 He and 242.7 MeV for 4He.

With q and w determined, the choice of the beam energy, Ej, then completely determined

the electron kinematics. The beam energies were selected from the values available at Mainz to

provide a broad range of values of the virtual photon polarization, E, while resulting in values of

the electron scattering angle, 0 e, that were compatible with the angular range of Spectrometer

A. The measurements were performed at each of three beam energies, corresponding to three

values of the virtual photon polarization.

The angle of the proton spectrometer was selected so that the central kinematics corre-

sponded to "parallel kinematics", which is defined by j1, | as discussed in Chapter 2. The

central angle, Op, of the proton spectrometer was therefore determined from

Op = Oq = sin- 1  w sin(Oe)) (3.8)

where all of the quantities are central values. The final remaining kinematic quantity is the

513.5. Kinematics and Experimental Technique



Spec. A (electrons)
0 .9 5p< p < 1 .15p

beam line target Oe to beam dump 3-

0 p
120

Spec. B (protons)
0.926p < p < 1.074pfOP ref ref

Spec. C
300 < p < 380 MeV/c

Figure 3-7: A schematic of the experimental setup, indicating the momentum acceptance and
central scattering angle of each of the three spectrometers.

magnitude of the proton momentum, |p , which had four central settings corresponding to

values of I'j I ranging from 390 to 710 MeV/c. These values were chosen so that the experiment

covered a nominal missing energy range of 0 to 150 MeV.

The range of missing energy and missing momentum spanned by each of the twelve 3He(e,e'p)

kinematics (3 beam energies x 4 proton momenta) is shown in Figure 3-8. The (Em,pm) range

is similar for 4He(e,e'p).

3.5.2 Helium Elastic Scattering

At each of the three beam energies (Ei = 540, 675 and 855 MeV) the elastic scattering cross

section was measured for both 3He and 4He. The elastic scattering measurements at the two

lower beam energies (Ei = 540 and 675 MeV) were performed with Spectrometer A. At the

highest beam energy (Ei = 855 MeV), the elastically-scattered electrons have high momentum

(up to ~ 840 MeV/c). Spectrometer B was therefore used for the Ej = 855 MeV measurements,
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electron arm proton arm

Ei Ecent 0 e Pref Op Pref label
(MeV) (deg) (MeV/c) (deg) (MeV/c)
540.11 0.214 103.85 297.67 26.23 661.59 540/660

584.91 540/585
502.74 540/500
427.85 540/425

675.11 0.457 72.05 426.48 38.34 661.34 675/660
584.75 675/585
502.64 675/500
427.75 675/425

855.11 0.648 52.36 597.16 46.41 661.34 855/660
584.81 855/585
502.58 855/500
427.75 855/425

Table 3.3: 3 He kinematics. See text for details.

electron arm proton arm
Ei Ecent Pe Pref Op Pref label

(MeV) (deg) (MeV/c) (deg) (MeV/c)
540.11 0.198 106.15 284.49 24.64 661.41 540/660

585.01 540/585
503.44 540/500

284.07 428.42 540/425

675.11 0.447 72.73 412.87 37.06 661.41 675/660
584.91 675/585
503.44 675/500
428.55 675/425

855.11 0.642 52.55 583.75 45.20 661.34 855/660
584.65 855/585
503.44 855/500
428.61 855/425

Table 3.4: 4 He kinematics. See text for details.
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Figure 3-8: The range of missing energy and missing momentum spanned by the 3He(e,e'p)

measurements for each of the 12 kinematic settings. The beam energy and proton momentum

at each setting are referred to by their nominal values (see text).
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since it was the only spectrometer capable of detecting these high momenta.

The full kinematics and analysis of the elastic scattering data is presented in Chapter 4.

By comparing the measured data to published cross sections, the absolute target density was

obtained.

3.5.3 Target Density Measurement with Spectrometer C

The target density obtained from the Helium elastic scattering measurements is the average

density of the target during the elastic scattering runs. In general, the density at other times

differed from this value. Changes in the target density were mainly due to changes in the beam

current (with a corresponding increase or decrease in the density of the target gas due to beam

heating) and to changes in the total amount of gas in the cell (due to leaks in the cell, and to

the addition of Helium gas to the cell to compensate for leaks).

Throughout the entire experiment (elastic and (e,e'p) measurements) Spectrometer C took

data at a fixed momentum (340 ± 40 MeV/c), angle (120 , on the right side of the beam line

when looking downstream) and polarity (negative) as illustrated in Figure 3-7. The number

of counts detected in Spectrometer C therefore provided a continuous monitor of the relative

target density. The absolute density in the (e,e'p) runs could then be obtained from the number

of counts in Spectrometer C and the absolute density measured in the elastic scattering runs.

This analysis is described in Chapter 4.

55



56 Chapter 3. Experiment



Chapter 4

Calibration and Normalization

Overview

This chapter describes two factors which are required for the determination of the absolute

(e,e'p) cross sections: the solid angles of the spectrometers and the density of the Helium gas

target.

The solid angle of Spectrometers A and B for an extended target was studied by measuring

1 2C(e,e') elastic and quasielastic scattering with the carbon target placed at several positions

along the beam line, corresponding to slices along the extended target. The spectrometers are

designed so that the solid angle should be defined by the geometry of the collimators for lytgtI <

2.5 cm, where ytgt is the transport coordinate at the target, perpendicular to the central ray

and in the horizontal plane. The measured solid angle in Spectrometer A was found to deviate

from the geometric value for large values of Ibtgt I that are geometrically allowed with increasing

|ygtl. Deviations from the designed solid angle in Spectrometer A for large q#tgtj was accounted

for by using a software cut |#tItI < 75 mrad which, when combined with the geometry of the

collimator, defines the solid angle with a minimal loss of data.

The absolute density of the Helium gas target was determined from measurements of elastic

scattering performed with Spectrometers A and B. The target density in those elastic runs

(the "elastic density") was calculated by comparing the experimental radiative-corrected cross

sections to cross sections predicted by a Monte Carlo employing the published elastic form

factors for 3 He and 4 He. During the elastic runs the number of counts in Spectrometer C was

measured at a fixed kinematics IC (0 = 1200, p = 340 ± 40 MeV/c, negative polarity). In
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the (e,e'p) runs, Spectrometer C continued to measure counts at kinematics C, providing a

measure of the relative target density. The absolute target density in the (e,e'p) runs was then

determined from the "elastic density" by comparing the number of counts in Spectrometer C

obtained in both the elastic and (e,e'p) runs.

4.1 Spectrometer Solid Angle

Ideally, the angular acceptance of a spectrometer is defined by its collimator. The solid angle

for a particular experiment can then be exactly calculated from the combined geometry of

the incident beam, target, and collimator positions. For a thin target (i.e. a target that has

negligible length along the beam line) and a small (AO < 1, A# < 1) rectangular collimator

the geometric solid angle is given by

AQgeom AO X AO5 (Omax - Omin) X (#max - #min) (4.1)

where (0, #) are the vertical and horizontal angles in the spectrometer transport notation as

defined in Figure 4-1, and (Omzn, Omax) and (kmin, # max) are the limits of the angles determined

by the edges of the collimator.

The 3 magnetic spectrometers at Mainz are designed to to have a flat acceptance over

ytgt = ±2.5cm, where ytgt is the transport coordinate at the target in the horizontal plane and

perpendicular to the central ray. By flat acceptance, we mean that the spectrometer solid angle

is defined by the geometry of the collimator, as in equation (4.1). We performed measurements

of elastic and quasielastic scattering from 12 C at a series of positions along the beam line to

check this hypothesis. By comparing measured elastic cross sections to predictions, the effective

solid angle of the spectrometer is compared to the geometric value.

4.1.1 Geometry

Figure 4-1 shows the geometry of the beam and spectrometer system with a target shifted a

distance zo downstream along the beam line. From the figure it is apparent that a shift in the
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target position results in a change in the range of angles that make it through the collimator.

The exact range that is geometrically allowed is important for two reasons:

1. Changes in the range of scattering angles change the range of momentum transfers sampled

in the measurement. Since we want to compare to an acceptance-averaged predicted cross

section, we need to know the precise region over which to average the predictions.

2. Changes in the range of angles and in the distance from the target to the collimator result

in a change in the geometric solid angle.

We wish to account for these effects so that comparisons of our measured cross sections to

predictions will provide a measure of the acceptance variation which is not purely geometric.

The range of angles accepted by the collimator for a thin target shifted down the beam line

a distance zo is given by

#max = tan- (4.2)
(d - zocosOO

#min = -tan- h zosinio (4.3)
d - zcos0O

in the horizontal plane, and

Omax = -Omin = tan- d - (4.4)

in the vertical plane. The angle 0 is the central scattering angle of the spectrometer, and the

other angles and distances are defined in Figure 4-1. The range of scattering angles (measured

relative to the beam line) accepted by the collimator was calculated from

1 1
Oscat = 00 + - (qmax + #min) ± (max - qmin) (4.5)2 2

where we have ignored the vertical extent of the collimator, which has a small contribution to

the scattering angle.

4.1. Spectrometer Solid Angle
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Figure 4-1: Top and side views of beam and spectrometer system with target displaced by
zreact = +zo towards the beam dump. Note that the side view is in the x-z plane of the
spectrometer transport coordinates.



da -pred
z Ytgt #min Pmax Omax AQgeom Oscat

(cm) (cm) (mrad) (mrad) (mrad) (msr) (0) (fm2 /sr)
-3.877 +2.741 -113.345 27.288 66.606 18.734 42.535±4.029 22.957x 10-6
-2.670 +1.888 -101.851 41.890 67.576 19.427 43.282±4.118 16.891x10-6
-0.161 +0.114 -76.439 72.756 69.685 20.793 44.894±4.274 8.3409 x10-6
2.361 -1.669 -48.386 104.194 71.672 21.871 46.599±4.371 3.6303 x 10-6
3.557 -2.515 -33.945 119.262 72.646 22.260 47.444±4.389 2.3040 x 10-6

Table 4.1: Calculated angles and predicted 12 C elastic cross sections as a function of target

position for the (nominally) 21-msr collimator in Spectrometer A, for a central spectrometer

angle Oo = 45.00'.

An added complication is that the collimators in Spectrometers A and B are not a simple

pair of slits as shown in Figure 4-1, but have edges with complicated shapes. The shape of

each collimator was modeled as a series of slits as given in Appendix C, and the slit edges that

define the solid angle for each target location were calculated. From the slit location, the range

of angles that are accepted was then determined, and the solid angle calculated from (4.1).

The calculated angles and resulting geometric solid angles are given as a function of target

position in Tables 4.1 and 4.2 for Spectrometer A and B respectively. A complication in the

measurements with Spectrometer B was that the sieve slit was not completely removed and

obstructed the acceptance in Otgt. The result was a 3-4 mrad reduction in the Otgt acceptance

at the negative-Otgt limit (i.e. from about -70 to -66 mrad at the central target location). A

software cut of Ogt = ±60 mrad was therefore applied to the data to eliminate the effect of

the sieve slit and to keep the Ot 9t acceptance symmetric for simplicity. The tgt-acceptance in

Spectrometer B was therefore defined by this software cut and not by the collimator in these

measurements. This is accounted for in all the geometric calculations.

4.1.2 Predicted 12 C(e,e') Elastic Scattering Cross Sections

For each location of the carbon target along the beam line, the predicted 12 C elastic cross

section was obtained from the phase-shift program MEFIT [28] (see also Ref. [29, 30]), which

determines the charge density through a fit to a large collection of the world's measurements
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z Ytgt Omin bmax 9
max AQgeom Oscat dpred-

(cm) (cm) (mrad) (mrad) (mrad) (msr) (0) (fm2 /sr)
-3.877 -2.741 -11.276 28.291 60.000 4.748 44.513±1.134 6.1099 x 10-
-2.670 -1.888 -13.976 25.725 60.000 4.764 44.663±1.137 5.6510x10-6
-0.161 -0.114 -19.635 20.347 60.000 4.798 44.980±1.145 4.7772x10-6
2.361 +1.669 -25.328 14.824 60.000 4.818 45.301±1.150 4.0101 x 10-6
3.557 +2.515 -28.048 12.182 60.000 4.828 45.455±1.152 3.6803x10--

Table 4.2: Calculated angles and predicted 12 C elastic cross sections as a function of target
position for the 5.6-msr collimator in Spectrometer B, for a central spectrometer angle 0=
45.00'. Note that a software cut has been applied to Otgt (see text).

of elastic scattering from 12 C. The program input includes the angular ranges 0 scat and 9 max

from Tables 4.1 and 4.2, and the experimental beam energy and target thickness. The output

is the predicted cross section averaged over the experimental angular acceptance and corrected

for Coulomb distortion and energy loss in the target. The values of the predicted cross section

as a function of target position are given in Tables 4.1 and 4.2.

This predicted cross section assumes that the acceptance of the spectrometer is ideal (i.e.

that the actual solid angle is equal to the geometric solid angle). Comparison of the experimental

cross section to this value then provides a comparison of the actual solid angle to the ideal one.

4.1.3 Measured 12C(e,e') Elastic Scattering Cross Sections

The 12 C elastic scattering measurements were performed using Spectrometers A and B. The

measurements were done at an incident beam energy of 420.11 MeV and a central spectrometer

angle of 45.000. The nominal collimator sizes were 21 msr in Spectrometer A and 5.6 msr

in Spectrometer B. The central momentum of the spectrometers was set to correspond to

the momentum of the elastically scattered electrons, so that the elastic peak appeared at the

center of the momentum acceptance. This point is emphasized to indicate that these elastic

measurements can be used to study the spectrometer solid angle for only the central region of

Chapter 4. Calibration and Normalization
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the momentum acceptance (6 = PP"re- 0.05 for Spectrometer A* and 6 = PPref 0 for
Pref Pref

Spectrometer B). To examine the dependence of the solid angle on 6 we performed quasielastic

measurements, which are reported in the next section.

The measurements were performed with a solid 32.5 mg/cm 2 carbon target with isotopic

abundancy 98.9% 12 C and 1.1% 13C. The target was mounted on a movable table, which could

be remotely positioned and read out. The read-out and calibration of the table are described

in Chapter 3. The elastic measurements were performed for 5 different locations of the target

table. The positions and calculated angles are given in Tables 4.1 and 4.2 for Spectrometers A

and B respectively.

Sample spectra of the reconstructed coordinates (Otyt, #tgt, ytgt) are given in Figure 4-2.

These data are for Spectrometer A (the spectra for Spectrometer B are similar) and were

measured with the target located at z = -0.117 m. Software cuts (given in Table 4.3) were

placed on these coordinates at each target position to remove events that reconstructed far

outside the collimator or far from the location of the target. In Figure 4-2 these cuts are shown as

the solid vertical lines. At each position, the (Otgt, #tgt) cuts were chosen to discard reconstructed

angles that were more than 15 mrad outside of the collimator edges. For comparison, the angular

resolution of both spectrometers is 3 mrad FWHM, so that the cuts were effectively far from the

collimator edges. An exception to this is the ±60 mrad cut on Otgt in Spectrometer B, which was

inside the limits of the collimator for the reasons discussed in Section 4.1.1. The software cuts

to ytgt was chosen to discard events that reconstructed more than ±30 mm (Spectrometer A) or

±20 mm (Spectrometer B) away from the target location. For comparison, the ytgt resolution

is approximately 1.5 mm FWHM in Spectrometer B and 6 mm in Spectrometer A.

In both Spectrometers A and B and at all target locations, some of the data discarded by

the Otgt and ytgt cuts have a detected momentum corresponding to elastic scattering from 12 C.

That is, even though these events reconstruct with #tgt far outside the collimator and/or ytgt

far from the target location, they appear to be electrons elastically scattered from the target.

*The full momentum acceptance of Spectrometer A is 6 = -5 -* +15%, so that the center of the momentum

acceptance is approximately 6 = +5%.

4.1. Spectrometer Solid Angle
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Figure 4-2: Sample spectra of the coordinates (9tgt, #tgt, ytgt) reconstructed in Spectrometer A.
The target was positioned at z
cuts.

= -0.161 cm. The solid lines show the position of the software

Spectrometer A cuts Spectrometer B cuts
Z 0tgt #tgt Ytgt 0 tgt Otgt Ytgt

(cm) (rad) (rad) (m) (rad) (rad) (m)
-3.877 ±0.082 -0.129,0.043 -0.0026,0.0574 ±0.060 -0.027,0.044 -0.0474,-0.0074
-2.670 ±0.083 -0.117,0.057 -0.0111,0.0489 ±0.060 -0.029,0.041 -0.0389,0.0011
-0.161 ±0.085 -0.092,0.088 -0.0289,0.0311 ±0.060 -0.035,0.035 -0.0211,0.0189
2.361 ±0.087 -0.064,0.120 -0.0467,0.0133 ±0.060 -0.041,0.030 -0.0033,0.0367
3.557 ±0.088 -0.059,0.135 -0.0552,0.0048 ±0.060 -0.043,0.027 0.0052,0.0452

Table 4.3: Cuts to reconstructed coordinates used in the analysis of the 12 C elastic scattering
data. The cuts are given for each location, z, of the target along the beam line.

yA [meters]
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At the central target location (z = -0.161 cm), the number of these events relative to "good"

events (where "good" indicates events that satisfy all of the software cuts) is approximately 3%.

In calculating final cross sections, one must decide whether or not to include these events. One

possibility is that they are good events that were somehow mis-reconstructed in angle and posi-

tion by the spectrometers, and should therefore be included in the final cross section. However,

the information from the vdc's doesn't indicate any problem with these tracks, indicating that

the reconstruction is likely valid. A second possibility is that these events are due to electrons

which rescatter into the spectrometer from the collimator edges, the scattering chamber, or

some other piece of the setup. The rescattering changes the angle and position of the electrons,

so that the vdc's (correctly) reconstruct the new, rescattered value of the coordinates. In this

case the electrons are not valid events since they would not normally enter the acceptance, and

so should be discarded. This second explanation is more consistent with the measured data,

since it explains why the reconstructed coordinates are distorted from their nominal values

while the vdc information indicates that the tracks are valid. Note that similar types of rescat-

tering have been observed in the (e,e'p) measurements (as discussed in Chapter 5). The events

discarded in the software cuts are therefore not included in the final cross sections.

Sample spectra of the detected momentum and kinematically-corrected momentum (defined

in Appendix A) are shown in Figure 4-3. The peak at 415.5 MeV/c corresponds to elastic

scattering from 12 C, and several excited states are observed as peaks at lower momentum. The

spectra were corrected for radiation using the program ALLFIT [31]. A sample of the output

from ALLFIT is shown in Figure 4-4 illustrating the fit of the elastic peak and radiative tail.

Relatively few counts appear at excitation energies below the 1 3C elastic peak, indicating that

background contributions to the 12C elastic cross sections are negligible.

Experimental cross sections were determined from the data as follows:

da-exp NC eA
X X 77dt-pre (4.6)

d = A geom QNApA
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Figure 4-3: Momentum spectra of electrons scattered from 12 C and detected in Spectrometer

B, before and after kinematic correction.
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Figure 4-4: Counts vs. Excitation Energy in 12 C on a linear (top plot) and log (lower plot)

scale, measured in Spectrometer B. The two peaks are from elastic scattering from 13 C and
12 C, and the solid line is the fit from ALLFIT.



z run analyzed charge Spec. A Spec. B

(cm) (mC) '7dt-pre 7 dt-pre
-3.877 950629103621 9.977 6.078 1.242
-2.670 950629092119 9.938 6.070 1.233
-0.161 950629082037 7.038 6.078 1.283
2.361 950629084632 10.25 6.035 1.223
3.557 950629095557 10.37 6.025 1.208

Table 4.4: Factors used in calculation of the measured carbon elastic cross section at each target
position.

where

N' = number of counts, corrected for radiation by ALLFIT

A~geom =geometric solid angle, tabulated in Tables 4.1 and 4.2

e =1.602 x 10- 19 C

A = 12.00 x 10 3 mg/mol

Q = accumulated charge (C)

NA = 6.022 x 1023

PA density of 12 C in target = 32.113 mg/cm2

r/dt-pre dead-time and prescaling correction factor (see Appendix H)

The values of ?7dt-pre and Q for each run are listed in Table 4.4. The prescaling values for Spec-

trometers A and B were 6 and 1, respectively. The reduced effect of dead time for Spectrometer

A vs. Spectrometer B is a result of its higher prescale factor, as explained in Appendix H.

4.1.4 Systematic Uncertainty

Table 4.5 shows the total statistical and systematic uncertainties for the measured cross sec-

tions. The first two columns are the absolute uncertainties in the cross sections measured in
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Spec. A Spec. B A + A B + B A + B

ALLFIT (stat.+fit) [%] 0.5-1.2 0.8-1.1 0.7-1.7 1.3-1.6 0.9-1.6
dead time [%] 1 1 1.4 1.4 1.4
target position (+0.5 mm) [%] ±1.5 ±0.4 - - ±1.1
central scatt. angle (±0.1 mrad) [%] 0.3 0.3 - - 0.4
horiz. beam position (±1 mm) [%] ±3.0 -0.8 - - ±3.8
total charge [%] 1.8 1.8 1.4 1.4 -
average target thickness [%] 4 4 - - -

beam energy (±160 keV) [%] -0.7 -0.7 - - -

total [%] 5.7-5.8 4.7-4.8 2.1-2.6 2.4-2.5 4.3-4.5

Table 4.5: Statistical and estimated systematic uncertainties in the measured 12 C elastic cross

sections.

Spectrometers A and B. When a given uncertainty is correlated or anti-correlated in the two

spectrometers, a sign is given to indicate the correlation. For example, a +1 mm change in the

horizontal beam position would give a +3% change in the cross section in Spectrometer A and

a -0.8% change in the cross section in Spectrometer B. Some of the uncertainties cancel when

considering ratios of the results, and the column labelled 'A + A' gives the systematic uncer-

tainty in the ratio of cross sections measured at different target locations with Spectrometer A.

Similarly, 'B + B' denotes the uncertainty for the ratio of measurements with Spectrometer B.

The column 'A + B' corresponds to the uncertainty in the ratio of cross sections measured in

the two spectrometers at the same target location. The total in the final row of each column

corresponds to the sum of the individual uncertainties, added in quadrature.

The error from ALLFIT includes the statistical error and a small systematic contribution

from the fitting procedure and varies over the range given depending on the run analyzed (each

target position corresponds to a different run). The systematic uncertainty in the total charge

is the 1% uncertainty in the value read out from the photoeffect monitor and the uncertainty

in its calibration against the F6rster probe at high current, added together in quadrature.

The uncertainty due to the absolute target position was determined from the change in the

acceptance-averaged cross section calculated by MEFIT for a target displaced ±0.5 mm relative

to the central target location (z = -0.161 cm). The sign of the uncertainty is the same for
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both spectrometers, but the magnitude is larger in Spectrometer A because of the shorter drift

distance to its collimator. The relatively small error in the target position (0.5 mm) reflects the

fact that the absolute position of the target table was determined with sieve slit measurements

in Spectrometers A and B, as described in Chapter 3. The uncertainty in the cross section

due to the estimated uncertainty in the central scattering angles and the beam energy was

calculated with MEFIT by the same technique used for the uncertainty in the target position.

The uncertainty in the horizontal beam position (±1 mm) was estimated from the drift in the

beam position on the BeO target observed at different times during the experiment. Since the

central spectrometer angle is 450, a horizontal shift in the beam position is equivalent to a shift

of equal magnitude in the target position. The systematic uncertainty in the cross section due

to the beam position was therefore estimated from the uncertainty due to the target position.

Note that the effect of a horizontal drift in the beam position in one of the spectrometers has

an opposite sign of that in the other spectrometer since they are on opposite sides of the beam

line.

Other possible sources of systematic uncertainty include the thickness of the target at the

beam spot. Only the average target thickness has been measured (by measuring the target

dimensions and weight) so that the thickness at the beam is unknown. However, the exact

normalization of the cross sections is not critical to our analysis, since we are primarily interested

in studying the change in the solid angle as a function of ytgt. The cross sections measured at

the central target location could therefore be viewed as a calibration of the target thickness.

Another source of uncertainty is the uncertainty in the 12C elastic cross section calculated by

MEFIT, which is assumed to be small compared to the other uncertainties and is therefore

ignored.

4.1.5 12C Elastic Scattering Results

The results of the 12 C elastic scattering measurements are given in Table 4.6 and Figure 4-5.

The ratio of measured and predicted cross sections at the central target location (z = -0.161

cm) is 0.98 ± 0.06 for Spectrometer A and 0.96 ± 0.05 for Spectrometer B, where the absolute
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Spectrometer A Spectrometer B

)d )exP (d6 )exP /(dJ)Pred o,(d)exP (dE)exP /dPred
z ytgt dQ / dQ dQ ytgt \df2 )dQ dQ

[cm] [cm] [10-6 fm2 /sr] [cm] [10-6 fm2 /sr]

-3.877 +2.741 12.34 0.538 -2.741 5.467 0.895

-2.670 +1.888 15.10 0.894 -1.888 5.261 0.931

-0.161 +0.114 8.154 0.978 -0.114 4.583 0.959

2.361 -1.669 3.524 0.971 +1.669 3.825 0.954

3.557 -2.515 2.181 0.947 +2.515 3.375 0.917

Table 4.6: Results of the 12 C elastic scattering measurements (see text). Uncertainties are given

in Table 4.5.

errors are those listed in Table 4.5. The ratios are consistent with unity and with each other.

indicating that the experimental solid angle is defined by the collimator within the systematic

uncertainty of the measurement.

As the target is moved from the central location, the experimental cross section in Spec-

trometer A falls significantly below the prediction, indicating that for ytgt $ 0 the solid angle of

Spectrometer A is not defined by its collimator. The true solid angle is significantly less than

the geometric value. The effect appears to be asymmetric about ytgt = 0, but this is likely to be

an artifact of the strong <tgt dependence of the cross section, as discussed in the next section.

A similar although reduced effect is apparent in Spectrometer B. However, inside the design

region lytgtI < 2.5 cm, the ratios of measurement and prediction are consistent with each other

within the quoted relative uncertainty (2.4-2.5%, from Table 4.5), and nearly consistent with

unity within the absolute uncertainty (4.7-4.8%). This indicates that there is little acceptance

loss in Spectrometer B in the design region, and that the solid angle is defined by the collimator

for lytgtI < 2.5 cm.

From these data it is clear that the solid angle of Spectrometer A is not defined by the

collimator for target locations away from the central position (ytgt = 0.114 cm). The solid

angle of Spectrometer A is needed to measure an absolute cross section, and if it is not defined

by the geometry of the collimator alone, there is no straightforward way of determining it. Two
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possible solutions to this problem are:

1. Do a complete study of the variation of the solid angle so that it can be parameterized.

This could be quite complicated and time-consuming, since the solid angle depends on a

nuber of variables. It is dependent on ytgt (as shown in Figure 4-5), 6 (as will be seen in

the quasielastic data), and #tgt (as outlined in the next section).

2. Try to determine what region of the spectrometer acceptance the losses come from. If the

region is small, software cuts could then be placed on the data to restrict to a region where

the solid angle is determined by the combined geometry of the cuts and the collimator.

We have chosen the second option. Closer analysis of the 12 C elastic data revealed that the

acceptance losses come from events with large j#tgt| values, which are geometrically allowed

with increasing ytgt. In the analysis of data taken with the extended Helium target, deviations

from the designed solid angle in Spectrometer A for large k#tgtI were accounted for by using

a software cut lotgtI < 75 mrad. This software cut, when combined with the geometry of

the collimator, defines the solid angle of Spectrometer A with a minimal loss of data. The

identification of these acceptance losses at large Itgt| is discussed in the next section.

4.1.6 Identification of Acceptance Losses

The following analysis of the 12 C elastic data revealed that the acceptance loss in Spectrometer

A come from events with large jotgtI values, which are geometrically allowed when the target is

shifted away from ytgt = 0. The effective solid angle for these events appears to be a complicated

function, but the region of Iltgt| where it deviates from the geometric value is quite well-defined.

The Otgt-dependence of the acceptance in Spectrometer A is illustrated in Figure 4-6. The

quantity plotted in the figure is

N'(Otgt) = 7 t-pre (4.7)
Q

where N(#tgt) is the number of counts measured in a particular #tgt bin. In determining N(tgt),

a cut of Otgt = ±64 mrad was placed on the data, so that the range of Otgt averaged over was
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the same for every value of ytgt. The cuts on ytgt were the same as those given in Table 4.3, and

no cuts were made on #tgt. Also, N(#tgt) is accumulated over a finite range of the momentum

acceptance ( 0.018 < 6 < 0.05 for Spectrometer A) so that it includes some of the excited

states as well as the carbon elastic peak. With this definition, N'(#tgt) is proportional to the

cross section, and its value at a particular qgt should be a constant independent of ytgt (with

the limitation that all values of qtgt are not geometrically allowed by the collimator at a given

target position). By comparing N'(Otgt) spectra measured at different ytgt, we can therefore

study losses in the solid angle acceptance as a function of #tgt.

In each of the four plots in Figure 4-6, the shaded region is identical and corresponds to N'

measured at the central target location (ytgt = +0.114 cm), and the thick solid line corresponds

to N' measured at the indicated value of ytgt. The #tgt limits of each of the N' distributions is

defined by the edges of the collimator, so that the limits shift when the target is moved along

the beam line (as discussed in Section 4.1.1). These #tgt limits defined by the collimator were

given in Table 4.1 for each target position. To illustrate these limits, consider the first plot in

the upper left-hand corner of Figure 4-6. The shaded region is for the central target location,

so that the limits of N' are approximately 76 mrad and +73 mrad. For the thick line, the

target position is ygt = +2.74 cm (corresponding to z = -3.877 cm) so that the limits are

approximately -113 mrad and +27 mrad. The two arrows in the figure mark these limits for

yA = +2.74 cm.

For small values of IqOtgt| (< 70 mrad), the plots in figure 4-6 show excellent overlap with the

data taken at the central target position. Note that the normalization of each of these curves

has been independently determined. The good overlap indicates that in the region of small

It , the acceptance at shifted ytgt is consistent with the value at the central ytgt. In other

words, for a shifted target we observe no acceptance loss for small Ig I .

However, one can see a clear drop in the acceptance for larger I#tgt|. The effect is very

large for lytgt| > 2.5 cm, which is outside of the design region of the spectrometer. Consider

the value of N' at ytgt = +2.74 cm (upper left-hand plot of Figure 4-6). As #tgt decreases

below 70 mrad, N' drops relative to the shaded region, indicating a loss in the acceptance.
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As qtqt decreases further there is no overlapping shaded region to compare directly to, but a

worsening acceptance loss is nevertheless apparent from the sharp decrease in N'. A similar

effect is observed for +#tt in the data for ytgt = -2.52 cm (lower right hand plot in Figure

4-6).

For the two smaller values of |ytgt|, the values of N' show excellent agreement with the

shaded region over the entire region of overlap, indicating no acceptance loss in that region.

There is probably some acceptance loss outside the overlap region (| Otgt I > 75 mrad) where the

shape of N' shows some distortion at large |#ttI, but more data would be required to make a

definitive statement. However, it is clear that within tgt I < 75 mrad there is no significant

acceptance loss for values of lytgt| < 2 cm.

A similar analysis for Spectrometer B yielded the N'(#tgt) spectra shown in Figure 4-7. The

cuts on Otgt and ytgt are the same as given in Table 4.3, no cut was made on #tgt, and the cut on

6 (-0.024 < 6 < 0.01) was made to include both the elastic peak and a few of the excited states

as in the Spectrometer A analysis. As expected from the analysis of the absolute cross sections

in the previous section, no significant acceptance loss is seen in Spectrometer B for lytgtl < 2

cm. At the two largest values of ytgt (+2.52 and -2.74 cm) there is also no significant loss for

I#tgt| < 20 mrad, although there might be some loss at larger values of I#tgt|. A quantitative

conclusion is difficult to make in these regions where the data sets do not overlap. Also, the

angular resolution is a more significant effect here then in Spectrometer A. The drift distance

to the collimator in Spectrometer B is several times the drift distance for Spectrometer A, so

that the movement of the target causes a much smaller change in the angle. The collimator is

also much smaller in the horizontal plane, so that the angular resolution (which has the same

absolute value as Spectrometer A) has a larger relative effect. The resolution also appears to get

worse with increasing lytgtI, judging from the reconstruction of the collimator edges. However,

from these data we can conclude that for |ygt| < 2 cm the solid angle of Spectrometer B is

defined by the collimator.

To summarize, Spectrometers A and B are designed so that their solid angles should be

defined by the geometry of the collimators for |ytgtI < 2.5 cm, where ytgt is the transport
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coordinate at the target, perpendicular to the central ray and in the horizontal plane. This

statement was checked by measuring 12C(e,e') elastic scattering with a thin carbon target placed

at several positions along the beam line. The measured solid angle in Spectrometer B was found

to be consistent with the collimator for lytgt| < 2 cm. The measured solid angle in Spectrometer

A was found to deviate from the geometric value for large values of I#tgt that are geometrically

allowed with increasing lytgtI. For |ytgt| < 2 cm, no acceptance loss is visible for |#tgt| < 75

mrad. Therefore in analyzing data taken with an extended target software cuts should be

placed to restrict to this region. These software cuts, when combined with the geometry of the

collimator, then define the solid angle of Spectrometer A.

Since the elastic peak only populates a central region of the momentum acceptance (6), these

elastic measurements only verify the solid angle for the central 6 region of each spectrometer.

The solid angle at other values of 6 is studied using measurements of quasielastic scattering

from 12 C, as discussed in the next section.

4.1.7 Measured 1 2 C(e,e') Quasielastic Cross Sections

Measurements of quasielastic scattering from 12 C were performed with Spectrometers A and

B and with the same beam energy (420.11 MeV), collimators (5.6 and 21 msr), and central

spectrometer angles (45.00 degrees) used in the 12 C elastic scattering measurements. The

reference momenta of the spectrometers was set to approximately 325 MeV/c in Spectrometer

A and 342 MeV/c in Spectrometer B. The measurements were performed at three positions of

the carbon target while holding the beam energy and spectrometer fields and angles constant.

In contrast to the elastic measurements, which can be compared to a well-known cross

section, absolute cross sections were not extracted from the quasielastic data. Instead, we

proceed directly to the analysis of N'(#tgt), which was defined in the previous section. The

software cuts placed on the data are given as a function of target position in Table 4.7. As with

the elastic analysis, cuts on the vertical angle Otgt are the same at each target location to hold

the solid angle constant. The criteria for the ytgt cuts is the same as in the elastic analysis:

±30 mm and ±20 mm about the target position in Spectrometers A and B, respectively.
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Spectrometer A cuts Spectrometer B cuts

z run number 0 tgt Ytgt Otgt Ytgt

(cm) (rad) (i) (rad) (i)
-0.143 950629153731 ±0.064 -0.029,0.031 ±0.060 -0.021,0.019
+2.886 950629160407 ±0.064 -0.0504,0.0096 ±0.060 0.0004,0.0404
-3.173 950629163824 ±0.064 -0.0076,0.0524 ±0.060 -0.0424,-0.0024

Table 4.7: Cuts to reconstructed coordinates used in the analysis of the 1 2C quasielastic scat-
tering data. The cuts are given for each location, z, of the target along the beam line.

As with the elastic analysis, N'(tgt) is proportional to the cross section and should be

independent of the target location, ytgt. By comparing N'(#tgt) spectra measured at different

ytgt, we can therefore study losses in the solid angle acceptance as a function of ktgt. Further-

more, by making cuts on different sections of the momentum acceptance (6) we can study the

acceptance loss as a function of 6.

The spectra of N' versus #tgt for Spectrometer A are shown in Figure 4-8. Each plot shows

the data for all three target locations, with the shaded region corresponding to the central

target location (ytgt = +0.10 cm). The first plot in the upper left is for all of the data,

spanning the full momentum acceptance (-5% < 6 < +15%) of Spectrometer A. The arrows

indicate the geometric limits of #tgt defined by the collimator for the two displaced target

locations, ytgt = -2.04 and +2.24 cm. For an explanation of these geometric limits, see the

previous discussion of the carbon elastic data. Two main features are visible in this first plot.

First, the overlap in the central ktgt region (corresponding to the lesser of k#tgt = ±75 mrad

or the geometric limit of the collimator) is quite good. N'(#tgt) is independent of ytgt in this

region, indicating that the acceptance here is 100%. Second, the change in shape of N'(#tgt) for

I#tgtI > 75 mrad indicates that there is a substantial drop in the acceptance in this region for the

two displaced values of ytgt. This indicates that the collimator is not defining the solid angle in

these regions, which is consistent with the observations in the elastic scattering measurements.

Events with large values of |#tgtj that are geometrically allowed into the collimator are being

reduced.
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The next four plots in the figure study the dependence of this effect on 6= (p - Pref)/Pref.

The momentum acceptance is broken up into four sections, each spanning one-quarter of the

full acceptance. Each plot corresponds to one of these sections. From these plots it is clear

that the acceptance reduction is clearly a function of 6, and is most enhanced at the high

momentum side (+10% < 6 < +15%) of the focal plane. At the low momentum side, the

distribution of N'(#tgt) is smooth for all three values of ytgt and extends up to the geometric

limits of the collimator. As 6 is increased, the distributions contract significantly in the range

of #tit, indicating an increasing reduction in events with large Otg. These data show that the

acceptance loss in Spectrometer A increases with 6.

A similar plot of the data in Spectrometer B is shown in Figure 4-9. The first plot is for

the full momentum acceptance and the following three plots are for the acceptance broken into

three equal sections. The arrows indicate the geometric limits of kt., defined by the collimator

for the two displaced target locations, y/.t = +2.04 and -2.24 cm. For an explanation of these

geometric limits, see the previous discussion of the carbon elastic data. In contrast to Spec-

trometer A, there does not appear to be a significant drop in the acceptance for Spectrometer

B. The N' distributions are smooth as a function of #tgt and the collimator edges reconstruct in

approximately the correct locations. From these data we conclude that the collimator defines

the solid angle of Spectrometer B at all 6 for ytgt < 2 cm.
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4.1.8 Conclusions of Acceptance Studies

Analysis of the elastic and quasielastic scattering data from 12 C indicated that the solid angle

of Spectrometer B is defined by the collimator for ly!stI < 2 cm. In contrast, the solid angle in

Spectrometer A is not defined by the collimator for lyt|I < 2 cm. A reduction in the solid angle

of Spectrometer A was observed as the target was moved from its central location (ytt = +0.114

cm). This reduction was observed to occur only for events with large values of I#tgtI that are

geometrically allowed by the collimator for increasing lytgtj. For |y 4 tj < 2 cm, no acceptance

reduction is observed in the elastic measurements for ktgetj < 75 mrad. The quasielastic data

indicated that this acceptance reduction increases with 6 and is reduced for small values of 6.

Since the acceptance reduction is complicated and multi-dimensional (it was shown to de-

pend on ytgt, Otgt, and 6) it would be difficult to accurately parameterize the effective solid

angle of Spectrometer A. A simpler solution is to apply software cuts to the data to restrict the

data to a region of #tt and ytgt where there is no observed acceptance loss. We have chosen

this solution to analyze the cross sections measured with the extended Helium target. These

cuts are applied in the same way in both the data analyzer and the Monte Carlo calculation

of the detection volume. The software cuts combined with the geometry of the collimator then

define the solid angle of Spectrometer A.

The cuts used for this purpose in the coincidence Helium (e,e'p) measurements were z =

±2.0 cm and q#5tj < 75 mrad, where z is the location of the event vertex along the beam

line (determined with Spectrometer B) and# is the horizontal transport angle at the tar-

get reconstructed in Spectrometer A. This cut on z restricts the nominalt range of ytgt to

lytgtI < 2sin(OO) cm, where 0 0 is the central spectrometer angle (given in Tables 3.3 and 3.4

in Chapter 3). Based on the results of carbon measurements, restricting ytgt to small values

in this way effectively limits any acceptance reduction in either spectrometer. The cut on OA

then eliminates the acceptance reduction in Spectrometer A by removing the large values of

#qtf where the acceptance reduction is generated. The ability of these software cuts to define

tThe magnitude of IytgtI is only approximately Iz sin(0o)1. There is also a small contribution from the rastering

of the incident beam.
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the acceptance and the systematic uncertainty introduced by them is studied and discussed in

section 6.4 of Chapter 6.

In analyzing the Helium elastic measurements performed with Spectrometer A (discussed

in Section 4.2), a cut of = ±75 mrad was also used. However, only a broad y ct Cut (±4.0

or ±4.5 cm) was applied, so that it removed data that reconstructed far outside the target

while not defining the detection volume. The range of ytgt was therefore determined by the

target extent, corresponding to a maximum (nominal) range of ytgt ±= 4 sin(40') ±= 2.57 cm.

The data were analyzed for several different cuts on O$t, all of which yielded a target density

constant to < 1%. This result shows that a cut of # ±q = 75 mrad is sufficient to define the

solid angle of Spectrometer A at this kinematic setting. This analysis is presented in Section

4.2.3.



4.2 Elastic Scattering from Helium

Overview

The density of the Helium target was needed to calculate absolute 3,4He(e,e'p) cross sections.

The density was measured in the experiment using the following technique:

1. For each beam energy, an elastic scattering measurement was performed using either

Spectrometer A or B. The absolute average target density during that run was then

determined by comparing the measured result to published 3,4He elastic cross sections.

2. During the entire experiment (i.e. in both the elastic scattering and the (e,e'p) measure-

ments) Spectrometer C took data at a constant field, angle and polarity. The absolute

target density in the (e,e'p) runs was then determined from the density in the elastic runs

using the number of counts in Spectrometer C.

The analysis of the Helium elastic scattering data is discussed in the following sections, and the

analysis of the Spectrometer C data is discussed in Section 4.3.

4.2.1 Measured Helium (e,e') elastic cross sections

An elastic scattering measurement was performed for 3He and 4 He at each of the 3 beam

energies (540, 675, and 855 MeV). As with 12C, the radiative-corrected experimental elastic

cross sections were calculated using ALLFIT [31]. A sample excitation spectrum is shown in

figure 4-10, with the fit results superimposed. Three distinct features are visible:

1. background from quasielastic scattering on the stainless steel target walls, fit with a

function of the form A1 + A 2 - w + A 3 - W2 over the entire E, range,

2. the 3He elastic peak at E,, = 0, followed by a radiative tail, and

3. starting at about 5.5 MeV, a contribution from quasielastic scattering from 3 He, fit with

a function of the form f (Ex) = A6 - (Ex - A5 ) + A7 - (Ex - A5 )2 for Ex ;> A5 . The fitted

value of A 5 was approximately 5.5 MeV (= the binding energy of the first proton in 3 He).

4.2. Elastic Scattering from Helium Q8r
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Figure 4-10: Counts vs. Excitation Energy for 3 He(e,e') at Ebeam = 540.11 MeV.
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A similar elastic spectrum for 4He is shown in the upper plot of Figure 4-11. Note that the

contribution from quasielastic scattering from 4 He is not visible in this figure since it appears

at higher excitation energy (E. = 19.8 MeV). The data in the lower plot of Figure 4-11 are

with a ± 1.0 cm cut on the reconstructed variable ytgt, which removes the target walls. The

counts at negative excitation energy are clearly removed, demonstrating that they are all due

to scattering from the walls. We chose not to make a cut on ytgt in the analysis since it would

introduce an uncertainty in the target extent, and the contribution from the target walls is

easily subtracted by fitting the full spectrum obtained without a cut on ytgt.

For both 3 He and 4 He, ALLFIT fits the central elastic peak with an asymmetric hyper-

gaussian convoluted with a theoretical radiative tail. The radiative-corrected cross section is

then calculated from the sum of the counts in the de-convoluted peak times the integral of the

theoretical radiative tail. The fit included additional empirical tails to the left and right of

the main peak, which improved the appearance and x 2 of the fit, and typically resulted in an

increase in the extracted cross section of 0.5-3 %.

To account for external bremsstrahlung in both the target gas and the cell walls, ALLFIT

treats the total target as a composite iron/helium target. This requires the total target thickness

of the composite gas-wall system seen by the incident and scattered electron beam, as well as

the isotopic abundance of each material. The density of the gas target is not known a priori, so

an estimate of the gas density was first used to determine an experimental cross section. The

cross section was then compared to the predicted cross section and a new gas density calculated.

ALLFIT was then run again to generate a new experimental cross section. The procedure was

iterated until the experimental and predicted cross sections differed by only a few percent, and

the final value of the target density then determined by correcting the previous value for this

small difference.

The total target thickness and isotopic abundance were calculated as follows:

dtot = d1 + d2

874.2. Elastic Scattering from Helium

(4.8)
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Figure 4-11: Counts vs. Excitation Energy for 4 He(e,e') at Ebeam = 540.11 MeV. The upper
plot is the data and fit used to determine the elastic cross section. The data in the lower plot
are with a cut applied on the reconstructed variable ytgt, which removes the target walls.
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i / i /A 2  (4.9)
d1/ A1 + d2/ A2

where wi is the isotopic abundance (i.e. the number of atoms of a particular isotope as a fraction

of the total atoms) of the ith isotope, and di and Ai are the thickness (gm/cm 2 ) and atomic

mass (gm/mole) of the ith isotope, respectively. For each material, the thickness is the sum of

that seen by the incident and scattered electron beam. For the target gas (i = 1), di = p, - 8

cm where pi is the gas density obtained as discussed in the above paragraph and 8 cm is the

diameter of the spherical cell. For the target walls (i = 2), d2 = P2 - 165pm, where 165pm is

twice the estimated thickness of the target cell walls as described in Appendix D. The density

and atomic mass of 5 6 Fe (P2 = 7.86 gm/cm 3 , A2 =55.847) were used for the stainless steel walls,

since iron is the largest component in stainless steel. The external radiative correction also

requires the atomic number (Z) of the target materials; for the stainless steel walls, the value

for iron was used (Z=26).

Experimental cross sections were determined from the data as follows:

dci P NC eA
=e dQ X QN X 77dt-pre (4.10)dQ t - dQ QNAp

where

NC number of counts in elastic peak, corrected for radiation by ALLFIT

e= 1.602 x 10- 19 C

A = atomic mass of 3 He (4 He) = 3.016 (4.003) gm/mol

Q = accumulated charge [C]

NA = 6.022 x 1023 mol-1

p = target density [gm/cm 3]

= dead-time and prescaling correction factor (see Appendix ?)r/dt-pre



The product of the target thickness and solid angle, t-dQ (in units of msr-cm), was calculated

using the Monte Carlo AEEXB [321:

t - dd = Nthru -Az.-AQ (4.11)
Ntrials

where

Nthru = number of trials making it through the cuts

Ntrials = total number of trials

Az = target length = 8 cm

AQ = solid angle sampled over [msr]

The sampling solid angle AQ is chosen to be significantly larger than the real acceptance so

that when the geometric constraints of the collimator (and any other software cuts) are applied

the true solid angle is determined. The Monte Carlo approach is necessary because of the

complicated geometry that arises from the combination of the extended target, the collimator

and the software data cuts.

A summary of the various factors used in the calculation of the experimental cross sections

is given in Table 4.8. The run numbers analyzed and the cuts placed on the data are given in

Table 4.9. The software cuts on the date were generally defined to eliminate background that

reconstructed well outside of the spectrometer acceptance, with the exception of two cuts:

1. the cut on Optt in the 540 and 675 MeV kinematics, which was made smaller than the

angular range defined by the collimator to restrict the solid angle of Spectrometer A to

regions where it is well-understood (see Section 4.1), and

2. the cut on Ott in the 855 MeV kinematics, which was made smaller than the angular range

defined by Spectrometer B. This cut was necessary because the edge of the sieve slit in

Spectrometer B obstructed the solid angle during most of the experiment, as discussed in

Section 4.1.1.
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3He 4He

Ebeam [MeV] 540.11 675.11 855.11 540.11 675.11 855.11
Spectrometer A A B A A B
osa [deg] 40.00 35.00 -24.99 40.00 35.00 -24.99

I qcentI [fm-1] 1.836 2.020 1.853 1.836 2.020 1.853
software collimationa 4tgt otgt 0tgt ktgt /tgt 0 tgt
t - dQ (AEEXB) [msr-cm] 142.67 144.99 38.260 142.78 145.93 38.271

aAVG (AEEXB) [10-5 fm2 /sr] 1.558 0 .9 8 9 2 ' 3.521 2.282 1.449 5.190
r/dt-pre 197.70 25.16 49.60 69.25 142.34 23.186
Qtot [mC] 5.715 10.061 25.772 3.277 6.373 11.229

Table 4.8: Parameters used in calculating the Helium target density from the elastic scattering

measurements.

'Indicates that the software cut on the specified angle was less than the value defined by the collimator, so
that the solid angle is determined by the combined geometry of the software cut and the collimator.

bOriginal aeexb result reduced by 1.5%. See section 4.2.2 for details.

The systematic error due to these cuts was investigated by analyzing the data with a series of

#tgt and Otgt cuts of different sizes and is discussed in Section 4.2.3.

4.2.2 Predicted Helium (e,e') elastic cross sections

Ottermann et al. [33] have measured and parameterized the elastic scattering cross sections for

3 He and 4 He over a momentum transfer range of 0.45-2.0 fm- 1 . They write the total elastic

cross section as

do,
dG

dor

dQ ) ott

dor

kdQ )Mott

_Fe2(q
2)

=

Za 
2

2E,

+ - + tan2

[2-r
( -)] 2p 2 F,2(q 2 )q2

4m Z 2 (4.12)

(4.13)
cos2 (_1) 1

sin4 (10) 1 + 2E1 sin 2 (O)
M

where (p = -2.12755, M = 2808.42 MeV) for 3 He, (p = 0, M = 3727.41 MeV) for 4 He, mp =

938.28 MeV (the mass of the proton), Z=2, and T = 1 + q2/(4M 2). El is the beam energy, and

4.2. Elastic Scattering from Helium
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Table 4.9: Run numbers and software cuts used in the analysis of
data, and the resulting measured gas densities.

"includes 3 consecutive runs combined: 950703025106, 950703030615, and

the Helium elastic scattering

950703031817.

q2 is the 4-momentum transfer squaredt. For 4 He, the magnetic form factor is zero (since it is

a spin 0 nucleus) and the charge form factor parameterization is

F(q) = (1 - (a 2 q2)6) b
2 2

(4.14)

with a=0.316 rm and b=0.675 fin. For 3 He, the charge and magnetic form factor are parame-

terized by

F(q) = e-^q2 - Bq2e-Cq2 (4.15)

with (A=0.462 fM2 , B-0.176 fM2 , C=0.812 fM2 ) for the charge form factor and (A-0.48 fm2 ,

B=0.18 fM2 , and C=0.85 fM2 ) for the magnetic form factor.

These formulae for the elastic scattering form factors and total cross section were put into

the Monte Carlo code AEEXB [32]. The code was then used to average the cross sections over

the experimental acceptance, including the geometry of the extended target, beam rastering,

collimator, and software cuts. The mean energy loss of the incident beam in the target gas

IAn ambiguity in the Ottermann paper was whether q2 referred to the 3- or 4-momentum transfer squared. We
assumed the latter, since it yields cross sections that are more consistent with the Amroun [34] parameterization.
If we assume that q2 instead corresponds to the 3-momentum transfer squared, the predicted 3 He elastic cross
sections decrease by 1.3-1.8% at the central kinematics.

Ebbeam Run Number(s) Otgt Otgt Ytgt Zbeam] Density

[MeV] [mrad] [mrad] [cm] [cm] [mg/cm 3]
3He 540.11 950622162640 ±90 ±75 ±4.5 none 14.807

675.11 950625015506 ±90 ±75 ±4 none 11.511
855.11 950703050505 ±60 ±40 none ±6 7.186

4H e 540.11 950629234552 ±90 ±75 ±4.5 none 14.356
675.11 950707143036 ±90 ±75 ±4 none 20.889
855.11 950703025106-31817a ±60 ±40 none ±6 11.286
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and target walls was also accounted for. The qeff formalism[35] was used in AEEXB to modify

the sampled momentum transfer to account for Coulomb distortion, which resulted in an ap-

proximately 2.7% (1.7%) reduction in the predicted cross section at the lowest (highest) beam

energy. This average cross section obtained from AEEXB was then directly compared to the

experimental cross section to determine the experimental target density.

For 3He, a more recent and complete parameterization to higher q2 has been published

by Amroun et al. [34]§. We compared this to the Ottermann result by calculating the cross

section at the central scattering angle (i.e. no acceptance averaging was done) with both the

Ottermann and Amroun parameterizations. For the 540 and 855 MeV beam energies, the

difference in the cross section was 0.5% or less. For 675 MeV, the Amroun parameterization

yields a cross section 1.5% less than that calculated from the Ottermann parameterization.

Since the 675 MeV measurement has a central 4-momentum transfer of q2 = 4.06 fm-2, which

is just beyond the q2 range of the Ottermann data, the Amroun result is more reliable. We

incorporated the Amroun result by decreasing the cross section calculated by AEEXB (which

uses the Ottermann parameterization) by 1.5% for the 675 MeV setting.

§ Tripp [36] points out an error in the formula for the sum-of-gaussians form-factor parametrization given by
Amroun - the factor I in the exponent should be .
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3He 4He
Ebeam [MeV] 540.11 675.11 855.11 540.11 [675.11. 855.11
total charge [%] 2.4 1.7 2.0 1.7 1.6 2.4
ALLFIT (stat.+fit) [%] 1.2 0.5 0.6 0.9 1.0 0.5
beam energy (±160 keV) [%] 0.2 0.2 0.2 0.2 0.2 0.2
central spect. angle (±0.1 mrad) [%] 0.1 0.2 0.2 0.1 0.2 0.2
target position (±1 mm) [%] 1.4 1.6 0.3 1.4 1.7 0.3
horiz. beam position (±1 mm) [%] 1.7 2.3 0.6 1.7 2.3 0.6
solid angle [%} 0.6 0.6 0.4 0.6 0.6 0.4
dead time [%1 1 1 1 1 1 1
knowledge of FC, FM 2.4 3.3 2.4 2.4 3.3 2.4

total [%[ 4.4 4.8 3.4 4.0 4.9 3.7

Table 4.10: Estimated uncertainty in the target density measured from the Helium elastic
scattering runs.

4.2.3 Total Error in the Measurement of the Helium Target Density

The total estimated uncertainty for the Helium elastic scattering measurements is summarized

in Table 4.10. Each of the individual uncertainties is discussed in detail below. The total

uncertainty is the sum of the individual uncertainties, added in quadrature, and is given for

each kinematics in the final row of the table.

The systematic uncertainty in the total charge is the uncertainty in the value read out

from the photoeffect monitor and the uncertainty in its calibration against the F6rster probe

at high current, added together in quadrature. The error from ALLFIT includes the statistical

error and a small systematic contribution from the fitting procedure. The effect of uncertainty

due to systematic shifts in beam energy was estimated by taking the difference in the cross

section calculated (based on the Ottermann form factors discussed below) at (Ebeam, 0e) and at

(Ebeam ± 6E, Oe). The uncertainties due to shifts in the central spectrometer angle, and target

and beam location were calculated in a similar manner. The effect of the shifts is very similar in
3 He and 4 He. The sensitivity to beam and target position is reduced in the 855 MeV kinematics

since they were measured with Spectrometer B, compared to the 540 and 675 kinematics which

were measured with Spectrometer A. Compared to Spectrometer A, Spectrometer B has a
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longer drift distance from target to collimator so that changes in target and beam position have

a reduced effect on the scattering angle.

The experimental solid angle was determined by the combined geometry of the beam, the

collimator and the software cuts. Its uncertainty was determined by analyzing the data with

several different values of the software cuts, as shown in Tables 4.11 and 4.12 for Spectrometers

A and B, respectively. Ideally the measured density of the target gas is independent of the cuts,

so that the variation in the measured density provided an estimate of the uncertainty in the

solid angle. As shown in Tables 4.11 and 4.12, the maximum change observed in the measured

density was 0.6% in Spectrometer A and 0.4% in Spectrometer B.

The uncertainty in the form factors FC and FM is not as straightforward. For the form factor

parameterizations used in this experiment, Ottermann et al. quote an overall normalization

uncertainty of 0.65% and a systematic uncertainty of 0.7%. They also quote total errors on

their individual measurements of FC and FM at particular values of q2 , but do not give an

uncertainty in their form-factor parameterizations, which were obtained by fitting to all the

data. It is therefore difficult to estimate the uncertainty in using their parameterization to

calculate Fc and FM at our values of q2 . For 3 He, Amroun et al. give a graph of the total

systematic and statistical uncertainty in their form factor parameterization as a function of

q2, which gives WC = 6FM ~ 2 x 10-3 at q2 = 4 fM-2. Since the Amroun and Ottermann

parametrizations gave similar results for the cross section at our kinematics (except for the small

difference at Ebeam = 675 MeV, where we rescaled the results to be consistent with Amroun)

and the the Amroun parametrization includes the data from Ottermann, we have used this

uncertainty. At our kinematics, this yields uncertainties of 6FC/Fc = 1.1 %, 6FM/FM = 1.2 %

at q2 = 3.42 fm- 2 and 6Fc/Fc = 1.6 %, 6 FM/FM = 1.5 % at q2 = 4.05 fm-2. The uncertainty

6FM/FM has a negligible effect and can be discarded since the the charge term F q2) accounts

for > 90% of the cross section at all three of our kinematics. The uncertainty in the elastic

cross section is therefore 6oo/a-~ 2 x 6Fc/Fc.

For 4 He, the magnetic form factor is zero so that only the charge form factor FC contributes

to the cross section. The fractional uncertainty in the charge form factor, 6FC/Fc, was as-
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Table 4.11: Density of the 4 He target gas measured in the Ebeam = 540
run with Spectrometer A, for various cuts on #tgt.

Table 4.12: Density of the 4 He target gas measured in the Ebeam = 855
run with Spectrometer B, for various cuts on Ott.

MeV elastic scattering

MeV elastic scattering

sumed to be the same as determined above for 3 He. The reasoning is that the 4 He form-factor

parameterization that we used is from the same experiment (Ottermann et al.) as the 3 He

parameterization, so that the overall systematic errors are similar. Also, the statistical errors

in their measurements of FC are similar in 3He and 4He in our region of q2 . One possible

discrepancy is that our Ebeam = 675 MeV kinematics is just outside their q2 range. In the case

of 3 He, the Amroun parameterization (which extends to higher q2 ) was used to correct the cross

section by 1.5%. A similar procedure is not possible for 4He since the Amroun parameterization

is for 3 He only. However, since the 4 He form factor has a simpler functional dependence (the

fit has only two parameters compared to three for 3He), the error in the cross section due to

the extrapolation should be less than 1.5%.

#tgt cut O-AVG (AEEXB) t - dQ (AEEXB) density change
[mrad] [10-6 fm2 /sr] [msr-cm] [mg/cm 3]
±75 22.82 142.78 14.36 -

±70 22.46 136.91 14.32 -0.3
±65 22.09 130.35 14.37 +0.1
±60 21.73 123.15 14.28 -0.6
±55 21.37 115.26 14.29 -0.5

0tqtcut O-AVG (AEEXB) t - dQ (AEEXB) density change
[mrad] [10-6 fm2 /sr] [msr-cm] [mg/cm 3] [%]
±60 51.90 38.27 11.29 -

±55 52.14 35.07 11.30 +0.1
±50 52.37 31.87 11.33 +0.4
±45 52.58 28.68 11.30 +0.1
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4.3 Target Density Measurement with Spectrometer C

4.3.1 Overview

The density of the Helium target gas is needed to determine absolute cross sections. In the pre-

vious section, it was shown how the target density in the elastic scattering runs was determined

by comparing the measured results to published cross sections. That density corresponds to

the average density of the target gas over the time that the elastic scattering measurements

were performed. The density at other times was determined from the counts measured in

Spectrometer C, as explained below.

4.3.2 Technique

Throughout the experiment (i.e. in both the elastic scattering and (e,e'p) measurements),

Spectrometer C took data at a fixed momentum (p = 340 ± 40 MeV/c), angle (1200, on the

right side of the beam line when looking downstream) and polarity (negative). It therefore

constantly measured negatively charged particles with a fixed angle and momentum. The

number of particles, Nj, that scattered from the Helium target gas and entered the spectrometer

in a particular run period can be written as

Q1 PINA d_
N dQdp (Ei, p,0)dQdpdz (4.16)

where is the scattering cross section, which in general can be written as a function of the

incident beam energy (Ei), scattered momentum (p) and the scattering angle (0). The variable

z is the coordinate along the beam line, and the limits of the integral are the experimental

acceptance. The subscript '1' indicates run period 1, and the superscript 't' indicates that the
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particles are scattered from the target gas. The constants in the above equation are

Q1 = accumulated charge [C]

e = 1.602 x 10- 1 9C

NA = 6.022 x 1023 mol-1

P1 = target density [gm/cm 3]

The number of particles in a second run period can similarly be written as

Q2 P2NA d3or
NJ (Ei,p,0)dQdpdz (4.17)e A fd~dp

If the beam energy in run period 2 is the same as in period 1, then the integral is equal for

the two periods, since both the cross section and the limits of the integral are constant. The

integral therefore cancels out in the ratio of Nf and N':

NIt

N'= (Q1P1)/(Q2P2) (4.18)

Solving for P2 yields

P2 1 (4.19)
(Q2 N j

Therefore if run period 1 is the elastic run, where the target density (pi) has been measured,

the target density (P2) for a second run at the same beam energy can be determined using Nj,

N', and the total charge (Qi and Q2) collected in each run.

4.3.3 Determination of Nj

To determine the density of the Helium target as outlined above, we require the number of

particles Nit that scatter from the Helium gas and enter Spectrometer C in run period i. We
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define Ni as the number of events measured in Spectrometer C in run period i. Ni was obtained

from Ni by applying corrections for dead time, prescaling, and cosmic-ray and empty-target

background as described below.

First, a run was performed with the beam off, acquiring Ne0, cosmic ray events in Spec-

trometer C in time tes. The number of counts measured in run period i corrected for dead

time, prescaling and cosmic-ray background was then calculated from

Ni = Ni7i - Neos ,los - (4.20)
teos

where Ni is the number of counts measured in run period i, ti is the length of the run period

in seconds, and the 7's are the dead-time/prescaling correction factors.

Next, a run was performed with the target empty, with the beam on, and at at the same

beam energy used in run period 1. The number of counts in this empty target run was corrected

for prescaling, dead time, and cosmic-ray background, yielding

N'mP = Nempiemp - Nos os ' tem (4.21)
tcos

which reflects the number of counts due to the target walls and to any other background

proportional to the beam current.

Finally, the number of counts in run period 1 due to just the target gas was calculated by

correcting N| for the empty target contribution:

N= NN- N'mp - (4.22)
Qemp

where Qi and Qemp are the total charge collected in run period 1 and in the empty target run,

respectively.

An analogous set of equations determined the background-corrected number of counts, Nt,

in run period 2.
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quantity lower upper
value value

Cerenkov [ADC channels] 200 2000
momentum [MeV/c] 300 380

#tg [rad] -0.120 0.120
9tg [rad] -0.080 0.080
Ytg [m] -0.050 0.050

Table 4.13: Software cuts on Spectrometer C.

4.3.4 Background Suppression

In the above analysis, the data taken with the empty target runs and the cosmic ray run provide

an estimate of the background contributions to the counts at all other times. This assumes

that the backgrounds are constant over all time. In Spectrometer C, the raw trigger rate was

seen to vary depending on the beam tune, indicating that some of the background was not

constant. It is therefore necessary to apply cuts to the data to suppress the background and to

ensure that the vast majority of the measured counts correspond to particles that scatter from

the Helium target gas. With the cuts applied, the empty-target and cosmic-ray contributions

are kept small, so that any fluctuation in the background should introduce a small systematic

uncertainty in the final result.

The final cuts used for Spectrometer C are given in Table 4.13. The Cerenkov ADC is

the sum of the individual ADCs corresponding to a single phototube in the Cerenkov counter,

and the cut on the ADC ensures that the measured particles are all electrons. Cuts are also

placed on the coordinates (Ot, Otg, ytg), which are the reconstructed coordinates of the particle

at the target as defined in Figure 4-1. High-precision reconstruction of the particle coordinates

for Spectrometer C was not necessary for these measurements, and the reconstruction matrix

(obtained from Ref. [37]) used was very preliminary.

The cuts were chosen such that the cosmic-ray and empty-target backgrounds were small.

A sample of the results is shown in Table 4.14, which shows (for three different run periods) the

number of counts in Spectrometer C before and after the various corrections. The correction
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Table 4.14: The number of counts in Spectrometer C before and
(see text for details).

after the various corrections

for cosmic ray background is 0.2% or less in all cases, so that Nj ~ ?jNj. Additionally, the

correction for empty-target background is approximately 1% in all cases, so that Nj f Nj. With

these small background corrections, we therefore have Ni ~ 7iNi. The value of Ni determined

from the data is therefore insensitive to small changes in the cosmic-ray and empty-target

background.

4.3.5 Statistical Uncertainty

Since the empty-target and cosmic-ray background corrections are small, their contribution to

the statistical uncertainty can be discarded. Since Ni ~ Nili, the statistical uncertainty in Ni

can be estimated from

___ =N, 1 (4.23)
Nj _N V/N

run number Iavg Ni qiNi N Nzt
[pA]

950703042231 5 2410 7410 7395 7326
950703044032 10 3443 21182 21166 20953
950703050505 15 4648 42483 42453 42029
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Chapter 5

The (e,e'p) Analysis

Overview

In this chapter the major elements of the (e,e'p) analysis are presented and discussed. An

overview of the (e,e'p) analysis is given in Figure 5-1. The data analysis code ESPACE [38] was

used to analyze the raw data, producing histograms of the measured counts after various cuts

for background suppression and subtraction. The Monte Carlo code AEEXB [32] was used to

calculate the corresponding detection volume histograms, which were then combined with the

ESPACE output to produce cross sections. Radiative corrections were applied by radiatively-

unfolding the cross sections with RADCOR [39]. In a second technique (not shown in Figure

5-1), radiative effects were applied to a theoretical model of the (e,e'p) cross section in a Monte

Carlo simulation of the experiment. The output of the simulation was then compared to the

measured spectrum to study the radiative effects in regions where radiative unfolding could not

be accurately performed.

The main steps in this analysis are discussed in detail in the following sections.

5.1 Coincidence Timing

The coincidence timing is the relative time between the arrival of particles in each of the two

spectrometers. The time was measured by two TDCs (time-to-digital converters) that had a

relative delay of 54.65 nsec (1093 channels) between them. Two TDCs were used to provide a

larger timing range, which was required by the range in proton momenta used in the experiment.
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foreground yield

detection volume I, I background yield

(subtraction, division)
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Figure 5-1: An overview of the (e,e'p) data analysis.
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Both TDCs were combined into a single spectrum by accounting for the delay between them.

The TDC start was provided by the electron arm (Spectrometer A) and the stop provided

by the proton arm (Spectrometer B). The raw timing signal was corrected in ESPACE for

several factors which broaden it: 1.) a hardware offset in the TDC start or stop depending

on which scintillator paddle triggered it, 2.) the time required for the light created in the

scintillator to reach the phototube, which depends on where the particle struck along the

paddle, and 3.) variations in the time-of-flight of the detected particle for different momenta

and different paths through the spectrometer. The paddle offsets and time-of-flight corrections

were individually optimized at each kinematics using ESPACE. A sample spectrum (taken at

the 540/585 kinematics) of the coincidence timing before and after these corrections is shown

in Figure 5-2. For the pp = 660 and 585 MeV/c kinematics, the signal-to-noise ratio was

very large before and after the corrections, and the FWHM of the peak after corrections was

approximately 1 ns (20 channels).

The timing also varies with the pulse height (which varies with the energy deposited) in

the scintillator, which is accounted for in the paddle offsets: the scintillators are segmented

along xfp, so that at a fixed central momentum each paddle corresponds to a narrow range

of momenta and therefore an (approximately) constant pulse height. An exception to this is

when a particle crosses near a gap and strikes two scintillator paddles, so that the pulse height

in either paddle is reduced and a shift in the coincidence timing is observed. The result is an

asymmetric broadening at the base of the corrected coincidence timing peak. These events are

allowed for by using a wide coincidence timing cut in the analysis, which ensures the inclusion

of the events.

In the data analysis, a timing cut of width ti centered on the coincidence peak defined the

"foreground" yield, N 1 . Two cuts, each in the flat region on either side of the peak and of

total width t 2 , defined the "background" yield, N 2 . The accidental-corrected yield was then

determined from

N = N t N2 (5.1)
t2
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Figure 5-2: Coincidence timing before and after corrections. Data are for 3 He(e,e'p) at the
540/585 kinematics. The horizontal scale is in TDC channels, with 1 channel = 50 picoseconds
(10-9 s). The cuts placed on the data are those given in section 5.4. The FWHM of the
corrected peak is 1.0 nsec.

where the second term corrects for the random coincidences that fall inside the foreground

timing cut. In the remainder of the thesis, the phrase "corrected for accidentals" refers to

spectra that have been corrected according to Equation 5.1.

5.2 Particle Identification

To ensure that the events we histogram were indeed (e,e'p) events, the particle identification

was checked in each of the spectrometers.

In the electron spectrometer (Spectrometer A), pions were distinguished from electrons by

the Cherenkov detector, which uses Freon as a radiator gas. The threshold for production of

Cherenkov light in the Freon gas is 10 MeV for electrons and 2.7 GeV for pions [19]. Any signal

in the Cherenkov ADCs was therefore taken as a valid electron.

For the proton spectrometer (Spectrometer B), the vast majority of the particles detected in

coincidence were protons. This was deduced from the observation that the energy deposited in



5.2. Particle Identification

the scintillators is the same for the vast majority of the particles, and that they also reconstruct

to the expected missing energy spectrum. Nevertheless, some pion and deuterons are detected

in the proton spectrometer in coincidence with the electron arm, and can be identified in the

scintillator ADC spectra.

An ADC on each phototube provided a measure of the energy deposited in the scintillator.

The ADC value was corrected for light attenuation depending on where the particle struck on a

particular paddle, and a further empirical amplitude correction was applied to compensate for

any gain mismatch between phototubes, so that a given particle passing through the scintillator

results in approximately the same corrected ADC value regardless of which scintillator paddle

it passed through. A plot of the ADC values in the two scintillator layers is shown in Figure

5-3 for 4 He(e,e'p) at the 855/585 kinematics. The x-axis is the energy deposited in the bottom

scintillator layer (dE) and the y-axis is the energy deposited in the top layer (TOF). From the

1-dimensional projections it is apparent that the majority of the data fall in the central proton

peak.

In addition to the central proton peak, a number of other distinct regions are visible in the

scatter plot:

1. A horizontal and a vertical band extending from the central proton peak. These are due

to the particle passing near the gap between two scintillator segments, so that the energy

deposited in a single segment is reduced (we only consider the segment that fired first).

These are valid (e,e'p) events and should not be discarded.

2. A deuteron region, appearing at high dE and high TOF values. A few of the deuterons

are true coincidences, and appear as a small peak in the coincidence timing spectrum

approximately 65 nsec later than the proton peak, consistent with their longer time-of-

flight through the spectrometer. The remainder of the deuterons are random coincidences.

The coincidence timing cuts for the (e,e'p) analysis were made such that they avoid the

deuteron peak, so that after correction for accidental coincidences we have excluded the

real coincident deuterons and corrected for the random ones as demonstrated in Figure

5-4.
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3. A region that appears as protons in dE but as deuterons in TOF. We assume that these

events are due to (p,d) and (p,2p) reactions in the dE scintillator, and are therefore valid

(e,e'p) events that should not be discarded.

4. A region at low dE and low TOF, due to pions and/or positrons. These are predominantly

random coincidences, and are removed by the accidental subtraction as demonstrated in

Figure 5-5.

All backgrounds were either excluded by the TDC cut or corrected for in the coincidence

timing background subtraction, as demonstrated in the 1-dimensional projections of the scintil-

lator ADC spectra in Figures 5-4 and 5-5. After correction for accidental coincidences, only the

proton peak remained in the spectra. Therefore no cuts to the scintillator ADCs were required

in the analysis.

5.2. Particle Identification 109
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Figure 5-4: ADC spectra for the dE scintillator for coincidence 4 He(e,e'p) events at Ebeam = 855
MeV and pp = 585 MeV/c with acceptance cuts (see section 5.4) applied. The top plot is
before the coincidence timing cut and accidental subtraction, and the bottom plot is after. The
deuteron events visible in the top plot are clearly removed after the coincidence timing cut and
correction for accidental coincidences.
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Figure 5-5: ADC spectra for the dE scintillator for coincidence events as in figure 5-4, but with

an additional cut on the TOF ADC to study the minimum ionizing region. The pion/positron

peak visible in the top plot is cleanly removed after the coincidence timing cut and correction

for accidental coincidences.
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5.3 Missing Energy Spectra

An example of the accidental-corrected 3 He(e,e'p) missing energy spectrum is shown in Figure 5-

6 for data measured in the 855/660 kinematics. The 2-body 3 He(e,e'p) 2H (Em = 5.49 MeV) and

3-body 3 He(e,e'p)np (Em > 7.72 MeV) breakup reaction channels are cleanly resolved, and there

is very little background at missing energies below the 2-body breakup peak. Similar spectra

for 4 He are shown in Figure 5-7, where the onset of the 3-body breakup channel 4 He(e,e'p) 2 Hp

at Em = 26.07 MeV is only barely visible on top of the large radiative tail. The features of the
3 He and 4 He missing energy spectra are discussed in more detail in Chapter 6.

To improve the experimental missing energy resolution, small changes were made to the

standard values of the matrix elements (06) (Spectrometers A and B) and (0216) (Spectrometer

A only). At each of the (e,e'p) kinematic settings, the values of the matrix elements were chosen

to minimize the width of the 2-body breakup peak. A sample spectrum in Figure 5-8 shows

the effect of these small corrections in Spectrometer A, where the corrections were largest.

In the missing energy spectra shown in Figures 5-6 and 5-7, several software cuts were placed

on the momenta and reconstructed coordinates of the detected particles. These software cuts

were a standard set used in the (e,e'p) analysis, and are discussed in the following section.

112 Chapter 5. The (e,e'p) Analysis



5.3. Missing Energy Spectra 113

104

10 3

10 2

10

1

40000

35000

30000

25000

20000

15000

10000

3 He(e,e'p) at 855/660 Kinematics
Accidental-corrected Counts vs. Missing Energy

) 10 20 30 40 50 60 70 80 90 10

Missing Energy [MeV]

-He(e,e'p)2 H
(Em=5.49 MeV) 3He(e,e'p)np

+ radiative tail
(Em 7.72 MeV)

:M

2 4 6 8 10 12 140

Missing Energy [MeV]

Figure 5-6: Sample missing energy spectrum for 3 He(e,e'p) after all software cuts and accidental
subtraction.

C.

U>

0

U)0

0

0
U)

a)

U)

0

5000

0

5.3. Missing Energy Spectra 113

0



114 Chapter 5. The (ee'p) Analysis

10 4

10 3

10 2

10

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

4 He(e,e'p) at 855/660 Kinematics
Accidental-corrected Counts vs. Missing Energy

4He(e,e'p)pd + radiative tail
(Em 26.07 MeV)

4He(e,e'p)nnp + radiative tail
(Em 28.30 MeV)

.......-.....

0 10 20 30 40 50 60 70 80 90 10

Missing Energy [MeV]

4 He(e,e'p) 3H

(Em=1 9.8 MeV)

-1 _ I

10 15 20 25 30 35

0

40

Missing Energy [MeV]

Figure 5-7: Sample missing energy spectrum for 4He(e,e'p) after all software cuts and accidental
subtraction.

C.)

0
CI)

0

0

C.)

(D)

C/)

-10

0

114 Chapter 5. The (e,e'p) Analysis



5.4. Spectrometer Reconstruction and Software Cuts 115

0.15 -. 0.15

0.1 0.1 1

0.05 0.05

0 0

-0.05 -0.05

-0.1 -0.1

-0.15 -.A
4 5 6 7 4 5 6 7

Missing Energy [MeV] Missing Energy [MeV]

Figure 5-8: The dispersive angle (k,,) in the focal plane of Spectrometer A vs. missing energy,
for 3 He(e,e'p) measured in the 855/660 kinematics. The left plot is using the standard matrix

elements and the right is after small corrections to (016) and (016).

5.4 Spectrometer Reconstruction and Software Cuts

The coordinates of each particle were reconstructed in ESPACE, which used a standard set

of matrix elements for Spectrometers A and B (the '495 MeV long-target' set, determined by

Ref. [26]) to transform the position and angles of the particle measured in the wire chambers

to the momentum of the detected particle and to its coordinates (Otg I, ktgt, ytgt) at the target.

The coordinates (Gtgi, Itgt, ytgt) of the particle at the target are in the spectrometer transport

system, as defined in Figure 4-1 in Chapter 4. By combining the reconstructed value of ytgt with

the beam rastering information, ESPACE also reconstructs the position zreact of the particle

along the beam line in the beam coordinate system (also defined in Figure 4-1).

The reconstruction of the angles Ot_, and #tgt was verified at a single field setting (corre-

sponding to a central momentum of approximately 415 MeV/c) for Spectrometers A and B with

measurements of elastic scattering from 12 C using a sieve slit collimator in each spectrometer.

A sample spectrum for Spectrometer A is shown in Figure 5-9. The intersections of the solid

lines in the figure mark the locations of the hole in the sieve slit, and the scattered points are
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Figure 5-9: Reconstructed 9 tgt vs. #tgt for electrons elastically scattered from 12 C and detected
in Spectrometer A, which had a sieve slit collimator (see text).

the measured data. (Note that the decrease in counts at increasing #tg is due to the increase in

the scattering angle and corresponding decrease in the cross section.) The spectra for B show

similar good agreement.

The software cuts to the momenta and reconstructed coordinates used in the (e,e'p) analysis

are listed in Table 5.1. The cuts were the same for the 3He and 4 He analysis, with the exception

of the cut on Otgt as noted in the table. The dispersive coordinate 6 is related to the detected

momentum of the particle via 6 = (p -pref)/pref, as discussed in Section 3.3.4, and the cuts on

6 were chosen to be the same as those used in Ref. [20]. The 6-cut in Spectrometer A was for

the design region of that spectrometer, and in Spectrometer B the cut excluded a small region

(7.4 < 16| < 7.5%) of the design acceptance.

The #tgt cut in Spectrometer A was made significantly smaller then the limits defined by the

target/collimator geometry, so that the data were constrained to a region where the solid angle
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Spectrometer 6 Ct9  #tg Ytg Zreact

(%) (mrad) (mrad) (cm) (cm)
A (electrons) -5.0-+15.0 ±90 ±75 ±8 -
B (protons) ±7.4 ±60a, ±45' ±50 - ±2

Table 5.1: Cuts to momenta and reconstructed coordinates used in the (e,e'p) analysis.

aUsed in 3 He(e,e'p) analysis.
bUsed in 4 He(e,e'p) analysis.

of Spectrometer A is well-understood as described in Chapter 4. The #tt cut in Spectrometer

B was made significantly larger than the limits defined by the target/collimator geometry, so

that it excluded background that reconstructed at values of #tt far outside the collimator while

allowing the collimator to define the #tt acceptance.

In both spectrometers, the nominal limit of 9 tgt defined by the collimators is ±70 mrad.

In Spectrometer A, the cut to Ot9,t was chosen to be larger than this to exclude background

while allowing the collimator to define the Otgt acceptance. In Spectrometer B, the Ott cut was

chosen to be smaller then this limit for two reasons:

1. In many of the runs, the sieve slit in Spectrometer B was not completely removed and

so obstructed the acceptance in Ot9t. This resulted in a 3-4 mrad reduction in the Ott

acceptance at the negative-6tgt limit (i.e. from about -70 to -66 mrad at the central target

location). This was discussed in the analysis of the Carbon and Helium elastic scattering

data in Chapter 4, where it was accounted for by applying a software cut of Ott, = ±60

to eliminate the effect of the sieve slit.

2. In the (e,e'p) measurements, some of the coincident protons rescattered from the upper

edge of the scattering chamber exit window. The energy lost by the protons shifted the

events to higher missing energy, so that an enhancement in the number of counts at miss-

ing energies approximately 15 MeV above the 2-body breakup peak was observed. This

enhancement is indicated as a shaded region in the missing energy spectra shown in Fig-

ures 5-10 and 5-11. These missing energy spectra have no cut on the proton angle OP t, but

5.4. Spectrometer Reconstruction and Software Cuts 117
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have the standard software cuts on all the other coordinates. Applying a missing energy

cut on this shaded region yields the 0', spectra shown in the lower right-hand corner of

Figures 5-10 and 5-11, where the enhancement near 0 = -70 mrad is clearly visible,

consistent with particles scattering from the upper edge of the scattering chamber exit

window (positive Otgt points downward in the spectrometer transport coordinate system).

The rescattering was probably due to a misalignment in the position of the scattering

chamber. This interpretation was verified in a subsequent Helium (e,e'p) experiment in

1998 (not reported in this thesis) where the enhancement was seen to vanish when the

vertical position of the scattering chamber was changed.

To eliminate both these effects, a cut on Otgt in Spectrometer B was employed. The value

of the cut was ±60 mrad in the 3 He data and ±45 mrad in the 4 He data. In the 3He data,

radiative effects were found to dominate the spectrum above Em > 20 MeV (as will be discussed

later in this chapter), so that no cross sections were extracted above that missing energy.

The contamination from the exit window rescattering was therefore not critical, and a cut of

±60 mrad removed most of the rescattered events and defined the 9 tgt acceptance while not

discarding more data than necessary. In 4 He the radiative corrections were also very large,

but the region where we extracted cross section extended past Em = 40 MeV, which includes

the region where the enhancement from exit window scattering is observed. It was determined

that a software cut of Otgt = ±45 mrad effectively suppressed the enhancement, and this cut

was therefore used throughout the 4He(e,e'p) analysis. The systematic uncertainty due to these

cuts was examined by varying their size, and is discussed in Chapter 6.

Two other cuts listed in Table 5.1 and used in the (e,e'p) analysis are on ytgt measured in

Spectrometer A and zreact, which was reconstructed be combining the value ytgt measured in

Spectrometer B and the beam rastering information. The ytgt cut in Spectrometer A was made

much larger than the size of the target, so that it discards small background contributions while

not defining the acceptance. The cut on Zreact in Spectrometer B. satisfied a number of criteria

and is discussed further in the next section.
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5.5 Cut on react

The variable Zreact is the reconstructed position of the particle along the beam line. It was

calculated from ytt as measured in Spectrometer B and the instantaneous beam position as

determined from the beam rastering calibration. The purpose of the Zreact cut was to

1. eliminate the contribution of the target walls to the (e,e'p) cross section,

2. eliminate snout-scattering contributions to the (e,e'p) cross section,

3. restrict the range of lytgtI to where the acceptance of the spectrometers is well-understood,

and

4. define the target thickness.

The Zreact cut used throughout the (e,e'p) analysis was ±2.0 cm. A wider cut would increase

the amount of data that could be analyzed and hence decrease the statistical error, but would

result in a greater systematic uncertainty due to background and acceptance effects. Since the

uncertainty in our final result is mainly driven by systematic uncertainty, the choice to increase

statistical error to decrease systematic error is justified.

The background contributions from the target walls and snout scattering are discussed in

detail in the following two sections.

5.5.1 Contribution from Target Walls

To study how well the Zreact cut suppresses the contributions of the target cell walls, we studied

the shape of the missing energy histogram for Zreact cuts of different dimensions. The shape

of the histogram should be approximately independent* of the Zreact cut. In Figure 5-12 are

missing energy spectra for various Zreact cuts for 3 He(e,e'p) at Ebeam = 855 MeV and pp = 660

*To first order, cutting on Zreact reduces the amount of target material seen in the experiment so that the

number of counts should be reduced accordingly. In reality, the number of counts in a particular missing energy
bin is given by the integral in equation (5.5). The limits of (Qe, Qp) in BIj depend on z, so that a cut in z

changes the range of angles that the cross section is integrated over. The shape of the missing energy spectrum
is therefore somewhat dependent on the Zreact cut.
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and 585 MeV/c. The number of counts is scaled so that each spectrum has the same number

of counts in the region around the 2-body breakup 3 He(e,e'p) 2 H (4.0 < Em < 7.0 MeV), since

this region is least sensitive to wall contributions. At both kinematics, we see that the shape of

the spectrum in the continuum differs substantially from the shape when no zreact cut is made.

In the pp = 660 MeV/c spectrum without a Zreact cut, a further wall contribution is visible

around Em = 0, which we attribute to 1H(e,e'p) from ice forming on the outer surface of the

target cell. When Zreact cuts are applied the 'H(e,e'p) contribution is reduced by a factor of 20

relative to the Helium 2-body peak, and the overall shape of the spectrum is independent of

which zreact cut is used. We can therefore conclude that the zreact cut successfully suppresses

the target-cell wall contributions to the (e,e'p) cross section.

5.5.2 Contributions from Snout Scattering

Figure 5-13 shows the accidental-subtracted counts as a function of Zreact at two different beam

energies (Ebeam = 540 and 855 MeV) for 3 He(e,e'p) at pp = 585 MeV/c. The data have no cuts

on Zreact, but otherwise have the usual acceptance cuts as given in Table 5.1. The spectra show

a significant number of events reconstructing outside of the target walls, which were situated

at Zreact = -0.042 m and +0.038 m (the 8 cm -diameter target was shifted 2 mm upstream

for the entire experiment). Most of these spurious events appear downstream from the target,

at Zreact > 0.04. However, their distribution peaks at a different value of Zreact for the two

different kinematics, indicating that the source of these events is not localized at a particular

value of Zreact. A detailed analysis indicated that the events are the result of coincident protons

rescattering from the front of the snout on Spectrometer B. The identification of this background

and the technique for excluding it are discussed below.

The front of Spectrometer B has a snout approximately 2.4 meters long that extends from

the collimator position towards the target chamber. On the front of the snout is a kapton

entrance window mounted in a 60 mm -thick aluminum flange. The distance from the back of

the flange (i.e. the side closest to the collimator) to the center of the target is 0.448 m [40]. A

test performed on the events was to track the protons to the flange position on the front of the

Chapter 5. The (e,e'p) Analysis
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Figure 5-13: Accidental-corrected counts vs. Zreact for 3 He(e,e'p) at the 540/585 (left plot) and
855/585 kinematics (right plot). A significant number of counts reconstruct outside the target
walls, at a value of Zreact that varies with the kinematics.

snout. Two new coordinates were calculated along the flange,

(5.2)Yflang = Ytgt + tgt x 0.448

in the horizontal direction, and

(5.3)Xflang = Otgt X 0.448

in the vertical direction (note that positive x points downward in the transport notation). A

plot of the accidental-subtracted counts vs. Yflang is shown in Figure 5-14, for the same data

and cuts as shown in Figure 5-13. In this new variable, the background peak now has a similar

position and shape for the two kinematics: it peaks sharply around Yftang = 4 cm and then falls

off as Yflang increases. Analysis of the third kinematics (675/585) at this proton momentum

gave the same result, indicating that the source of the events is localized in the flange system

instead of the beam system. This explains why the events reconstructed at different values of
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Figure 5-14: Accidental-corrected counts vs. Yflang for 3 He(e,e'p) at the 540/585
855/585 kinematics (right plot). In contrast to Zreact, the background peak is

and appears at a constant value at the two kinematics.

0.04 0.08

Zreact for the three kinematics: as the central spectrometer angle is changed, a fixed position

on the flange corresponds to a different value of Zreact-

To compare the data to the position of the flange and entrance window on Spectrometer

B, a 2-dimensional plot of Xflang vs. Yflang for the 3 H(e,e'p) 540/585 kinematics is shown in

Figure 5-15, with the flange position superimposed. The entrance window is mounted in the

flange opening, which is ±42.5 mm wide. The background around Yflang = 4 cm reconstructs

near the edge of the flange, indicating that the particles are probably either passing through

the flange or being rescattered by it. The effect is greatly reduced on the opposite side of

the flange (around Yflang < -4 cm), although it is still somewhat visible, especially in the

1-dimensional plots in Figure 5-14. One possible explanation is that the end of the snout

on Spectrometer B is displaced approximately 5 mm upstream. This would account for the

asymmetry in the reconstructed Yflang spectrum. However, we also note that the accuracy of

the coordinate reconstruction might be reduced for events with large Yflang, since these events

have large values of ytgt (the reconstruction matrix we used was determined in Ref. [26] from
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measurements that had a maximum lytt| value of 1.84 cm).

To completely understand this apparent rescattering from the flange, four further charac-

teristics of the background events were noted:

1. The events appear to be (e,e'p) events, as determined in both particle identification in the

two spectrometers and by the coincidence timing. In the raw coincidence timing spectrum

they appear in the same region of time as the (e,e'p) events from the interior region.

2. The y-reconstruction in Spectrometer A generally places the events in the interior of the

target, in conflict with the Zreact reconstruction (which is based on the y-reconstruction

in Spectrometer B because of its higher resolution) which generally places them outside

(Figure 5-13).

3. The events do not reconstruct to any particular missing energy.

4. At other kinematic settings (we have only discussed the background pp = 585 MeV/c),

the size of the background relative to the central target region increases at lower proton

momentum settings and is not visible at the highest proton momentum setting.

An explanation consistent with all of these observations is that the events are 3He(e,e'p)

events from the target where the coincident electron is detected as usual, but the proton hits

the aluminum flange, loses energy, and rescatters into the spectrometer. To show that the

kinematics of this mechanism are feasible, consider that at our kinematics the 3 He(e,e'p) 2 H

reaction will generate protons with a distribution of momenta that peaks around q= 685 MeV/c.

A 685 MeV/c proton has a kinetic energy of about 223 MeV, and will lose approximately 59

MeV in 6 cm of aluminum. If the proton passes through the entire flange, it will therefore

have a final kinetic energy of 164 MeV and a momentum of 578 MeV/c. This is well inside the

acceptance of the kinematic setting we have been discussing (pp = 585).

Since these events rescattered from the flange into the spectrometer acceptance, they are

indeed background and should be removed. The flange region is cut away by the ±2.0 cm cut

on Zreact, as shown in Figure 5-16. The ability of the cut to suppress the flange scattering

was checked by the analysis of Figure 5-12, where the shape of the missing energy spectrum
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Figure 5-15: A scatter plot of xfIang Vs. Yflang for 3 He(e,e'p) at the 540/585 kinematics.
Acceptance cuts on (0tgt, qtgt, 3) only have been made - there is no zreact cut or accidental
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Counts vs. "yflang" after reactz=+/-2 cm cut Counts vs. "yflang" after reactz=+/-2 cm cut
3He(e,e'p) at 540/585 kinematics 3He(e,e'p) at 855/585 kinematics
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Figure 5-16: Accidental-corrected counts vs. yflang as in Figure 5-14, but after the zreact=
±2 cm cut is applied. The background region near the flange edge has been eliminated by the
Zreact cut.

was found to be independent of the Zreact cut. The Ebeam = 855 MeV kinematics shown in

that figure are the worst case since they have the largest proton angle, which means that the

accepted range of Yflang is largest for a fixed Zreact.

We have not discussed in detail the two lowest proton momentum settings (p, = 500 and

425 MeV/c). The flange scattering is very visible at those kinematics also, but the counts

from even the central target region are dominated by another type of background and so are

unusable. The background there is due to collimator scattering, which is a mechanism similar

to that seen in flange scattering, and will be discussed in Section 5.10.

5.6 The Experimental (e,e'p) Cross Section

The (e,e'p) cross sections extracted in the experiment are an average of the theoretical cross

section over the experimental acceptance, and are either six-fold (in the continuum) or five-fold

(in the case of two-body breakup) differential. The method of extracting the cross sections and



their relation to the theoretical cross section is discussed below.

5.6.1 Six-Fold Differential Cross Section

In an (e,e'p) experiment, we measure the number of events N(Ei,pI) that fall into the missing

energy and missing momentum bin (Ei,pm). The bin spans a range of missing energy and

missing momentum given by

AEm AP
Emiss = Em ± 2 Pmiss = P± 2 (5.4)

In terms of the theoretical cross section, the number of events N(Em, pl.) measured from

scattering from an extended target is given by

1 Q d 6 0
N(Em, Pm) = 7  Pv f d c dQed~pdpedppdz (5.5)

Udt edBed pdpedpp

where z is the coordinate along the beam line and originating at the center of the target. The

constants in the above equation are

/dt = dead-time correction factor (> 1)

Q = accumulated charge (C)

e = 1.602 x 10- 19 C

p, = number density of target atoms, per unit volume

The symbol Bi indicates the limits of the integration, which is constrained such that

1. ( pp, Qe , z) lie within the physical limits of the experimental setup (i.e. they "fall

within the acceptance"),

2. the missing energy and missing momentum fall within the values given in (5.4), and

3. any other limitations used in the determination of N(E,,p A) (i.e. cuts placed on the
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data) are satisfied.

Although the cross section has no explicit z-dependence, the limits of the angular integrations

depend on z in a complicated fashion. This was demonstrated in Chapter 4, where the z-

dependence of the angular acceptance was calculated for a point target.

We now define two quantities: the acceptance-averaged cross section,

d60 p ) Jtpzj ddded~pdpedppd z
, Pp (5.6)

d~ed~pdPedPp%3 fhi, dQedQpdpedppdz

and the detection volume,

A V(Empm ij dQedQpdpedppdz (5.7)

Substituting these expressions into the right hand side of equation (5.5) gives

d\ 1 Q
N(Emp14) = -d-p Ij tv - AV(Em,4pm) (5.8)

(d e d~pdPe dPp Bij 77dt e

Solving this equation for the acceptance-averaged cross section gives

d6 - dt e N(E., (5.9)
dQedQpdpedpp13j P Q AV(Em,pm)

This is the cross section that is extracted from the experimental data. It is an average of

the theoretical cross section over the experimental acceptance as defined in equation (5.6). The

detection volume AV(EX,pA) is calculated with a standard Monte Carlo technique [41] using

the program AEEXB [32]:

AV(Em,pl) = Nthru (EP) X APeAPpAQe ApAz (5.10)
Ntriais

where ApeAppAQeAQpAz is the total volume sampled over in the Monte Carlo. The total

volume was set to exceed the experimental acceptance in all dimensions except for Az, which

was set to the physical target length. Ntrials is the total number of trials, and Nthru(E,pV)
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is the number of successful trials landing in the bin (E,,pm). The kinematic variables of the

outgoing electron and proton for a particular trial were randomly sampled from the volume

ApeAppAQeAQpAz, and the position of the incident electron beam on the target was rastered

as in the experiment. Particle vectors generated at the event vertex were modified for energy loss

in the target and target walls, and then cuts applied to determine if the events land inside the

collimatorst. Further cuts in angle, momentum, and vertex position as used on the experimental

data (given in Table 5.1) were then applied, and successful events were histogrammed according

to their values of Em and pm at the reaction vertex. The vertex values are appropriate since these

are the values used in histogramming the experimental data (ESPACE corrects the detected

momenta for energy loss in the target and target walls.)

5.6.2 Five-Fold Differential Cross Section

The two-body breakup reactions channels 4He(e,e'p) 3H and 3 He(e,e'p) 2 H appear as peaks in

missing energy, with a width determined by the overall energy resolution of the experiment.

The cross section for these reactions is obtained by integrating the six-fold differential cross

section over missing energy with the appropriate Jacobian, yielding a five-fold differential cross

section:

d5oE d6cx 1
dQedQpdPe dQedQpdPedPp OEm dEm (5.11)

E1  app

where the limits of integration (El, E 2 ) are the experimental range of missing energy spanned

by the two-body peak. The partial derivative is taken at constant Pe, Qe and Q1 , and for our

definition of missing energy it has the following value:

DEm _ pp (5.12)
app Peep E pE

where E- p2 + m2 1 , and mAl is the mass of the (A-1) recoil nucleus.

tThe collimators in Spectrometer A and B were modelled as a series of slits as discussed in Appendix C
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In the data analysis, this procedure is done in two steps. First, the Jacobian is used to

calculate a histogram of the six-fold cross section differential in missing energy. Then that

histogram is integrated over the 2-body peak to obtain a histogram of the five-fold differential

cross section. The six-fold differential cross section is calculated from

K d~e) 1  t e N (E, p~) (5.13)d~ed~pdPedEm )Lij pv wt AVa( pM)

Note that this is identical to the equation (5.9) for the measured cross section, except for the

substitution V -+ V/SC, where V/IC is the detection volume weighted by ,Ep

ap

AVWac (E., p.1) = m - dQedQpdpedppdz (5.14)

As with the unweighted detection volume in equation (5.7), the weighted detection volume is

calculated with the Mone Carlo technique. Each trial is weighted by the factor ,E so that

Nwtiac (Em,pm')
wV E ,p = thru X APeAPpAQeAQpAz (5.15)

Ntriais

A one-dimensional histogram of the five-fold differential cross section is then calculated by

integrating over missing energy:

K / m d 6 ud5 T E dA Em (5.16)
dQed pdpe r, _ dQedQpdpedEm ( si5

i~n

where n and m are the bins corresponding to the limits (E1 , E 2 ) of the integration.

5.7 The Experimental Spectral Function

In PWIA, the (e,e'p) cross section can be written as [18]

d6e d = pp -Oep - S(Em,Ipm) (5.17)
dQedQpdPedp
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where S is the spectral function. Substituting this into equation (5.5)

I Q2N(Emi4pl) - j Pp2 9epS(Em, pm) -dedpdpedppdz (5.18)
r7dt e 13i

This can be written as

N(Emp I4) = - - S(Em,pkn ) f PP'e - dQedQpdPedppdz (5.19)
7ldt e PvjBi

where

K S(Em, jo)) f3i PPp2 JepS(Em,pm) - dQedQpdpedppdz (5.20)
Bij hfj Pp 2 aep - dQedQpdpedppdz

Solving (5.19) for (S),

(S(E~j dl N N(Em', pk)

= (Edt , NI ( , ) (5.21)Bij pV Q AVkc1 Ewt p

This is the "experimental spectral function" that we extract in the experiment. Note that the

right hand side is identical to that in equation (5.9) for the measured cross section, except for

the substitution V -+ Vfep, where Vzt is the detection volume weighted by pp2

AV/w eP(Em,pI4) = j Pp2 Oep - dQedQpdPedppdz (5.22)

The weighted detection volume is calculated with the Monte Carlo technique by weighting each

trial by the factor pp2 Uep, so that

kae Nhrut(kEm, pm )
AVteP (Em7,41 ) = N N mFmJ X APeAPpA~eAQpAZ (5.23)

Ntris

The version of cxep used in the analysis was the CC1 prescription of de Forest [18], which is

described in Appendix G.
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5.8 Manipulation of (Em, Pm) Histograms

In the analysis of the (e,e'p) data, a number of operations were performed on the 2-d (and

in some cases 4-d) histograms. These operations included combining the data from different

kinematics, masking the histograms to remove the regions at the edge of the acceptance, and

rebinning and projecting of the final cross sections. Each of these is discussed below in more

detail.

5.8.1 Combining Data

At each beam energy, data were taken at four different central proton momenta (Tables 3.3

and 3.4). The data taken at pp = 660 and 585 MeV/c were combined into a single spectrum by

separately adding the accidental-corrected counts and normalized detection volume histograms

and dividing them to calculate a cross section:

d ) 6( 1 N1 (Em, p) + N 2 (Emp) (5.24)
d~ed~pdPedPp 1 viV1(Em,pj) + v2 AV 2 (E ,pl)

where the subscripts 1 and 2 indicate the two different kinematics, N is the accidental corrected

counts, and AV is the detection volume. The factor vi (v 2 ) is a normalization factor for the

first (second) kinematics:

(1) Q(1) (2) Q(2 )
v1 =(1) e (2) e

7 /dt 7ldt

The two lowest proton momentum settings (Pp = 500 and 425 MeV/c) were not combined

with the other data, but were analyzed separately. These settings correspond to the highest

missing energy and missing momentum in the experiment (see Figure 3-8) and were found to

be dominated by collimator scattering. This is discussed in detail in Section 5.10.
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5.8. Manipulation of (Em,pm ) Histograms

5.8.2 Histogram Masking

The number of counts in a particular bin of the N or AV histograms varied strongly with the

missing energy and missing momentum. Since the two histograms were divided to form a cross

section, some limit needed to be placed on the range of (Em,pm) used to avoid large fluctuations

at the edges of the acceptance where both histograms drop off sharply. The limit used in the

analysis was to require that the value of AV(E,,p) in a particular bin exceed 10% of the

maximum value in the AV histogram. A 2-d (Em,pm) histogram was created, with a 1 in the

bins that meet this criteria and a 0 in the bins that do not. The N and AV histograms were

then multiplied by this "mask" histogram to exclude the unwanted regions.

5.8.3 Projection and Rebinning of the Data

To radiative unfold the data (discussed in the next section) it is sometimes necessary to have

a smaller bin size or more dimensions then is desired in the final result. For this reason, it is

necessary to rebin or project the cross sections after radiative corrections.

The rebinning or projection was done by first multiplying the radiative-corrected cross

section by the normalized detection volume, effectively calculating a radiative-corrected counts

histogram. The rebinning (or projecting) was then done separately on this radiative-corrected

counts histogram and on the normalized detection volume histogram. The two were then divided

to calculate the rebinned (or projected) cross section.

The advantage of this technique is that it is conceptually similar to analyzing the data with

a larger bin size or (in the case of projection) in fewer dimensions. A disadvantage is that the

error propagation is unclear. The division, multiplication and rebinning of histograms is done

by the program HISTMAN, which properly propagates the errors for each of those operations

according to the standard formulae [42]. However, the radiative-corrected cross section before

re-binning already has the full statistical errors from the division of N and AV, as well as an

additional error from the radiative unfolding procedure. When doing the rebinning, it would

therefore be incorrect to again propagate the errors in AV in the multiplication and subsequent

division done in the rebinning procedure. The solution taken was to zero the errors in the
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AV histogram before the multiplication. The relative error in the radiative-corrected cross

section then gets completely associated with the radiative-corrected counts and is propagated

accordingly when the counts are rebinned. Any error caused by this assumption should be

small, since the error in AV is generally much smaller then the error in N.

5.9 Radiative Corrections

The radiative corrections to the (e,e'p) cross sections were performed by radiatively-unfolding

the data with the code RADCOR [39]. The techniques used by the code are described in Ref.

[39, 62, 63], and the correction factors it used for each type of radiative process are given in

Appendix B. For our kinematics, the unfolding technique seems to fail at high missing energy,

for reasons discussed below. A Monte Carlo simulation was therefore done using theoretical

models of both the 3He(e,e'p) cross section and the radiative processes, and the result then

directly compared to the (un- radiative-corrected) experimental cross section.

5.9.1 Radiative Unfolding

The radiative correction of a particular cross section bin is done in two distinct steps. First,

the contribution from radiative tails originating in all other bins is subtracted. Second, the

contents of the bin (after the preceding subtraction) is increased to account for the strength

lost from that bin by radiation. This technique is referred to as radiative unfolding.

In (e,e'p), radiative tails always propagate strength from lower to higher missing energy.

Radiative unfolding is therefore done by starting with the bin at lowest missing energy, into

which no strength can radiate. That bin is first corrected for radiative effects, resulting in an

increase in the contents of the bin. The trajectories of the radiative tails from that bin through

the (multi-dimensional) kinematic space are then calculated, and the contributions from the

tails are subtracted from the corresponding bins.

The radiative corrections were first done in a 2-dimensional (Em,pm) space. Yield and

phase space histograms were accumulated in 2-dimensions, and then divided and normalized to

form a 2-d cross section histogram. The radiative unfolding of the cross sections was done by
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RADCOR [39]. Some details of the code are given in Appendix B.

To exactly calculate the trajectory of the radiative tails, the full kinematics (6 independent

variables) of each (e,e'p) event would be required. Since the data have been binned in 2+1

dimensions ( (Em, Pm) + the fixed beam energy) this information is no longer available, so that

the following assumptions are made by RADCOR to fix the kinematics. First, the angles of Im

with respect to q' are fixed at zero (which is true for the center of the acceptance). Secondly,

the value of JqJ is fixed at its central value. A final constraint, required for the calculation of

the tail from the incident electron, is that the angle of the detected proton is held constant.

With these assumptions, the 2-d cross sections were radiatively-unfolded. An example of the

direction of the radiative tails in the (Em,pm) plane is shown in Figure 5-17. A 1-dimensional

projection of the resulting 3 He spectral function for a narrow, fixed pm slice is shown in Figure

5-18. The radiative unfolding improves the separation between the 2- and 3-body breakup

regions, removing most of the measured strength in the unphysical region between them. At

low missing energy (< 25 MeV), the shape and magnitude of the corrected spectral function is

brought closer to the theory by the radiative correction procedure. This is especially noticeable

above about 20 MeV, where the radiative correction to the data are very large, indicating that

the vast majority of the measured strength in that region is due to radiation.

For Em > 25 MeV, this 2D radiative-corrected spectrum shows erratic behaviour, first going

negative and then positive as the missing energy increases. This behaviour can be attributed

to limitations of the unfolding technique. Under the kinematic assumptions used in the 2D

unfolding, the radiative tails tend to concentrate around the contour where numerically Em ~

c -Pm, so that the results tend to go negative around that contour and positive above and below

it. When the results are averaged over a larger Pm range as shown in Figure 5-19, the cross

section (or spectral function) no longer fluctuates from negative to positive with increasing

missing energy. However, the cross section at high missing energy (Em > 25 MeV) is then

consistently negative, which is an unphysical result.

A limitation of the 2-d unfolding is the assumption that 1m is parallel to q. In this ex-

periment, the magnitude of fm is small compared to jq and 1' 1, so that im can actaully
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2-body breakup
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Figure 5-17: Two examples of the radiative tails propagating into the continuum from a single
(Em,pm) bin in the 2-body breakup region for 3 He(e,e'p). The tails were determined with
the program RADCOR [39]. The trajectory of the tails is different depending on whether
the incident (e) or final (e') electron radiated. Larger missing energy along the trajectories
corresponds to a larger energy of the radiated photon.



5.9.Radativ Corectons139

40 j5 . 50 MeV/c

x 10
Ebeam= 8 5 5 MeV

no radiative corrections

after 2D radiative unfolding

450

> 400

350

300

(D 250

200
0

* 150

L 100
LL

50

(D) 00-
U,)

-50

700

600
CV)

500

(D
( 400

o 300

5 200
LL

100

U)

5 7.5 10 12.5 15 17.5 20 22.5 25

Missing Energy (MeV)

Figure 5-18: The experimental 3He spectral function for pm = 45 + 5 MeV/c after 2D radiative

unfolding. Kinematics are 855/660 and 855/585 combined.
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Figure 5-19: The experimental 3 He spectral function for pm = 80 + 40 MeV/c after 2D radiative

unfolding. The radiative-corrected result in the Em > 20 MeV region is now smoother, although

it is consistently negative.
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have many orientations with respect to q while approximately maintaining parallel kinematics

(' 11 q). Since the angle of 'm with respect to q changes the trajectory of the radiative tails in

the (Em,Pm) plane (Figure 5-20), an attempt was made to account for these different orienta-

tions by binning the data and doing the radiative unfolding in 4 dimensions. The angular range

was broken up into 3 bins in both 0 qpm and Oqpm, and 4-dimensional cross sections were calcu-

lated by binning both counts and detection volume in the 4-d (Em,pm, qpm, qkqpm) space. The

3 x 3 = 9 two-dimensional (Em,pm) spectra corresponding to each (Oqpm,# qqpm) combination

were then independently unfolded in RADCOR.

The radiative-corrected results were then rebinned and projected on to the 1-dimensional

Em axis. A sample spectrum is shown in Figure 5-21. Compared to the 2-d results, the high

missing energy region (Em > 25 MeV) is less negative. At low Em, the results are basically

unchanged: the integral of the experimental spectral function over 7 < Em < 20 MeV in the

4-d analysis is only 2% less than the corresponding integral in the 2-d analysis.

However, in four dimensions the concept and technique of radiative unfolding become very

complicated, and there were some inconsistencies which were not resolved in this analysis. One

of these inconsistencies is the contribution from radiative tails that originate outside the ex-

perimental acceptance. Estimating the contribution from these tails requires either a model

of the cross section, or else an extrapolation of the measured data into regions outside of the

acceptance. In the 2D analysis, an extrapolation of the data showed that the tails that origi-

nate outside the acceptance only contribute to the edges of the measured (Em, Pm) spectrum.

Their contributions could therefore be avoided by discarding the outer edges of the spectrum.

In contrast, in the 4D analysis the (Em,pm) region spanned by each (Oqpm, #qpm) bin is not

necessarily the same. It is therefore difficult to define a large region of (Em,pm) space that is

both common to all (Oqpm, #qpm) and is insensitive to radiative contributions from outside the

acceptance. A model or extrapolation of the data in 4 dimensions could eliminate the need to

discard data, but would be difficult to implement accurately.

Since both the 4D and 2D radiative unfolding techniques both yield a negative cross section

at high missing energy (Em > 20 MeV in 3 He), another unfolding technique was investigated.
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Figure 5-20: Propagation of the radiative tails in the (Em,pm) plane for the 4D analysis. The
angles (Opmq, #pmq) are of P' with respect to q' for the single (Em,pm) bin where the tails
originate. The tails were calculated with the program RADCOR [39].
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5.9. Radiative Corrections

40 Pmiss 120 MeV/c

Ebeam= 8 5 5 MeV

[XX] no radiative correction

after 4D radiative unfolding

-

0 10 20 30 40 50 60 70 80

Missing Energy (MeV)

Figure 5-21: The experimental 3 He spectral function for Pm = 80 t 40 MeV/c after 4D radiative
unfolding. The radiative-corrected result in the Em > 20 MeV region is less negative compared
to the 2D analysis.
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We refer to this third technique as '2DFPM', for '2-dimensional at fixed missing momentum'. In

this technique the radiative unfolding was done in two dimensions, but the missing momentum

was held constant for both the incident (e) and final (e') electron tails. The trajectory of the

radiative tails (for example, those shown as the solid and dashed lines in Figure 5-17) are then

horizontal lines in the (Em,pm) plane. By ignoring the change in pm, this technique provided

an estimate of the error in the cross section introduced by the uncertainty in the (Em,pm)

trajectories in the 2D unfolding technique.

A sample spectrum of the 3 He(e,e'p) results with the 2DFPM unfolding technique is shown

in Figure 5-22. The kinematics are the same as in Figures 5-19 and 5-21. In contrast to the

2D and 4D unfolding results, the 2DFPM radiative-corrected cross section is positive at high

missing energy (Em > 20 MeV). This illustrates that the radiative-corrected cross section in the

high Em region is very sensitive to the trajectory of the radiative tails in the (Em, Pm) plane.

At lower missing energy, the shape of the spectrum is similar to the 2D and 4D techniques.

The integral of 2DFPM radiative-corrected spectral function over 7 < Em _< 20 MeV is 4.6%

greater than the corresponding 2D result. The final results in Chapter 6 are presented with

both the 2D and 2DFPM unfolding techniques.

All of the unfolding techniques discussed above yielded an uncertain result at higher missing

energy (Em > 20 MeV in 3He). All of the techniques consistently showed that the radiative

corrections to the continuum are large, but the corrected cross section at high Em varied from

positive to negative depending on the unfolding technique employed. A possible explanation for

the failure of radiative unfolding at high missing energy is that, as a result of binning the data

in less than five dimensions, all of the kinematic variables are not known for each event. The

exact trajectories of the radiative tails in the (Em, Pm) plane can therefore not be calculated.

The sensitivity of the high Em region to the exact trajectories was demonstrated in the 2DFPM

technique, and is further illustrated by considering the radiative tails propagating from the two-

body breakup peak, as shown in Figure 5-17. For small photon energies, the change in both

Em and pm is quite small, so that any uncertainty in the trajectory of the tail will generate

only a small change in pm. At high missing energy, any uncertainty in the slope of the tail

Chapter 5. The (e,e'p) Analysis
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Figure 5-22: The experimental 3 He spectral function for pm = 80 ± 40 MeV/c after 2DFPM

radiative unfolding (see text). In contrast to the results obtained with 2D and 4D radiative
unfolding, the radiative-corrected result in the Em > 20 MeV region is now positive.
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generates a larger change in Pm and hence a larger uncertainty in the radiative correction. The

uncertainty in the trajectory of the radiative tails is then compounded by the fact that the

radiative corrections at high Em are very large relative to the measured cross sections.

Since radiative unfolding yielded an uncertain result at high missing energy, another tech-

nique was used to study the effect of radiation on the measured continuum cross section. This

second technique employed a Monte Carlo simulation and is discussed below.

5.9.2 Monte Carlo Simulation of Radiative Effects

A second approach to radiative corrections is to fold radiative effects into a theoretical descrip-

tion of the (e,e'p) cross section, and then compare the result to the measured (unradiative-

corrected) cross section. The technique uses a Monte Carlo to sample the (e,e'p) cross section

over the experimental acceptance while allowing for the radiation of real and virtual photons

by the incident and scattered electrons.

An advantage of the technique is that the full kinematic information is known for each

Monte Carlo trial, so that the trajectory of a radiated event in the kinematic hyperspace can

be precisely calculated. Stated more simply, the effect of radiation on each kinematic variable

is completely known. Another advantage is that the model used can cover a large region of

phase space, so that radiation from regions outside the acceptance can be easily handled. A

possible disadvantage to the technique is in the case that the simulated and measured spectrum

disagree significantly. In that case an iterative approach to the simulations might be necessary,

where the input model is modified to improve the agreement to experiment.

For the analysis of our data, a simulation was run for the 855/660 3 He kinematics to study

the high Em region and to compare to the result obtained by radiative unfolding. This simula-

tion is described in detail in Ref. [43]. The Monte Carlo code used was titled AEEXB although

it is heavily modified and is a distinct code from the version of AEEXB used to calculate the

detection volume histograms. An unpublished manual (Ref. [44]) details the technique used

by the code to simulate the radiative effects. The input model for the 3 He(e,e'p) cross section

was PWIA employing the spectral function of Salme et al. [45], the CC1 prescription of the
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off-shell e-p cross section [18], and the free-nucleon form factors of Ref. [46].

For the results presented here, the final cross sections from the simulation were scaled

by a factor of 0.84, to account for the difference between our measured (radiative-unfolded)

3 He(e,e'p)2 H momentum distribution at 45 MeV/c and the corresponding value given by the

Salme spectral function. The rescaling is intended to account for the gross differences between

the model and the measured data. The value of the rescaling factor will be apparent in the

following chapter where the final results are given.

The results of the simulation are shown in Figure 5-23. The plots are of the six-fold differ-

ential cross section ndQd g - as a function of missing energy for pm = 45 ± 5 MeV/c. The

experimental cross sections are not radiative-corrected, and are shown as the shaded region

in both plots. The results of the simulation are shown as the solid line. In the top plot, the

simulation includes only the 2-body breakup part of the spectral function. Everything in the

simulated curve that appears a few MeV above the 2-body peak at 5.5 MeV is therefore purely

radiative tail from the 2-body breakup channel. For Em > 25 MeV, we see that this radiative

tail from the 2-body accounts for the majority of the measured data. In the bottom plot, the

simulation includes the continuum part of the theoretical spectral function as well as the 2-body

breakup. The theoretical continuum cross section without radiation is shown as the dashed line,

and the full simulation of both 2-body and continuum cross sections with radiation is the solid

line.

The overall shape of the simulation and the data agree very well, and the simulation indicates

that the measured cross section above Em > 25 MeV is entirely radiative tail. We note that

the simulation does not reproduce the detailed shape of the two-body breakup peak centered

at 5.49 MeV. The measured peak shape is a result of the experimental resolution, which is not

well-modelled by the simulation. Refinements to the Monte Carlo could probably improve the

agreement, but the motivation to do so would be mostly cosmetic.

In the continuum region, the simulation overestimates the data by about 20%. A second

simulation was performed for a larger region of the acceptance (pm = 65 ± 35 MeV/c) and is

shown in Figure 5-24. The use of a a larger fraction of the acceptance reduces the statistical
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uncertainty. The results of this second simulation in the continuum overestimate the data by

approximately 15%. Part of these discrepancies in magnitude may be due to the fact that the

overall scaling factor was obtained from a single point, namely the two-body breakup at 45

MeV/c. The radiative contributions to this spectrum come from a broader region of phase

space (for example, two-body breakup reactions at other Pm), so that the use of a single scaling

factor introduces an error if the data and the model differ by more that a single constant.

Secondly, the full simulation of the radiative effects is complicated, and the techniques used by

the Monte Carlo are still in development.

This discrepancy in the absolute magnitude of the simulated cross sections does not alter the

central conclusion, which is that the measured spectrum is completely dominated by radiative

tail above Em > 20 MeV. This conclusion is consistent with the result obtained from radiative

unfolding. The 15-20% difference between the simulated and measured cross sections requires

further work to resolve, and may be related to the detailed shape of the input model and/or

the simulation techniques, which are still under development.

5.10 Collimator Scattering at Higher (Em, Pm)

The two lowest proton momentum settings (pp = 500 and 425 MeV/c) probe the cross section at

higher missing energy and missing momentum, as shown in the acceptance plots of Figure 3-8.

Since most of the kinematic range covered by these settings is far from the 2-body breakup peak,

radiative correction of the cross sections with radiative unfolding is even more difficult then at

the higher pp kinematics. In many cases the source of the radiative tails comes from kinematic

regions that were not measured in this experiment, namely the 2-body breakup channel at high

Pm. Radiative unfolding would require either an extrapolation of the experimental data into

these regions or the inclusion of a model of the cross section.

In this instance it makes more sense to proceed directly to the Monte Carlo simulation of

the radiative tail, which includes a theoretical model of the cross section in all regions, as well as

having the other advantages outlined in the previous section. This was done for the 3 He 855/500

kinematics, and the results are given in Figure 5-25. The shaded region is the un- radiative-
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3He(e,e'p)np Cross Sections
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data
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Figure 5-23: Experimental cross sections without radiative correction vs. simulation. The input
for the simulation is the spectral function of Salme [45] scaled by 0.84. The scaling factor was
chosen to normalize the theory to the measured 2-body breakup momentum distribution at 45
MeV/c.
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corrected data, and the solid line is the full simulation of the radiated spectral function. As

with the previous kinematics, the simulation yields a cross section that is dominated by the

radiative tail at high missing energy (Em > 30 MeV). The measured cross section and the full

simulation show reasonable agreement at the limits of the spectrum, but there is a striking

disagreement in shape and magnitude over most of the missing energy range. The measured

cross section is approximately four times larger than the simulation at the central missing

energy. A second important feature is that the simulated and measured cross sections are

relatively small compared to those measured at lower pm (higher pp), as seen by comparing

Figure 5-25 to Figure 5-23. Even without radiative corrections, the measured cross section at

the 855/500 kinematics is approximately 1010 fM2 (1 picobarn), which is about a factor of ten

smaller than the cross section measured at lower pm. With this reduction in the magnitude of

the cross section one might expect an increased sensitivity to background.

A closer look at other aspects of this data set revealed that there is a large (coincident)

background contribution to the measured cross sections at these kinematics. Figure 5-26 shows

a histogram of the proton angle in the vertical plane, which is strongly peaked near the edges of

the collimator for the real coincidences, in contrast to the accidental coincidences, which have

a relatively flat distribution spanning the width of the collimator (±70 mrad). This peaking of

Ott suggests that many of the coincident protons were rescattered from the collimator edges.

From our measurements at higher proton momentum, we know that there are many coinci-

dent high-momentum protons from the 2-body breakup and low missing-energy region. From

the coincidence timing spectrum (for example, Figure 5-2) of these measurements we know

that most of these protons are real coincidences and very few are accidentals. When the proton

spectrometer is set at a lower momentum, these high-momentum protons are coincident with

the detected electron, but would normally not be detected since they have momenta above the

acceptance. However, if the protons lose energy by passing through the collimator material

they can then fall into the momentum acceptance and appear as good coincidences. The fact

that most of the high-momentum protons are real coincidences explains why the 0 tgt peaking

is seen only in the real coincidence spectrum, and not in the accidental coincidences: if the
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3 He(e,e'p)np
855/500
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Figure 5-25: Experimental 3He(e,e'p) cross section (measured in 855/500 kinematics) without

radiative corrections vs. simulation. Data and simulation are for Pm = 180 ± 20 MeV/c. The

input for the simulation is the spectral function of Salme [45] scaled by 0.84.
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Counts vs. 0 tgt for 3He(e,e'p)
855/500 kinematics

-- coincidences
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Figure 5-26: The vertical angle of the detected proton (Otgt in the transport notation) for
3He(e,e'p) at the 855/500 kinematics. The upper plot is for coincidence events with a foreground

(solid line, labelled "coincidences") and a background (shaded region, labelled "accidentals")
tdc cut. The background region has been scaled for the foreground/background tdc gate width.
The lower plot is the coincidences after accidental subtraction.
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high-momentum protons that rescatter from the collimator are real coincidences then they will

still be real coincidences after the rescattering from the collimator.

To show that this hypothesis is reasonable, consider that the accidental-corrected 3 He(e,e'p)

count rate (with the usual cuts in Table 5.1 applied) at the 855/660 kinematics is 2.8 x 106

counts/Coulomb. In comparison, the corresponding rate at the 855/500 kinematics is 3.0 x 104

cts/C, which is a factor of 93 smaller. So there are very many high-momentum coincident

protons, and if even - 1% lose energy and fall into the low-momentum acceptance, they will

dominate the signal.

A restriction on the number of protons that can rescatter is the energy lost in the collimator

material. In the vertical direction, the collimator in Spectrometer B (the proton spectrometer) is

predominantly composed of a 156 mm-thick lead block. The block is angled at 70 mrad relative

to the horizontal plane, so that its face is parallel to the direction of motion of particles generated

at the center of the target and impinging on the collimator edge as shown schematically in Figure

5-27. The momentum of the incident coincident protons is peaked around 685 MeV/c (the value

of |q). Protons of this momentum cannot pass through the entire collimator, and would have to

rescatter and exit the collimator after passing through approximately one-fourth of its thickness

to exit with enough momentum to appear in the pp = 500 MeV/c bite.

A full simulation of the energy loss and multiple scattering is required to fully understand

the above process, where a small fraction of a large number of high-momentum protons contami-

nates the real low-momentum events. A detailed simulation might reveal the exact contribution

of the collimator scattering, although the large size of the effect suggests that correction of the

data would be difficult. As this thesis went to press, there was speculation [47] that the value

of the collimator rotation angle shown in Figure 5-27 was significantly less that 70 mrad. This

would increase the exposed surface area of the collimator and therefore enhance the collimator

scattering effect that we have observed. Without a simulation, strong evidence of the hypothesis

is provided by the 0 tgt spectra themselves, which show a distinct peaking around the collimator

edges at all the pp = 500 and 425 MeV/c kinematics, for both 3 He (Figure 5-28) and 4He

(Figure 5-29). It is hard to imagine that this peaking could be due to valid (un- re-scattered)
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Figure 5-27: A schematic of the Spectrometer B collimator (not drawn to scale) in the vertical
plane.

(e,e'p) events. Even if the hypothesis of collimator rescattering is not the complete picture, it

seems very likely that the peaking in tgt comes from some background process and so should

be excluded.

In all cases the peaking is a large contribution to the spectrum, and in some cases the central

Ott region has very few counts, indicating that the collimator rescattering completely dominates

the spectrum. For this reason these data were not analyzed any further and are not included in

the final data set. A rough upper limit on the 3 He(e,e'p) cross section at the 855/500 kinematics

is provided by Figure 5-25, where the cross section is less than 10-10 fm2 /(MeV/c) 2 /sr2 over

the given missing energy and missing momentum interval.
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3He(e,e'p) : Accidental-Corrected Counts vs. protontgt
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Figure 5-28: The vertical angle of the detected proton (Ott in the transport notation) for
3 He(e,e'p) for all pp = 500 (left plots) and pp = 425 (right plots) MeV/c kinematics. The
software data cuts for the 855/500, 855/425, 675/500 and 540/500 kinematics are the standard
ones given in Table 5.1, with the exception of a ±90 mrad cut on Ott of the proton. The cuts
in the 540/425 and 675/425 kinematics were similarly defined, but loosened in two variables

(no <' cut, and |Zreactl < 2.5 cm) to improve the statistical uncertainty.
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Chapter 6

Results

Overview

The analysis techniques presented in the previous chapters were used to extract absolute

3 He(e,e'p) and 4 He(e,e'p) cross sections and spectral functions from the experimental data.

Results obtained for the two-body breakup and continuum channels are presented here.

The full kinematics of the measurements were given in Tables 3.3 and 3.4 in Chapter 3. The

complete data set included (e,e'p) measurements on 3 He and 4He at three nominal values of the

beam energy (540, 675, and 855 MeV), corresponding to three different values of the virtual

photon polarization, c. At each of these beam energies, measurements were performed at 4

nominal values of the proton momentum: 660, 585, 500, and 425 MeV/c. The measurements

taken at the two lowest proton momentum settings (500 and 425 MeV/c) were found to be

dominated by protons rescattering from the collimator edges (as discussed in Chapter 5) and

so are not included in the final results. The final results therefore consist of only the other

two proton momentum settings (pp = 660 and 585 MeV/c), which were combined into a single

(Em, pm) spectrum at each beam energy as described in Chapter 5. The final results are there-

fore referred to by their beam energy, so that, for example, "855 MeV" kinematics corresponds

to the combined results of the measurements taken at pp = 660 and pp = 585 MeV/c at a

beam energy of 855 MeV (in the nomenclature of Tables 3.3 and 3.4, this is the "855/660" and

"855/585" kinematics combined).

This chapter is broken up as follows. Examples of the missing energy spectra are presented

and their general features discussed in section 1. In section 2, 5-fold differential cross sections
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and momentum distributions for the 2-body breakup channels are presented. The momentum

distributions obtained are compared to previous measurements and to PWIA calculations.

In section 3, six-fold differential cross sections and spectral functions are presented for the

continuum channel and compared to various PWIA calculations.

6.1 Missing Energy Spectra

6.1.1 3He(e,e'p) Missing Energy Spectrum

The theoretical missing energy spectrum for the 3 He(e,e'p) reaction has two main features: a

delta function at Em = 5.49 MeV, corresponding to the two-body breakup 3He(e,e'p) 2 H, and

a continuum starting at Em = 7.72 MeV, corresponding to the 3-body breakup 3 He(e,e'p)np

and containing the excitation of the unbound singlet S-state of the deuteron. Higher missing

energies correspond to higher relative kinetic energies of the undetected neutron and proton.

A sample of the measured spectrum is shown in Figure 6-1, which shows the cross section

before and after radiative unfolding is applied. The two-body and three-body regions are clearly

visible, and the high missing-energy region (Em > 20 MeV) has zero strength after radiative

unfolding. The data are for a fixed missing momentum slice of Pm = 100 ± 60 MeV/c and were

measured in the Ebeam = 855 MeV kinematics, and the spectra measured at the other two beam

energies (Ebeam = 540 and 675 MeV) have a similar shape. The data at low missing energy

(Em < 6.75 MeV) have been scaled by one-tenth as indicated to make the entire missing energy

range visible on one graph. The 2-body breakup peak is centered at 5.49 MeV and has a finite

width (approximately 0.5 MeV FWHM) due to the overall energy resolution of the experiment.

At missing energies above the 2-body peak but below the threshold of the continuum channel

(5.5 < Em < 7.7 MeV), the measured strength is due to the radiative tail from the 2-body

breakup and is largely removed in the radiative unfolding procedure (this region is shown in

more detail in Figure 6-2). Above this region, the 3He(e,e'p)np continuum channel starts at

7.7 MeV, where the cross section rises sharply. This peaking just above the 3-body threshold

is identified with the singlet 'So state of the unbound np system. The measured cross section
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then falls rapidly with increasing missing energy and is finally dominated by the radiative tail

at high missing energy.

Above 25 MeV the radiative-corrected cross section is less than zero when the 2D radiative-

unfolding procedure is applied (upper plot, Figure 6-1). This is due to uncertainty in the

trajectory of the radiative tails in the (Em, pm) plane, as discussed in Chapter 5. A Monte Carlo

simulation of the radiative effects in this region (presented in Chapter 5) using a normalized

theoretical spectral function confirmed that the measured strength is entirely due to radiative

tail, so that the radiative-corrected 3 He(e,e'p)np cross section is consistent with zero within our

precision for Em > 20 MeV.

The uncertainty in radiative unfolding that generates this negative result at high missing

energy also introduces some uncertainty in the radiative-unfolded results at lower missing energy

(Em < 20 MeV). However, this uncertainty at low Em is much less than at high Em. To estimate

this uncertainty, the radiative unfolding was done a second time with a simplified "2DFPM"

("2-Dimensional at Fixed pm") technique as discussed in Chapter 5. In this technique, Pm was

held constant for each radiative tail. The trajectories shown in Figure 5-17 were then simply

horizontal lines in the (Em,pm) plane. By ignoring the change in Pm, this technique provides an

estimate of the error introduced by uncertainty in the (Em,pm) trajectories in the 2D unfolding

technique. A sample spectrum with this 2DFPM unfolding is shown in the lower plot of Figure

6-1. The measured continuum cross sections and spectral functions presented in this chapter

are given for both the 2D and 2DFPM unfolding techniques. The difference between the two

results is an estimate of the uncertainty in the radiative unfolding procedure.

6.1.2 4He(e,e'p) Missing Energy Spectrum

The theoretical 4 He(e,e'p) missing energy spectrum also features a two-body breakup peak

and a continuum region, with the two-body breakup channel 4 He(e,e'p) 3 H appearing at Em =

19.81 MeV. The continuum contains two reaction channels: the three-body breakup 4 He(e,e'p) 2 Hn

starting at Em = 26.07 MeV and the four-body breakup 4 He(e,e'p)nnp starting at Em =

28.30 MeV.
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Figure 6-1: Measured 3He(e,e'p) cross section as a function of missing energy for Ebeam = 855
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unfolding (see text).

x 1/10

40 pmiss 160 MeV/c

E beam= 8 5 5 MeV

162



6.1. Missing Energy Spectra 163

3 He(e,e'p) Measured Cross Section

40 p.s5  160 MeV/c

Ebeam=855 MeV

W Ino radiative correction
after 2D radiative unfolding

I I I I
20

Missing Energy [MeV]

Figure 6-2: Measured 3 He(e,e'p) cross section with 2D radiative unfolding as in Figure 6-1, but

showing only the low missing energy region.

45

40

35

30

25

20

15

10

5

0

-,

C\J

U>

-
0
C)

CL

~0

0 2.5 5 7.5 10 12.5 15 17.5

6. 1. Missing Energy Spectra 163
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A sample of the measured missing energy spectrum is shown in Figure 6-3 for kinematics

similar* to the 3 He data in Figure 6-1. The data at low missing energy (Em < 21.5 MeV) have

been re-scaled by a factor of one-fiftieth as indicated to fit the data on one plot. The measured

strength in the unphysical region between the two-body peak (19.8 MeV) and the continuum

threshold (26.1 MeV) is largely removed by the radiative corrections, so that the two regions

are cleanly resolved. The size of the two-body peak is very large relative to the continuum, so

that the contribution of the radiative tail from the two-body peak to the continuum is also very

large. This large radiative correction introduces a larger systematic uncertainty in the final

continuum cross sections.

The radiative-unfolded cross section tends to go negative (in the 2D unfolding) or positive

(in the 2DFPM unfolding) at higher missing energy, similar to the 3 He results. In 3He a

simulation confirmed that the measured strength in this region was indeed all due to radiative

tail, so that the radiative-corrected cross section is consistent with zero. Based on the similarity

of the 3 He and 4 He unfolding results at high missing energy (fluctuating between positive and

negative depending on the unfolding technique), we conclude that at these kinematics the

continuum 4 He(e,e'p) cross section is consistent with zero for Em > 45 MeV without any

additional simulation.

6.2 Two-Body Breakup Reaction Channels

Five-fold differential cross sections for the two-body breakup reactions considered, 3 He(e,e'p)2 H

and 4 He(e,e'p) 3H, were determined by integrating the six-fold differential experimental cross

section over the two-body missing energy peak as described in section 5.6.2. Similarly, measured

momentum distributions were obtained by integrating the experimental spectral function over

the peak. The limits of the missing energy integration were 4.0 < Em < 7.0 MeV for 3He and

16.7 < Em < 23.0 MeV for 4He.

*Note that for the same beam energy, the 3He kinematics and 4He kinematics differ slightly. See Tables 3.3
and 3.4 for the full kinematics.
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Figure 6-3: Measured 4 He(e,e'p) cross section as a function of missing energy for EBbeam = 855
MeV and pm = 100 ± 60 MeV/c, with 2D (upper plot) and 2DFPM (lower plot) radiative
unfolding (see text).
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Figure 6-4: Measured 4He(e,e'p) cross section with 2D radiative unfolding as in Figure 6-3, but

showing only the low missing energy region.
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Pmiss Cross Section [10-' fm2 (MeV/c)~ 1 sr 2 ]
[MeV/c] 540 675 855

15.0 352.13 ± 5.93 740.39 ± 13.24 1534.35 ± 32.11
25.0 308.57 ± 3.65 666.62 ±8.24 1444.84 ± 21.13
35.0 271.77 ± 2.92 558.31 ± 6.14 1215.00 ± 15.62
45.0 216.52 ± 2.50 476.97 5.66 998.45 12.20
55.0 162.07 ± 2.35 370.06 ± 4.89 775.83 t 9.38
65.0 120.15 ± 2.29 257.56 ± 3.73 571.27 ± 7.26
75.0 87.08 ± 2.10 179.58 ± 2.88 398.48 ± 5.64
85.0 61.71 ± 1.95 136.39 2.46 283.52 ± 4.70
95.0 46.98 ± 2.58 95.00 ± 2.03 203.70 ± 3.96
105.0 71.27 ± 2.04 147.84 3.38
115.0 53.90 ± 2.23 102.11 ± 2.95
125.0 37.26 ± 2.53 87.08 ± 3.22
135.0 54.78 ± 2.74
145.0 38.34 ± 2.54
155.0 29.25 ± 2.64
165.0 16.87 ± 2.53

Table 6.1: Measured 3 He(e,e'p) 2H cross sections.

6.2.1 3He(e,e'p) 2H

The measured cross sections for 3 He(e,e'p) 2 H as a function of missing momentum are presented

in Table 6.1 and Figure 6-5 for each of the 3 beam energies. The errors given in the table and

shown in the figure are statistical only, and the absolute systematic uncertainties are 5-6% as

discussed at the end of this chapter. The statistical error bars are too small to be visible in

the figure, except for the first few points at 855 MeV. The shape of the measured cross section

vs. missing momentum is similar in all three kinematics, although the magnitude varies by a

factor > 4 from the lowest to the highest beam energy.

The measured momentum distributions for the same data are presented in Figure 6-6 and

Table 6.2. As with the cross section data, the errors given are statistical only, and the systematic

uncertainty is 5-6%. If PWIA is valid, the measured momentum distributions should be a

function of Pm only and should therefore be independent of the kinematics. The measured

momentum distributions at the three kinematics are indeed very similar, indicating that most
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Figure 6-5: Measured 3 He(e,e'p) 2 H cross sections as a function of missing momentum for the
three beam energies.
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of the kinematic dependence has been removed by dividing the cross sections by P 0 Cl, where

occ1 is one of de Forest's [18] prescriptions for the off-shell electron-proton cross section. To

compare the momentum distributions measured at our three kinematics, the ratio of each

data set to the average result is plotted in Figure 6-7. A systematic dependence on the virtual

photon polarization (c) is observed, with the magnitude of the measured momentum distribution

increasing with c.

To compare the overall magnitude of the data sets to each other and to theory, we have

evaluated the following dimensionless integral:

N = 47r p2 (pm) -pdPm (6.1)

where the limits (10 < pm < 100 MeV/c) of the integral correspond to the region of overlap

of the three data sets. The results are superimposed on Figure 6-6 with their corresponding

statistical uncertainties.

Compared to the value of N obtained from the 675 MeV data set, the values at 855 MeV

and 540 MeV are 7.2% larger and 5.1% smaller, respectively. The magnitude of the measured

momentum distribution is observed to increase with the virtual photon polarization, E, indicat-

ing that the ratio (L/T) of the longitudinal (L) and transverse (T) response functions is larger

than that given by oKci- However, we note that the systematic uncertainty in comparing our

measurements to each other is 5-6%, which is comparable to the observed E-dependence.

The datat of Jans et al. [48] from Saclay are also shown for comparison. The error bars

shown for these data correspond to the total uncertainty (statistical plus systematic). Although

the data were measured at a lower momentum transfer (q ~ 430 MeV/c) and in (nominally)

perpendicular kinematics (fm-Lq), they agree well with our measurements, particularly at higher

Pm. We calculate the virtual photon polarization at the center of their kinematic setting to

be 0.65, which is similar to the value at our 855 MeV kinematics (E = 0.648). From Jans'

data, we determine a value of N = 0.587, which is 3.8% below the value at our 855 MeV

tThe data shown are from Jans' "kinematics I".

6.2. Two-Body Breakup Reaction Channels 169



Chapter 6. Results

kinematics (N = 0.610) and 2.4% larger than the average value (N = 0.573) from all three

of our kinematics. The total uncertainty in N for Jans' data is difficult to calculate since the

uncertainties given for his data are the sum of statistical and systematic uncertainties. However,

their paper (Ref. [48]) quotes an uncertainty of 5% in the absolute normalization, so that we

estimate the uncertainty in N calculated from their data to be 5% or greater. The values of N

obtained in our experiment are therefore consistent with the value calculated from Jans' data

within systematic uncertainty.

Figure 6-6 also shows three theoretical momentum distributions, shown as the solid and

dashed lines. The solid line is a cubic-spline interpolation of the two-body part of the theoretical

spectral function of Schulze and Sauer [49]. Their spectral function is derived from the Paris

nucleon-nucleon potential [50], with the trinucleon bound state wavefunction of Ref. [51] and

a continuum wavefunction computed from Fadeev equations. The momentum distribution of

Salme [45] is shown as one of the dashed lines, and its values are very similar to Schulze and Sauer

over our range of pm. The Saline momentum distribution was the one used in our simulations

of the radiative tail in Chapter 5. The second dashed line is the momentum distribution of

Forest et al. [52], which was calculated from variational wave functions obtained in a Monte

Carlo method using the Argonne v18 [53] nucleon-nucleon potential and the Urbana IX [54]

three-nucleon interaction.

All of the calculations have a shape similar to the data. The average value of N for our

three kinematics is 0.573, which is 21-23% below the value of N calculated from the theoretical

curves. However, we note that a direct comparison of our "experimental momentum distribu-

tions" (which is the measured cross section divided by p>orci) to these theoretical momentum

distributions is only valid in the plane-wave impulse approximation (PWIA), which does not in-

clude final-state interactions (FSI) between the detected proton and the undetected (A-1) recoil

system. An estimate of the final state interactions was obtained for the reaction 4 He(e,e'p) 3Hp

using the HE4PT computer code of R. Schiavilla [55]. The results of the code indicated a 12%

reduction in the cross section at our kinematics due to FSI. Although this calculation was for

4He and not for 3 He, we expect the results to be similar for the two nuclei. Approximately
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Table 6.2: Measured 3He(e,e'p) 2 H momentum distributions.

half of the discrepancy between our average value of N and that obtained from the theories is

therefore attributed to FSI.

PMiss Momentum Distribution [(GeV/c)- 3]
[MeV/c] 540 675 855

15.0 421.76 ± 7.11 442.57 ± 7.91 464.61 ± 9.71
25.0 368.99 ± 4.36 395.20 ± 4.88 431.99 ± 6.32
35.0 324.73 ± 3.49 330.46 ± 3.64 361.24 ± 4.64
45.0 258.99 ± 2.99 283.08 ± 3.36 296.09 ± 3.62
55.0 197.39 ± 2.86 221.06 ± 2.92 229.50 ± 2.78
65.0 150.33 ± 2.86 157.42 ± 2.28 173.29 ± 2.20
75.0 112.70 ± 2.72 113.14 ± 1.82 125.86 ± 1.78
85.0 82.36 ± 2.61 89.11 ± 1.60 93.18 ± 1.54
95.0 65.16 ± 3.58 65.32 ± 1.39 70.07 ± 1.36
105.0 51.88 ± 1.48 53.12 ± 1.21
115.0 40.73 ± 1.68 38.24 ± 1.10
125.0 29.20 ± 1.98 33.35 ± 1.23
135.0 21.93 ± 1.10
145.0 16.24 ± 1.08
155.0 12.87 ± 1.16
165.0 7.75± 1.16
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Figure 6-6: Measured 3 He(e,e'p) 2 H momentum distributions, P2, as a function of missing mo-
mentum for the three beam energies.
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Table 6.3: Measured 4 He(e,e'p) 3 H cross sections.

6.2.2 4 He(e,e'p) 3 H

The measured cross sections for the 4 He(e,e'p) 3 H reaction channel as a function of missing

momentum are presented in Table 6.3 and Figure 6-8. The errors given in the table and shown

in the figure are statistical only, and the absolute systematic uncertainties are 5-6% as discussed

at the end of this chapter. The statistical error bars are too small to be visible in the figure,

except for the first few points at 855 MeV. As with the 3He(e,e'p) 2 H results, the shape of

the measured cross section vs. missing momentum is similar in all three kinematics, and the

magnitude varies by a factor of approximately four from the lowest to the highest beam energy.

The measured momentum distributions for the same data are presented in Figure 6-9 and

Table 6.4. As with the cross section data, the errors given are statistical only, and the systematic

uncertainty is 5-6%. If PWIA is valid, the measured momentum distributions should be a

function of Pm only and should therefore be independent of the kinematics. The measured

momentum distributions at the three kinematics are indeed very similar, indicating that most

PMiss Momentum Distribution [(GeV/c)-3]
[MeV/c] 540 675 855

15.0 122.70 ± 2.43 238.34 ± 5.25 494.63 t 12.81
25.0 118.03 ± 1.70 239.40 ± 3.79 490.92 ±8.35
35.0 115.95 ± 1.56 224.15 ± 3.23 467.33 ± 6.89
45.0 106.07 ± 1.61 216.59 ± 3.32 435.59 ± 6.23
55.0 93.21 ± 1.81 199.13 ± 3.52 391.40 5.51
65.0 74.06 ± 1.76 162.41 ± 3.25 348.21 ± 5.29
75.0 66.17 ± 1.94 129.14 ± 2.67 282.49 ± 4.76
85.0 52.92 ± 2.52 112.19 ± 2.46 229.52 ± 4.23
95.0 98.23 ± 2.56 192.95 ± 3.91

105.0 74.69 ± 2.61 151.13 ± 3.44
115.0 63.82 ± 3.61 130.92 ± 3.57
125.0 116.83 4.04
135.0 82.77 ± 3.50
145.0 65.17 ± 3.70
155.0 54.44 ± 4.10
165.0 43.93 ± 5.02

174 Chapter 6. Results



6.2. Two-Body Breakup Reaction Channels

4 He(e,e'p) 3 H
Measured Cross Sections

500

400

300

200

100

0

0 855 MeV (E=0.642)

0 675 MeV (E=0.447)

0 A 540 MeV (E=O.198)

0

- 0
00 0

0

0
0 0

0
0

A 0l

0 20 40 60 80 100 120 140 160

Pmiss [MeV/c]

Figure 6-8: Measured 4 He(e,e'p) 3 H cross sections as a function of missing momentum for the
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Table 6.4: Measured 4 He(e,e'p) 3 H momentum distributions.

of the kinematic dependence has been removed by dividing the cross sections by pP29cci, where
epp

accli is one of de Forest's [18] prescriptions for the off-shell electron-proton cross section. To

compare the momentum distributions measured at our three kinematics, the ratio of each data

set to the average result is plotted in Figure 6-10. In contrast with the 3He(e,e'p)2H results, no

systematic dependence on the virtual photon polarization (E) is observed. Across the measured

pm range in Figure 6-10 the measured momentum distributions are observed to fluctuate about

the average value by less than ±5%.

As with the 3 He(e,e'p) 2 H results, to compare the overall magnitude of the data sets to each

other and to theory we have evaluated the following dimensionless integral:

N = 4 j P2(Pm) -pdPm (6.2)

where the limits (10 < pm < 90 MeV/c) of the integral correspond to the region of overlap

Pmiss Momentum Distribution [(GeV/c)-3]
[MeV/c] 540 675 855

15.0 153.79 ± 3.04 145.78 ± 3.21 153.01 ± 3.96
25.0 147.89 ± 2.13 145.66 ± 2.30 148.52 ± 2.53
35.0 145.00 ± 1.95 136.73 ± 1.97 141.06 ± 2.08
45.0 133.62 ± 2.03 132.16 ± 2.03 130.87 ± 1.87
55.0 121.37 ± 2.36 123.77 ± 2.19 118.44 ± 1.67
65.0 100.69 ± 2.40 104.24 ± 2.09 108.30 ± 1.65
75.0 93.13 ± 2.73 85.90 t 1.77 93.15 ± 1.57
85.0 77.56 ± 3.69 78.17 ± 1.71 79.79 ± 1.47
95.0 72.93 ±1.90 70.18 ± 1.42
105.0 58.97 ± 2.06 58.00 ± 1.32
115.0 52.76 ± 2.98 52.18 ± 1.42
125.0 48.62 ± 1.68
135.0 36.33 ± 1.53
145.0 30.10 ± 1.71
155.0 26.41 ± 1.99
165.0 22.35 ± 2.56
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Figure 6-9: Measured 4 He(e,e'p)3 H momentum distributions, P2, as a function of missing mo-
mentum.
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Figure 6-10: Measured 4He(e,e'p) 3 H momentum distributions compared to average value.

178 Chapter 6. Results



of the three data sets. The results are superimposed on Figure 6-9 with their corresponding

statistical uncertainties. The value of N obtained is similar at all three of our kinematics, with

N varying at most by ±1.3% about the average value (0.308). We also note that the value of N

is not directly correlated to the virtual photon polarization (c), with the smallest N obtained

at the middle E. Within our estimated systematic uncertainty (5-6%) we conclude that the

experimental momentum distribution is independent of E, indicating that the ratio (L/T) of the

longitudinal (L) and transverse (T) response functions is the same as acci

In Figure 6-9 the experimental momentum distributions are also compared to previous mea-

surementst made at NIKHEF by van den Brand et al. [56, 57]. As with our data, the error bars

shown reflect only the statistical uncertainty. Compared to our measurements, these data were

measured at a lower momentum transfer (q ~ 430 MeV/c) and in (nominally) perpendicular

kinematics ('m-Lq). We calculate the virtual photon polarization at the center of their kine-

matic setting to be 0.48, which is similar to the value at our 675 MeV (e = 0.457) kinematics.

To determine the value of N for these data, the value of p2 at pm = 62.5 and 67.5 MeV/c

was computed as the error-weighted average of the data from kinematics A and kinematics B

(which overlap at these two values of pm). We obtain a value of N = 0.341 ± 0.004 (statistical

uncertainty only) from their data, which is 12% higher than the corresponding value at our 675

MeV kinematics. For comparison, the absolute systematic uncertainty given for the NIKHEF

data is 5.7% (Ref. [57]) and our absolute systematic uncertainty at the 675 MeV kinematics

is also 5.7%, as discussed at the end of this chapter. The discrepancy between the NIKHEF

measurements and ours is therefore larger than, but comparable to, the total systematic uncer-

tainty. As a function of pm our data are systematically smoother than the NIKHEF results, but

the overall shape is quite similar. We emphasize that a direct comparison of our measurements

to the NIKHEF data is only valid in PWIA, since the kinematics of the two experiments differ

substantially.

Theoretical calculations of the 4He(e,e'p) 3H momentum distribution have been performed

by Schiavilla et al. [58] and, more recently, Forest et al. [52] using a Monte Carlo technique.

IThe data shown in Figure 6-9 are for kinematics denoted A, B, and C in reference [57].
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Two different momentum distributions from Ref. [58] are shown as the solid and coarse dashed

lines in Figure 6-9. They were calculated from variational wave functions using either the

Argonne or the Urbana model of the nucleon-nucleon potential, and "model VII" of the three

nucleon interaction (TNI). The two potentials give quite different results at low pm, and the

calculation using the Urbana potential comes closest to the measured data. Schiavilla [581 notes

that the differences in the momentum distribution calculated from the two potentials

"...appear to be primarily due to the differences in the radii that we calculate with

these models."

The third theoretical momentum distribution, shown as the fine dashed line in Figure 6-9,

is a more recent calculation from Forest et al. [52]. This calculation uses the Argonne v18

[53] nucleon-nucleon potential and Urbana IX [54] three-nucleon interaction, and results in a

momentum distribution that, at low pm, falls between the two other calculations.

A value of N was obtained by integrating each of the calculations, with the results superim-

posed on Figure 6-9. Our measured values fall significantly below all of the calculations. The

average value of N for our three kinematics is 0.308, which is 15-32% below the values obtained

from the various calculations. However, as was noted in the discussion of the 3 He(e,e'p) 2 H re-

sults, final-state interactions (FSI) were estimated to result in a 12% reduction in the cross

section at our kinematics (using the HE4PT computer code of Ref. [55]). Accounting for the

effects of FSI, our measured data are therefore 3-20% below the predictions.
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6.3 Continuum Breakup Reaction Channels

For missing energies above the two-nucleon knockout threshold (7.72 MeV in 3 He and 26.1 MeV

in 4 He) the final states of the (e,e'p) reaction form a continuum in missing energy. Higher miss-

ing energy above the the two-nucleon knockout threshold corresponds to higher relative kinetic

energies of the undetected reaction products. We have extracted six-fold differential cross sec-

tions and spectral functions in this region, corresponding to the reaction channel 3 He(e,e'p)np,

and to the sum of the reaction channels 4He(e,e'p) 2 Hn and 4He(e,e'p)nnp.

The cross sections and spectral functions extracted in the continuum region are 2-dimensional

quantities, histogrammed as a function of both missing energy and missing momentum. The

cross section and spectral function results are presented and compared to theory as a function

of missing energy for a fixed missing momentum. Momentum distributions for the continuum

channels are also determined and compared to theory by integrating the experimental and

theoretical spectral functions over selected regions of missing energy.

6.3.1 3He(e,e'p)np

At our kinematics, the radiative-unfolded 3 He(ee'p)np cross section showed significant strength

only for Em < 20 MeV. The higher missing energy region (Em > 20 MeV) was dominated by

radiative tail as shown, for example, in Figure 6-1. The final results presented here are therefore

for the Em < 20 MeV region determined from the pp = 660 and 585 MeV/c settings. The range

of pm covered is determined by the limits of the acceptance as shown in Figure 3-8.

In Figure 6-11, the experimental radiative-corrected cross section (upper plot) and spectral

function (lower plot) results are shown for pm = 45 ± 5 MeV/c. These results were obtained

with the 2D radiative-unfolding technique, and the 2DFPM unfolding technique yields similar

results. The integrated results with both unfolding techniques will be presented later in this

section. In the figure, the two-body 3He(e,e'p) 2 H peak appears at 5.5 MeV and exceeds the

y-scale of the plot, and the continuum 3 He(e,e'p)np strength starts around 7 MeV. The size

of the continuum cross section varies considerably among the three kinematic settings (each of

which corresponds to a different value of the virtual photon polarization, e), but the shape is
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independent of the kinematics. In comparison, the experimental spectral function is relatively

insensitive to the kinematic setting. This is analogous to the results observed for the two-body

breakup channels 3 He(e,e'p) 2 H and 4 He(e,e'p) 3 H, where the measured momentum distributions

had little (or no) dependence on the virtual photon polarization (E).

For comparison, the theoretical spectral function of Schulze and Sauer [49] for pm = 45

MeV/c is superimposed on the experimental spectral function in Figure 6-11. The calculation

is not averaged over the finite Pm range (±5 MeV/c), but is sufficiently linear over that range

that any error introduced is negligible. The theoretical curve predicts the shape of the data

very well, and its magnitude is approximately 20% greater than the data on average.

To more easily compare the data sets to each other and to theory, and to generalize the

results to other values of pm, we have integrated both the experimental and theoretical spectral

functions over missing energy from the 3 He(e,e'p)np threshold to 20 MeV. The result is a mo-

mentum distribution for the three-body breakup channel which we have denoted P3,20 following

the notation of Jans et al. [48]:

/20.00
P3,20 (Pm) S(Em,pm)dEm (6.3)

When integrating the theory, the lower limit, Em1 , of the integration was the 3 He(e,e'p)np

threshold (Em = 7.72 MeV). For the data, a lower limit of Em, = 7.0 MeV was chosen to include

data that, because of resolution effects, appear just below the 3-body breakup threshold.

The experimental values of P3,20 were evaluated with both the 2D and 2DFPM radiative-

unfolding techniques. The 2D results are are given in Table 6.5 and Figure 6-12. The analogous

2DFPM results are given in Table 6.6 and Figure 6-13. To put these results into context with the

data shown in Figure 6-11, we note that the continuum spectral function results of Figure 6-11

are embodied by the three points at pm = 45 MeV/c in Figure 6-12. The results obtained with

the two radiative-unfolding techniques are very similar in all respects, except that the results

with the 2DFPM technique are approximately 4% larger than the corresponding 2D results.

The sign of this difference is consistent with the studies of the 2D and 2DFPM techniques in

Chapter 5 which, in the 2D case, showed a greater contribution to the continuum from the
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3He(e,e'p) Measured Cross Sections and Spectral Functions
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Figure 6-11: 3 He(e,e'p) radiative-corrected cross sections (upper plot) and spectral functions
(lower plot) extracted from the data at each of the three kinematic settings. These data were
radiatively-corrected using the 2D unfolding technique.
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Prniss P3,20 [(GeV/c)- 3

[MeV/c] 540 675 855
15.0 103.79 ± 3.52 106.14 ± 3.17 117.73 ± 3.33
25.0 99.20 ± 2.32 99.77 ± 2.12 105.76 ± 2.17
35.0 90.35 1.88 87.22 ± 1.72 96.13 ± 1.72
45.0 76.84 ± 1.72 77.87 ± 1.56 79.99 ± 1.43
55.0 63.23 1.72 62.48 ± 1.43 66.11 ± 1.25
65.0 52.67 1.87 50.88 t 1.31 56.36 ± 1.16
75.0 35.63 ± 1.63 42.84 ± 1.22 46.06 ± 1.09
85.0 32.14 1.53 30.38 ± 1.07 36.96 ± 1.07
95.0 25.94 ± 1.75 27.44 ± 1.04 29.98 ± 1.03

105.0 21.05 ± 1.05 22.16 ± 0.94
115.0 17.36 ± 1.18 17.19 ± 0.90
125.0 13.41 ± 1.37 14.55 ± 0.92
135.0 11.86 ± 0.93
145.0 9.92 ± 0.98
155.0 8.87 ± 1.09
165.0 5.77 ± 1.20

Table 6.5: Measured 3 He(e,e'p)np momentum distributions, determined with the 2D radiative
unfolding technique.

two-body radiative tail.

For both unfolding techniques, the measured values of P3,20(Pm) exhibit some dependence

on the virtual photon polarization, E. To compare the values obtained at the three kinematics,

the ratio of each data set to the average result is shown in Figure 6-14. As with the measured

3 He(e,e'p) 2 H momentum distributions, the experimental value of P3,20 (Pm) at each pm generally

increases with c. In contrast to the 3 He(e,e'p) 2 H results, this E-dependence appears to vary with

Pm-

To compare the overall magnitude of the measurements to each other and to theory, we

have further integrated the results to obtain the following dimensionless integral:

100
N = 47r 1 P3,20(Pm) * PmnPm (6.4)

where the limits (10 < pm < 100 MeV/c) of the integral correspond to the region of overlap
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Table 6.6: Measured 3 He(e,e'p)np momentum distributions,
diative unfolding technique.

determined with the 2DFPM ra-

Prniss P3,20 [(GeV/c)- 3 ]
[MeV/c] 540 675 855

15.0 105.71 ± 3.51 110.04 ± 3.17 123.04 ± 3.32
25.0 103.07 ± 2.32 104.31 ± 2.11 111.24 ± 2.17
35.0 91.69 ± 1.88 94.36 ± 1.72 99.59 ± 1.72
45.0 79.52 ± 1.72 80.34 ± 1.56 83.68 ± 1.43
55.0 65.77 ± 1.72 64.86 ± 1.43 69.24 ± 1.25
65.0 54.02 ± 1.87 53.89 ± 1.31 58.89 ± 1.16
75.0 37.38 ± 1.63 44.40 ± 1.22 48.28 ± 1.09
85.0 33.06 ± 1.53 31.39 ± 1.07 38.79 t 1.07
95.0 25.31 ±1.75 28.27 ± 1.04 31.22 ± 1.03
105.0 21.57 ± 1.05 23.00 ± 0.94
115.0 17.65 ± 1.18 17.81 ± 0.90
125.0 14.08 ± 1.37 14.83 ± 0.92
135.0 12.37 ± 0.93
145.0 10.17 ±0.98
155.0 9.04 ± 1.09
165.0 5.99 ± 1.20
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3 He(e,e'p)np
Measured Momentum Distributions
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Figure 6-12: Measured 3 He(e,e'p)np momentum distributions, P3,20, with 2D radiative unfold-
ing.
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3 He(e,e'p)np
Measured Momentum Distributions
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Figure 6-13: Measured 3He(e,e'p)np momentum distributions, P3,20, with 2DFPM radiative
unfolding.
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of the three data sets. The results are superimposed on Figures 6-12 and 6-13 with their

corresponding statistical uncertainties.

Compared to the value obtained at 675 MeV, the values of N at 855 MeV and 540 MeV are

+9.8% larger and -2.2% smaller, respectively, for the 2D unfolding technique. In the 2DFPM

technique, the corresponding differences are +10% and -4%, respectively. The magnitude of N

is observed to increase with the virtual photon polarization, E, indicating that the ratio (L/T)

of the longitudinal (L) and transverse (T) response functions is larger than that given by 0,'-

However, we note that the estimated systematic uncertainty in comparing our measurements

to each other is 5-6%, which is comparable to this observed E-dependence. These observations

are similar to those seen in the 3He(e,e'p) 2 H results.

In Figures 6-12 and 6-12 we also show the measured data§ of Jans et al. [48] from Saclay.

The error bars shown for these data correspond to the total uncertainty (statistical plus sys-

tematic). Compared to our kinematics, the data were measured at a lower momentum transfer

(q ~ 430 MeV/c) and in (nominally) perpendicular kinematics ( m Lq-). We calculate the vir-

tual photon polarization at the center of their kinematic setting to be 0.65, which is similar to

the value at our 855 MeV kinematics (c = 0.648). From Jans' data, we determine a value of

N 0.234, which is 11-15% greater than the corresponding value at our 855 MeV kinematics

(N = 0.202 for the 2D unfolding and N = 0.211 for the 2DFPM unfolding). As was noted in

the discussion of the 3 He(e,e'p)2 H results, the total uncertainty in N for Jans' data is difficult

to calculate since the uncertainties given for his data are the sum of statistical and systematic

uncertainties. Their paper (Ref. [48]) quotes an uncertainty of 5% in the absolute normaliza-

tion, so that the uncertainty in N calculated from their data is at least 5%. The systematic

uncertainty in our absolute normalization is also 5-6% as discussed at the end of this chapter.

Theoretical predictions of p3,20 were determined by integrating (using a cubic spline inter-

polation) the spectral function of Schulze and Sauer [49]. This spectral function was described

in the discussion of the 3He(e,e'p) 2 H results. The values of P3,20 obtained are shown as the solid

curve in Figures 6-12 and 6-13. The shape of the data as a function of pm is reproduced well by

§ The data shown are from Jans' "kinematics I".
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the theory. The average value of N obtained at our three kinematics (0.189 in the 2D unfolding

and 0.195 in the 2DFPM unfolding) is -18.5% and -16.7% smaller than the corresponding value

obtained from the theory (N = 0.232). As discussed earlier in this chapter, an estimate of the

final-state interactions (FSI) for the 4He(e,e'p) 3 H reaction indicated a 12% reduction in the

theoretical cross section. This accounts for approximately two-thirds of the difference between

our measurements and the spectral function of Schulze and Sauer. This result is very similar

to that observed for the 3 He(e,e'p) 2 H momentum distribution.



6.3.2 4He(e,e'p) 2Hn and 4 He(e,e'p)nnp

As with 3 He, the radiative corrections are a very important part of the 4 He continuum cross

section. A critical difference between the two nuclei is that the continuum strength relative to

the two-body strength is much smaller in 4He than in 3 He. The contribution of the two-body

radiative tail (i.e. the tail that propagates strength out of the two-body peak) to the continuum

is therefore a much larger correction. The systematic uncertainty due to the radiative unfolding

is therefore much larger in 4 He than in 3 He.

After radiative unfolding, the continuum 4He(e,e'p) cross section shows significant strength

only for missing energies below 45 MeV. Above this missing energy the measured strength is

100% radiative tail as was shown in Figure 6-3. The experimental results presented here are

therefore restricted to Em < 45 MeV.

In Figure 6-15, the experimental cross section and spectral function as a function of missing

energy is shown for a fixed missing momentum of pm = 50 ± 20 MeV/c. These results were

obtained with the 2D radiative-unfolding method. The onset of the continuum strength is

clearly observed at Em = 26.1 MeV, which is the threshold for the three-body breakup of 4He.

As with the other results presented earlier in this chapter, the cross section is highly dependent

on the kinematic setting and the spectral function is not.

Superimposed on the data is the theoretical spectral function of Efros et al. [59]. Theirs is

the first full calculation of the 4He spectral function and employs the Lorentz integral transform

method to completely take into account final state interactions among the residual undetected

particles (note that FSI with the detected proton is not included). The model used for the

nucleon-nucleon potential is the semirealistic Trento potential. Considering the large size of

our radiative corrections (a sample of the uncorrected results is shown in the lower plot of

Figure 6-15), the agreement between the experiment and theory is excelleit. The data have

the same shape as the theory, and the magnitude is somewhat reduced as might be expected

from FSI effects.

To more easily compare the data sets to each other and to theory, and to generalize the

results to other values of Pm, we have integrated both the experimental and theoretical spectral
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4He(e,e'p) Measured Cross Sections and Spectral Functions
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Figure 6-15: 4 He(e,e'p) radiative-corrected cross sections (upper plot) and spectral functions
(lower plot) extracted from the data at each of the three kinematic settings. These data were
radiatively-corrected using the 2D unfolding technique.

C,)-

(0

(0
'r

a)

E

E

C/)

15 20 25 30 35 40 4

Missing Energy (MeV)

855 MeV, no rad. corr.

PWIA (Efros)
pm =50 MeV/c

I I I I

3

2.5

2

1.5

1

0.5

0

5

15



functions over missing energy from the 4 He(e,e'p) 2 Hn threshold to 45 MeV. The result is a

momentum distribution for the sum of the three- and four-body breakup channels, which we

have denoted p3-4,45:

/45.00
P3-4,45(Pm) = S(Em,pm)dEm (6.5)

When integrating the theory, the lower limit, Emi, of the integration was the 3 He(e,e'p)np

threshold (Em = 26.07 MeV). For the data, a lower limit of Em1 = 25.0 MeV was chosen to

include data that, because of resolution effects, appear just below the 3-body breakup threshold.

The experimental values of P3-4,45 were evaluated with both the 2D and 2DFPM radiative-

unfolding techniques. The 2D results are givn in Table 6.7 and Figure 6-16, and the corre-

sponding 2DFPM results are given in Table 6.8 and Figure 6-17. The results obtained with the

two techniques differ substantially more than in the 3 He(e,e'p) continuum results, reflecting the

larger systematic uncertainty associated with the very large radiative correction. The results

obtained with the 2DFPM technique are a smoother function of pm, and are generally larger

than those obtained with the 2D technique.

To evaluate the kinematic dependence of the measured value of P3-4,45, the ratio of to the

results to the average result at the three kinematics is shown in Figure 6-18. The upper plot is

the result with 2D radiative unfolding, and the lower plot for 2DFPM radiative unfolding. The

2DFPM results are smoother and show no systematic dependence on the kinematic setting. In

the 2D results, the kinematics corresponding to the smallest value of c yield the largest value

of P3-4,45.

To compare the overall magnitude of the measurements to each other and to theory, we

have further integrated the results to obtain the following dimensionless integral:

/90
N = 47r 110 P3 -4,45 (Pm) P2 dpm (6.6)

where the limits (10 < pm < 90 MeV/c) of the integral correspond to the region of overlap of the

three data sets. The results are superimposed on Figures 6-16 and 6-17 with their corresponding
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Table 6.7: Measured momentum distributions, P3-4,45, for
4He(e,e'p)nd and 4 He(e,e'p)nnp, with 2D radiative unfolding

the sum of the reaction channels

Table 6.8: Measured momentum distributions, P3-4,45, for the sum of
4 He(e,e'p)nd and 4 He(e,e'p)nnp, with 2DFPM radiative unfolding.

the reaction channels

Pmzss P3,4-45 [(GeV/c)-3]
[MeV/c 540 675 855

15.0 9.18 ± 1.21 12.07 ± 1.28 12.20 ± 1.04
25.0 7.27 ± 0.82 5.80 + 0.83 5.38 t 0.67
35.0 8.03 ± 0.73 4.18 ± 0.71 4.90 0.55
45.0 6.94 ± 0.76 6.56 ± 0.69 5.60 ± 0.50
55.0 8.28 ± 0.98 5.96 ± 0.71 5.68 ± 0.48
65.0 5.86 ± 1.10 6.64 ± 0.77 5.81 ± 0.50
75.0 4.63 ± 0.97 4.77 ± 0.79 4.20 ± 0.53
85.0 6.71 ± 0.99 4.40 ± 0.79 4.37 ± 0.57
95.0 7.76 ± 1.37 4.66 ± 0.85 3.36 ± 0.58
105.0 3.30 ± 0.91 3.49 ± 0.60
115.0 2.86 ± 1.02 3.19 ± 0.59
125.0 3.60 ± 1.32 2.70 t 0.59
135.0 1.80 ± 0.63
145.0 3.43 ± 0.76

PMiss P3,4-45 [(GeV/c)-3]
[MeV/c] 540 675 855

15.0 8.64 ± 1.21 9.65 ± 1.28 8.98 ± 1.04
25.0 8.13 ± 0.82 7.59 ± 0.83 8.15 ± 0.67
35.0 8.30 ± 0.73 8.22 ± 0.71 7.25 ± 0.55
45.0 7.52 ± 0.76 7.61 ± 0.69 7.11 ± 0.49
55.0 8.82 ± 0.98 6.43 ± 0.71 6.80 ± 0.48
65.0 7.46 ± 1.10 7.89 ± 0.77 7.01 ± 0.50
75.0 5.10 ± 0.97 6.46 ± 0.79 5.81 ± 0.53
85.0 5.36 ± 0.99 5.35 ± 0.79 5.70 ± 0.57
95.0 10.96 ± 1.37 4.99 ± 0.85 4.39 ± 0.58
105.0 4.22 ± 0.91 5.06 ± 0.60
115.0 3.65 ± 1.02 3.88 t 0.59
125.0 2.64 ± 1.32 3.02 ± 0.59
135.0 2.56 ± 0.63
145.0 3.85 ± 0.76
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4 He(e,e'p)nd + 4 He(e,e'p)nnp
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Figure 6-16: Measured momentum distributions, P3-4,45, for the sum of the reaction channels
4He(e,e'p)nd and 4 He(e,e'p)nnp, with 2D radiative unfolding.
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4 He(e,e'p)nd + 4He(e,e'p)nnp
Measured Momentum Distributions
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Figure 6-17: Measured momentum distributions, P3-4,45, for the sum of the reaction channels
4He(e,e'p)nd and 4 He(e,e'p)nnp, with 2DFPM radiative unfolding.
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Figure 6-18: Measured momentum distributions, P3-4,45, for the sum of the reaction channels
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statistical uncertainties. To further emphasize the small magnitude of these continuum cross

sections, we note that the values of N obtained are approximately ten times smaller than the

values of N obtained (although with a slightly different definition) from the 3He results.

For the 2DFPM unfolding technique, the value of N at the three kinematics are equal within

our systematic uncertainty. In contrast, the 2D results give a large c-dependence: compared to

the value obtained at 675 MeV, the values of N at 855 MeV and 540 MeV are -7.4% smaller and

+19.6% larger, respectively. The magnitude of N is thus observed to decrease with increasing

E, which is a trend opposite of that observed in the 3 He results. In comparison to the 2DFPM

unfolding technique, the 2D technique is more physically realistic, since it attempts to account

for a change in pm in the radiative tails. However, the 2D technique results in negative cross

sections at high missing energy, which is an unphysical result. The results obtained with the

2DFPM unfolding technique appear to be more reasonable, since they yield smoother values

of p3-4,45, and a positive cross section at high missing energy as seen in Figure 6-3. If we

choose to believe the 2DFPM results, than the value of N is independent of the virtual photon

polarization (c), and we conclude that the ratio (L/T) of the longitudinal (L) and transverse

(T) response functions is the same as o-epccl. This conclusion is consistent with the result

reported for the two-body breakup channel 4 He(e,e'p) 3 H. If we choose instead to believe the

results obtained with the 2D unfolding technique, than we conclude that the L/T ratio is smaller

than that given be uepccl. We emphasize here that the uncertainty in choosing between the

two techniques is compounded by the large size of the radiative corrections. In 3He, where the

relative contribution of the two-body tail to the low- missing-energy continuum is much smaller,

the two unfolding techniques yielded much more similar results.

The corresponding values of P3-4,45 computed (using a cubic-spline interpolation) from the

theoretical spectral function of Efros et al. [59] are also shown in Figures 6-16 and 6-17 for

comparison. The shape of the data as a function of pm is reproduced well by the theory. The

average value of N obtained at our three kinematics (0.0187 in the 2D unfolding and 0.0198

in the 2DFPM unfolding) is -24.0% and -19.5% smaller than the corresponding value obtained

from the theory (N = 0.0246). As discussed earlier in this chapter, an estimate of the final-state
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interactions (FSI) for the 4 He(e,e'p) 3 H reaction indicated a 12% reduction in the theoretical

cross section. This accounts for approximately half of the difference between our measurements

and the theoretical spectral function.



6.4 Systematic Uncertainty

Sources of systematic uncertainty in the measured (e,e'p) cross sections are give in Table 6.9 and

are described in detail in this section. The first seven rows of the table consider uncertainties in

the overall normalization of the cross sections, including knowledge of the target density, dead

time, and absolute detection volume. The next five rows of the table consider uncertainties

due to possible offsets in the central value of kinematic quantities such as the beam energy,

spectrometer angles, and beam and target location. Systematic offsets in these quantities alter

the kinematic region that is probed by the measurement, and hence introduce an uncertainty

in the measured cross section.

The total systematic uncertainty in the (e,e'p) measurements is the sum of all the individual

uncertainties added in quadrature, and is given in the final row of the table. Since these values

are absolute uncertainties for each kinematic setting, it is useful to also define the "relative

uncertainty", which is the uncertainty in comparing two measurements at different kinematics.

In general one might expect that some uncertainties cancel out when doing such a comparison, so

that the relative uncertainty is less than the absolute uncertainty. However, in considering each

of the individual uncertainties it was determined that there were no substantial cancellations

in our case. Our estimate of the relative uncertainty is therefore the same as the total absolute

uncertainty. The remainder of this section discusses the individual uncertainties in detail.

The largest uncertainty is in the target density measured in the elastic scattering runs. A

detailed error analysis of this uncertainty was presented in Chapter 4, and the uncertainty given

in Table 6.9 is the total uncertainty from Table 4.10.

The product of the charge and target density in the (e,e'p) runs was determined from the

number of counts measured in Spectrometer C in the elastic and (e,e'p) runs. This contributes

a statistical (V'N associated with the number of counts measured) and a systematic (associated

with the dead time correction) uncertainty to the measured cross sections. The uncertainties are

a sum of the contributions from both the elastic and the (e,e'p) runs. The dead-time correction

for an individual run or consecutive series of runs is assigned an uncertainty of 1%.

The detection volume for the (e,e'p) cross sections was defined in part by software cuts
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3 He 4 He
Beam Energy [MeV] 540 675 855 540 675 855

density in elastic run [%] 4.4 4.8 3.4 4.0 4.9 3.7
Spect. C statistical (elastic + (e,e'p) runs) [%] 1.2 1.0 1.7 2.5 1.7 2.6
Spect. C dead time (elastic + (e,e'p) runs) [%] 1.4 1.4 1.4 1.4 1.4 1.4
coincidence dead time [%] 1 1 1 1 1 1
detection volume A~tgt, /Aqtt [%] 1.0 1.0 1.0 1.0 1.0 1.0
detection volume Azreact [%] 1.5 1.1 0.9 1.6 1.1 1.0
absolute ytgt (±0.5 mm) [%] 1.1 0.8 0.7 1.1 0.8 0.7
beam energy (±160 keV) [%] 0.34 0.25 0.16 0.34 0.25 0.16
central e- spect. angle (±0.1 mrad) [%] 0.02 0.05 0.07 0.02 0.05 0.07
central proton spect. angle (±0.1 mrad) [%] 0.02 0.03 0.04 0.02 0.03 0.04
horizontal beam position (±1 mm) [%] 0.06 0.39 0.72 0.06 0.39 0.72

total [%] 5.3 5.5 4.5 5.5 5.7 5.1

Table 6.9: Estimated systematic uncertainty in the measured (e,e'p) cross sections.

on #tgt in Spectrometer A (the electron spectrometer) and Ot 9t in Spectrometer B (the proton

spectrometer). An estimate of the uncertainty in the detection volume resulting from these

cuts is provided by the analysis of the elastic scattering data presented in Chapter 4. With

various values of the cuts, the extracted target density changed by a maximum of 0.6% (for the

#tgt cut in Spectrometer A) and 0.4% (for the Otgt cut in Spectrometer B). The linear sum of

these values gives a 1.0% uncertainty in the detection volume due to the angular cuts. Another

check on the systematic uncertainty associated with the #tgt cut in Spectrometer A is shown

in Figure 6-19. The figure shows the measured 4 He(e,e'p) 3 H momentum distribution for three

different cuts on qtgt: ±75, ±60 and ±45 mrad. The measured momentum distributions are

shown in the upper plot of the figure, and the distributions compared to the average value is

shown in the lower plot. Integrated over the indicated range of pm, the results differ by less

than one percent for the various cuts. This indicates that the detection volume is correctly

calculated and that the systematic uncertainty associated with the ktgt cut is < 1%.

The target extent in this experiment was defined by a cut on the variable zreact, which is the

position of the reaction vertex along the beam line. The value of Zreact was determined from the

6.4. Systematic Uncertainty
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4 He(e,e 'p) 3 H Measured Momentum Distributions

Systematic study of various pA Cuts (540/660 kinematics)
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Figure 6-19: 4 He(e,e'p)3 H momentum distribution determined from the 540/660 data, for dif-
ferent cuts on <tgt in Spectrometer A.
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value of ytgt reconstructed in Spectrometer B and the position of the incident beam. Uncertainty

in the ytgt reconstruction in Spectrometer B therefore generates an uncertainty in Zreact and and

hence in the overall cross section. The effect of uncertainty in the ytgt reconstruction was broken

down into two effects: first, we consider the relative ytgt reconstruction, which determines how

well we can define a target segment of length AZreact. Secondly, we consider the absolute ytgt

reconstruction, which determines how well we know the position of that target segment along

the beam line. These are each discussed in detail below.

To determine the relative accuracy of the ytgt reconstruction we have used elastic scattering

data from 12 C, which was measured with a flat target at a number of positions along the

beam line (this is the same data that was discussed in Chapter 4). The position of the target

along the beam line was changed by remotely moving the table on which it is mounted. The

position of this table was determined during the experiment from the measured voltage across

a variable resistor (as described in Chapter 3). The absolute position of the table along the

beam line was calibrated to ±0.5 mm using data taken with sieve slits in both spectrometers.

Its relative position was calibrated in a table-top measurement of position vs. voltage, and

its uncertainty was determined to be approx 4 x 10- 3 mm, which is much smaller than the

absolute position uncertainty. The table readout therefore provides a very accurate measure of

the relative distance between two or more target positions, and can be used as a check on the

corresponding values reconstructed by the spectrometer.

The ytgt spectra reconstructed in Spectrometer B at each of the target locations is shown

in Figure 6-20. The width of the peaks is consistent with a ytgt resolution of approximately 1.8

mm FWHM. A gaussian peak shape was fit to each of the spectra to determine its mean value,

which is tabulated as yftt in Table 6.10. The difference between the value of ytgt reconstructed

in Spectrometer B (ytt) and the value from the target table (ytatle) differ by values ranging

from +0.028 cm to +0.055 cm at each position. This absolute discrepancy is consistent with

the uncertainty in in the horizontal beam position (±1 mm) (equivalent to a shift of yit =

±1 x cos 450 at this spectrometer angle) and the absolute uncertainty in ytIe (±0.5 mm). From

the data in Table 6.10, we determine that the maximum error in the relative ytgt reconstruction

6.4. Systematic Uncertainty
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position table voltage yagle B (B _ ta le)
[Volts] [cm] [cm] [cm]

1 0.596 -2.742 -2.687 +0.055
2 1.794 -1.888 -1.847 +0.041
3 4.283 -0.114 -0.086 +0.028
4 6.785 +1.670 +1.703 +0.033
5 7.971 +2.515 +2.565 +0.050

Table 6.10: A comparison of the value of ytgt determined from the target table calibration and
the value reconstructed in Spectrometer B (see text).

of of Spectrometer B is 0.055 - 0.028 = 0.027 cm. The maximum error in the relative Zreact

reconstruction is therefore 0.027/ sin OB cm, where 0 B is the central spectrometer angle of

Spectrometer B. For example, in the 540 MeV 3 He kinematics (OB = 26.23') this yields an

uncertainty of 0.061 cm; since the cut on Zreact used throughout this experiment is ±2.0 cm,

the resulting uncertainty in AZreact is 0.061/4.0 = 1.5%. The corresponding uncertainties at

other kinematics were evaluated in the same manner, and are given in the sixth row of Table

6.9.

To estimate the error due to uncertainty in the absolute value of ytgt, the data were analyzed

using several Zreact cuts that were shifted upstream or downstream from the central location.

The cuts were kept constant in the detection volume calculations and only changed in analysis

of the raw data. The variation in the extracted two-body breakup momentum distribution

with the different cuts then provided an estimate of the uncertainty due to the absolute ytgt

reconstruction. A sample result from the analysis is shown in Figure 6-21, which gives the

two-body breakup momentum distribution (p) for the 3 He(e,e'p)2 H reaction measured in the

855/660 kinematics. In the upper plot, the momentum distribution po is the result extracted

with the standard cut -2.0 cm < Zreact +2.0 cm. Overlayed are the corresponding distributions

obtained with shifted Zreact cuts; for example "+1 mm shift" indicates a software cut -1.9 cm

< Zreact +2.1 cm. The lower plot gives the ratio of p/po to illustrate the variation of p with

the cuts. For a shift in Zreact of ±1 mm (which corresponds to a shift of ±0.72 mm in ytgt in

204
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Figure 6-20: Reconstruction of
along the beam line.

ytgt in Spectrometer B for a thin 12 C target at various locations

Spectrometer B at this angle) or less, the momentum distribution changes by less than 1%.

Based on this result, we estimate that an uncertainty of ±0.5 mm in the absolute value of ytgt

gives a ±0.7% uncertainty in the absolute cross section at these kinematics. Similar analyses

were done for the 3He 675/660 and 540/660 kinematics, with the results given in Table 6.9.

The uncertainties for 4 He were assumed to be the same and were set to the same values as 3 He.

The remaining rows in Table 6.9 are associated with uncertainty in the absolute value of

the beam energy, central spectrometer angle, and horizontal beam position (which is equivalent

to uncertainty in the scattering angles). These uncertainties were evaluated for the 3 He(e,e'p)

2 H reaction at the 540/660 and 855/660 kinematics using the Monte Carlo code MCEEP [60].

These simulations were performed by J. Zhao [61] and the results are given in Table 6.11. The

count rate was evaluated for both a positive and negative shift in the kinematic quantities,

and the maximum of the two values was taken to be the resulting uncertainty, which was

then entered into Table 6.9. The uncertainties for the Ebeam = 675 MeV kinematics were not

specifically evaluated, and were taken to be the average of the corresponding values at 540 and
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3 He(e,e' p)2 H Measured Momentum Distributions

Systematic study of shifted zreact cut (855/660 kinematics)
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Figure 6-21: 3He(e,e'p) 2H momentum distribution determined from the 855/660 data with
various shifts in the zreact Cut.
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855 MeV. All of these uncertainties due to offsets in energy and angle are generally quite small

compared to the other uncertainties.

description EO Oe OP counts change

[MeV] [deg] [deg] (a.u.) (%)
central values 540.11 103.8525 26.2274 34121x10 2  

-

+AEO 540.27 103.8525 26.2274 34009x 102 -0.33
- AEo 539.95 103.8525 26.2274 34236x 10 2  +0.34

+AOe 540.11 103.8582 26.2274 34113 x 102 -0.02
-AOe 540.11 103.8468 26.2274 34128 x 102 +0.02
+AO, 540.11 103.8525 26.2331 34127x10 2  +0.02
-A, 540.11 103.8525 26.2217 34114 x 10 2  -0.02

+1 mm horiz. beam pos 540.11 103.8739 26.2425 34102x 102 -0.06
-1 mm horiz. beam pos 540.11 103.8311 26.2123 34131x 102 +0.03

central values 855.11 52.3586 46.4131 13413x 10 3  
-

+A EO 855.27 52.3586 46.4131 13392x 10 3  -0.16
- AEO 854.95 52.3586 46.4131 13428 x 10 3  +0.11
+AOe 855.11 52.3643 46.4131 13404x10 3  -0.07

-AOe 855.11 52.3529 46.4131 13422x 103 +0.07
+AO, 855.11 52.3586 46.4188 13418 x 103 +0.04
-A, 855.11 52.3586 46.4074 13408x10 3  -0.04

+1 mm horiz. beam pos 855.11 52.3039 46.4248 13508 x 103 +0.71
+1 mm horiz. beam pos 855.11 52.4133 46.4015 13317x 103 -0.72

Table 6.11: Effects of offsets in beam energy, spectrometer angle and horizontal beam position
on the 3 He(e,e'p) 2 H count rate for the 540 and 855 MeV kinematics. Beam energy uncertainties
of ±160 keV and angular uncertainties of 0.5 mrad are considered.
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Chapter 7

Summary and Conclusions

We have measured the quasielastic (e,e'p) cross section in 3 He and 4 He over a broad range

of missing energy (0-150 MeV) and missing momentum (0-300 MeV/c), in nominally parallel

kinematics (ffm parallel to q) and at a central momentum transfer jq = 685 MeV/c. The general

results of these measurements are summarized in Table 7.1, where the results for each nucleus

have been categorized according to the specific regions of missing energy and missing momentum

probed by the experiment. The boundaries between the various regions are approximate values,

chosen to illustrate the general behavior of the results.

At high missing energy (Em > 20 MeV in 3 He, Em > 45 MeV in 4 He) and low missing

momentum (pm < 100-150 MeV/c), the measured continuum cross section was found to be

completely dominated by radiative tail. This was evidenced by a radiative-unfolded cross

section that fluctuated between positive and negative (depending on the unfolding technique

employed) and confirmed by a Monte Carlo simulation of the radiative effects for one of the

3 He kinematics. The radiative-corrected measured cross sections in this region were consistent

with zero within our precision.

At high missing energy and high missing momentum (p, >100-150 MeV/c), the spectrum

appeared to be dominated by protons rescattered from the edges of the collimator in Spec-

trometer B. In this effect, coincident protons from (e,e'p) reactions at low missing energy and

missing momentum (for example, from the large two-body breakup channel) apparently lost

a significant amount of energy in the collimator material, thereby appearing at higher mea-

sured values of missing energy and missing momentum. These results illustrate the difficulty

209
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3 He(e,e'p):

Em < 20 MeV

Em > 20 MeV

pm < 100-150 MeV/c

S "exP nearly independent of E

- L/T slightly larger than occi

* SexP/Sth = 0.77-084

e measured strength is

100% radiative tail.

100-150 < pm < 300

* inaccessible in QE

parallel kinematics.

e measured strength dominated

by collimator scattering and

radiative tail.

4 He(e,e'p):

Em < 45 MeV

Em > 45 MeV

* Sexp independent of c-

- L/T described by occi

* BIG rad. corr. in continuum

SSexP/Sth = 0.68-0.85

e good agreement with

first-ever calculation of Sth

* measured strength is

100% radiative tail.

* inaccessible in QE

parallel kinematics.

* measured strength dominated

by collimator scattering and

radiative tail.

Table 7.1: A summary of the experimental results.

210 Chapter 7. Summar~y and Conclusions



211

of (e,e'p) measurements in the continuum, where one is sensitive to these types of background

and, in contrast to the two-body breakup channel, there is no distinct missing energy peak to

distinguish the real signal from the background. In this experiment, the high resolution of the

Mainz spectrometers was an important asset in understanding these phenomena, allowing the

identification of background processes through accurate angular and position reconstruction of

the detected particle.

Since all other regions were dominated by either radiative corrections or background, final

cross sections were extracted only for the region of low missing energy and low missing mo-

mentum. Absolute cross sections were determined with a systematic uncertainty of 5-6%. The

Plane Wave Impulse Approximation (PWIA) was applied to the data to extract experimen-

tal spectral functions and momentum distributions. This analysis employed de Forest's CC1*

prescription of the e-p cross section [18] and the free nucleon form factors of Ref. [46]. The

e-p cross section was averaged (with the appropriate kinematic factor) over the experimental

acceptance at each kinematic setting using a Monte Carlo technique. The experimental spectral

functions (in contrast to the measured cross sections) are therefore relatively insensitive to the

details of the acceptance.

Detailed results for this region were presented in Chapter 6. In general, the shape of

all of the results agreed well with PWIA predictions. In 3 He the experimental momentum

distributions and spectral functions were seen to have some dependence on the virtual photon

polarization (E), indicating that the ratio (L/T) of the longitudinal (L) and transverse (T)

response functions is larger than that given by ofci. This behavior was observed in both

the two-body and continuum reaction channels. However, we note that the magnitude of the

observed E-dependence is comparable to our systematic uncertainty. In 4 He, the experimental

momentum distributions and spectral functionst were found to be independent of E within our

*The analysis discussed in Appendix G showed that, at our kinematics, de Forest's CC2 prescription gave
approximately the same results as CCL.

tAs shown in Chapter 6, the continuum spectral function obtained with 2DFPM unfolding was independent
of E. The corresponding result with 2D unfolding exhibited an e-dependence, but the results with this technique
are physically unrealistic since they give a systematically negative cross section at higher missing energy. See
Chapter 6 for further discussion.



systematic uncertainty, indicating that the ratio L/T for the two-body and continuum breakup

channels is consistent with that given by o" -

Since the L/T ratio for the measured cross sections was found to be similar to occC, an

explicit separation of the longitudinal and transverse response functions was not performed on

the measured cross sections. An L/T separation of the data is possible, but would be compli-

cated because of our large experimental acceptance. From the experimental spectral functions

we learn that the L/T behaviour of the measured cross sections is the same or comparable to

OCle within our systematic uncertainty, so that there is little further information to be gained

by doing a complicated L/T separation.

Although detailed calculations do not exist to establish a connection between the (e,e'p)

and (e,e') phenomenology in 3 He and 4 He, it is interesting to compare our results to the L/T

ratios obtained in inclusive 3 He(e,e') and 4 He(e,e') reactions. In 3 He(e,e'), Zghiche et al. [5]

report a 10% reduction in L/T based on a y-scaling analysis of measured data. In our 3He(e,e'p)

measurements, we find that L/T is slightly larger than that given by ,epi although the en-

hancement is comparable to our systematic uncertainty. In the inclusive 4 He(e,e') reaction,

Carlson and Schiavilla [7] have shown that PWIA is insufficient for reproducing the ratio L/T

for the inclusive data, and pion degrees of freedom are required. This contrasts with our
4 He(e,e'p) results, where L/T is well-described by PWIA using o e. Our data also contrast

with previous (e,e'p) measurements on other nuclei at quasielastic kinematics, such as 12C(e,e'p)

where an enhancement of T/L was seen at higher missing energies, starting at about the 2-

nucleon emission threshold [12]. These 12 C data also showed a significant difference between

the transverse and longitudinal missing energy spectra; in our results the shape of the 3 He and

4He missing energy spectra were found to be independent of E for the region of missing energy

(Em < 20 MeV in 3He and Em < 45 MeV in 4 He) where significant strength was observed.

To compare the overall magnitude of the measurements and the theory, the experimental and

theoretical spectral functions have been integrated over selected regions of missing energy and

missing momentum. The value of the integral is denoted NeXP for the experimental result and

Ntheory for the corresponding theoretical result. The missing energy and missing momentum
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Reaction Stheory Nexp/Ntheory

3 He(e,e'p) 2H Salme et al. (Ref. [45]) 0.77

Schulze et al. (Ref. [49]) 0.77

Forest et al. (Ref. [52]) 0.79

3He(e,e'p)np Schulze et al. (Ref. [49]) 0.81 (0.84)

4He(e,e'p) 3H Schiavilla et al. (Arg.) (Ref. [58]) 0.68

Schiavilla et al. (Urb.) (Ref. [58]) 0.85

Forest et al. (Ref. [52]) 0.72

4He(e,e'p)nd + 4He(e,e'p)nnp Efros et al. (Ref. [59]) 0.69 (0.80)

Table 7.2: A comparison of the experimental and theoretical spectral functions for the various
reaction channels. The quantity N'xP is the integral of the experimental spectral function over a
selected region of missing energy and missing momentum, as defined in Chapter 6, and Ntheory

is the integral of the theoretical spectral function over the same limits. The value of Nexp is the
average value obtained at each of three kinematic settings. For the continuum channels, the
results are given for both the 2D (no brackets) and 2DFPM (in brackets) radiative-unfolding
techniques.

limits of the integration were different for each reaction channel and were presented in Chapter

6. The ratio Nexp/NIheory for each of the measured reaction channels is given in Table 7.2.

In each case, the value of NexP is the average value obtained at each of the three kinematic

settings. For the continuum breakup channels, the result is given for both the 2D and 2DFPM

unfolding techniques. For the 4 He continuum channel, the ratio NexPINtheorY varied from 0.69

to 0.80 depending on the radiative-unfolding technique used. The difference between the two

results reflects the large systematic uncertainty in the radiative unfolding, which is due to the

relatively large radiative correction to the 4 He continuum.

If PWIA and the theoretical spectral functions are correct, one expects Nexp/Ntheory

(For our analysis, this result also assumes that Oac' is the correct off-shell electron-proton cross

section and that the free nucleon form factors of Ref. [46] are correct, since these two factors are
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used in determining an experimental spectral function.) However, PWIA does not account for

final-state interactions (FSI) between the detected proton and the recoiling (A-1) system. As

discussed in Chapter 6, an estimate of FSI was obtained for the 4 He(e,e'p) 3 Hp reaction using

the HE4PT computer code of R. Schiavilla [55], which indicated a 12% reduction in the cross

section at our kinematics. Although this calculation was for 4 He and not for 3 He, we expect the

results to be similar for the two nuclei. For our results, we therefore expect NexPINtheory - 0.88

when accounting for FSI (with unknown theoretical uncertainty).

The experimental values of Ne PINtheory tabulated in 7.2 fall between 3% and 22% below

this value. These discrepancies could be due to several factors including the off-shell cross

section, the free nucleon form factors, the final-state interactions, the theoretical descriptions of

the spectral functions, or our systematic uncertainty. Additionally, there could be contributions

from effects that go beyond PWIA+FSI, such as meson exchange currents. We emphasize that

in general the shape of the experimental spectral functions versus missing energy and missing

momentum are well-reproduced by the PWIA predictions. Therefore any physical process that

can explain the observed shift in magnitude must not introduce dramatic changes in the shape

of the theoretical cross section. More complete calculations that include effects beyond PWJA

are required to further interpret the data.



Appendix A

Kinematic Correction

In elastic scattering measurements, the observed peaks in the measured energy and momentum

spectra are broadened due to the finite angular acceptance. What is usually called a kinematic

correction to the momentum is not really a correction (since it is not correcting any error) but

refers to the introduction of a new variable which corresponds to the momentum that the event

would have if it had scattered at the central spectrometer angle. The new variable then has no

kinematic broadening.

For a given scattering angle (0), the final energy (Ef) of an elastically scattered electron is

Ef= 2Ej 2 (A.1)
1 + sin 0/2

where E is the incident electron energy and MA is the mass of the target nucleus. Expanding

the expression about the central scattering angle (0o) gives

Ef (0) ~ Ef (0o) + (0 - 00) - (dEf (A.2)
dO 0=00

where

dEf E
-- = --- sin 0. (A.3)

dO MA

For small out-of-plane angles we have (0 - 00) ~$ <, i.e. the difference between the scattering
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angle and the central spectrometer angle is approximately the horizontal transport angle q, so

Ef (0) ~ Ef (0) - q sin 00.
MA

(A.4)

We define the kinematically-corrected momentum:

Pkin p (1 + 0MAsin o)

where p is the detected particle momentum. For highly relativistic electrons, p ~ E, and by

comparing to (A.4) we identify Pkin ~ Ef(0o).

(A.5)



Appendix B

Radiative Unfolding

B.1 Introduction

The radiative unfolding of the (e,e'p) data was done with the program RADCOR, which was

written in FORTRAN by A. Rokavec [39]. This code was based on an earlier work by E. Quint

[62] at NIKHEF. For our analysis a minor modification was made to RADCOR's calculation of

the external bremsstrahlung correction. This was done to correctly account for the contribution

of the stainless steel walls of the Helium target cell, as described in section B.2.2 below.

In the following sections we give the correction factors used by RADCOR for each of the

three types of radiative processes considered. A complete discussion of radiative unfolding for

(e,e'p) is given in Ref. [39, 62, 63], and the reader is directed there for further details.

B.2 Correction Factors used by RADCOR

Three distinct types of radiative processes are considered:

1. Internal bremsstrahlung (also known as Schwinger radiation [64]), where the radiation

of real or virtual photons occurs in an interaction with the same nucleus as the (e,e'p)

reaction,

2. External bremsstrahlung, where the radiation of real photons occurs in an interaction with

another nucleus, and

3. Ionization loss, where a particle loses energy because of excitation or ionization of atoms.
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B.2.1 Internal Bremsstrahlung

The correction factor for internal bremsstrahlung used by RADCOR is that proposed by

Penner [651:

(B.1)s c h w = 
6 r e a l

1 + 6 virt

where "real" and "virt" denote the contributions from real and virtual photons respectively.

The real-photon part is given by

a E( EEb -q F __2
real n 2(AE)2 2n (B.2)-

1]

with*

b = 1+Msin2 (0eM k2J

7= I+ 29 sin 2 (02)

L,2 2 -jq 2 < 0

The virtual-photon part is given by

=virt = { In ( 2 - 1]
17 7r- En )

The cutoff energy, AE, is defined in RADCOR to be equal to one-half the size of the missing

energy bin. L 2 is the Spence function, which is defined by

L 2 (X) = -- nln( dy- (B.4)

*Quint [62] and Holtrop [63] indicate a misprint in Penner [65], who defines b = 1 + (w/2M) sin 2 (0,/2).

I (B.3)
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and has a series solution (see Ref. [66]):

00 X

L2(X) = E(B.5)
i=1P

In RADCOR, the above sum is evaluated for only a finite number of terms. The final term in

the sum is defined to be the first term where either i > 100 or xi < 0.0001.

B.2.2 External Bremsstrahlung

The correction factor used for external bremsstrahlung was:

( f 1\ E AE 1 A \
Cet = exp trad[ + +(In E+( E 2(E)2]} (B.6)

which is the same as that suggested by Friedrich [67] when the substitution ( -+2-rq is applied.

The factor trad is the target thickness in radiation lengths, trad = t/Xo, with t and X 0 the

target thickness and unit radiation length, respectively, in [gm/cm 2]. The unit radiation length,

Xo, was calculated from (see Ref. [68]):

Xo = 716.405(A/Z)/[Z(l - f (Z)) + 12][gm/cm 2 ] (B.7)

where 11 and 12 have the values given in Table B.1, and f(Z) is given by

f (Z) = (Za)2{1.202 + (Za)2 [-1.0369 + 1.008(Za)2 /((Za) 2 + 1)]} (B.8)

The function ( is equivalent to the parameter b of Ref. [68], and is given by

1
((Z) = -[12 + (Z + 1)/(l1Z + 12)] (B.9)

9

The cutoff energy, AE, is defined in RADCOR to be equal to one-half the size of the missing

energy bin. This is the same definition of AE that was used in the internal bremsstrahlung

correction.



Z 11 12
1 5.31 6.114
2 4.79 5.621
3 4.74 5.805
4 4.71 5.924

> 5 5.216 - ln(Z)/3 7.085 - 21n(Z)/3

Table B.1: Parameters for calculation of the radiation length [62, 68]

External Bremsstrahlung Correction for a Composite System

The gas target used in this experiment had thick stainless steel walls, which contribute to the

external bremsstrahlung. The total correction due to the walls and helium gas is accounted for

by using the value of trad for the composite wall-target system in equation (B.6). The value

of trad for the composite system is calculated from t'ad = tc/Xg, where tc = t + tFe is the

total thickness of the composite target, and Xc is the composite radiation length calculated

from (see Ref. [70]):

1 tHe (X1 tFe ( 1

Xe~e Xo~e(B. 10)

The stainless steel material in the target walls is approximated by its largest component, iron

(5 6Fe). The other components of stainless steel tend to be close to iron in the periodic table so

that the error introduced in the radiative correction (which is Z-dependent) by assuming 100%

iron should be negligible.

To complete the calculation of Cext for the composite target, the value of the function ((Z)

is also needed. The function has a weak dependence on Z, as is illustrated in table B.2. The

difference between the calculated values of ((Z) for Helium and Iron is 0.37%, which can be

ignored. The value for Helium was therefore used throughout the analysis.
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material ((Z)
'He 1.3553
4 He 1.3553
56 Fe 1.3600

Table B.2: The calculated values of ( for the target material used in this experiment

B.2.3 Ionization Loss

The factor used by RADCOR to correct for ionization loss (also referred to as Landau straggling)

is based on the distributions of Findlay and Dusautoy [69 and is given by (see Ref. [62, 63]):

CLand fi fi prob()

prob(x)
4

1 - 1/{2(1 + S j )4}

x = v'2(AE/ - A - )d

= 0.1536(Z/A)t/3 2 MeV

A = n{/3 2 /(1 _/32)} - 1.8 In (Z) - 32 -5.1004

di = g 22

b = 2 x 10-5Z4/3 2

The values of gi, fi, ci and Ji are given in Table B.3. The mean energy loss (A) of a proton or

an electron in an absorber is given by:

Aproton = 2 In{3 2 /(1 _ 32) - 0.9 In (Z) - 2 + 11.06469}

Aelectron = {19.26 + ln (t/p)}

where p is the target density in gm/cm3 and t is the target thickness in gm/cm2.

where

(B.11)
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i gi fi ci 6i
1 0.737 0.0271 -1.48 0.196854
2 0.947 0.0798 -0.738 0.115194
3 1.23 0.1085 0.17 0.000344
4 1.68 0.1087 1.33 0.019527
5 2.40 0.0862 2.95
6 3.68 0.0604 5.39
7 6.18 0.0396 9.40
8 12.3 0.0258 16.8
9 39.7 0.0238 30.8

Table B.3: Parameters used in the correction factor for Landau straggling (see Ref. [39, 62]).

RADCOR applied the ionization loss correction to the incident and final electrons and to the

detected proton. The calculation considered only contributions from the Helium gas inside the

cell, ignoring any contribution from the cell walls. The ionization loss correction was found to

be negligible for our experiment: for AE = 0.875 MeV, RADCOR calculated CLand = 1.000 for

the electrons and 0.9977 for the protons at our 855/660 3 He kinematics. A separate calculation

considering only the walls of the target cell showed that the contribution from the cell walls

to CLand was the same size as the contribution from the Helium gas. Since the size of the

correction is negligible, the error in ignoring the wall contribution is insignificant.

There is some ambiguity in the definition of the cutoff energy, AE, for the ionization loss

correction. This is discussed by Holtrop [63], who chooses the cutoff energy to be equal to the

missing energy resolution. Since the ionization loss correction is small for our experiment we

ignored this ambiguity and used the existing definition in RADCOR. For completeness, we note

that RADCOR's definition of AE for the ionization loss correction is

AE = 0.5+ nint (Em +0.5) x AEm

where 'nint' indicates rounding to the nearest integer, AEres is the missing energy resolution

(FWHM) and AEm is the width of the missing energy bin. For our analysis, AEr"" = 0.5 and

AEm = 0.25, yielding AE = 0.875.
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Appendix C

Collimator Models for Spectrometers A and B

The nominal sizes of the collimators used in this experiment were 21 msr in Spectrometer A

and 5.6 msr in Spectrometer B. The collimators each have complicated shapes, with multiple

faces in the horizontal and vertical directions. These shapes were modelled as a series of

horizontal and vertical slits located at the intersection of each of the faces. The slit models

were then implemented in the Monte Carlo AEEXB [32], so that the acceptance-averaged cross

sections and detection volumes calculated by AEEXB had the same angular constraints as the

experimental data.

In Spectrometer A, the 21 msr collimator is approximately ±70 mrad in the vertical direction

and ±75 mrad in the horizontal. The position and width of the slits used to model this collimator

is given in Table C.1. In the table, 'drift distance' is the distance from the center of the target

to the slit location, and corresponds to the dimension d in Figure 4-1 in Chapter 3. The slit

dimensions h and v are the half-widths of the slits in the horizontal and vertical directions,

respectively, as defined in Figure 4-1.

In Spectrometer B, the nominal collimator size was 5.6 msr (±70 mrad vertical, ±20 mrad

horizontal). The dimensions of the slits used to model this collimator are given in Table C.2.

The quantities in the table have the same definitions as described above for Spectrometer A.

Detailed drawings of the collimators are not currently available in digital format so are not

presented here. The dimensions of the collimators were obtained from the blueprints in Mainz

and were used to determine the slit dimensions.
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Table C.1: Dimensions of the

in Spectrometer A.
horizontal and vertical slits used to model the 21 msr collimator

Table C.2: Dimensions of the horizontal and vertical slits used to model

in Spectrometer B.

the 5.6 msr collimator

horizontal slits

slit drift h

# (cm) (cm)
1 56.550 4.3598
2 58.146 4.4043
3 59.742 4.4825
4 61.358 4.5942
5 62.954 4.7392
6 64.550 4.9185

vertical slits

slit drift v

# (cm) (cm)
1 56.550 3.9550
2 59.143 4.1365
3 61.955 4.3325
4 64.550 4.5145

horizontal slits
slit drift h

# (cm) (cm)
1 314.400 6.3176
2 317.700 6.3548
3 321.099 6.4228
4 324.398 6.5176

vertical slits

slit drift v

# (cm) (cm)
1 336.800 23.626
2 340.093 23.845
3 343.484 24.083
4 346.776 24.325
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Appendix D

Target Cell Dimensions

The target cell was a spheroidal shell with an 80 mm diameter. The cell was formed from a

stainless steel cylindrical shell 100 pm thick and 66 mm in diameter. The spheroid was formed

by expanding the cylinder with high pressure water, so that the final dimensions were as shown

in Figure D-1. The thickness of the cell walls could not be directly measured, but was estimated

as follows. The surface area of the spheroid is

A8  = 27rr 2  sin OdO = 27rr (cos 01 - cos 02)
01

2 - s ~- c
= 2 rr- s2

s rs

The cylindrical section from which it was formed has surface area

A = 27rrcl = 2rre -2/r2 - r2

To calculate the thickness of the spheroid, it is assumed that the material stretches uniformly,

and that the total volume of stainless steel remains constant (V = Asts = Actc). The estimated

thickness of the spheroidal shell is then

AC
ts =As - tc

rc33
= . - te = -- - 100pm = 82.5pm
rs 40
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r= 33
C

40

r = 40

02j

Figure D-1: Dimensions of the target cell in millimeters.
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Appendix E

Beam Rastering Calibration Parameters

For all measurements using the Helium target, the incident beam was rastered by approximately

±3.5 mm in the vertical and horizontal directions to distribute the deposited heat. The rastering

was done by passing a sinusoidal current through coils placed in the beam line in the horizontal

and vertical planes, as discussed in Chapter 3. The current in the coils was read out by an ADC

and stored in the data stream for each event. In the data analysis, ESPACE reconstructed the

beam position on the target for each event from these ADC values as follows:

X = (Nx x xslope) + xoffset (E.1)

y = (Ny x yslope) + yoffset (E.2)

where Nx and Ny are the ADC values corresponding to the current in the horizontal and vertical

rastering coils, respectively. The coordinates x and y are specified in the beam coordinate system

(shown in Figure 4-1 in Chapter 3), which is a right-handed coordinate system with y pointing

upwards and z along the incident beam (pointing towards the beam dump).

The four calibration parameters (xslope, xoffset, yslope, yoffset) were determined from

calibration runs that were regularly performed when the the beam was tuned or the beam

energy was changed. The calibration technique is described briefly in Chapter 3 and in detail

in Ref. [22].

Table E.1 lists the raster calibration runs performed during our experiment and the cali-

bration parameters obtained from each of them.

227



Appendix E. Beam Rastering Calibration Parameters

horizontal xoffset xslope vertical yoffset yslope
cal. run (mm) (mm/channel) cal. run (mm) (mm/channel)

950622141437 -1.669E+01 1.312E-01 950622145633 -1.180E+01 9.207E-02
950622142803 -1.720E+01 1.346E-01 950622150655 -1.176E+01 9.163E-02
950623164910 -1.213E+01 9.423E-02 950623170114 -7.194E+00 5.621E-02
950625000608 -1.389E+01 1.085E-01 950625002854 -9.271E+00 7.102E-02
950625174512 -1.394E+01 1.085E-01 950625175154 -8.937E+00 7.077E-02
950625235037 -1.444E+01 1.126E-01 950625235621 -7.075E+00 5.505E-02
950626040142 -1.241E+01 9.553E-02 950626040754 -7.200E+00 5.625E-02
950629071350 -2.306E+01 1.818E-01 950629071830 -1.341E+01 1.046E-01
950629124159 -2.306E+01 1.818E-01 mysterya -1. 310E+01 1.046E-01
950629225642 -1.798E+01 1.410E-01 950629230101 -1.224E+01 9.631E-02
950630030845 -1.784E+01 1.410E-01 950630031413 -1.169E+01 9.250E-02
950701055722 -1.007E+01 7.941E-02 950701060027 -1.233E+01 9.956E-02
950701234350 -1.009E+01 8.033E-02 950701234718 -1.243E+01 9.956E-02
950707135457 -1.272E+01 1.037E-01 950707135833 -1.079E+01 8.322E-02
950707184417 -1.283E+01 1.031E-01 950707184806 -1.063E+01 8.322E-02
950707215203 -1.227E+01 9.823E-02 950707215828 -1.164E+01 9.456E-02
950709014812 -1.228E+01 9.639E-02 950709015135 -1.200E+01 9.633E-02
950709134107 -1.215E+01 9.726E-02 950709134831 -1.126E+01 9.373E-02
950710033826 -1.068E+01 8.127E-02 950710034206 -1.229E+01 9.633E-02
950710160402 -1.050E+01 8.223E-02 950710160835 -1.243E+01 9.631E-02
950711044920 -9.971E+00 8.033E-02 950711045706 -1.225E+01 9.584E-02
950711170618 -9.930E+00 8.033E-02 950711171018 -1.210E+01 9.633E-02
950712064246 -1.664E+01 1.320E-01 950712064544 -1.191E+01 9.501E-02
950 7 120 7 11 16 ' -1.643E+01 1.312E-01 950712071539C -1.210E+01 9.501E-0 2
950712133749 -1.630E+01 1.312E-01 950712134103 -1.225E+01 9.454E-02

Table E.1: Beam Rastering Calibration Parameters.

"No run number for this data file.
bRun number is 2 hours earlier than actual run time.
'Run number is 2 hours earlier than actual run time.
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Appendix F

List of (e,e'p) Runs Analyzed

kinematics run number length kinematics run number length
(min.) (min.)

540/660 950622210020 37 675/425 950625190455 31
950622214007 25 950625193624 31
950622222125 25 950625200935 35

540/585 950623014620 29 950625210339 27
950623022732 30 855/660 950624062925 30
950623025856 33 950624070549 29

540/500 950623053809 39 950624073928 29
950623061826 32 950624081755 28
950623065601 32 855/585 950624033122 36

540/425 950623080633 31 950624040908 27
950623084025 32 855/500 950624093411 31
950623091354 31 950624100658 30

675/660 950625032420 30 950624111552 31
950625035844 32 950624114824 30
950625043709 33 855/425 950624150830 31

675/585 950625061519 31 950624154116 9
950625064819 31 950624163137 15
950625072045 31 950624173100 34
950625075318 21

675/500 950625085937 30
950625093040 31
950625100324 30

Table F.1: 3 He(e,e'p) runs analyzed.
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Appendix F. List of (e,e'p) Runs Analyzed

kinematics run number length kinematics run number length
(min.) (min.)

540/660 950630033034 32 540/425 950712192134 37
950630040359 32 950712200057 18
950630043649 31 950712202032 37
950630050854 33 950712213522 33
950630054332 31 675/660 950707164431 30
950630061609 30 950707191704 40

540/585 950630073558 32 675/585 950707204034 34
950630085029 33 950707221416 30
950630092436 31 950707225951 30
950630095615 32 950707233211 29

540/500 950630130243 51 675/500 950708011254 31
950630140924 37 950708015422 31
950630151327 31 950708022826 32
950712100342 30 950708030335 30
950712103511 19 950708033445 33
950712113105 12 950708040901 31
950712114426 31 950708044140 31
950712121607 32 950708051409 42

540/425 950712140354 31 950708055855 31
950712143623 38 675/425 950708084609 31
950712151632 31 950708091817 31
950712154938 29 950708135129 30
950712162003 34 950708142310 39
950712165459 32 950708150321 32
950712172823 31 950708153607 29
950712180156 32 950708160929 33
950712183538 45 950708164428 31

Table F.2: 4 He(e,e'p) runs analyzed.

230



231

Table F.3: 4 He(e,e'p) runs analyzed (continued).

kinematics run number length kinematics run number length

(min.) (min.)

855/660 950702031033 31 855/425 950702184421 6
950702034459 30 950702190504 34
950702042009 30 950702200310 22
950702045427 31 950702202731 7

855/585 950702075712 15 950702210847 32
950702092137 34 950702203544 32
950702105248 30 950702214130 30
950702112546 33 950711215252 31
950702122624 27 950711222516 31

855/500 950702134439 5 950711233531 32
950702135129 31 950711225718 33
950702145529 35 950712001349 31
950702153253 46
950702162113 41



Appendix G

Off-Shell Electron-Nucleon Cross Section

As presented in Chapter 2, the (e,e'p) cross section in PWIA factorizes into the product of a

kinematic factor, the off-shell electron-nucleon cross section, and the spectral function:

d6o,.

ded~pdpedpp N X 0eN X S(Pm, Em) (G.1)

The extraction of an experimental spectral function from the measured cross section requires

the choice of a prescription for aeN, of which there are several [71]. We chose the CC1 prescrip-

tion of de Forest [18], occl, which is commonly used by others (see Ref. [10], for example).

The determination of occi also required a choice of free-nucleon form factors. We chose the

parameterization of Simon et al. [46] as discussed below.

The cross section o-cc, is calculated from [18]:

UeN = M [ W + + tan2 0 WT + q ( + tan2 0 Wcos(2

(G2

+ Cos2+tan 210 WS]

where UM = 4, 2 E2cos 2 (0/2)/q4 is the Mott cross section, El is the incident beam energy, 0

is the electron scattering angle, # is the angle between the scattering and ejectile as shown in

Figure 2-1 (Chapter 2), and q and q,, are the three- and four-momentum transfer, respectively.
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The W's are given by

4FF'- {(E+E')2 (Fi +% 2 x2F2 2 -q2(F1+xF2 )2}

-2
WT- "(F1+rF 2 )

2

2EE'
,2 2 + -2 (G.3)

ws= si", F1 + ql2F 2F

W,=-F (E+EJ + 2 2

where F = (p2 + rn2 )1/ 2 , with p the initial momentum of the struck proton and m the mass of

the proton, and K is the anomalous magnetic moment of the proton (= pp - 1 = 1.793).

F1 and F 2 are the Dirac and Pauli form factors, respectively, of the proton. In terms of the

Sachs form factors, GE and GM, they are given by

GE(q2) + rGm(q2)
F1 (q 2) = 1 (G.4)A 1 + T

Gm(q ) - GE(q2)(
F2 (q 2) = (G.5)P - (1 + T)

Simon et al. [46] have extracted the Sachs form factors from measurements of electron-proton

scattering at Mainz over a range of q2 from 0.14 to 1.4 fm-2. They have combined these data

with data measured at higher q2 (up to 130 fm-2) at other laboratories to obtain the following

parametrization of the form factors:

4

G(q 2) =an+q m (G.6)

where G = GE or GM/p, and the coefficients mn, an are those given in Table G.1.

The CC1 prescription was compared to de Forest's CC2 prescription [18] at various points

inside our experimental acceptance [61]. At each point, the ratio O-CC1/UOCC2 was found to be

constant within 0.5% for the three values of the beam energy (corresponding to three values
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2 2 2 2a, a 2  a3  a 4  m1 m2 M3 m

[fm- 2] [fm- 2 ] [fm- 2 ] [fm-2
GE 0.312 1.312 -0.709 0.085 6.0 15.02 44.08 154.2
GM/p 0.694 0.719 -0.418 0.005 8.5 15.02 44.08 355.4

Table G.1: Parameters for the form factors GE(q 2 ) and Gm(q2 ) from Ref. [46].

of the virtual photon polarization, f). The E-dependence of the extracted spectral functions is

therefore independent (within 0.5%) of the choice of o-cc versus UCC2. In addition, the ratio

c-cci/Ucc2 was found to vary from 0.97 to 1.03 at different points across the acceptance. The

magnitude of the experimental spectral functions (which are an average over the experimental

acceptance) should therefore be relatively insensitive to the choice of o-cci versus oCC2 . A

more exact comparison of the spectral functions extracted with o-cci versus OCC2 would require

averaging over the acceptance with a Monte Carlo.
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Appendix H

Computer Dead-Time Corrections

H.1 Introduction and Notation

The computer dead time was measured by a series of scalers as discussed in Chapter 3. Correc-

tions were applied to the measured data to account for the computer dead time, as discussed

below. The corrections are different for coincident and singles events, and each case is discussed

separately.

For our experiment, the data can be divided into four types of events, each corresponding to

specific combinations of the three spectrometers: ABC, ABC, ABC and ABC. For example,

ABC denotes events where Spectrometers A and B fired and Spectrometer C did not. All other

possible combinations beyond these four were removed from the hardware trigger by using large

prescale factors as discussed in Chapter 3. Since Spectrometer C only appears by itself, we will

use the shorthand notation AB, AB, AB and ABC to label the four combinations.

The data recorded for each event included a bit pattern indicating which spectrometers

fired in that event. Histograms HAB, HAp, HAB and HApc (corresponding to each of the four

combinations) were acquired from the measured data by cutting on this bit pattern. From

these histograms we calculated the dead-time corrected histograms of coincidences (HAB) and

singles (HA, H , H ) as discussed below.
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H.2 Computer Dead-Time Correction for AB Coincidence Events

The dead-time corrected coincidence histogram HB was determined from HAB by

HAB =AB x HAB (H.1)

where 7 jAB is the computer dead-time correction for coincidences between Spectrometers A

and B. For AB coincidences, the relevant dead time is the time that either Spectrometer A or

Spectrometer B was dead. This is given by the sum of the individual dead times of the two

spectrometers (deadA + dead-B), minus the time that they were both dead (dead-AB). The

computer dead-time correction used for AB coincidences was therefore

AB - total time7ldt - total time - (deadA + deadB - deadAB) (H2)

which is the same factor used by other Mainz experiments (see Ref. [25] for example). The

times dead-A, deadB and deadAB are the times measured from the dead-time module as

shown in Figure 3-6 in Chapter 3.

H.3 Computer Dead-Time Correction for Singles

H.3.1 Time Method

For the purposes of this discussion a singles event for a given spectrometer is defined as any

event where that spectrometer fired. In the following discussion, singles determined from Spec-

trometer A are used as an example. The same conclusions hold for Spectrometer B, and the

corresponding formulae can be obtained by swapping the indices A ++ B. The correction for

Spectrometer C is simplified since there is only one type of event (ABC) containing Spectrom-

eter C. The correction for Spectrometer C is presented in the next section.

To calculate the dead-time corrected singles histogram for Spectrometer A, HA, we must
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generally consider contributions from both AP events and AB events:

HA & = + H B (H.3)

(y$Apre x HA)+ (77AB x HAB) (H.4)

where HAp is the measured histogram of events where only Spectrometer A fired (and not B)

and HAB is the measured histogram of events where both Spectrometers A and B fired. The

AB coincidence dead-time correction, AB, is as defined in Eqn. (H.2). The correction factor

for AR events, B , is very different from A B for our experimental configuration. It includes

both dead-time and prescaling corrections and requires further discussion.

If the trigger electronics in Mainz are in their design configuration, the correction factor for

AB events is

AB total time
7dt-pre total time - deadA (H5)

where mA is the prescaling factor for Spectrometer A. For example, for a prescaling factor

MA = 2 and a fractional dead time a tota tme = 0.20, the correction factor for the design

configuration is 71 ABpre 2.5.

However, in our experiment the trigger electronics differed from the design configuration.

The difference was that the prescaling module on each spectrometer (which prescales the singles

triggers for that spectrometer) was not inhibited. The module therefore continued to count

triggers while the computer was dead. In this case equation (H.5) is incorrect, and takes on a

complicated solution as shown by Friedrich [72]. He showed that for the above example (mA = 2

and tota time = 0.20) the overall correction factor was 2.14048 instead of 2.5. The correction

factor for an arbitrary prescale value and fractional dead time has been derived by Merkel [73],

and his computer program has been used to calculate the correction factor for a few sample

cases give in Table H.1

As can be seen in the table, for m = 1 (i.e. no prescaling) the correction factor is equal to

that obtained from Equation (H.5). As the prescaling value is increased, the contribution of
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m=1 m=2 m=5 m=20
a = 0.1 1.11111 2.03637 5.00086 20.00000
a = 0.2 1.25000 2.14049 5.01859 20.00000
a = 0.3 1.42857 2.32037 5.10015 20.00010

Table H.1: Prescaling and dead-time correction factor q AB as a function of prescale factor
(in) and fractional dead time (a) as calculated with the computer code of Merkel [73].

the dead time is reduced and the overall correction factor approaches the prescaling factor. For

m = 20, the effect of the dead time is negligible, even for a fractional dead time of a = 0.30, so
that the overall correction factor 77AB

tdt-pre = m = 20. The qualitative explanation is that as the

prescale value is increased, the average distance between pulses coming out of the prescaler is

very long, so that the probability of a pulse arriving during the dead time is small. A general

discussion of dead time in scaling circuits can be found in Ref. [74].

For most of the singles data analyzed in this experiment, the prescaling factor (m) was

sufficiently large and the fractional dead time (a) sufficiently small that

1d9t-pre - MA (H.6)

based on the results of Merkel's program. However, this analysis ignores the case where there is

a significant number of AB coincidences in the data stream, as there was in many of our runs.

These AB coincidence events arrive randomly with respect to the prescaled AP events, so that

computer dead time caused by an AB event can contribute to the dead time for AB events.

We therefore propose that that complete correction factor is

AB total time
t-pre -- total time - deadAB

where deadAB accounts for the dead time due to AB events.

We refer to equation (H.4), with AB given by (H.2) and A e given by (H.7), as the

Time Method for dead-time correction of singles events. The method is quite complicated and
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H.3. Computer Dead-Time Correction for Singles

requires several assumptions. Fortunately, there are a number of scalers which allow the check

of these calculations. The scalers also allow the formulation of a simpler dead-time calculation.

The check of the method and an explanation of the second method are discussed in the next

two sections.

H.3.2 Scaler Check of Time Method

The hardware trigger condition for each spectrometer in this experiment was a coincidence

between the AE and TOF scintillators. For each spectrometer a scaler records the number of

these AE-TOF coincidences. The number recorded by one of these scalers is not affected by

the computer dead time and so defines the number of raw triggers for a given spectrometer.

We define the number of measured triggers for a particular spectrometer as the number

of recorded events in which that spectrometer fired. The number of measured triggers times the

prescaling and dead-time corrections should equal the number of raw triggers. Checking this

statement for one of the data sets provides a check of the prescaling and dead-time corrections.

As an example, we consider one of the elastic scattering runs from 4 He, run number

950707143036. The number of raw triggers recorded by the scalers is NA" = 1.362 x 10 7

for Spectrometer A, NW' = 9.67 x 10 5 for Spectrometer B, and NPaW = 8.72 x 10 5 for Spec-

trometer C.

The data set was analyzed to determine which spectrometers fired in each event, and the

total number of measured triggers corresponding to each spectrometer combination obtained.

This gave NAp = 9 3 15 9 , NAB = 3 19 54 , NAB = 2507 and NAfc = 84885*. The measured

computer dead times were dead-A = 110.3 sec, deadB=31.4 sec, and dead-AB=7.1 sec and

the total run time was 647 seconds. The prescaling values were 140 for Spectrometer A, 30 for

Spectrometer B and 10 for Spectrometer C. Substituting into (H.4), the dead-time corrected

*This data set (run 950707143036) was also found to contain two ABC events, which were ignored.
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number of measured triggers in Spectrometer A is then given by:

Ni (m7 3le X NR+ (B x NAB)

mA x total time x NAB
total time - deadAB

total time x NAB

total time + (deadA + deadB - dead-AB)
140 x 647 x 93159 647 x 2507

647 - 7.1 647 - (110.3 + 31.4 - 7.1)

- 1.319 x 10 7 + 3.166 x 10 3

- 1.319 x 10 7

and in Spectrometer B,

=( Bpre x NAB)+ (dB x NAB)

mB x total time x NAB
total time - dead-AB

total time x NAB

total time + (deadA + deadB - deadAB)
30 x 647 x 31954 647 x 2507

647 - 7.1 647 - (110.3 + 31.4 - 7.1)

- 9.693 x 10 5 + 3.166 x 10 3

= 9.724 x 105

We note that the term containing NAB makes either a negligible or a small contribution to N

and Ng.

The only type of event containing Spectrometer C is ABC. Therefore the dead-time cor-

rected number of triggers in Spectrometer C, N , only has contributions from ABC events and

the Time Method gives:

N = (g77Ce x NA c)

The fractional dead time (a) for Spectrometer C was 0.134; putting this into Merkel's program
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(as discussed in the last section) with the prescaling factor mc = 10 yielded

7/dt-pre - mc 10

so that

N = mc x NAPc

= 10 x 84885 = 8.489 x 105

Comparing these results to the number of raw triggers measured by the scalers gives

NC - Naw

AN

Nc - Nraw

NC - Npw

cNP**

= -3.2%

= +0.6%

= -2.7%

The significant disagreement between NC and Nraw for Spectrometers A and C indicates that

there is a 2-7-3.2% error due to the dead-time correction, which is unacceptably large. This

result indicates that the Time Method for determining the prescaling and computer dead-time

corrections for singles events is incorrect. We therefore turn to another method, which uses

the number of raw triggers instead of the measured dead time to calculate the prescaling and

dead-time corrections.

H.3.3 Scaler Method

Consider again the analysis of events from Spectrometer A. We analyze the data and acquire

two histograms HAq and HAB as a function of some variable x. To obtain the corrected singles

histogram, H (x), we must combine HAp and HAB with the appropriate factors as shown in

Equation H.4:

HA'(x) = dt-pre x HA(x) +7ABxHAB() 
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where q ABe and q B are the correction factors we need to determine.

In general, the singles and coincident events sample from different distributions, so that

HAP (x) is not proportional to HAB(x). However, if all the coincidences between Spectrometer

A and B are random, then the coincident events sample the same distribution as the singles

events and HAP(x) oc HAB(X). In that case we can write Equation H.8 as

He4(A) =Xdpe x (HAf(x) + HAB(X)) (H.9)

= A x HA(x) (H.10)

where HA (x) = HA (x) + HAB (x) and q_-pre is a new correction factor, which we obtain from

the ratio of raw and measured triggers:

A - a (H. 11)dt-pre -N 4 P + NAB

(H.12)
NA

with NA = NAp + NAB.

A qualitative way of viewing this correction method is that it treats the whole data acqui-

sition system as a "black box" with Nraw triggers at the input and NA measured triggers at

the ouput. The effect of prescaling and dead time inside the box is described by the ratio of

the input to the output, 7dt-pre = Naw/NA. We refer to this correction method as the Scaler

Method since the correction is now based on the scalers that count the raw triggers, instead of

the times recorded by the dead-time module.

In our experiment, an analysis of the singles data was required in only two cases:

1. Elastically-scattered electrons detected in Spectrometer A or B. In this case the AB

coincidence events had a flat coincidence timing spectrum, indicating that they were

completely random. Therefore HAP(x) oc HAB(x) as required above.

2. Quasielastic electrons detected in Spectrometer C. In this case there are no coincidences

with the other spectrometers, as described in Chapter 3, so that Nc = NAPc and HC =
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HApc. Since there are no coincidences with other spectrometers, the Scaler Method is

also valid for Spectrometer C.

Summarizing the Scaler Method, the dead-time corrected singles histograms for all three spec-

trometers are given by

H = ldt_,e x HA

HB = 71dt-pre x HR

Hj = ldt-pre x HC

where

N~rawHA AA_ ± HAB, A NAB
HA =HA + H AB, 7dt-pre - NA NA = NAg ± NAB

NrawHB=AB+AB, B NBHB =H AB + HAB, Tidt-pre NB , NB NAB + NAB

C N~w
Hc = HADC, U7 dt-pre Nc , Nc = NAPC

H.3.4 Comparison of Time and Scaler Methods

We now apply the Time and Scaler correction methods independently to a sample run and

compare the results. For the sample run, we use run number 950707143036, which is the

same 4 He elastic-scattering run used in the scaler check of the Time Method in Section H.3.2.

For H(x), we use a histogram of the kinematically-corrected momentum, Pkin, with the cuts

described in Table 4.9 in Chapter 4.

For the Time Method we acquire two histograms, HAp(x) and HAB(x) as shown in the

top two plots of Figure H-1 Each of the histograms are then multiplied by the appropriate

correction factors 1AB = 141.55 and qAB - 1.263 as calculated in Section H.3.2, resulting

in the two histograms shown in the second row of Figure H-1. Those two histogram are then

summed to obtain the corrected histogram HA' = p HAB + dtBHAB-



The analogous results for the Scaler Method are shown in Figure H-2. First the sum of the

singles and coincidence histograms is taken, HA = HA& + HAB, which is shown in the top plot.

This is then multiplied by the correction factor ?dtp,,e N[""/NA - 142.344 to obtain the

corrected histogram HA' in the lower plot.

In the region of the 4He elastic peak (640 MeV/c < Pkin < 660 MeV/c ), the corrected

histograms have 2.691 x 106 counts with the Time Method and 2.777 x 106 counts with the

Scaler Method. The value obtained from the Time Method is 3.1% less than the Scaler Method.

Recall that in the scaler check in section H.3.2, the Time Method underestimated the number

of raw triggers by approximately the same amount (3.2%).

In the data analysis presented in this thesis we have chosen to use the Scaler Method

to correct the singles data for prescaling and dead time, since this method reproduces the

number of raw triggers by definition. In contrast, the Time Method employs some complicated

assumptions about the data acquisition system, and fails to reproduce the number of raw

triggers.
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Figure H-1: Example of prescaling and computer dead-time corrections by the Time Method.
See text for details.
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