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Abstract

The dorsomedial frontal cortex (DMFC) of the monkey is made up of several

anatomically distinct subareas, with an eye movement related area in the rostral region,

and arm movement related areas lying medial and caudal to it. However, the functional

boundaries between the eye and arm movement areas are unclear. Most studies

investigating arm movement functions have tested visually-guided arm movements.

Thus activity that appears related to arm movements might actually be related to the

accompanying eye movements. Most studies of the eye-movement region have not

investigated the possibility of arm movement-related activity. In this thesis, I

investigated whether neurons in DMFC that were active during visually-guided reaching

were actually responding to individual components of the movement (i.e. saccades or

reaching), or to both. A task was used that would dissociate saccade-related from reach-

related responses. Over half of the movement-related neurons located within the eye

movement representation (as revealed by microstimulation) were responsive to either eye

or arm movements. Many neurons in DMFC showed anticipatory activity beginning

after the start of fixation, and ending at the time of movement initiation. This discharge

seemed to be related to preparation or expectation of the upcoming movement. Monkeys

were run on series of trials in which the target predictably occurred or did not occur. The

anticipatory activity was attenuated or absent during the block of trials in which the target

was not presented and no movement was required. Thus many neurons in DMFC seem

to participate in the preparation of movement, regardless of the effector.
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Introduction:

Historical overview of organization of motor areas in the frontal lobes.

In an early pioneering study, Penfield reported two motor representations in the human

frontal lobe revealed by electrical stimulation of the cortical surface (Penfield & Welch,

1951). The first lay in what is now called primary motor cortex, on the precentral gyrus.

The second representation lay rostral to the first, on the dorsal surface of the brain and

extending medially down the convexity to the cingulate sulcus. Higher currents were

required to evoke movements than from primary motor cortex, and he noted that the

evoked movements tended to be more complex, often involving multiple muscle groups

or joints. He named this area the "supplementary motor area" (SMA), as he considered it

to be secondary to the primary motor area, MI, a view which has been both challenged

and elaborated upon since. In addition, Penfield observed that the second motor area

appeared to contain a complete body representation, with arm, leg, trunk, and head

movements represented. He also noted that stimulation of the most rostral portion

resulted in eye movements.

Recording evoked potentials, Woolsey (1958) also demonstrated two orderly

motor representations in monkey that seemed to correspond to primary motor cortex and

supplementary motor area (Figure LA). Woolsey's maps are now known to be incorrect;

it is now believed that there exist not just two, but multiple motor areas in the frontal

lobe. Several "premotor" areas have been identified, each with its own independent

monosynaptic projections to the spinal cord (Dum & Strick, 1991; He, Dum & Strick,
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1995). The term "supplementary motor area (SMA)" now refers to a restricted area of

cortex on the medial surface, with "pre-supplementary motor area (pre-SMA)"

immediately rostral to it. Primary motor cortex is confined to the pre-central gyrus, with

two premotor areas, "dorsal premotor (PMd) and ventral premotor (PMv) lying rostral to

it. In addition, several areas have been identified within the cingulate gyrus. In addition

to having distinct anatomical projections, the areas differ from each other cytologically

(Vogt & Vogt, 1919; Barbas & Pandya, 1987; Matelli et al., 1991), although the

distinctions between areas are not as clear as those between extrastriate visual areas, for

example. The areas are also distinguishable by differences in neurochemical properties

(Roland & Zilles, 1996). Figure IB, IC and ID show the boundaries of the current

subdivisions based on cytoarchitectonic (Figs lB &C) and anatomical (Fig ID) data. At

the moment, there is no widely accepted nomenclature for the different subregions; Table

1 shows the terms used by different researchers. There is also increasing evidence that

homologous subdivisions exist in humans (reviewed in Picard & Strick, 1996; Roland &

Zilles, 1996).

Insert Figure 1 & Table 1 about here

Eye movement areas in the frontal lobe:

David Ferrier first noted in the latter part of the last century that eye movements

could be evoked by electrical stimulation of various regions of the cortex, including

certain regions of the frontal lobe (Ferrier, 1875). Ferrier described a single eye field in

the frontal lobe; subsequent to this, a number of studies have led to the establishment of

two eye movement areas in the frontal lobe (see Schall, 1998 for a review). The frontal
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eye fields (FEF) lie in the rostral bank of the arcuate sulcus, including areas 8Ac and 45

(reviewed in Schall, 1998). Lying medial to the FEF, within dorsomedial frontal cortex

(DMFC) lie the supplementary eye fields (SEF). The SEF lie rostral to the

supplementary motor area (SMA) on the dorsal surface of the brain, within area F7

according to the terminology adapted by Rizzolatti & colleagues (Luppino et al., 1991;

Matelli et al., 1991) (Figures IC & D).

The goal of this dissertation is to shed light on the functions of the dorsomedial

frontal cortex around and including the SEF, of which relatively little is understood at

this point. That SEF differs from FEF is becoming increasingly clear. To summarize

what is known about its role in eye movement generation, I will discuss it in the context

of the more-intensively studied frontal eye fields. By comparing and contrasting the

effects of stimulation, recording and lesions of the two areas, their relative roles in eye

movement control can be determined.

Comparison of SEF to FEF

1). Stimulation

Following Ferrier's early observations, a number of researchers also evoked eye

movements by stimulation of the cortex in and around the arcuate sulcus (see Schall,

1998 for a review). Robinson & Fuchs, (1969) were the first to study the FEF using

modern microstimulation techniques along with technology that allowed accurate

monitoring of eye position. They reported that saccades could be evoked just from the
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rostral bank of the arcuate sulcus. Furthermore, the direction and amplitude of the

evoked saccades did not depend on initial starting position of the eyes, but on the location

of the electrode penetration (Robinson & Fuchs, 1969). These results were subsequently

confirmed by Bruce et al., (1985), who showed that the amplitude of the evoked eye

movements are organized topographically, with short saccades represented

ventrolaterally and large saccades dorsomedially. The vector of the saccade is not

affected by changing the initial fixation position. Regardless of the starting position of

the eyes, a saccade of the same amplitude and direction is always evoked (e.g. Robinson

& Fuchs, 1969; Bruce et al., 1985; Schall, 1991b; Russo & Bruce, 1993; Tehovnik &

Lee, 1993).

In contrast, stimulation of the SEF yields saccades of a different nature. Schlag &

Schlag-Rey (1987) reported that saccades can be evoked using low currents (<50pA)

from the SEF, but that regardless of the initial position of the eyes in orbit, stimulation

always drives the eyes to the same final orbital position. This finding has been replicated

several times (Mitz & Godschalk, 1987; Mann et al., 1988; Luppino et al., 1991; Schall,

199 1b; Tehovnik & Lee, 1993). Schlag & Schlag-Rey proposed that the FEF encoded

fixed-vector saccades whereas the SEF encoded goal-directed, or convergent saccades.

Thus FEF encoded the metrics of a saccade, whereas the SEF encoded the final desired

eye position. Whereas saccadic amplitude is organized topographically in the FEF

(Bruce & Goldberg, 1985; Bruce et al., 1985), it is the final craniotopic eye position that

is organized topographically in SEF (Tehovnik & Lee, 1993; Lee & Tehovnik, 1995).

This distinction in coding schemes has been the subject of some debate;

specifically, some researchers have been unable to evoke convergent saccades
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consistently from the SEF (Russo & Bruce, 1993; Fujii et al., 1995). Some of these

differences may be a consequence of different behavioral paradigms and stimulation

parameters used by the different research groups. For example, Russo and Bruce, (1993)

found few sites where there was a statistical differences in the direction or amplitude of

saccade evoked from different starting positions. However, the saccades evoked at these

sites tended to be have relatively short amplitudes (-5 degrees) for the most part.

Tehovnik & Lee, (1993) on the other hand, demonstrated convergence at many sites,

particularly those with much larger (>20 degree) saccades, as did Schlag & Schlag-Rey

(1987). Russo & Bruce (1993) reported that there was a correlation between saccade

amplitude and the degree of convergence, so differences in sampling between the studies

may have led to different conclusions about the prevalence of convergent sites. The

stimulation parameters chosen by the research groups may also have affected the size of

the saccade. Large amplitude saccades are sometimes truncated by short train durations

such as those used by Russo & Bruce (Tehovnik & Sommer, 1997).

Most of the studies do agree, however, that even at sites where clear convergence

is not demonstrated, saccades are more readily elicited if the eyes are initially in the

hemifield ipsilateral to the hemisphere being stimulated. Often saccades are not evoked

when the eyes are in the contralateral hemifield (Tehovnik & Lee, 1993; Russo & Bruce,

1993). Thus in some cases, it could be argued that the vector of stimulation-evoked

saccades from a given site in SEF is not affected by the initial eye position, but the

probability is. This is not the case in frontal eye fields, where initial eye position affects

neither the probability nor the vector of saccades being evoked.
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As mentioned above, train duration can affect the amplitude of saccades evoked

from SEF; at some sites, the amplitude of the saccades increases with train duration, up to

200 msec (Tehovnik & Sommer, 1997). If even longer trains are applied, then another

distinction between FEF and SEF is revealed. Prolonged stimulation in FEF yields " a

succession of saccades of the same direction and amplitude (Robinson & Fuchs, 1969), as

does stimulation of the superior colliculus (Schiller & Stryker, 1972). Prolonged

stimulation of the SEF, however, drives the eyes to a specific position where they remain

throughout the duration of the stimulation train (Schall, 199 1b). If the eye is initially in

that specific eye position (termed "termination zone" by Tehovnik & Lee, 1993),

stimulation keeps the eyes fixed in that position, and voluntary saccades moving the eyes

elsewhere are inhibited until the stimulation is removed (Tehovnik & Lee, 1993).

In fact, a major difference between FEF and SEF seems to be the efficacy of

volition in overriding or interacting with stimulation-evoked effects. It has been

demonstrated repeatedly that current thresholds vary with the behavioral state of the

animal. For example, lower currents are required to evoke an eye movement when the

animal is free to make scanning eye movements than when the animal is actively

maintaining fixation. This is true in the superior colliculus (Sparks & Mays, 1983),

frontal eye fields (Robinson & Fuchs, 1969; Goldberg et al., 1986), and supplementary

eye fields (Schlag & Schlag-Rey, 1987). However, the degree to which behavior affects

the probability of evoking a saccade is different in each area. Tehovnik et al., (1998)

applied stimulation at different current levels and at different times relative to the

beginning of fixation to sites in FEF and SEF in the same monkey. They found that more

current was required to elicit eye movements at the beginning of the fixation period than
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at the end. This was true both of FEF and SEF, but whereas the current threshold was

only tripled in FEF, it was raised 16 times in SEE. Fixation, or inhibition of saccades, is

one form of voluntary behavior that can interact with stimulation effects. There is also

evidence that the saccade evoked by SEF stimulation is affected by planning. If

stimulation is applied during the delay period of a delayed-saccade paradigm, the

resulting saccade reflects the saccade plan generated by the animal (Fujii et al., 1995). In

FEE, several studies have investigated the interactions between stimulation-evoked and

visually-guided saccades, but unlike in SEF, the vector of the stimulation-evoked saccade

is only affected if stimulation is applied after the saccade is initiated, as in the colliding

saccade paradigm (e.g. Schlag & Schlag-Rey, 1990). The strong interaction between

volitional behavior and stimulation in SEF may explain why some researchers reported

that high current levels are required to evoke eye movements, and why movements

sometimes can only be evoked from certain eye positions.

To summarize, electrical stimulation of FEF and SEF yield saccades that seem to

be encoded in different frames of reference. One clear distinction between SEF and FEF

in terms of stimulation appears to be that SEF stimulation is more affected by behavioral

context than FEF stimulation. One reason for this may lie in differences in the strength

of their projections to the saccade generators downstream. The behavioral data would

suggest that FEF makes a larger, or more robust projection to output than does SEE. The

anatomical evidence will be presented next.
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2). Anatomy

Subcortical Efferents:

Both FEF and SEF make monosynaptic projections to oculomotor nuclei in the

mesencephalon and pons which contain saccade-related and omnipause neurons, such as

the paramedian pontine reticular formation, medial reticular formation, and nucleus raphe

interpositus (Stanton et al., 1988b; Leichnetz et al., 1984a,b; Segraves, 1992; Shook et

al., 1988,1990). Both areas also project to oculomotor nuclei in the thalamus such as

MD, and X (Huerta & Kaas, 1990; Shook et al., 1991) and to dorsolateral and

dorsomedial parvocellular red nucleus, which project in turn to the inferior olive

(Leichnetz et al., 1984; Stanton et al., 1988a; Shook et al., 1990). They also project to the

superior colliculus, both directly, (Fries, 1984; Segraves & Goldberg, 1987; Stanton et

al., 1988a; Huerta et al., 1986; Huerta & Kaas, 1990) and indirectly via the basal ganglia

(Stanton et al., 1988a; Shook et al., 1991; Parthasarthy et al., 1992).

In general, the two areas project to the same structures, although the terminal

fields tend not to overlap. Differences exist, however, in the organization of the

projections. FEF projects to the superior colliculus in a highly systematic fashion.

Antidromic activation experiments have shown that FEF neurons make excitatory

projections to SC neurons with similar movement fields, and inhibitory to those with

movement fields farther away from its own (Schlag-Rey et al., 1992; Segraves &

Goldberg, 1987). The result is an orderly topography in the projection, with each region

of the FEF projecting to those parts of the SC with corresponding movement fields (see

Figure 17 in Schall, 1998).
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Such experiments in functional connections and projection topography have not

been performed to date with SEF. However, it has been reported that the SEF projections

to the colliculus (Fries, 1984; Huerta & Kaas, 1990; Shook, 1990) and to the striatum

(Parthasarathy et al., 1992) are more diffuse than those from the FEF. Furthermore, it has

been reported that SEF makes extensive bilateral projections to the superior colliculus

(Fries, 1984; Shook et al., 1990), whereas FEF makes almost exclusively ipsilateral

connections. This difference in specificity in projection may reflect how the fixed-vector

and convergent saccades evoked from FEF and SEF respectively could be implemented.

The saccade vector represented in FEF is transmitted faithfully to the superior colliculus

by virtue of the correspondence between the two maps. Bringing the eye to a final

position, however, requires saccades of different amplitudes and directions, which are

accomplished by virtue of a diffuse bilateral projection. A recent study has shown that

FEF also receives visual and saccade-related input from the SC (Sommer & Wurtz,

1998). It is proposed that this projection might serve to reinforce and synchronize visual

signals in the two areas. Whether such reciprocal connections exist with SEF is not

known.

Although the anatomical data shows that both SEF and FEF have access to

oculormotor areas downstream, there is evidence that the efficacy of the FEF projection is

greater than the SEF projection. If either the FEF or SEF are removed surgically,

monkeys are still able to make fairly accurate saccades for the most part. Specific

deficits will be discussed in a later section. Saccades can also be evoked from SEF by

electrical stimulation after FEF is ablated (Tehovnik et al., 1994) as long as the superior
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colliculus is intact. If both FEF and SC are ablated, however, eye movements are

abolished, and do not recover (Schiller et al., 1980). It is not known whether stimulation

of SEF after combined FEF-SC ablation would still be effective in eliciting eye

movements, but activity in the SEF projection to the brainstem by itself is not sufficient

for generating eye movements.

There are also reports that the density or size of the projections originating from

SEF and FEF differ, however, such observations are highly dependent on the size and

location of the tracer injections. It would be desirable to have some functional measure

of the efficacy of the projections from SEF and FEF to areas such as the superior

colliculus. Differences in the frequency of neurons activated, or the current threshold

required to antidromically activate neurons might provide a direct measure of the strength

of the connection.

Intracortical connections:

Both FEF and SEF make projections with a large number of cortical areas,

including visual, association, and motor cortices. For both FEF and SEF, one of the

heaviest intracortical projections is the interconnection between the two areas themselves

(Huerta & Kaas, 1990; Schall et al., 1993). The two areas do not project to each other in

an orderly point-to-point fashion, but rather there is divergence and convergence. The

region of FEF encoding intermediate amplitude saccades receives input from a larger

extent of SEF than do the small or large-amplitude regions. Given that there seems to be

a map of orbital position in SEF (Tehovnik & Lee, 1993; Lee & Tehovnik, 1995) and a

retinotopic map in FEF, this pattern of divergent and convergent connectivity may
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represent how the different coding schemes for saccades are accomplished (Schall et al.,

1993).

Comparing the sensory input into each area, FEF receives inputs from more visual

areas than SEF. There are two pathways by which visual information reaches the frontal

lobe. The segregation begins at the level of the retina and the two streams are thought to

enhance visual processing in different domains. One pathway includes areas MT, MST,

and parietal areas such as LIP. It is thought to be involved in localizing stimuli, being

specialized in motion processing and the integration of eye position. The other stream

includes areas V4 and areas in inferotemporal cortex. It is thought to contribute to object

recognition, the neurons having complex visual tuning properties. FEF receives input

from visual areas in both streams, with projections from V4, MT, MST, AIT, TEO, the

caudal portion of TE, and a weak projection from V2 and V3, whereas SEF only receives

projections from a limited number of visual areas in the dorsal stream (MT,MST)

(Huerta & Kaas, 1990; Schall et al. 1995).

Besides visual information from extrastriate areas, both SEF and FEF also receive

auditory and somatosensory input. Both areas also receive projections from the superior

temporal polysensory area (STP), which contains neurons with multimodal receptive

fields (Schall et al., 1995). Several areas have been identified in the parietal lobes such

as LIP and area 5 that are related to the planning of eye and arm movement generation.

The most prominent parietal - FEF projection originates in lateral intraparietal area (LIP).

In addition to LIP, SEF also receives input from areas related to arm movements, such as

area 5 (Dum & Strick, 1991). SEF is also interconnected with arm-movement related
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areas in the frontal lobe, such as SMA (F3) and premotor cortex (F2). In addition, both

the FEF and SEF are connected with areas related to learning. It receives a large input

from dorsolateral pre-frontal cortex areas 46 and 9 (Huerta & Kaas, 1990), which are

related to working memory (Funahashi et al., 1988; Miller et al., 1996). There exist in

the forebrain dopaminergic neurons that are related to the encoding of reward

contingency (reviewed in Schultz, 1998). The primary projection field of these neurons

is to the frontal cortex. SEF receives input from these areas indirectly via pre-frontal

cortex, but dorsomedial frontal cortex itself also contains a high density of dopaminergic

terminals (Williams & Goldman-Rakic, 1993).

Insert Figure 2 about here

In summary, the anatomical evidence shows that SEF & FEF both make

projections to oculomotor structures in the midbrain and brainstem but the FEF projection

is more dense and the projections are more orderly. The primary sensory input to FEF is

visual, and it receives inputs from many more areas than SEF, notably, from temporal

lobe areas implicated in form recognition. This lends further support for the notion that

FEF is primarily involved in saccade generation only, whereas with its multimodal

sensory input, and connections with higher-order association awards involved in working

memory and reward, SEF may play a more modulatory role in saccade generation. SEF

also is connected with areas involved in skeletomotor movement, suggesting that it may

be implicated in movements other than saccades.
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3). Single cell recording

Both SEF and FEF contain neurons associated with eye movements that display a

variety of sensory and movement responses. Neurons in each area can be categorized

based on presence of sensory or motor responses, and by the temporal profile of their

firing. Cells that are commonly encountered in both areas include: visual cells, which

discharge either phasically or tonically in response to a stimulus, visuo-movement cells,

which discharge both for the stimulus and then for the ensuing movement, and movement

cells, which discharge near the time of the movement onset (Bruce & Goldberg, 1985;

Schall, 1991b). Movement cells can either be pre or post-saccadic (Bizzi, 1969),

depending on whether the burst occurs before or after initiation of the saccade. Neurons

with sensory or motor responses are common to both areas, but postsaccadic neurons are

more common in FEF than in SEF (Schall, 1991b). In addition, there are several cell

classes that are more common in SEF than in FEF. These include a class of neurons

whose properties only become obvious when a delay is imposed before the monkey is

permitted to make the saccade. These neurons discharge throughout the delay period,

shutting off when the movement is made. These neurons, described in Schlag & Schlag-

Rey, (1985, 1987), were termed "preparatory set" cells by Schall, and are found with

greater frequency in SEF than in FEF (Schall, 1991b). The term "preparatory set" was

first used to describe the firing profile of certain neurons in supplementary motor area

and motor cortex while monkeys waited to make arm movements (e.g. Okano & Tanji,

1987; Alexander & Crutcher, 1990). In SEF, some neurons display an analogous

response, but in this case the effectors of the movement are the eyes rather than the arms.
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Another class of neurons that are present in SEF but not in FEF are those

modulated by eye position. FEF neurons are tuned to saccade of specific amplitudes and

directions, and their responses are not modulated by initial starting position of the eyes

(Russo & Bruce, 1996). In SEF their firing rate is related to orbital position (Schlag &

Schlag-Rey, 1987; Schall 1991a ; Lee & Tehovnik, 1995; Bon & Luchetti, 1992). Some

neurons discharge for certain endpoints of saccades, or when the eye passes through a

certain orbital position during tracking, or attentive fixation (Mann, Thau & Schiller,

1988; Schall, 1991 a; Lee & Tehovnik, 1995; Bon & Luchetti, 1992). One exceptional

result should be noted, however; Russo & Bruce (1996) found almost no variation in

receptive field or preferred movement direction with changes in initial eye position in

224 presaccadic SEF neurons, which would suggest that the coding is retinotopic, similar

to that in FEF.

Insert Table 2 about here

Another research group has proposed that the coding scheme in SEF may be

neither retinotopic nor head-centered, but object centered. Olson & Gettner, (1995)

trained monkeys to perform a task in which they made saccades to one end or another of

a horizontal bar. Some SEF neurons discharged preferentially when the saccade was

made to one end of the bar and not the other, regardless of the location of the bar.

One prominent difference between movement neurons in FEF and SEF is the time

course of the neural activity. The latency of activity in sensory neurons to visual stimuli

tend to be longer in SEF than in FEF (Schall, 199 1b). Also, the visual responses in SEF

can be modified by the behavioral context. When monkeys were tested on a GO-NOGO
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paradigm, the activity in response to the stimulus ceases after the NOGO cue is given,

even thought the stimulus is still present. In FEF, on the other hand, visual tonic neurons

only cease firing when the stimulus is removed (Schall, 199 1b). Some neurons are also

NOGO specific in SEF, firing only when the cue is given to withhold a saccade (Mann et

al., 1988; Schall, 1991a); these neurons have not been observed in FEF (Schall, 1991b).

Differences in timing also exist in the movement-related neurons, with regard to

when they occur relative to movement onset and how tightly coupled the neural activity

and behavior are to each other. As mentioned above, the majority of movement-related

neurons in SEF begin firing well before rather than after movement initiation. Hanes et

al., (1995) showed that the firing of many SEF "preparatory set" neurons terminated well

before saccade initiation. FEF neurons, on the other hand, tend to start discharging just

before (within 150 msec (Segraves & Park, 1993)) or after the beginning of the saccade.

Hanes & Schall, (1996) investigated the relationship between the level of activity of FEF

neurons and when a voluntary saccade was initiated. They showed that saccades were

initiated when the activity rose above a certain fixed threshold, such that the rate of

increase in pre-saccadic activity in FEF neurons was reliably related to saccadic latency.

Furthermore, saccades were only initiated on trials where FEF activity rose above this

threshold. In a task where monkeys were occasionally instructed to inhibit the saccades,

the probability of saccade initiation on a given trial was directly related to the level of

neural activity in that trial (Hanes et al., 1998). Applying the same analysis to SEF

neurons, the researchers discovered that the neuronal activity was less predictive of

saccade occurrence (Patterson & Schall, 1997).
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There is evidence that the activity of some SEF neurons changes with learning.

Chen & Wise (1995a, 1995b) compared the activity of SEF and FEF neurons while

monkeys learned associations between visual stimuli and saccade directions. Monkeys

were trained to make saccades in one of four directions in response to complex visual

stimuli. They recorded from neurons when the monkeys made saccades in response to

familiar stimuli, and when the monkeys were learning new associations. They found that

the activity of some SEF neurons was elevated during trials in which the monkeys were

learning the associations, but the discharge returned to baseline after the association was

well learned and the monkeys made few errors. Another population of neurons shows

little activity until an association was learned. More than 40% of SEF neurons showed

some changes in activity with learning, whereas relatively few (11%) FEF neurons

showed such modulation (Chen & Wise, 1995b).

Another way in which SEF activity is distinct from FEF may be the dependency

of neural activity on behavioral context. One feature of FEF movement neurons is that

many discharge only in relation to task-related saccades. Less than 10% of neurons

appeared to be saccade-related when monkeys made scanning saccades in the dark (Bizzi,

1969; Bizzi & Schiller, 1970), whereas about 50% were responsive when monkeys made

visually-guided saccades for reward (e.g. Bruce & Goldberg, 1985; Schall, 1991b).

Some studies have reported that SEF neurons do discharge to spontaneously generated

saccades (Schlag & Schlag-Rey, 1985,1987), although another failed to report such an

observation using a different reward contingency (Schall, 1991a). One difference

between spontaneous and task-related saccades in this case may have been the presence

versus lack of visual guidance for the saccades. Schlag-Rey et al, (1997) compared
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visually versus self-guided saccades by using an antisaccade task. In this task, monkeys

are presented with a peripheral target but are instructed either to make a saccade to it, or

to make an "antisaccade", and to make a saccade away from it. To execute these

antisaccades, monkeys must first inhibit the visually-guided saccade towards the target

and then generate a saccade in the opposite direction without any visual cues. SEF

neurons show elevated activity before initiation of antisaccades, compared to visually-

guided saccades of the same amplitude and direction (Schlag-Rey, et al., 1997).

In summary, based on the single-cell evidence presented so far, many FEF

neurons discharge with short latencies to visual stimuli, or with a consistent, predictable

relationship to the saccade onset. In contrast, a higher proportion of SEF movement-

related neurons discharge in an anticipatory fashion and their activity is not predictive of

saccade occurrence. FEF neurons also tend to be unimodal, showing only visual or

auditory responses, whereas SEF neurons have multimodal responses. FEF neurons are

well-tuned for contraversive saccades of certain retinotopic vectors. Some SEF neurons

on the other hand, are modulated by eye position, and by behavioral context. Their

responses can change with experience, and some neurons discharge at a higher rate when

the saccade is internally generated.
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4). Lesions (reversible and permanent)

Frontal eye field:

It has long been reported that following frontal lobe lesions, both humans and

monkeys show varying degrees of visual neglect, a syndrome in which they ignore

objects in the hemifield contralateral to the lesions. In its most severe form, monkeys

seem unaware of stimuli presented in the lesioned hemifield (Kennard & Ectors, 1938;

Rizzolatti et al., 1983). In a milder form of neglect, there is no deficit in detecting or

tracking single objects, even in the lesioned hemifield, but if both hemifields are

stimulated simultaneously, animals ignore the stimulus in the lesioned hemifield. When

monkeys were presented either two appetitive stimuli such as peanuts or two aversive

stimuli, they showed extinction, ignoring the stimulus in the hemifield contralateral to the

lesion. (Crowne et al.1981; Van der Steene et al., 1984; Latto & Cowey, 197 1a).

Monkeys also tend to circle repetitively (e.g. Kennard & Ectors 1938; Latto & Cowey,

1971 a) and there are several reports of ipsilateral conjugate deviation of the eyes (Latto &

Cowey 197 lb). These deficits tend to be short-lived and generally recover within a few

days to a week from the time of surgery.

More controlled studies revealed only small deficits in perception and in eye

movement generation. Latto & Cowey (1971 a) reported a mild deficit in detecting dim

visual stimuli in the periphery (>20 degrees), although it should be noted that this study

was not performed with an eye coil, nor with calibrated visual displays. Only small

deficits have been reported in saccadic eye movements, generally an increase in latency

and a tendency for the saccades to be hypermetric (e.g. Schiller et al., 1980), which

recover within a few weeks. It appears that there are multiple brain areas sufficient for
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generating saccades, and that loss of FEF function are compensated by other areas, such

as the superior colliculus. Major impairments in saccadic eye movements are observed

only after combined ablation of both frontal eye fields and superior colliculus (Schiller et

al., 1980). Saccades made to briefly flashed targets are affected for a longer time course

(Schiller & Sandell, 1983) and Deng et al., (1986) reported a specific deficit in learning

to make memory-guided saccades. With reversible inactivation, similar effects are seen

as with chronic ablation. Single, visually-guided saccades are generally unaffected;

memory-guided and saccades made to extinguished targets are impaired (Sommer &

Tehovnik, 1997; Dias et al., 1995). Thus the most consistently observed deficits

following FEF lesions are a failure to attend to stimuli in the contralesional hemifield and

an impaired ability to detect transient stimuli.

We used the following task, described in Schiller & Chou, (1998) to investigate

these two deficits . Monkeys were presented with two targets, located symmetrically

across the vertical meridian, with an angular separation of 90 degrees. The targets were

presented with a range of stimulus onset asynchronies (SOA's) ranging from zero

(simultaneous presentation) to one of the stimuli appearing 300 msec before the other.

The monkeys were rewarded for making a saccade to either target.

When presented simultaneously with identical targets, intact monkeys generally

made saccades to each of the targets with almost equal probability. When the two targets

were presented with a temporal offset, monkeys made more saccades to whichever

stimulus had appeared first. As the SOA was increased, monkeys made an increasingly

high proportion of saccades to the first target. Immediately following lesions of frontal

eye fields, monkeys made saccades exclusively to the stimulus in the ipsilesional
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hemifield when the targets were presented simultaneously. However, if the stimulus

appearing in the contralesional hemifield was presented a sufficient amount of time

before the ipsilesional one, the monkeys could be induced to make saccades to it. When a

range of SOA's was tested, it was revealed that the monkeys still showed a similar

relationship between SOA and the relative proportion of saccades contra and ipsiversive

to the lesion as intact monkeys, but the entire function had shifted. Two weeks after the

lesion, ipsi and contraversive saccades were made with equal probability when the

contralesional target appeared 116 milliseconds prior to the ipsilesional target.

We hypothesized that damage to the FEFs led to a delay in the process of

transforming a visual stimulus into the target of a saccade. Changes in the relative timing

or strength of signals arriving at the superior colliculi or brainstem from the two

hemispheres should have consequences for the computation of the final saccade vector.

Thus extinction perhaps can be conceived of as a quantifiable delay between the

left and right hemispheres that can be compensated for by introducing a temporal offset

in stimulus onset. This is consistent with reports that visually-evoked potentials have a

longer latency in human patients with neglect (e.g. Spinelli et al., 1994). It should be

noted that the bias towards stimuli in the intact hemifield can be compensated by

increasing the contrast of the stimulus in the contralesional hemifield, which would seem

consistent with loss of detection sensitivity. However, decreasing the salience of stimuli

also introduces delays in their processing. As luminance is decreased, the transmission

time already through the retina increases. Thus the underlying reason why lower

luminance stimuli are less salient may not be by virtue of lower perceptual contrast per

se, but by virtue of the temporal lag that results from increased transmission time.
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We have additional evidence supporting the notion that it is the temporal

information that is degraded following FEF lesions. We have directly tested the

monkey's ability to discriminate between stimuli based on their onset time and to indicate

which stimulus they saw as appearing first. We presented eight identical targets, one of

which appeared at a randomly determined amount of time before the other seven. The

monkeys' task was to detect the earliest appearing target. Following frontal lesions, the

monkeys were severely impaired in detecting the target when it was presented in the

contralesional hemifield (Schiller & Chou, 1998).

Thus we propose that the neglect commonly observed after unilateral frontal lobe

damage may in part be due to an increase in the time required to select and process the

visual stimuli and to translate that information into a motor output. The increased time

required for such processing may account for commonly-reported symptoms such as

circling behavior, deviation of the eyes toward the side of the lesion, and the paucity of

scanning saccades made contraversive to the lesion.

SEF lesions:

Far fewer studies have investigated the effects of SEF lesions than FEF. In

contrast to FEF inactivation, reversible inactivation of SEF with lidocaine does not affect

single saccades, regardless of whether the target is extinguished or not (Sommer &

Tehovnik, 1998). When dorsomedial frontal cortex encompassing the SEF was ablated,

monkeys showed extinction similar to that observed following FEF lesions (Luchetti, Lui

& Bon, 1998; Schiller & Chou, 1998). As with the FEF lesions, the extinction could be

offset by presenting the contralesional stimulus before the ipsilesional one. However,
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smaller onset asynchronies were required to compensate for changes in target choice

following SEF lesions than FEF (Schiller & Chou, 1998).

One theory about dorsomedial frontal cortex is that it is involved in the

acquisition and performance of coordinated movements or sequences. Lesions that

include the SEF lead to impairments in the execution of sequences of saccades (Schiller

& Chou, 1998; Sommer & Tehovnik, 1998). However, the deficit in sequence execution

is even greater following FEF lesions (Schiller & Chou, 1998; Sommer & Tehovnik,

1998). It remains to be tested in monkeys whether SEF lesions lead to deficits in tasks

such as those employed in single cell recording studies which preferentially activate SEF.

For example, SEF lesions may lead to specific learning deficits or in the generation of

antisaccades. To some degree, such results have already been observed in studies of

human subjects.

5). Human FEF and SEF: lesions and functional imaging.

Lesions:

Studies of humans with frontal eye field lesions are generally consistent with the

monkey studies. Patients usually are able to make contraversive saccades to visually-

guided targets, albeit sometimes with a decreased amplitude gain (Guitton, Buchtel, &

Douglas, 1985; Braun et al., 1992; Rivaud et al., 1994), but are impaired in more difficult

tasks. One such task is the antisaccade task, in which subjects were instructed to look

away from a visual target. Patients had difficulty in suppressing reflexive saccades

towards the target (Guitton et al., 1985), although in this study, some of the lesions
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included large portions of the frontal lobes. A study with more restricted lesions revealed

that it may have been pre-frontal damage that was more responsible for the deficit

(Pierrot-Deseilligny et al., 1991a) . Other studies also with more restricted lesions

revealed that memory-guided saccades are also impaired (Pierrot-Deseilligny et al.,

199 1b, 1993; Rivaud et al., 1994.) Visual pursuit and predictive tracking are also

affected following focal frontal eye field lesions (Rivaud et al., 1994).

The effects of SEF lesions in humans have also been investigated. One study reports that

whereas FEF lesions affect memory-guided saccades where the location of the target has

to be memorized based on visual information, SEF lesions affect the ability to memorize

target location based on vestibular information. (Pierrot-Deseilligny et al., 1993).

Other studies reported that patients with damage to DMFC are specifically impaired at

generating sequences of saccades (Gaymard et al., 1990, 1993) or arm movements (Dick

et al., 1986).

It should be noted that SEF lesions in humans are rarely focal, and generally encompass

large portions of dorsomedial cortex (e.g. Gaymard et al., 1990). Generally, lesions in

this area are either labelled as being in the SMA or SEF without any qualification or

explanation as to which area is affected (e.g. compare Gaymard et al., 1990; Pierrot-

Deseilligny et al., 1991 to Pierrot-Deseilligny et al., 1993).
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Functional Imaging:

Functional imaging studies investigating selective increases in regional blood

flow have shown selective activation of two regions within the frontal lobe in response to

eye movements (Melamed & Larsen, 1987; Orgogozo & Larsen, 1979; Fox et al., 1985),

but their anatomical locations do not correspond exactly to those in monkey. FEF lies in

area 6, between the pre-central and the central gyri, not in area 8 (reviewed in Paus, 1996;

Luna et al., 1998). The location of SEF in humans also differs from monkeys: it is

located more medially, on the medial wall of the intracerebral fissure (Anderson, 1994;

Fox et al., 1985; Luna et al., 1998), rather than on the dorsal surface.

Nonetheless, the two areas correspond fairly well in terms of function to their

counterparts in monkey. Both FEF and SEF are activated by visually-guided saccades

(e.g. Anderson, 1994; Sweeney et al., 1996;Luna et al., 1998) and FEF is also activated

by smooth pursuit, although the peak of activation lies slightly lateral to that obtained by

saccades (Petit et al., 1997). Both FEF and SEF show greater activation during

complicated tasks such as the antisaccade task (O'Driscoll et al., 1995; Sweeney et al.,

1996; Doricchi et al., 1997) as compared to target-directed saccades. SEF but not FEF is

selectively activated by memory-guided saccades (Anderson et al., 1994). It has also

been shown that the activity in SEF is enhanced when subjects perform sequences of

saccades as opposed to single ones (Petit et al., 1996).

Saccades vs. Smooth pursuit

Saccades are not the only type of eye movement processed by FEF and SEF.

Saccadic and smooth pursuit eye movements are controlled by two separate systems with
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different neural circuitry. Both FEF and SEF contain subregions with neurons that are

responsive to each. In the FEF, saccade-related neurons are located in the anterior bank

of the arcuate sulcus. There is a separate region, deep in the fundus and in the posterior

bank of the arcuate that contains neurons responsive to smooth pursuit. Electrical

stimulation of this area elicits smooth rather than saccadic eye movements (Gottlieb,

MacAvoy & Bruce, 1993). Consistent with these findings, lesions of FEF that do not

include the fundus or posterior bank generally do not disrupt pursuit, or yield only small,

temporary deficits. Large consistent deficits in pursuit are observed following unilateral

lesions that include the fundus; both initial acceleration and peak velocity of pursuit are

decreased (MacAvoy, Gottlieb & Bruce, 1991; Keating, 1991,1993; Keating et al., 1996;

Lynch, 1987; Shi, Friedman & Bruce, 1998). The magnitude of the deficit seems to

correspond to the extent to which the fundus is damaged (Keating, 1991,1993; MacAvoy

et al., 1991).

The SEF also contain a separate region devoted to pursuit as opposed to saccades,

at least in Cebus monkeys (Tian & Lynch, 1997). Stimulation of the SEF can inhibit or

slow pursuit and pursuit-related neurons are found in SEF (Heinen, 1995). The responses

of these neurons can be modulated by expectation, as they discharge at a higher rate when

the direction and velocity of the target is predictable (Heinen & Liu, 1997).

Summary:

There are two distinct oculomotor regions in frontal cortex. Both are connected to

subcortical oculomotor areas such as the superior colliculus, and oculomotor nuclei in the

mesencephalon and pons, but the FEF projections are systematic and topographic and the
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SEF projection more diffuse. Both receive sensory information from several areas, but

the FEF receives primarily visual input, including many extrastriate areas. The SEF

receives input from a limited number of extrastriate areas, but also makes connections

with somatosensory, prefrontal association and multimodal sensory areas. Both FEF and

SEF contain neurons that discharge in relation to eye movements. Microstimulation of

the two areas suggests that the FEF encode saccades in a retinotopic manner and that the

SEF neurons encode eye movements in head-centered space, but this hypothesis is not

borne out convincingly using other techniques such as single-cell recording or lesions.

FEF neurons discharge consistently and with short latency to visual stimuli, whereas SEF

neurons have multimodal receptive fields, which is consistent with their diverse afferents.

The activity of FEF movement-related neurons is consistently and predictably related to

the time of saccade initiation, but the activity of SEF neurons is temporally less well

coupled and many neurons show activity that precedes movement onset. Furthermore,

many SEF neurons is modulated by behavioral context and experience. Reversible and

permanent lesion studies have shown that in general, FEF lesions yield more significant

and persistent deficits on eye movements than do SEF lesions.

Functional analogies to arm movement-related areas in DMFC:

When considering the contribution of SEF to eye movment generation, it is useful

to think of it in terms of adjacent areas involved in aspects of arm movement control,

SMA and pre-SMA. Often, analogies can be drawn between observations made in SMA

or pre-SMA with regard to arm movement control and those made in SEF with regard to
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eye movements. Specifically, there are several similarities in the relationship that each

has with other motor areas; SEF to FEF, and SMA to MI.

Stimulation:

Penfield first showed that stimulation of SMA required higher currents to evoked

arm movements than in MI, and that the movements tended to be more complex (Penfield

& Welch, 1951). This has been borne out by later studies showing slow multijoint

movements being evoked from rostral areas compared to fast muscle twitches in MI

(Luppino et al., 1990). SEF stimulation can require higher thresholds than FEF

stimulation, and the direction of the eye movements evoked are dependent upon the

initial position of the eye (e.g. Schlag & Schlag-Rey, 1987; Schall, 1991b; Tehovnik &

Lee, 1993), and can reflect an interaction with the voluntary saccade being prepared

(Fujii et al., 1995).

Single-cell recording:

A striking similarity between SEF and SMA is the observation that preparatory

set neurons, which discharge very early before movement are common in both (e.g.,

Tanji & Evarts, 1978; Alexander & Crutcher, 1990; Schlag & Schlag-Rey, 1987; Schall,

1991 b). Both areas contain neurons that are more responsive when movements are

internally generated, as opposed to being reactions to external stimuli (e.g. Okano &

Tanji, 1987; Schlag et al., 1997). Neurons have been discovered in both areas whose

discharges are modulated by experience. In SEF, neurons show changes during the

learning of a conditional association (Chen & Wise, 1995). In SMA and pre-SMA, there
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are neurons that discharge during the learning of complex sequences (Nakamura et al.,

1998).

Lesions:

Lesion studies in monkeys show preliminary evidence, at least, that SEF may be

involved in generating sequences of saccades (Schiller & Chou, 1998; Sommer &

Tehovnik, 1998). Neurons have been reported in pre-SMA and SMA that are responsive

to specific linkages of movement or before particular sequences (Matsuzaka et al., 1985;

Mushiake et al., 1990; Tanji & Shima, 1994; Nakamura et al., 1998). Lesions of these

areas lead to deficits in the acquisition and the execution of complex sequences of arm

movements (Miyashita et al., 1996).

These similarities in function suggest that perhaps the entire dorsomedial frontal

cortex participates in movement preparation or acquisition of new movements, and that

differences exist only in the effector of the movement. This will be the focus of the study

described in the next chapter.
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Table 1: Nomenclature for divisions of frontal motor cortex

Functional term Matel

Primary motor cortex (MI)

Dorsal pre-motor area (PMd)

Ventral pre-motor area (PMv)

Pre-supplementary motor area (pre-SMA)

Supplementary motor area (SMA)

Supplementary eye fields (SEF)

Ii et al., 1991

F1

F2

F4 & F5

F6

F3

Brodman

4

6

F7

Vogt & Vogt(1919)

4a, 4b

6aa

4c

6ap

6ax

6ap
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Table 2: Percentages of cell types in FEF & SEF

Cell class FEF SEF

Sensory 17% 16%

Sensory Movement 41% 28%

Pre-saccadic 22% 17%

Post-saccadic 13% 2%

Eye position 0 <1%

Preparatory set 5% 12%

Forelimb 0 7%

Other 6% 18%

from Schall, (199 1a,1991b)
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Figure 1
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Chapter 2: Single-cell responses to eye and arm movements in the dorsomedial

frontal cortex

Introduction:

In the previous chapter, the relative roles of SEF and FEF in eye movement

generation were discussed. It seems clear that FEF is more intimately involved in

specifying the parameters of eye movements than is SEF, and that SEF plays a more

modulatory role in eye movement generation. Although the role of SEF is still unclear,

the relationship between SEF and FEF is similary to the relationship between SMA and

MI, particularly with respect to the temporal relationship between neural activity and

movement onset. In this chapter, I explore the similarities between SEF and the adjacent

areas in dorsomedial frontal cortex and explore their relative roles in the control of both

eye and arm movements.

The dorsomedial frontal cortex is thought to be made up of multiple anatomically

and cytoarchitectonically distinct areas (Dum & Strick, 1992; He, Dum & Strick, 1995;

Luppino et al., 1990; Matelli et al., 1990). The SEF lie within area F7, according to the

scheme of Rizzolatti and colleagues. It is traditionally considered to be involved

primarily in eye movement control, whereas the areas rostral and lateral to pre-SMA (F6)

and SMA (F3) are thought to be involved in certain aspects of skeleto-motor movement.

However, the functional boundaries of SEF are somewhat ambiguous. Anatomically,

only a restricted region of F7 projects to FEF and within this region, eye movements can

be evoked from an anesthetized animal with low currents (Huerta & Kaas, 1990). Schlag

& Schlag-Rey, (1987) defined SEF as that area of cortex from which eye movements can
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be evoked at low threshold (<50A) in an awake, behaving animal. However, there is

some variability between research groups with regard to the extent of the area from which

eye movements, and neurons responsive to eye movements are recorded from an even

greater area (see Tehovnik, 1995 for a review). Potential sources for this variability may

be differences between animals, the different stimulation parameters chosen, or the

experimental paradigms employed.

The functional boundary between adjacent pre-SMA and SMA is also unclear.

Both contain neurons responsive to arm, in particular to the learning and generation of

arm movement sequences (e.g. Tanji & Shima, 1994; Mushiake et al., 1990; Nakamura et

al., 1998). It has been proposed that pre-SMA is more involved in the acquisition of

sequences and SMA more involved in the execution (Nakamura et al., 1996). This is

based on differences in frequency of a certain cell type or type of response along a

continuum, as opposed to discrete functional distinctions.

Another source of ambiguity in determining the functional boundaries between

eye and arm movement areas lies in the type of task typically employed. Studies that

have reported only arm-movement responses observed in SMA or pre-motor cortex

generally use tasks where the reaching is visually guided. Thus saccades are always

being made in conjunction with the arm movements; any saccade related neural activity

may have been inappropriately attributed to arm movement control. Similarly, few

studies have tested SEF for arm movement reponses. Of the few exceptions, two studies

did report arm movement reponses (Mann et al., 1988; Schall, 1991), and another

reported that neurons in SEF discharge before saccades, but only when the saccades

51



precede arm movements (Mushiake et al., 1996). Therefore the question remains as to

whether eye movement responses do exist outside of SEF but have been attributed to arm

movements. and whether neurons in SEF are involved in arm movement control, but have

been overlooked. Also, the eye and arm movement areas are interconnected (Huerta &

Kaas, 1990); these connections may have functional consequences.

The first goal of this experiment was to characterize the eye and arm movement-

related responses of neurons in a large region of dorsomedial frontal cortex to determine

the functional boundary between eye and arm movement areas. A task was used that

would dissociate arm and eye movement-related responses. The goal was to determine

whether there is a strict segregation into an eye or an arm field, as is suggested by the

anatomy, or if single neurons can encode both eye and arm movements. The second goal

of this experiment was to determine the nature of directional tuning of the neurons.

Visually guided reaching is a sequence of coupled movements: first a saccade is

made in order to foveate the target of the reach, and then the arm movement is made

towards the target. How this precise temporal coupling between eye and arm movements

is achieved by is unknown. There are two possible schema: either the two movements

are planned and generated separately, or alternately, the coordinated movement is

generated by a common control mechanism. Psychophysical studies in humans suggest

that the latter may be the case. Biguer & colleagues examined the onset of EMG activity

in the eyes, neck and shoulder when subjects made visually guided reaches. In this case,

subjects first shifted gaze with a coordinated eye and head movement, and then reached

to point to a target. As the direction or amplitude of the reach were varied, the latencies

of the eye, neck and arm muscle onset covaried such that the differences between the
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three latencies remained constant (Biguer et al., 1982). This lack of variability in relative

latency suggests that the three movements are planned together, and are initiated with one

single trigger signal as opposed to three separate ones. If a joint gaze-shift and arm

movement is encoded by a single neuron, then one should expect similar directional

tuning for both eye and arm movements.
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Methods:

Subjects and surgery

Two adult rhesus monkeys (Macaca mulatta), weighing approximately 12 kg

each served as subjects in this study. Each animal was habituated to sitting quietly in a

primate chair, facing a black panel upon which 25 equally-spaced buttons were mounted.

Each button was 2.5 cm in radius and the buttons were mounted with their center of each

one mounted 6 cm (12.5 degrees visual angle) away from its neighbors. The board was

placed 28cm away from the monkey. The central portion of each of the buttons could be

illuminated by a tri-color LED and the buttons themselves could also be depressed. The

monkeys were first trained to press the buttons when they were illuminated, and were

rewarded with drops of apple juice. On days when the animals were being trained, they

were deprived of water until after they had completed their training, upon which they

were allowed to drink to satiation. On any given day, the monkeys were given at least

the amount of fluid that they consumed per day on average ad libitum. Monkeys had free

access to food in the vivarium at all times. After the monkeys were accustomed to the

bask task, surgery was performed to implant a head restraint and an eye coil. To restrain

the head, stainless steel straps were shaped to the skull and attached using stainless steel

screws (Synthes). Dental cement was placed around the junction of the straps and a head

bolt designed to fit into a matching restraint on the primate chair was cemented in place.

An eye coil made teflon-coated platinum wire was implanted underneath the conjunctiva

to monitor eye movements (Robinson, 1963; Judge, 1980).
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After the animals were fully recovered from surgery, they received further

training until they were proficient at performing the tasks described below. At this point,

another surgical procedure was performed to prepare the animals for chronic recording.

Circular craniotomies were made over the midline to expose dorsomedial frontal cortex,

and a cylindrical recording chamber was attached to the skull with screws and dental

cement. In one animal, the craniotomy was placed at stereotaxic coordinates 27.5mm

AP, which corresponds to published locations of the SEF (e.g., Sommer & Tehovnik,

1998). However, this proved to be too far posterior for this monkey, based on recording

and stimulation mapping. The recording chamber was removed and the craniotomy

partially closed with gelfoam and a silicone sheet. The anterior portion of craniotomy

was enlarged such that it allowed placement of a new well centered at 35mm AP. The

well was centered in the second monkey at 32mm AP.

All surgery was performed under sterile conditions under nembutal anesthesia

with ketamine hydrochloride used for induction. The monkeys were given antibiotics to

prevent infection and analgesics (buprenex hydrochloride) to minimize post-surgical

pain. All surgical and experimental protocols conformed with MIT and NIH guidelines

for animal care.

Task:

The monkeys initiated each trial by pressing a lever mounted to the front of their

chair. Following this, one of the buttons was illuminated to indicate that it was the

fixation target. The color of the LED within the button instructed the monkeys as to

which of three possible task conditions the monkey was to perform. The task conditions

are depicted in Figure 1.
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If the fixation LED was red, the monkey had to both fixate the fixation target and

depress the button. After the monkey had maintained fixation for a certain period of time

(on some days this was fixed at 300 msec, on others it could vary from 200-500 msec)

another button was illuminated in the periphery, also in red. The monkey had to maintain

fixation on the first LED, but reach to depress the peripheral target button (Figure 1 top

row). This task condition was termed the "Reach Only" condition.

When the fixation target LED was illuminated green, the monkey had to maintain

his hand on the start lever, and fixate the LED with his eyes throughout the fixation

period. A green peripheral target LED was then illuminated and the monkey had to make

a saccade to it, while keeping the start lever depressed throughout the duration of the

trial. This was termed the "Saccade Only" condition (Figure 1 middle row).

When the fixation target was yellow, the monkey had to both fixate and depress

the fixation target button throughout the fixation period, similar to the Reach Only

condition. However, when a yellow peripheral target LED was illuminated, the monkey

had to both make a saccade and reach to the button. This condition was termed the

"Reach and Saccade" condition (Figure 1 bottom row).

Insert Figure 1 about here

Only Monkey J was able to be trained to perform all three task conditions intermixed

within a block of trials (Figure 2). Data was collected from Monkey P on two of the task

conditions: Saccade Only and Reach and Saccade. In a given block of trials, one button

was used as the fixation target, and the four buttons arranged in a square around it were

used as the targets. Within a block, task condition and direction of movement was
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pseudo-randomly determined. In some cases, all eight buttons surrounding the fixation

button were used as the targets to probe the directional tuning properties of the neurons in

greater detail. Monkeys generally performed 600-1200 trials per day.

Insert Figure 2 about here

Recording and Data analysis details

Single cell recordings were made by introducing glass-coated, platinum-iridium

electrodes (0.5-2 MQ impedance measured at 1kHz) through the dura. The potentials

from single neurons were amplified (Bak electronics), passed through a bandpass filter

(Krohnhite). Neurons with task-related activity were targeted by having the monkey

perform the task, and changes in activity during the trial were identified by ear. The

potentials from single neurons were then isolated with a window discriminator (Bak) and

isolation was confirmed by playing back the waveform on an oscilloscope.

Once a task-related neuron was isolated, the monkey ran the task until there were

at least 8 trials per condition in each direction of movement. After the monkey had run

the task as described above, the neurons were tested for sensory responses if isolation

was still acceptable. Neurons were tested for visual responses, by having the animal

fixate steadily while spots of light were flashed or moved in the periphery with a laser

pointer. Neurons were also tested for somatosensory responses by touching or stroking

the face and arms with a cotton swab.

Stimuli were presented and trial sequences were controlled by a PDP- 11 and PC-

based computer system. Spike times, eye movements and button presses, and other trial

events were collected and stored on the PDP and analyzed off-line.
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Off-line analysis of behavioral and neural events.

Start and end times of saccades were determined off-line by detecting when the

velocity of the first eye movement made after target presentation crossed a 50 degree/sec

threshold. Start and end times of arm movements were determined by the times of button

releases or presses, respectively.

Neurons were considered task-related if they showed significantly different

changes in firing during any 500 msec period of the trial than the average firing rate

during a 500 msec intertrial period. Sign tests (p<0.05) comparing the firing during

intertrial to firing during the trial determined whether a neuron showed task-related

activity. To be considered movement-related, the neurons had to meet an additional

criteron. The maximum rate of neural activity had to occur between the start of fixation

and acquisition of the target. Once a neuron had been identified as being movement-

related in at least one task condition, two way analysis of variance was performed to

investigate the effects of task condition and of direction of movement. Post-hoc paired

comparisons (Mann-Whitney) were used to identify which, if any, was the optimal task

condition or preferred direction of the neuron.

The time of onset of neural activity was calculated by determining for each trial

the time at which the firing rate rose above the average firing rate during the intertrial

period. To do so, the firing rate over a 500 msec period during intertrial was averaged

over all trials. On every trial, instantaneous firing rate was calculated for each individual

spike by averaging the inverses of the interspike intervals immediately preceding and
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following that spike. Neural onset in each trial was taken to be the time at which the

instantaneous rate rose higher than 2 standard deviations above the mean rate during

intertrial. The time of maximal neural activity in each trial was determined by the time at

which the maximum instantaneous firing rate occurred. For displaying neural activity,

histograms were generated with a binwidth of 20 msec and in some cases, spike density

functions were generated by convolving the histograms with a gaussian function, cY=10

msec. Following completion of recording, the dorsomedial frontal cortex of Monkey J

was mapped using microstimulation, to place the recording locations with respect to the

somatotopic map revealed by stimulation. Details of the mapping are presented in the

appendix.
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Results

A total of 460 neurons were isolated in both hemispheres in Monkey J and the

right hemisphere of Monkey P. Of these 460 neurons, 120 were identified as having

task-related activity and were tested in the three task conditions. Of these 120 neurons,

61 showed significant changes in activity that occurred during the movement period (sign

test, p<0.01), furthermore, maximal neural activity occurred between acquisition of

fixation and end of the movement. These movement-related neurons fell into three major

categories:

Reach or Saccade Neurons

The first and largest class of neurons discharged for either eye or arm movements.

Figure 3 shows an example of such a neuron, which comprised 61% (N=37) of all

movement-related neurons. The neurons discharged regardless of whether the movement

made to acquire the target was made with the eyes or arm and discharged in all three task

conditions. Many of these neurons showed no significant differences in peak firing rate

across the three conditions, showing similar levels of activity for eye and/or arm

movements, as in the neuron shown in Figure 3.

Insert Figure 3 about here

For each Reach or Saccade neuron, a modulation index was calculated to quantify

the relative level of activity in response to eye and arm movements. The modulation

index was defined as the difference between mean firing rate in the Saccade Only and

Reach Only conditions divided by the sum of the mean firing rate in the two conditions
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(MFsac - MFrea)/(MFsac + MFrea). A modulation index of 0 signifies equal mean firing

rate in the two conditions, whereas an index of 0.5 or -0.5 signifies three times greater

firing in one condition than the other. Figure 4 shows the distribution of modulation

ratios for all Reach or Saccade neurons. Most neurons did show almost equal levels of

peak activity in the Saccade Only and Reach Only conditions, as shown by the

predominance of neurons that had ratios close to 0 and all had indices of less than 0.5.

The distribution of modulation indices was not significantly different than a normal

distribution centered around 0 with a standard deviation of 0.17 (Kolmogorov-Smirnov,

p=0.294).

Insert Figure 4 about here

These Reach or Saccade neurons were subjected to further analysis to determine

whether the activity in the Reach & Saccade condition was better aligned to reach or

saccade. If the activity of a neuron were related to one of the movements, it should be

expected that there would be a consistent relationship between the time that the neural

activity reached a certain threshold and the time of the movement initiation (Hanes &

Schall, 1996). There were not enough trials in this experiment to determine the trigger

threshold. However, if the rate of activity were related to one movement and not the

other, there should also be a smaller variance in the time that peak neural activity

occurred relative to that movement. The variances in neural peak activity time were

compared by first aligning neural activity to the saccade onset and then the reach onset

(determined by when the monkey released the fixation button). For both sets of aligned
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spikes, the time of peak neural activity relative to the time of movement onset was

determined for each trial. The variance in the time of peak neural activity was calculated

for both cases, and the F-test performed to compare the variances. This analysis revealed

that for 34/37 (92%) of the Reach or Saccade neurons, there was no significant difference

in variance of peak neural activity time relative to saccade or reach onset (F-test, p>0.05).

Of the 3 neurons that did show significant differences in variance, all had greater

variance when the spikes were aligned to reach onset (F(30, 30)>1.84, p<0.05).

Reach Only Neurons

A second class of neurons discharged exclusively in response to arm movements.

These neurons constituted 28% of movement-related neurons (N=17). An example of the

second class of neuron is shown in Figure 5. These neurons showed no significant

discharge before or during the execution of the saccade to the target, as can be seen by

the lack of activity in the middle panel, whereas they discharged for arm movements both

those made with and without saccades (top and bottom panel). Sometimes, as in the one

shown in Figure 5, these neurons discharged not only for the reaching movement to the

target, but also for the reach to acquire the fixation button, or to the lever press that

initiated the trial. 5 of these neurons were tested for sensory responses and it was found

that none had visual responses, but 3 of them responded to cutaneous stimulation.

However, it was difficult to determine whether these were true somatosensory responses

as the monkey invariably reacted by moving in response to the stimulus.
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Insert Figure 5 about here

Saccade Only neurons

The third class of neurons responded only to eye movements, and not to arm

movements. These neurons constituted 11 % (N=7) of the movement-related neurons.

An example of such a neuron is shown in Figure 6. These neurons discharged only in the

Saccade Only condition. The particular neuron shown in this figure did not discharge

during when an arm movement was made, neither when accompanied by a saccade

(bottom panel) nor in absence of an accompanying saccade (top panel).

Insert Figure 6 about here

These neurons seemed to discharge only for task-related saccades, as they did not

discharge in response to the voluntary saccade made at the end of the Reach Only trials

after the monkey had been rewarded. Figure 7 shows the activity of one of these neurons

where the activity is aligned to the task-related saccades versus when it is related to the

spontaneous saccade made at the end of the trial.

Insert Figure 7 about here

To summarize, Reach or Saccade neurons constituted 37/61 (60%) of the

movement-related neurons observed, Saccade only neurons 7/61 17% and Reach Only
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neurons 17/61 32%. Figure 8 shows the relative frequency of the different classes of

neurons and their relative frequency with respect to all neurons encountered.

Insert Figure 8 about here

Neural activity in combined reach and saccade condition compared to reach only or

saccade only:

For all neurons, the effects on neural activity of combining reach and saccades

relative to making the movements in isolation were considered. Figure 9 shows the mean

firing in the condition when isolated arm or eye movements were made relative to when

the combined movement was made. On the ordinate, the mean firing rates during the

reach and saccade condition were plotted. For the reach or saccade neurons, the mean

firing rates in the reach only task were plotted on the abscissa. For the reach only and

saccade only neurons, the abscissa represented the mean firing rates during the reach only

and saccade only conditions, respectively. Most Reach or Saccade neurons had similar

mean firing rates in the single and combined conditions, as can be seen by the fact that

most points fall close to the equality line. On the other hand, the majority of Saccade

Only neurons had lower levels of firing when the saccade was combined with a reach,

whereas most Reach Only neurons had higher levels of firing when the reach was

combined with a saccade than when the reach was performed in isolation. However,

these differences were not significant across the population (Wilcoxon signed rank,

p>0.05).
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Directional Tuning:

For all neurons, two way analysis of variance was performed on the mean firing

rates during the movement period to investigate the effects of task condition and

movement direction on neural activity on neural activity. 25/61 (41%) of neurons

showed significant effects of movement direction when activity throughout the entire

movement period was considered. However, this often included activity that occurred

before target presentation. Many of the neurons had high levels of activity before the

target presentation, which will be discussed in the next section. Directional tuning was

recalculated by considering the neural activity that occurred between 40 msec after target

onset (so as to take into account the visual latency of the neurons) and the end of the

movement (either the end of the saccade or the time of the target button press). One way

analysis of variance (Kruskall-Wallis) was used to compare the activity of the neurons

when movements were made in different directions. Using this more restricted window

of time, 33/61 (54%) of the neurons showed directional tuning in at least one task

condition when tested in 4 directions of movement. In addition, 8 of the neurons were

tested on 8 directions: analyzing tuning with additional directions did not change the

outcome of analysis of variance.

When each class of neurons was considered individually, it was found that 54% of

Reach or Saccade neurons, 47% of Reach Only and 57% of Saccade Only neurons were

directionally tuned. Some of the Reach or Saccade neurons were tuned for one

movement effector but not the other. For those Reach or Saccade neurons that did show

directional tuning for both eye and arm movements, the preferred direction for eye and

arm movements were compared. 7/9 of them had the same preferred direction for both

eye and arm movements. An example of such a neuron is shown in Figure 10. The polar

plots in the left hand column shows the mean activity for movements in different

directions. In the right hand column, the spike density functions for trials with

movements made to the best and worst directions are superimposed on each other. This

neuron shows directional tuning after the target is presented, but also shows a robust pre-

target discharge.

Insert Figure 10 about here
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Neural Onset time

The preponderance of untuned neurons was partially explained by the time in the

trial that these neurons discharged. Many neurons corresponded to the "preparatory set"

neurons reported by Schall, 1991a; Hanes et al., 1995, beginning to discharge during the

wait period (in this case, the fixation period) and increasing in activity until the

movement was initiated. In this study, many of the neurons began to discharge as soon as

the monkey had attained fixation or depressed the fixation button. The neurons increased

their activity steadily throughout the fixation period while the monkey was waiting for

the target to appear, and clipped as soon as the movement was initiated. This pattern of

activity could be considered consistent with a fixation cell, which have been reported

before in SEF (e.g. Lee & Tehovnik, 1995), or a neuron with a foveal visual receptive

field. However, Reach or Saccade neurons showed a similar temporal profile of activity

in all three task conditions. Figure 11 shows a Reach or Saccade neuron, with the spike

density functions from all three task conditions superimposed on each other in each

panel. Thus no matter what the effector of the movement, the neuron still began building

up as soon as the monkey was waiting for the target to appear, peaked around the time of

target onset, and declined on movement onset. In the three task conditions, the

movements made differ - in the Reach Only condition, the animal continues fixating

while the arm reaches to the target, whereas in the Saccade Only and Reach & Saccade

conditions, the eyes leave the fixation button. This pattern of activity is neither consistent

with a purely visual response nor a fixation response is best explained as being related to

the movement, regardless of the effector or direction of the movement.
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Insert Figure 11 about here

Figure 12 shows the distribution of neural onset times (determined by averaging

over trials the time at which neural activity rose higher than 2 standard deviations above

baseline firing, determined by the average firing rate in intertrial) for the different classes

of neurons. The distribution is bimodal, with the majority of neurons begin discharging

as early as 500 msec before target presentation, and the others discharging after target

presentation. There was no difference in frequency of directionally tuned neurons the

two modes of the distribution. In some cases, the neurons seemed to show multiple

phases of activity, building up their activity before target onset and then showing a tuned

movement burst, such as the neuron shown in Figure 10.

Insert Figure 12 about here

Other neurons:

59 neurons exhibiting other types of task-related activity were also encountered in

the penetrations. These included neurons which discharged only in response to the

conjoint Reach and Saccade condition (N=2). Neurons that discharged in when the

reward was delivered were also observed (N=3). These neurons discharged at the end of

the trial when the monkey was rewarded, but not when the monkey was arbitrarily

delivered a drop of juice, and therefore were not related to mouth movements or

swallowing. Other neurons were related to the lever press, or to the saccade that brought

the eyes to the fixation LED. Some neurons had a high discharge during intertrial, but
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paused throughout the trial, or had higher activity throughout the trial that could not be

characterized to any particular trial event.

Location of neurons:

Comparing the location of the recording penetrations to the stimulation maps, it

appears in one monkey at least, as though most of the task-related neurons were located

within the eye movement representation of dorsomedial frontal cortex (see Appendix for

stimulation map). Most neurons were recorded in the same region of cortex from which

eye movements were elicited with microstimulation. Few task-related neurons were

observed caudal to the eye movement representation. The top panel of Figure 13 shows

the location of the movement-related neurons in one hemisphere of Monkey J. The

bottom panel shows the locations of recording penetrations (filled symbols) as well as the

locations from which eye, head or arm movements were elicited by microstimulation

(open symbols) (see Figure 2 of appendix for the map of stimulation penetrations alone).

Most of the filled symbols fell within the region from which saccadic eye movements

could be elicited. There was no obvious clustering in the distribution of the different

classes of neurons and there was no correlation between neuronal preferrence

(modulation index shown in Figure 4) and rostro-caudal location (Pearson product

correlation R=-0.05, p=0.45). If the neurons were segregated into a distinct eye and arm

subregion it might be expected that there would be a relationship between eye or arm

preference and location. There was a weak correlation between time of neural onset and

rostro-caudal location; neurons which discharged earlier tended to be located more
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rostrally than those which began discharging later, however, this effect was also not

statistically significant (Pearson product R=-0.27, p=O. 12).

Insert Figure 13 about here
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Discussion:

Summary of findings:

1). About one quarter of all neurons encountered had task-related responses and of these

about one half showed activity during the movement phase of the task. Of these neurons,

60% were responsive to either eye or arm movements, 39% to arm movements only and

17% to eye movements only. Those neurons that discharged for either eye or arm

movements tended to discharge equally to either.

2). Most of the movement-related neurons, regardless of their effector preferrence were

not directionally tuned. Thus in the limited number of neurons for which directional

tuning was observed for both eye and arm, they did coincide. This would be consistent

with this area playing a role in specifying a general direction, or goal for both eye and

arm movements. However, the sparseness of directionally tuned neurons and the weak

degree of tuning observed suggest that this may not be the key characteristic of this area.

3). The low percentage of directionally tuned neurons was partially explained by the

preponderance of neurons that discharged well before target onset, sometimes ending

their discharge before the movement began.

4). Most of the task related neurons were observed in the low-threshold eye movement

representation, and there was no discernible clustering of neurons in terms of their

preference for eye or arm movements.

Thus, neurons in this area tended to discharge early with respect to the target

onset, before the direction of movement is specified and many discharge regardless of the

effector of the upcoming movement. This would suggest that the neurons in this area
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provide a generalized movement preparation signal, or anticipatory discharge to the target

that will guide both eye and arm movements. Pre-movement activity has been

demonstrated using single cell recording in monkey before both eye movements (Schlag

& Schlag-Rey, 1987; Schall, 1991) as well as before arm movements (e.g. Tanji &

Evarts, 1978). In this experiment, it was shown that the pre-movement activity could

precede movements of either the eyes or the arm.

There are possible reasons the activity is not related to eye and arm movements:

the preparatory activity is covert preparatory activity for the saccade that is made

eventually at the end of the trial. This has been proposed to explain delay-period activity

seen in LIP during a similar task. However, the activity of Reach or Saccade neurons is

generally well-aligned to execution of the arm movement, despite the fact that the eyes

are immobile. Also, the monkey generally did not make saccades to the target

immediately after the reward was delivered; generally he maintained fixation at least 200

msec after the fixation LED was extinguished at the end of the trial, and then made a

large amplitude saccade away from the workspace.

Another possible explanation for the activity seen before both eye and arm

movement is that it is related to activity of some other muscle, that is active during both

eye and arm movements, perhaps in the back or neck. While this cannot be ruled out, it

is difficult to conceive of a muscle that is activated equally by a reach and a saccadic eye

movement.
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Comparison to neurons reported in other studies of SEF.

The frequency of neurons that showed saccade-related responses observed in this

experiment (which both includes Saccade only and Reach or Saccade neurons) is

consistent with previous studies (e.g., Schall, 1991a). The frequency of neurons with

early discharge is also consistent with previous studies (e.g. Schlag & Schlag-Rey, 1987;

Schall, 1991). A lower percentage of tuned neurons was observed in this experiment

compared to other studies such as Schlag & Schlag-Rey, 1987; Schall, 1991. This is

partially explained by the preponderance of neurons that discharge before target onset

observed in this study. There are also other reasons why strong tuning was not observed.

It has been shown that directional tuning can change, or neural responses may not be

obviously apparent until there is some meaningful conditional association between

stimulus and response (Chen & Wise, 1995). Olson & Gettner, 1995 suggested that SEF

neurons encode eye movements with object-centered tuning. If this is correct, it is likely

that movements made to the center of a button might not be the optimal movement for

these neurons. Only a restricted part of the workspace was tested, given the constraint of

tested neurons on the different task conditions, and given the constraint of working with

fixed buttons that were placed at arm's reach. The possibility exists that we did not test

the amplitude of eye movements, or correct part of the workspace for finding preferred

eye movement or eye position. With respect to arm movements, the possibility also

exists that the right part of the workspace for uncovering the directional tuning was not

tested, or that the arm movements were not varied in the right plane of motion.

Nonetheless, even those neurons that did show tuned activity often also displayed

a pre-movement buildup, such as the neuron shown in Figure 10. If this buildup is in fact
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a preparation to move, or anticipation of the target being presented, it may only occur in

situations where the monkey can predict the time of occurrence of the target, or

movement. In the next chapter I explore the ways in which the pre-movement signal can

be manipulated.
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Figure legends:

Figure 1: Sequence of events in a trial for each task condition. In all three, the trial was

initiated by the monkey pressing a lever. Top row: Reach only. When the fixation LED

was illuminated, the monkey had to both press the button and fixate the LED. When the

peripheral LED was illuminated, the monkey had to reach and press the peripheral

button, while maintaining fixation on the fixation LED. Middle row: Saccade Only.

When the fixation LED was illuminated, the monkey had to fixate it, keeping the start

lever depressed. When the peripheral LED was illuminated, the monkey had to make a

saccade to it, while keeping the start lever depressed throughout. Bottom row: Reach and

Saccade. When the fixation LED was illuminated, the monkey had to both fixate the

LED and depress the button, as in the Reach Only condition. When the peripheral target

was illuminated, the monkey had to both make a saccade to the LED and depress the

button.

Figure 2: Representative eye traces and times of button presses during the three task

conditions.

Figure 3: Reach or Saccade neuron. This neuron discharges in all three task conditions.

The activity in each task condition is shown separately in the three panels. In each case,

rasters and histograms are aligned to movement onset. Top panel: Reach Only trials.

Activity is aligned to the start of the reach to the target button. In each panel, the tick

marks immediately to the left of zero represent the time of target presentation. In each
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trial, the first two tick marks represent the time that fixation is acquired, and lever press

(trial initiation). The tick marks to the right of zero represent the time of the end of the

reach (i.e. time that the target button is depressed). Middle panel: Saccade Only trials.

Activity is aligned to the start of the saccade. Tick marks represent the same events as in

the top panel, except that the last set represent the end of the saccade. Bottom panel:

Reach and Saccade trials. Activity is aligned to the start of the reach.

Figure 4: Relative firing rate of Reach or Saccade neurons for eye and arm movements.

For each neuron, a modulation index was calculated to compare activity in Reach Only vs

Saccade Only trials. Modulation ratio was defined as the difference in mean activity

between Saccade Only and Reach Only trials divided by the sum of the mean activity

(MFsac-MFrea/MFsac+MFrea). A modulation ratio of zero signifies equal activity in the

two conditions; a ratio of 0.5 or -0.5 signifies 3 times greater activity in one condition

than the other.

Figure 5: Reach Only neuron. These neurons discharge preferentially in the Reach Only

and Reach & Saccade conditions. Rasters and histograms are aligned on reach onset, as

in Figure 3. Tick marks follow the convention of Figure 3.

Figure 6: Saccade Only neuron. Rasters and histograms are aligned to movement onset

(saccade), as in Figure 3.
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Figure 7: Activity of Saccade Only neuron in response to spontaneous vs. task-related

saccades. Top panel: activity of this neuron during Reach Only trials, aligned to the

spontaneous saccade made after the end of the trial and the animal had been rewarded.

Bottom panel: activity is aligned to rewarded task-related saccade during Saccade Only

trials.

Figure 8: Left: Relative proportions of non-modulated and task-related, and movement-

related neurons observed. Right: Within movement-related neurons, relative proportions

of Reach or Saccade, Reach Only, and Saccade Only neurons observed.

Figure 9: Effects of combining saccade and reach on mean firing rate as compared to

isolated movements. Mean firing rate in Reach Only or Saccade Only condition is

plotted against mean firing rate in Reach and Saccade condition for all neurons. The line

shows x=y; points that lie on or close to this line have similar firing rates in the two

conditions. For Reach or Saccade neurons, activity in the Reach Only condition is

plotted against activity in the Reach and Saccade condition.

Filled circles = Reach or Saccade neurons, crosses = Reach Only neurons, asterisks =

Saccade Only neurons.

Figure 10: Directional tuning of a Reach or Saccade neuron. Left hand column: Mean

firing rate during a period 40 msec after target onset and continuing until the end of the

movement is shown for each direction on the polar plots. The three plots show the tuning

in each of the three task conditions. This neuron had the same preferred direction for all
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three task conditions. Right-hand column: Temporal characteristics of tuned response.

For each task condition, two spike density functions are shown. Solid line represents for

trials when movements were made in the neurons best direction. Dashed line represents

trials when the movement was made in the worst direction. Spike density functions were

generated by convolving the spike histograms with a gaussian function with a = 5msec.

Figure 11: Neural activity relative to three different trial events. Each graph shows the

spike density functions of activity aligned to a different trial event. Top graph: Spikes are

aligned to the start of the trial (Lever press). Middle graph: Spikes are aligned to start of

fixation. Bottom graph: Spikes are aligned to target onset. In the case of the Reach Only

and Reach and Saccade conditions, fixation is taken to be the time when the monkey has

both acquired the fixation LED and has also depressed the button. Therefore, the time

when the eyes actually enter the fixation window occurs shortly before.

Figure 12: Distribution of neural onset times relative to target presentation. For each

neuron, neural onset time was determined by averaging over all trials the time at which

neural activity rose 2 standard deviations above baseline (determined by averaging over a

500 msec interval during intertrial). For Reach or Saccade neurons, neural onset time in

the Reach Only condition is plotted.

Figure 13: Top panel: Location of electrode penetrations containing movement-related

neurons in right hemisphere of Monkey J. Bottom panel: Recording locations are shown

as well as locations of sites where movements were evoked by stimulation (see Appendix
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for details). Filled symbols = recording penetration locations, open symbols =

stimulation penetration locations. Note that for both panels, abscissa and ordinate have

different scales.
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Figure 2

RED - Reach Only

Eye x

LED
Button

r -oGREEN -Saccade On y

LI
Eye x

LED
Button

YELLOW - Reach & Saccade

Eye x

LED
Button I I III

200 msec

82

1 11

P"



Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8

Movement-related neurons N=61

Total neurons N=460

Saccade Only 11%

Not modulated
N=339

I
Reach Only

Reach or Saccade

Trial-related
N=60

88

28%

61%



Figure 9
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Figure 10
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Figure 11
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Figure 12
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Chapter 3: Modulation of the pre-movement build up activity.

Introduction:

In the previous chapter I characterized the movement properties of dorsomedial

frontal cortex neurons. One observation was that many neurons discharge well in

advance of movement onset, even before the target is presented. Pre-movement build up

activity, termed "preparatory set activity" has been observed throughout frontal motor

areas before monkeys make arm movements, but is particularly prevalent in dorsomedial

areas such as supplementary motor area and premotor cortex (Tanji & Evarts, 1976;

Kurata & Wise; 1988; Okano & Tanji, 1987; Alexander & Crutcher, 1990). It has been

proposed that this activity reflects voluntary preparation to generate movements. The

activity tends to be specific to a particular direction of movement, and is observed when

the monkey is directed as to where to move, but is required to wait for an instruction cue

until moving. When the monkey is required to move to a different location than the target

(the arm movement analogy of the antisaccade task), the majority of neurons in

supplementary motor area and in premotor cortex encode the direction of the instruction

target rather than the direction of the movement (Alexander & Crutcher, 1990; Shen &

Alexander, 1997).

Early activity has also been observed before eye movements, either before

initiation of a voluntary saccade (Schlag & Schlag-Rey, 1987) or during the hold period

of a delayed-saccade paradigm (Schall, 199 1b). In both cases, this early activity, seems

to be dependent on the monkey being able to internally generate a plan to make a

movement to a certain location.
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Lesions of the supplementary motor area, where preparatory set activity lead to a

specific deficit in voluntarily initiating movements. Monkeys were trained to lift their

arm to break an invisible infrared beam in order to receive reward. Immediately

following bilateral SMA lesions, monkeys were reluctant to initiate the arm movements

on their own and made few correct trials. However, if they were provided with an

external cue, a tone, they would readily perform the task in response to the tone. The

tone itself had no actual effect on the reward contingency, as the monkey was always free

to break the beam for reward, but the monkeys were unable to initiate the movements on

their own (Chen et al., 1995). An analogous deficit has not been observed for saccadic

eye movements. Reversible and permanent lesions do not yield any discernible deficits

on spontaneous scanning eye movements even immediately after surgery (Sommer &

Tehovnik, 1998; Schiller & Chou, 1998).

In humans, early movement-related activity has also been observed. A negative

DC shift in scalp potential, termed the readiness potential, is seen in humans when they

prepare to make finger movements (Kornhuber & Deecke, 1965). This potential has

several components. There is a slow buildup that begins up to 2000 msec before

movement initiation and then there is an additional increase in negativity just before the

movement actually begins (Deecke & Kornhuber, 1969; Shibasaki et al., 1990). It has

been proposed that the readiness potential reflects volitional motor preparation processes,

and it is greater before difficult movements (Lang et al., 1990; Niemann et al., 1991) or

those which require extra planning, such as sequence generation. The early component

of the readiness potential is thought to originate bilaterally from SMA in both

hemispheres whereas the later component originates from the contraversive primary
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motor cortex (reviewed in Deecke & Lang, 1996). This has been disputed somewhat, as

some researchers have failed to confirm the existence of early SMA activity using other

techniques such as magnetoencephalography (e.g. B6tzel et al., 1985) or subdural

electrodes (Neshige et al., 1988).

In the previous chapter, it was shown that the pre-movement signal can be

observed before both eye and arm movements in the same neuron. Whether this is true of

humans is not clear. The readiness potential is not exclusive to arm movements, even

though the vast majority of studies have tested arm movements. The readiness potential

is seen before eye movements as well (Becker, 1972; Evdokimidis et al., 1992;

Klostermann et al.,1994; Kurtzberg & Vaughn, 1994). Whether this potential originates

from the same locus as the potential seen before arm movements is unknown, as the

spatial resolution of scalp potentials is not adequate.

If this early build up activity does reflect a general movement preparation signal

or anticipation of the target light, then it should be modulated by the predictability of

when or where the upcoming target or movement will be. Indeed, such an observation

has been made in dorsomedial frontal cortex neurons when monkeys are engaged in

smooth pursuit eye movements. When monkeys were tested on a step-ramp pursuit task

in which the target was presented at the same velocity and direction over many trials,

smooth-pursuit related neurons showed a facilitation of their response (Heinen & Liu,

1997). In the superior colliculus, early activity can be modulated by probability that the

upcoming movement will be made in the direction that coincides with that neuron's

preferred direction (Basso & Wurtz, 1997; Dorris & Munoz, 1998). That is unlikely to be
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the case in dorsomedial frontal cortex, as the build up occurs before the direction of the

upcoming movement is specified. Also, many neurons that do not show directional

tuning, or weak tuning. The anticipation may be better related to the predictability of the

movement, rather than its parameters.

In this chapter, the effects of an experimental manipulation that changed the

expectation of movement occurrence on the build up activity in these neurons is

discussed. Neurons that showed build up activity before both saccades and reaches were

tested, as well as those that discharged exclusively before one or the other.
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Methods:

Subjects and equipment for running trials, collecting and analyzing data were the

same as in the previous chapter. Recording procedure was also the same, except that in

this experiment, only neurons with robust buildup activity were tested. Neurons were

classified in terms of their preference for eye or arm movements as in the first

experiment, but in this experiment I only analyzed those neurons with pre-movement

buildup discharges. Regardless of which type of movement the neurons preferred, all the

neurons included in this analysis began discharging after the monkey had acquired

fixation, increased in discharge throughout the hold period and declined at the time of

movement initiation. A total of 21 neurons were tested, 10 of which were Reach or

Saccade, 7 were Reach Only and 4 were Saccade Only.

Once a build up neuron was identified by visual inspection of the rasters, and its

movement preference characterized, its activity was monitored through a sequence of

trials, as shown in Figure 1. The monkey first ran 10 blocks of trials in which he made a

movement to the fixation, held fixation for 300 msec and then to the target, which could

appear in one of four locations, as in the first experiment (Figure 1, top row). The color

of the LED's was not randomized, as in the first experiment, but remained constant

throughout the block. The monkey then ran for 10 blocks in which the target was not

presented, but the monkey had to hold fixation for a psuedo-randomly determined

amount of time, after which he was rewarded (Figure 1, middle row). The monkey then

ran for 10 blocks where the target was once again presented, and he had to perform the

complete task in order to be rewarded (bottom row). For neurons that were identified to

have both eye and arm movement responses, the experiment was run for both eye and
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arm movements but the trials were not intermixed. Thus the full 30 block sequence

would be run with exclusively Reach Only trials, and then the sequence would be run

with Saccade Only, or vice versa. Reach Only and Saccade Only neurons were tested

with blocks of Reach Only and Saccade Only trials, respectively. For each trial, the mean

firing rate over the first 300 msec after fixation onset was calculated. In the target

conditions, this encompassed the entire fixation period. In the no-target condition, the

monkey was also fixating during this period.

Insert Figure 1 about here

Analysis of variance was used to examine the effects of task condition (First

target block, No-target block, Second target block) on the level of build up activity. Post-

hoc pairwise comparisons (Scheff6) was used to determine the direction and significance

of differences in firing rate between the conditions. For 8 of the Reach or Saccade

neurons, both Reach Only and Saccade Only sequences were tested. For these neurons,

ANOVAs were calculated separately for each sequence.
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Results:

In 26/29 ANOVA tests, there was a significant effect of task condition (p<0.05)

on level of build up activity. Post-hoc analysis (Scheff6) revealed that of the 26 tests

with significant differences between task conditions, 16 of them (62%) had the lowest

level of build up activity in the no-target block of trials. Thus for these neurons, activity

was higher during the fixation period if a movement was to be made at the end of the

period. Examination of the behavior revealed that during the no-target blocks, the

monkeys did not make unrewarded movements to a peripheral LED at the end of the

fixation period. They generally held fixation in the case of Saccade Only trials, or kept

the fixation button depressed in the case of Reach Only trials for 200-300 msec after

being rewarded.

Figures 2 and 3 shows the response of a Reach or Saccade neuron in Reach Only

and Saccade Only tasks. This neuron discharges before both eye and arm movements,

with the activity building up from start of fixation, peaking at the time of target

presentation and declining at the point of movement initiation. Figure 2 shows the build

up activity of this same neuron during successive blocks of Reach Only trials. In the

first block of trials, the target was presented on every trial, and the monkey had to reach

to the target while maintaining fixation on the first LED to be rewarded. The neuron

shows a strong buildup response in this condition. The second histogram shows the

activity for the second block of trials, in which no target was presented, and the monkey

was rewarded for maintain fixation and holding the fixation button. In this block of

trials, the buildup activity on average is much lower than that observed in the first block.

The third histogram shows the activity for the final block, in which the target was once
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again presented, and the monkey had to reach to the target again. The buildup activity in

this block reverts to the level of the first block. The panel on the bottom shows the

progression of neural activity throughout this sequence. Each point shows the mean

firing rate during the 300 msec period after the start of fixation for each trial.

Insert Figure 2 about here

This particular neuron also showed buildup activity during Saccade Only trials.

Figure 3 shows the activity of the same neuron during a sequential blocks of Saccade

Only trials. As in Figure 2, the first histogram shows activity in the first block of trials,

in which the monkey had to first fixate, and then acquire the target (in this case, by

making a saccade). There is distinct build up activity in this block of trials. In the second

block of trials, the monkey had only to fixate for a randomly determined amount of time

before being rewarded. In this block, the neuron shows almost no activity while the

monkey is fixating. As with the Reach Only condition, the activity resumed when the

monkey was required to make a saccade to the target for reward.

Insert Figure 3 about here

Figure 4 shows the mean buildup activity in the different conditions plotted

against each other for all of the neurons. The top two panels of Figure 4 show the mean

activity during target blocks plotted against activity during the no-target block. The top

panel (Figure 4A) shows mean activity in the first target block plotted on the ordinate
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against the mean activity vs no-target block on the abscissa. Most of the points lie above

the line x=y, meaning that for most of the neurons tested, the mean activity in target trials

was higher than that in no-target trials. This effect was statistically significant across the

population (Wilcoxon Z-score 3.89, p<0.0001). Figure 4B shows the mean activity in the

second target block plotted against mean activity in the no-target block. Again, most of

the points lie above the line x=y, and this effect was also statistically significant

(Wilcoxon Z-score 2.09, p=0.036). Figure 4C shows the mean activity in the first target

block plotted against the mean activity in the second target block. There was also a

significant difference in mean firing rate in the second target block than in the first (Z-

score , 3.13, p=0.002).

Insert Figure 4 about here

Examination of the transition in activity between the blocks for those neurons that did

show significantly lower firing rates in the no-target block revealed that in general, the

activity did not drop immediately when the no-target block was begun. Figure 5 shows

the progression of neural activity averaged across all neurons that showed significantly

lower activity during the no-target block. The x-axis represents trial number. For each

neuron, the activity for all trials was normalized to the mean firing rate in the first target

block. The solid line shows the mean scaled activity for the population and the dotted

lines show the standard deviation. The mean activity decreased exponentially in the no

target block, and did not settle down to the lower rate of firing until approximately ten
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trials into the block. When the second target block began, the activity rose almost

immediately.

Insert Figures 5 & 6 about here

Figure 6 shows the progression of mean activity in the no-target block (top panel)

and second target block (bottom panel). The decrease of activity in the no-target block

was fit with an exponential function (y=0.93* e-0OlX, R2 =0.973) by the Gauss-Newton

method of non-linear regression. The activity in the second target block, however, rises

immediately following the first trial. In addition, there is an increase in firing rate

throughout the trial that is fit by a linear function (y=0.006x +1.02, p<0.01, R 2=0.267).

Figure 7 shows the activity during the trials just before and after each transition

between the blocks. Each set of points with the same value on the x-axis shows the

normalized firing rates of all neurons on one trial. The first section shows the activity in

the last seven trials of the first target block. It can be seen that the activity is fairly

constant. The second section, shaded in gray, shows the activity in the first seven trials

of the no-target block. While some neurons show lower activity within the first few trials

of the no-target block, others fire at a much higher rate than in the previous block. The

third shows the activity in the last five trials in the no-target block, and it can be seen that

by this portion of the block, the activity of most neurons has stabilized at a lower level.

Across the population, there was a statistically significant difference between normalized

firing rate during the first seven trials of the no-target block and the last seven trials

(Wilcoxon Z-score -3.290, p<0.001 ). The final section of the graph (shade section)
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shows the first seven trials in the second target block. Most of the neurons increase their

firing rate even on the first trial, and some discharge at a high rate, as in the start of the

no-target block.

Examination of the behavior of the monkeys revealed that no discernable

movements, such as a saccade to one of the LEDs that had been a target in previous trials,

were made during these trials. The heavy line shows the mean normalized activity for all

neurons and the dashed line shows the standard deviation. It can be seen that the

variance in the trials immediately after the transition is higher than in the final trials,

mostly due to high levels of activity shown by some neurons.

Insert Figure 7 about here
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Discussion:

In this experiment, it was shown that the anticipatory build up activity during

fixation in DMFC could be manipulated for most neurons by expectation. During blocks

of trials in which the monkey can predict that a target for movement will occur at the end

of the fixation period, the build up activity is high. For the majority of neurons, this

anticipatory activity is attenuated when a succession of trials is run on which the target

(and therefore the movement) does not occur. This build up activity resumes once the

original reward contingency is restored and the monkey is required to move once again.

Thus occurrence of the build up activity is contingent upon the monkey being able to

predict whether the target will occur.

A trivial explanation for this build up activity might be that it reflects anticipatory

muscle activity, as the monkey prepares to initiate a movement. During the block of

trials in which no target is presented, the monkey may relax those muscles as he realizes

that the target is unlikely to appear (and therefore no movement will be required). This

explanation is plausible for Reach Only neurons, and EMG analysis would be desirable to

investigate any changes in tonic muscle activity between the different conditions.

However, this seems less likely to be the case for saccade-related neurons, as the eyes are

controlled primarily by fast twitch muscles, which do not exhibit this pattern of pre-

movement build up. Perhaps the most compelling evidence against this explanation lies

in the fact that some Reach or Saccade neurons, such as the one shown in Figures 2 and 3

show the same attenuation of build up activity regardless of whether the movement is a

saccade or a reach. The two movements use very different muscle groups, and in either

case either the eyes or the arm must remain immobile while the other makes a movement
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to the target. It is difficult to conceive of a muscle group that would be equally used in

both tasks such that it would show the same attenuation in activity level when the

movement is not made, although the possibility cannot be ruled out.

Increased build up activity has been observed in other brain areas such as superior

colliculus (Basso & Wurtz, 1997; Dorris & Munoz, 1998), frontal eye fields (Bruce &

Goldberg, 1985) and premotor cortex (Mauritz & Wise, 1987). In these areas, the

anticipatory activity is modulated by the probability that the upcoming movement will be

made in the preferred direction of the neuron. This is also not a likely explanation for the

activity observed in the neurons tested in this experiment, as the build up occurs even

when there is an equal probability that the target will occur in any of several locations,

and it is only modulated by whether or not the target will occur. In addition, most of

these neurons did not show directional tuning, as described in the first experiment.

The question remains as to the purpose of a spatially non-specific anticipatory

build up signal such as that observed in this experiment. One possibility is that it

decreases latency, perhaps by facilitating the build up of movement-related activity. The

SEF make projections to both the frontal eye fields and to the superior colliculus, where it

has been shown that there is a consistent relationship between the time at which neurons

reach a certain level of activity and the time at which saccades are initiated. (Hanes &

Schall, 1996; Dorris et al., 1997). This suggests that movements are triggered when a

certain threshold of neural activity is crossed, and the rate at which neurons increase their

activity determines latency. Under predictable target conditions, saccadic latency is

reduced (Pare & Munoz, 1996) and rate of activity in build up neurons in the superior

colliculus is increased (Basso & Wurtz, 1997; Dorris & Munoz, 1998). A similar finding
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has been observed in motor cortex (Riehle & Requin, 1993). In both cases, signals from

dorsomedial frontal cortex might facilitate the increase in rate via excitatory connections

or through reduction of inhibition via projections through basal ganglia.

Another possible role for build up activity is prediction or timing of sensory

events rather than facilitating movement. In dopaminergic regions of the forebrain,

neurons seem to encode the reward contingency of a sensory stimulus or upcoming

movement. Thus they discharge not in anticipation of the sensory stimulus or movement

per if it is closely associated with a reward that the monkey receives at the completion of

the movement. Initially, these neurons discharge in response to the reward, but if a

contingency is set to the reward delivery, then the neurons will shift their activity

temporally such that they discharge in response to the stimulus that predicts reward

delivery (reveiwed in Schultz, 1998). Similar activity has been reported recently in parts

of the striatum (Tremblay et al., 1998; Hollerman et al., 1998; Shidara et al. paper, 1998),

where neuronal activity is modulated by the predictability of the trial events leading to

reward delivery.

The anticipatory discharge observed in DMFC neurons is more similar to this,

although they did not seem to be encoding reward contingency per se. If the DMFC

neurons observed here were encoding reward contingency, then it would expected that

the anticipatory activity would shift to occur before the rewarded movement, namely the

movement bringing the eyes to fixation or the reach to the fixation button. This was not

observed, suggesting that it was the target and not reward occurrence that was predicted.
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In the task reported here, the anticipatory activity did not drop immediately after

the no-target block began. Many of the neurons actually increased their discharge for a

few trials, although no movement was made. This increase in activity in the first trials

may reflect another function common to areas in dorsomedial frontal cortex, which is to

signal that a change is required in motor strategy. Some neurons in SEF are only active

while a monkey is learning the appropriate association between a stimulus and direction

of movement, but not when the movements are over-learned (Chen & Wise, 1995). A

similar finding has been observed when monkeys learn new sequences of arm movements

in pre-SMA (Nakamura et al., 1998). Thus SEF/SMA may be active during the

"switching" of motor programs, or in the learning of a new one. The high rate of

discharge during learning, or during a switch in task, as in this experiment, may serve as

an error signal, indicating a difference between the actual and predicted contingency.
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Figure legends

Figure 1:

Events in a sequence of trials. First, 10 blocks of TARGET trials were run where the

target was presented at the end of the fixation period. The monkey was required to make

a movement, whose type was determined by the color of the LED, to the target to receive

reward. Second, 10 blocks of NO-TARGET trials were run in which the target was not

presented, but the monkey was rewarded for maintaining fixation for a randomly

determined amount of time. Third, 10 blocks of TARGET trials, identical to the first set

were run.

Figure 2:

Anticipatory activity in a Reach or Saccade neuron during a sequence of Reach Only

trials. Each graph in the top row shows the rasters and histograms in different target

conditions. All rasters and histograms are aligned to the start of fixation. The first set of

tick marks before zero represent the start of the trial and the two sets after zero represent

the start and end times of the reach. The graph on the bottom shows the mean firing rate

for each trial.

Figure 3:

Activity of the same neurons as in Figure 2, but during a sequence of Saccade Only trials.

Rasters and histograms are aligned to start of fixation, as in Figure 2, except that the tick
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marks after zero represent start and end of the saccade. The mean firing rate on each trial

is plotted in the bottom graph.

Figure 4:

Mean firing rates during different target blocks for each neuron. 4A: mean activity in

first target block is plotted against the activity in the no-target block. 4B: mean activity

in the second target block against the activity in the no-target block. 4C: mean activity in

the first target block against mean activity in the second target block. Some neurons were

tested both on a sequence of reach only and a sequence of saccade only blocks; for those

cases, the results from both sequences are plotted. Thus 29 comparisons are plotted here,

which are derived from 21 neurons.

Figure 5:

Scaled activity averaged across all neurons that showed significantly lower activity

during the no target block. For each neuron, firing rate on a given trial was normalized to

the mean firing rate of that neuron during the target 1 block Solid line = mean activity of

the population. Dashed line = one standard deviation.

Figure 6:

Regression of mean scaled neural activity during no target (top panel) and target 2 (lower

panel) blocks.

Figure 7:

Neural activity during the transitions between blocks plotted on a trial-by-trial basis. For

each neuron, firing rate on a given trial was normalized to the mean firing rate of that

neuron during the target 1 block. Scaled firing rates for the individual neurons are shown

as asterisks. Solid line = mean activity of the population. Dashed line = standard error of
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the mean. The first seven points show the activity in the last seven trials of the first target

block. The second seven points (shaded section) show the first seven trials of the no-

target block. The next seven (unshaded) shows the last seven trials of the no target block

(these trials did not follow immediately after the trials plotted before), and the last seven

points (shaded) show the activity in the first seven trials of the target 2 block.
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Summary and conclusions

In this thesis, the properties of neurons in dorsomedial frontal cortex were

examined with respect to eye and arm movement control. Three major contributions

were made towards our understanding of the functional organization of this area.

First, it was revealed that over half of movement-related neurons were responsive

to both eye and arm movements, with the others preferring either eye or arm movements.

Many neurons were not directionally tuned, but those that were did tend to show the same

preferred direction for both, suggesting that this may represent a common encoding for

movements by either effector. Examination of the temporal properties of the neurons

showed that, consistent with other studies, many neurons began to discharge early before

movement initiation. In this study, neurons were observed which began discharging well

before the target was presented, thus the direction of the upcoming movement was not

specified. Some neurons showed an anticipatory build up before either eye or arm

movements, suggesting that this signal may be related to anticipation of movement

regardless of the effector.

Second, there was no clear segregation in terms of location of the different kinds

of neurons; rather, the different neurons were intermingled. When the recording

locations were compared to the somatotopy as revealed by microstimulation, it was found

that most of the neurons were located in the rostral dorsomedial frontal cortex, within the

region from which eye movements were evoked. This is a clear demonstration that arm-

movement responses are present within the area traditionally considered to be related to

saccades. Task-related neurons were rarely observed in the area from which arm

movements were evoked.
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Third, the anticipatory activity observed in many neurons was found to be related

to the expectation that the movement was to occur. Monkeys were run on a series of

trials in which the target occurred at a predictable time, and then on a block where the

target was not presented. For the majority of neurons, the anticipatory activity was

attenuated, or even absent during the block of trials when no target was presented. When

another block of trials was run in which the target was once again presented, the

anticipatory activity resumed. Many of the neurons showed higher levels of activity

during the first few trials after the transition from one block to the other. This suggests

that in addition to signalling the monkeys expectation to move, these neurons signal a

change in movement strategy, or perhaps are encoding an error signal between the

expected and observed trial events.

Thus many neurons in the eye movement representation of DMFC participate in

the generation of both eye and arm movements, rather than being specific for one or the

other. Interaction between eye position and arm movements has been reported in a

variety of areas, such as ventral premotor cortex (Stuphorn et al., 1996; Mushiake et al.,

1997), superior colliculus (Stuphorn et al., 1996), and parietal cortex (Ferraina et al.,

1997). In each of these areas, the interaction was best characterized by a modulation of

arm-movement response by gaze angle, suggesting that these areas are directly involved

in computation of movement parameters in a coordinate frame that combines eye and arm

position signals. The relative lack of directionally tuned neurons observed in DMFC

neurons suggests that it may play a different role. The preponderance of anticipatory
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activity suggests that it may be more related to the temporal initiation of movement rather

than specification of parameters.

A relatively small percentage of neurons encountered in the course of recording

were found to be modulated by the tasks employed in these experiments. This may have

been a consequence of the complexity and training experience of the animals. There is an

increasing body of literature suggesting that activity in the dorsomedial frontal cortex is

modulated by learning. Human imaging and recording studies have revealed greater

activation during the learning of difficult tasks (e.g. Lang et al., 1983; Niemann et al.,

1991; Kawashima et al., 1998; Hikosaka et al., 1996), and it has been shown that the

organization and representation of movements is dynamic and subject to experience

(Pascual-Leone et al., 1994; Karni et al., 1995). During learning, the area of activated

cortex within DMFC increases. Studies in monkeys also have reported that field

potentials are greater during learning (Sasaki & Gemba, 1982) and that many neurons

are active only during the learning of a task or skill (e.g. Aizawa et al., 1991; Chen &

Wise, 1995; Nakamura et al., 1998). Given that the monkeys in this study were well

trained on the tasks before recording began, this may be one explanation for seeing

relatively few modulated neurons.

In conclusion, most movement-related neurons in DMFC participate in the

generation of both eye and arm movements. Rather than specifying the direction of the

movement, many neurons seem more involved in anticipating the movement, and their

activity is modulated by expectation. Some neurons respond to a change in task

conditions by discharging at a higher rate, which may be indicative of the role this area

plays in motor learning.
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Appendix: Stimulation mapping in Monkey J

Methods:

Electrode penetrations were made at 1 mm intervals into a 12 x 4 mm area of

dorsomedial frontal cortex The area sampled not only encompassed the recording sites

but also extended several millimeters in each direction beyond the region were

modulated units were found. . At each site, the effects of low current microstimulation

were examined. Trains of 0.2 msec biphasic pulses at a frequency of 250 Hz were applied

through glass-coated platinum-iridium electrodes (0.5-2.OMQ impedance measured at

IkHz). Current level was kept constant at 50 gA and train duration was varied from 50-

200msec. The same stimulation parameters were applied throughout the cortex.

Microstimulation was performed both while the animal was sitting quietly in the

dark between trials, and also when the monkey was actively performing a fixation task.

Eye movements were monitored for stimulation-evoked effects and the monkey was also

observed for skeletomotor movements. Eye traces in both stimulation and control trials

were saved for off-line analysis. In cases where skeletomotor movements were evoked,

the locus of stimulation-evoked movement was confirmed by palpating the recruited

muscles. Also, the monkey was observed and the locus of the movement confirmed by a

second observer, when possible. Because it has been reported that active fixation can

raise the current threshold required to elicit eye movements from oculomotor structures

(Tehovnik et al., 1998; Sparks & Mays, 1983; Goldberg & Bruce, 1985; Schlag &

Schlag-Rey, 1987) we used a behavioral paradigm that was both permissive for eliciting

stimulation-evoked eye movements and also maintained control over starting eye

position. The monkey was required to fixate an LED for 200 msec to receive a juice
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reward, and the stimulation train was applied immediately after the fixation light was

extinguished, during the presentation of the juice reward. Examination of the inter-

saccadic intervals for spontaneous eye movements made in non-stimulation trials

revealed that the animal generally did not make spontaneous saccades during the time

window in which stimulation would be applied. Therefore, we stimulated during a period

of time when the monkey's eyes were reliably within the fixation window, but the animal

was not actively suppressing saccades. Once a site had been identified to have eye-

movement- related properties, we also tested the effects of initial eye position on the

evoked saccade by having varying the location of the fixation LED.

For both skeletomotor and eye movements, site was considered to have

stimulation-evoked properties if movements could be evoked >50% of the time using the

stimulation parameters described above.

Results:

Movements were evoked with the microstimulation parameters described above

in 31/50 penetrations.

Figure 1 shows the locations of microstimulation electrode penetrations and the

type of movements evoked at those sites. At some sites, the locus of the evoked

movement appeared to change slightly with the depth of the stimulating electrode; for the

purposes of creating Figure 1, I took the movement evoked from 1-1.5 mm below the

first encountered unit in along the penetration, corresponding roughly to the depth from

which most task-related units were recorded.
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There appeared to exist a rough somatotopy comparable to that observed in

numerous other studies (e.g. Luppino et al., 1990, Mitz & Wise, 1987; Schall, 1991) and

also similar to that seen in human subjects (Lim et al., 1994). At the caudal extreme of

the region of cortex we tested, trunk and hindlimb movements were evoked. At the other

end, the most rostral extent we tested, most of the responses we observed were eye

movements. At intermediate penetrations, proximal forelimb and head (neck or pinna)

movements were evoked. At all sites where skeletomotor movements were evoked,

movements in the form of muscle twitches could be observed at the shortest train

duration used (50 msec). At some sites, prolonged stimulation seemed to increase only

the duration of the muscle contraction. At other sites, it appeared that more muscles were

being recruited with prolonged stimulation. For example, stimulation at a site might

elicit a muscle twitch in the deltoid with a 50 msec train but with a 100 or 200 msec

train, other arm muscles such as the triceps appeared to be recruited as well, leading to a

lifting of the entire arm. It has been postulated that prolonged stimulation at these

parameters may lead to transynaptic spread of current. Therefore these differences in

muscle recruitment with long train duration may reflect differences in projection patterns

to cortical and motoneuronal pools at these sites.

Stimulation of a 5x3 mm area in the rostral medial frontal cortex yielded almost

exclusively saccadic eye movements. This area corresponds roughly both in size and

relative location to the description of the supplementary eye fields as given by Schlag &

Schlag-Rey, (1987).

Insert Figure 1 about here
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Figure 2 shows typical eye movements evoked from different starting positions

from one site. The probability of evoking an eye movement was greater when the eye was

initially in the contralateral visual hemifield, consistent with other studies (Tehovnik &

Lee, 1992; Russo & Bruce, 1993). It can also be seen that the direction and amplitude of

the saccades vary with starting eye position. It has been shown by several researchers that

converging, or goal-directed saccades are evoked by microstimulation of SEF (Schlag &

Schlag-Rey 1987; Mann et al., 1988; Schall, 1991a; Tehovnik & Lee, 1993; Sommer &

Tehovnik, 1998), while other research groups have failed to make this observation (Russo

& Bruce, 1993). It has been proposed that the degree of convergence depends on the

amplitude of the saccades (reviewed in Schall, 1998) and amplitude can be related the

train duration (Tehovnik & Sommer, 1997). I did not systematically test the effects of

long versus short trains on amplitude or degree of convergence, but I did observe that

long stimulation trains resulted in the eyes remaining at the endpoint of the evoked

saccade. This was the case in the majority (20/21) of sites from which eye movements

were evoked. This effect has been reported consistently and appears to be a

distinguishing feature of SEF stimulation (Schall, 1991; Tehovnik & Lee, 1993) At one

site, staircase saccades (i.e. a sequence of saccades of the same vector) were evoked with

long train duration, comparable to those observed during frontal eye field (Robinson &

Fuchs, 1969) or superior colliculus (Schiller & Stryker, 1970). However, the amplitudes

of each evoked saccade in this case (approximately 2 degrees) were much smaller than

that observed from the majority of the sites.

I did not observe smooth eye movements elicited from any of the sites tested. It

has been reported that pursuit movements can be altered or disrupted by electrical
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stimulation of SEF (Heinen, 1996) However, in that study, the monkeys were always

performing smooth pursuit tasks during stimulation. Thus the pursuit system was already

engaged before stimulation, which may be a necessary condition for revealing the

involvement of this cortical area with stimulation.

Insert Figure 2 about here
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Figure legends

Figure 1:

Map of location of penetrations where stimulation was evoked. X's show sites where no

movements were evoked.

Figure 2:

Representative eye movement traces showing stimulation-evoked saccades from one site

in Monkey J. Stimulation was applied during trials randomly intermixed among control

trials. 15 different starting eye positions were tested at this site; the results from only 9

are shown here for clarity. Empty squares show starting positions from which

stimulation-evoked eye movements were not evoked.
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Figure 1

Location of stimulation penetrations
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Figure 2
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