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Abstract

A superconducting quantum bit can be made with three nano-scale Josephson junc-
tions connected in series. In this thesis, various aspects of this qubit are studied. It is
shown numerically that the qubit behaves as a giant magnetic dipole with quantum
tunneling between the two qubit states. The natural coupling between qubits plus
the manipulation on a single qubit state provides the building blocks for universal
quantum computing. The state of the qubit can be determined by measuring its flux
with a SQUID. The measurement efficiency and measurement-induced decoherence
are investigated. A coherent transition assisted scheme is designed for a projective
measurement on the qubit. A general method is developed to study qubit decoher-
ence by environmental noise. The dynamic control approach is applied for preventing
off-resonant leakage during gate operations and for de-coupling the qubit from noise.
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Chapter 1

Introduction

The theory of quantum computation provides a novel approach to speed up some
classically hard problems, such as the factoring problem[1] and the search problem in
arandom database[2, 3]. Physical media have to be built to carry out these algorithms
and test the theory[4]. In this thesis, a superconducting implementation of quantum

computation is studied theoretically.

1.1 Physical Implementation

Quantum computers store and process information on quantum variables such as
spins, photons, and atoms. Typically, these variables consist of two-state quantum
systems called quantum bits or “qubits”. By manipulating the quantum states of
those variables in a way that preserves quantum coherence, quantum algorithms can
be implemented with the qubits. To perform a quantum computation, one must
be able to prepare qubits in a desired initial state, coherently and to accurately
manipulate superpositions of a qubit’s two states, couple qubits together, measure
their state, and keep them relatively free from interactions that induce noise and
decoherence [5, 6, 7, 8, 9, 10]. To perform quantum communication, one needs to
coherently transmit a qubit state from one place to another, which requires the design
of a “flying qubit” [4].

Qubit designs have been proposed in a variety of physical systems, such as trapped
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ions[11, 12], cavity QED[13], electron spins in quantum dots[14] and nuclear spins[15,
16], to name but a few. Essentially any two-state quantum system that can be ad-
dressed, controlled, measured, coupled to its neighbors and decoupled from the envi-
ronment, is potentially useful for quantum computation and quantum communications[17].
In the trapped ion qubit, two internal states of the ion are chosen as the qubit. A
single qubit operation is implemented by addressing the individual ions with laser
pulses. Two-qubit controlled gates are implemented via collective motional modes of
the ions. Detection is possible by applying laser pulses and observing spontaneous
emission. In the liquid state nuclear magnetic resonance quantum computing, qubits
are interacting spins in molecules. By microwave pulsing, an ensemble of molecules
can be prepared into a pseudo-pure state as the initial state. Qubit operations are
implemented by a selective re-coupling technique in NMR. By detecting the NMR

signal of the ensemble, the qubit information is measured.

Nano-scale electrical systems which can be produced by modern lithography, such
as quantum dots and tunnel junctions, are attractive candidates for constructing
qubits: a wide variety of potential designs for qubits and their couplings are available,
and the qubits are easily scaled to large arrays which can be integrated in electronic
circuits [7, 18]. A distinguishing property of these designs is the flexibility in the qubit
characters: the physical size and property of these artificial systems can be adjusted in
a very wide range. For this reason mesoscopic superconducting circuits of ultra-small
Josephson junctions have been proposed as qubits[19, 20, 21, 22, 23, 24]. When the
Josephson energy of the junction dominates over the charge energy of the junction,
the qubit is said to be in the flux regime where qubit states are local flux states.
When the charge energy of the junction dominates over the Josephson energy of the
junction, the qubit is said to be in the charge regime where qubit states are easily
discussed by discrete charge states. Qubits in both regimes have been intensively

studied both theoretically and experimentally in recent years.

In this thesis, a superconducting flux qubit—the persistent-current qubit (pc-
qubit)[20, 25], is studied. Both the physical properties of the pc-qubit and the quan-

tum computing related problems such as manipulation, decoherence, control and
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measurement, are covered. Most of these studied are single qubit problems. They are

a useful step in building large-scale superconducting quantum computers.

1.1.1 Josephson Junction and Macroscopic Quantum Tun-

neling

An attractive feature of the superconducting flux qubits compared with other solid
state designs is that the flux qubits are macroscopic, or more accurately, mesoscopic
quantum systems|[26, 27]. For example, the pc-qubit has a micron scale supercon-
ducting loop and a submicron size Josephson junction. There are more than 10
billion electrons in the superconducting loop. The electrons move together coher-
ently in some collective mode. The collective state of these electrons are described by
the complete superconductor, where the gauge-invariant phase determines the qubit
states selected for quantum computing. By quantizing the gauge-invariant phase, the
collective states can be easily calculated. For the pc-qubit, the qubit states have a

magnetic dipole 10° times the electron dipole.

The macroscopic qubit has the advantage that it is easy to manipulate, easy to
couple different qubits together, and easy to measure. When the character of the
qubit is of macroscopic size, it is easy to couple the qubit degree of freedom to other
quantum systems. The pc-qubit has a flux of 10~3 flux quantum which can be easily
resolved by a regular SQUID magnetometer. The coupling energy between pc-qubits
can be as strong as 2 GHz which gives a built-in method for two-qubit control gates.
Of course, the macroscopic nature of the qubit that results in these advantages also
results in a disadvantage. The qubit degree of freedom is not very well isolated from
environmental noise. The qubit is subjected to stronger environmental fluctuation
and tends to decohere faster than qubits in microscopic systems. Hence, serious
experimental studies on these qubits are necessary to show that these qubits can
operate coherently.

Various proposals for superconducting flux qubits have been implemented experi-

mentally recently. Among them are the double junction rf-SQUID loop[28], the three
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]

junction persistent-current qubit[29], and the current ramped tunnel junction(30].
In all these experiments, the gauge-invariant phase is the quantum variable being
explored. One often describes the dynamics as that of a “phase particle” in some po-
tential landscape, which is controlled by external flux and currents. In the rf SQUID
experiment[28], the phase particle is designed to be in a double well potential. The
quantum tunneling between the localized phase states is probed via microwave spec-
troscopic experiments. In the pc-qubit experiment[29], the three junction circuit is
described as a “phase particle” in a two dimensional periodical potential. The qubit
states are nearly localized phase states. The quantum tunneling between nearby local
minima is probed. Microwave data show a qubit energy dependence on the magnetic
flux in the qubit loop and the tunneling induced anti-crossing. In the current-ramped
Junction experiment[30], the quantum tunneling of a “phase particle” in a washboard
potential is studied where the tilting of the washboard is controlled by the ramping
current. In this experiment, coherent oscillations between two quantum states that
are localized in the potential well are observed by measuring the escape probability

of the particle from the metastable potential well.

Not only is the superconducting system a promising candidate for implementing
large-scale quantum computation, but it is also a good system for testing fundamen-
tal problems in physics. One interesting question is whether quantum mechanics is
valid for macroscopic/ mesoscopic quantum systems[26, 27] and if not, where is the
boundary between quantum mechanical and classical behavior. The superconducting
system is macroscopic in the sense that large number of electrons are involved. By
verifying quantum mechanic behavior in this system, it will help to answer the first
question. Another interesting topic of study is the dynamics of a system in a dis-
sipative environment [31, 32]. The superconducting system often has a double well
potential or a metastable potential well in phase space[33, 34, 35]. This potential can
be adjusted by various means of external control. As a result, the phase particle in
the potential can be studied at various conditions by adjusting the potential and also
by manipulating the environment of the system. This is then a good experimental

system for testing the dissipative behavior of quantum systems. This behavior de-
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pends on the small-scale of the junctions and on the coherent behavior of the circuit.
As the fabrication technology advances, the control of the system and the environ-
ment advances so that more and more of the fundamental studies can be tested in

the laboratory in superconducting systems.

1.1.2 Comparison with Other Implementations

In the following, we discuss the advantages and disadvantages of solid-state qubit
designs in comparison with other systems, such as trapped ions, cavity QED systems,
liquid-state NMR and solid-state NMR.

Compared with the photonic, atomic, and nuclear qubits already constructed,
solid state proposals based on lithography such as the one described here have two
considerable disadvantages and one considerable advantage. The first disadvantage
is noise and decoherence [7, 9, 10]: the solid state environment has a higher density
of states and is typically more strongly coupled to the degrees of freedom that make
up the qubit than is the environment for photons in cavities, ions in ion traps, and
nuclear spins in a molecule or crystal. Extra care must be taken in solid state sys-
tems to decouple the qubit from sources of noise and decoherence in its environment.
The second disadvantage is manufacturing variability[10]: each ion in an ion trap is
identical by nature, while each lithographically defined Josephson junction in an in-
tegrated circuit will have slightly different properties. Solid-state designs must either
be insensitive to variations induced by the manufacturing process, or must include a
calibration step in which the parameters of different sub-circuits are measured and
compensated for [18].

The advantage of solid-state lithographically defined circuits is their flexibility:
the layout of the circuit with Josephson junctions or quantum dots is determined by
the designer, and its parameters can be adjusted continuously over a wide range. As
the results presented in this thesis demonstrate, this flexibility allows the design of
circuits in which the variables that register the qubits are only weakly coupled to
their environment. In addition, the flexibility in circuit layout allows many possible

options for coupling qubits together, and for calibrating and adjusting the qubits’
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parameters. That is, the advantage of flexibility in design can compensate for the
disadvantages of decoherence and manufacturing variability.

The flexibility in design afforded by lithography conveys a further advantage to
constructing quantum computers. As noted above, a qubit has to accomplish at
least five functions: it has to be addressed, controlled, measured, coupled to its
neighbors and decoupled from the environment. One of the axioms of design, is
that the number of parameters that characterize a system’s design should be at least
as great as the number of parameters that characterize the system’s function[36].
The problem of having too few design parameters available is particularly acute in
the design of quantum computers and qubits : a quantum computer is a device in
which essentially every physical degree of freedom is used to register information
and to perform the computation. Degrees of freedom that are not used to compute
are sources of noise and must be isolated from the computing degrees of freedom.
Designs for quantum computers are accordingly more constrained by fundamental
physics than are designs for conventional computers: if one is storing information on
a cesium atom, then the “design parameters” of the cesium atom —its energy levels,
decoherence times, interaction strengths, etc. —are fixed by nature once and for all.
In the lithographically defined Josephson junction circuits proposed here, by contrast,
it is possible to make qubits that have a variety of different design parameters, each
of which can be adjusted to optimize different functions.

Various physical systems for quantum computing are listed in Table 1.1 with a
summary given for each type of qubit on its physical carrier, method of manipulation,

qubit interaction, and the advantage and disadvantage of each type of qubit.
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1.2 Flux Based Superconducting Quantum Bits

The main topic of this thesis is to study the superconducting persistent-current qubit
(pc-qubit)[20, 25], Fig. 1-1. This qubit is made of three small Josephson junctions
connected in a superconducting loop. The quantum mechanical variables being stud-
ied in this circuit are the superconducing gauge-invariant phases. The circuit can be
controlled by varying the magnetic flux in the loop or by varying the gate voltage
on the metallic islands. A recent experiments[29, 37] have shown the quantum me-
chanical properties of this circuit and its possibility for being a quantum bit. In this
thesis, our studies on the pc-qubit are summarized, which include the basic structures
of the qubit state and its manipulation[20, 25|, measurement-related issues such as
improving the resolution[38] and measurement-induced noise[39, 40], the study of the
environmental noise on the qubit[41], quantum control of off-resonant transitions to
higher energy states[42] and on the decoupling of the qubit from noise. These results
are described in more detail in the subsequent chapters of this thesis. However, the

main results are summarized below.

1.2.1 The Persistent-Current Qubit (PC-Qubit)

In chapter II, the circuit of the pc-qubit is studied both numerically and with a
tight-binding approximation. The three gauge-invariant phases of the Josephson
junctions obey the flux quantization relation; and, hence supply two independent
variables. After quantizing the phase variables, the circuit behaves as a particle in a
two-dimensional periodic potential, Fig. 1-2.

By discretizing the phase variables, we numerically calculated the energy spectrum
of the pc-qubit versus the magnetic flux in the superconducting loop and versus the
gate voltage. Our results show that the pc-qubit circuit behaves as a giant spin
S = 1/2 magnetic dipole when the magnetic flux (® = f;®¢) in the superconducting
loop is biased away from ®y/2 (f; = 1/2). The lowest two eigenstates of the pc-qubit
resemble the spin states and have a Zeeman splitting proportional to the flux. A

contour map of the pc-qubit wave-function shows that the lowest two eigenstates are
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Figure 1-1: The three-junction qubit. Josephson junctions 1 and 2 both have Joseph-
son energies E; and capacitance C' and Josephson junction 3 has a Josephson energy
and capacitance o times larger. The nodes 1 and 2 represent the superconducting
islands (nodes) which are coupled by gate capacitors C, = vC to gate voltages V4
and Vp. The arrows define the direction of the currents. The flux is taken out of the

page.

nearly localized flux states with opposite circulating currents. When the magnetic flux
in the loop is near f; = 1/2, the situation is different. The Zeeman term becomes
smaller than (or even disappears at f; = 1/2 when the double well potential is
symmetric to f; = 1/2) another term which is due to the quantum tunneling between
local minima in Fig. 1-2 and is a completely quantum mechanical effect. When the
Zeeman splitting is described as an o, term, the tunneling is described as an o, term.
The effective two-level Hamiltonian is Ho = %o, + %az, when ¢ o« (f; — 1/2) and
t; is the tunneling matrix element. Numerical calculation shows that ¢; ~ 1073E}
with parameters from the experimental sample. The energy spectrum of the pc-
qubit versus flux is shown in Fig. 1-3 with the arrows indicating the qubit states at
the selected operating point with f; = 0.495. The qubit state generates a flux of
1072 flux quanta which facilitates coupling between qubits and the detection of qubit

states.
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Figure 1-2: Two dimensional potential of the pc-qubit.

The lowest energy states of the pc-qubit can also be calculated by a tight-binding
type of calculation. Starting from the local state in the potential wells of the two-
dimensional potential, the tunneling rate from one local minumum to other minuma
can be calculated with a WKB approach. Considering only nearest neighbour tun-
neling, the most important tunneling terms are: (1). the tunneling between the two
minima within the unit cell ¢;, and (2). the tunneling from a minimum to one of the
two closest minima outside the unit cell ¢;. In the pc-qubit configuration, both t;
and t, depend exponentially on E;/E, and are determined by e~VEilEe | The total
tunneling is o = t; + toe~"™9/¢ 4 t,¢'™%2/¢ where ¢, and g, are charges on gates. Cal-
culation shows that ¢; > 103t,, and hence t; = ;. The tight-binding Hamiltonian is

then

2 t ,
Hy — Eo/ 0((11 QZ) , (1'1)

t5(q1,q2) —€0/2
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Figure 1-3: The energy of the pc-qubit versus the magnetic flux in the superconduct-
ing loop. The arrows indicate the qubit states at f; = 0.495. The two states have
opposite circulating currents and generate a flux of 1073 flux quantum.

This is exactly the same as the effective Hamiltonian for the lowest two states.

This approach also shows that the pc-qubit is insensitive to charge fluctuations
from the background. The charge degrees of freedom couple to the pc-qubit through
the t5 tunneling term in the tight-binding Hamiltonian. As ¢; > ¢, and the effect
of t, is neglected, the charge noise has no effect on the dynamics of the qubit. This
agrees with the numerical results on the gate dependence of the energy spectrum of
the pc-qubit. Fig. 1-4 shows the qubit energy versus the gate voltage. The energy
bands are almost flat lines in the spectrum which shows the insensitivity of the qubit

to charge noise.
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Figure 1-4: The energy of the pc-qubit versus the voltage on the gates.

Single qubit gate operation and two qubit controlled operation can be easily im-
plemented with the above circuit, both according to magnetic coupling. The easiest
way to perform a single qubit rotation is by applying pulses of microwave radiation to
the pc-qubit circuit. The radiation induces a term H; = A;0, cos wgt where A, is the
amplitude of the radiation and wy is the frequency of the qubit. This term induces
transitions between the two qubit states with a Rabi frequency of Qg = éhlg; Note
that there is a large overhead factor $2 for the Rabi frequency. A typical value for
the Rabi frequency is 100 MHz. Another way for performing a single-qubit rotation
is by making the third junction in the circuit a SQUID and irradiating the SQUID.

This radiation induces a oz-rotation term instead.

The two-qubit operation is implemented via the inductive interaction between

neighbouring qubits. The circulating current in the loop of the pc-qubit generates
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a magnetic flux of 1073 flux quantum. This flux couples to other pc-qubits via the
mutual inductances. The induced coupling is a dipole-dipole type of coupling. This

coupling gives additional two-qubit interaction terms

HYY = k) 0208 + ko020P + +r30208 (1.2)

where k1, k2 and k3 are interaction strengths. The o, coupling is from the modulation
of the flux in the qubit loop. The o, coupling is from the modulation of the flux in
the SQUID loop of the third junction. Each of the interaction strengths can be
adjusted by designing the pc-qubit differently. When two qubits are located close to

one another, the interaction can be about 2 GHz.

1.2.2 Measurement on PC-Qubit

The detection of quantum bits is an important step in quantum information pro-
cessing. Detection relies on coupling the qubit to a detector at least part of which
is another quantum system. The extraction of qubit information is determined by
the way the two quantum systems interact with each other. In chapter III of this
thesis, we are going to discuss the effect of the interaction between the qubit and the
detector on the qubit state and on the detector states. The major issues studied are:
(1). The interaction between the qubit and the detector transmits qubit information
to the detector, and eventually to the observer. How does this interaction affect the
detector state and how does it affect the measurement efficiency? (2). The detector
is always subjected to stronger noise than the qubit, which is designed to be well-
isolated from the environment. Through the interaction between the two systems,
noise can be transmitted to the qubit during measurement. How is the noise affected
when it is transmitted to the qubit? Both of these issues will be discussed in detail.

In a recent experiment on the persistent-current qubit, an underdamped dc SQUID
measures the pc-qubit by inductively coupling with the qubit (Fig. 1-5). The flux of
the qubit is coupled into the de-SQUID loop and affects the effective critical current
of the dc SQUID. During the measurement, a dc current is ramped through the dc
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Figure 1-5: The fabricated sample of a pc-qubit measured by a dc SQUID. The inner
loop is the pc-qubit with three Josephson junctions. The external loop is the under-
damped dc SQUID with two Josephson junctions. Current can be ramped into the
dc SQUID via the leads connected with the SQUID.[29]

SQUID. When this current is close to the effective critical current, the dc SQUID
switches from the supercurrent phase to the finite voltage phase. The switching cur-
rent is then recorded. Due to quantum and thermal fluctuations, the switching cur-
rent has a finite width distribution. The distribution histogram contains information

about the qubit’s state and is recorded in the experiment.

To study this measurement in detail, we modeled the dc SQUID as a linear quan-
tum system with two variables, the inner oscillator and the external oscillator. The
qubit interacts only directly with the inner oscillator. The external oscillator is a
particle in a washboard potential, the tilting of which is determined by the ramping
current. The external oscillator gets entangled with the qubit indirectly through its

entanglement with the inner oscillator. As a result, instead of measuring the two
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qubit eigenstates directly, the inner oscillator state that is entangled with the qubit is
measured. Our analysis shows that the inner oscillator states are highly overlapped
states which are hard to resolve by any single measurement process. This is reflected
in the fact that the splitting of the switching histogram due to the qubit flux is much
smaller than the width of the histogram. This explains the large number of repetitions

that are required in the experiment.

To improve the situation, we designed a new measurement scheme that by adding
an ancilla qubit significantly improves the measurement efficiency and is, in a general
sense, a von Neumann type of measurement. In this proposal, we add an ancilla qubit
that is initially at state |0) and stays at state |0) during the regular qubit operation
time. The interaction between the two qubits doesn’t affect the ancilla state during
regular qubit operation as long as the interaction commutes with the ancilla qubit
Hamiltonian. On the other hand, the interaction modifies the level splitting between
the ancilla states and makes the splitting when the qubit state is at |1) different from
the splitting when the qubit state is at |0). Proper design can make this difference
large enough to make off-resonant transitions impossible. During the measurement,
an rf pulse with a frequency at resonance with the ancilla splitting when the qubit is
at state |1) is applied to the ancilla qubit. The ancilla qubit then flips conditionally
according to the qubit states and the two systems become entangled with each other.
The ancilla is selected to be a system that is easily measured by some standard
device. After the entanglement, the ancilla state is measured projectively (hence
efficiently). Combining the entanglement and the measurement on the ancilla results
in a measurement process for the qubit that is projective and doesn’t induce extra
noise. To realize this scheme experimentally, we choose an rf SQUID to be the ancilla.
The rf SQUID is a qubit with a short decoherence time but has a very large flux signal.

The schematic figure of the realization is shown in Fig. 1-6.

The measurement process not only extracts information from the qubit, but also
opens the channel for noise from the detector’s environment to be transmitted to the
qubit. The transmitted noise can be an important source for qubit decoherence. It

turns out that the detector acts as a quantum mechanical filter that tailors the noise
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Figure 1-6: The experimenal realization of the improved measurement circuit.

transmitted to the qubit. In chapter III, we develop a general method to calculate
the transmitted noise based on the spin-boson type of model for the noise reservoir,
given the noise spectral density on the detector. The method is presented with an
equivalent circuit approach. In this approach, the Hamiltonian of the qubit and
the detector is mapped into an equivalent circuit; the transmitted noise can then
be directly derived from the effective circuit impedance following the fluctuation-
dissipation theorem. Our method is an efficient way to study the transmitted noise
for interacting quantum systems and can be generalized to study systems such as
a qubit coupled to a radiation source. In the qubit-dc SQUID interaction system,
the dc SQUID can be studied as two interacting oscillators. The reservoir of the dc
SQUID is described by a spin-boson model with the noise spectral density Jo(w). As
a result, the qubit has an effective environment with two discrete oscillators plus the
reservoir. The equivalent circuit has three independent loops, corresponding to the

qubit and the two oscillators. The spectral density of the effective noise is:

4(elpir Iy M,)? w

Tt TR, - + R ()
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Figure 1-7: The spectral density of the effective noise transmitted to the pc-qubit
during measurement.

where I, is the circulating current of the qubit, I, is the ramping current, M, is the
mutual inductance, C is the shunt capacitance of the SQUID, and R, is the resistance
of the SQUID. wy, is the frequency of the external oscillator. J.ss(w) increases with
the square of the mutual inductance and the square of the ramping current.

The effect of the transmitted noise on the qubit can be studied with a master
equation approach. At finite temperature, the noise spectral density has an extra
factor of coth %% h“’ at frequency w. The evolution of the density matrix of the qubit
is perturbed by the reservoir modes to second order in the coupling. There is a direct
correspondence between the 77 (damping time) and 7> (decoherence time) and the
noise spectral density at certain frequencies under a Markovian approximation:

Tl_l = Jeff(w) coth kg T|w—wo

(1.4)
T2_1 = 2_02'Jeff(w) coth 2%p le—)o + ']eff(w) coth 2kp TIU—WO
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Due to the reduction factor w;,l Jw;g in the spectral density at high frequency, relaxation
is slowed by the filtering of the SQUID. With the system parameters, we calculate
the damping time as 77 = 0.15sec and the decoherence time as T, = 2 usec at
I, = 0.81¢/f. The decoherence time is much shorter than the estimated intrinsic
decoherence[41]; while relaxation is slow enough that it will not hinder the extraction
of qubit information. The noise transferred to the qubit is negligible at [, = 0 when

no measurement is being conducted.

1.2.3 Environmental Noise

The superconducting qubit is a macroscopic quantum system where billions of elec-
trons behave collectively under superconducting phases. The qubit’s quantum me-
chanical variable is a collective degree of freedom of the system instead of individual
electrons. Such a system has the advantage that it can be easily detected and be
easily coupled to other qubits. On the other hand, there are many other degrees of
freedom in the superconductor that interact with the qubit degree of freedom and
cause stochastic dynamics in the qubit. These degrees of freedom become an impor-
tant source of decoherence. In chapter IV, we develop a general theory for studying
the effect of environmental noise on the qubit dynamics. This theory is then applied
to the pc-qubit to study the effect of the major noise sources, including charge fluc-
tuations, nuclear spins etc. We also go beyond this theory to calculate the effect of
electromagnetic emission with a golden rule approach. The electromagnetic field is
treated quantum mechanically. Besides the environmental noise, interactions between
qubits also induce random phases for qubit. We studied this effect by analyzing the
dipole interaction between the pc-qubits.

Because the interaction between the qubit and the environment is weak, the en-
vironment can be treated as classical fluctuating fields. To study the effect of the
environment on the qubit dynamics, we study the dynamics of a spin in a classi-
cal fluctuating field. The Fourier transform of the correlation function classical field

is the noise spectrum of the field and contains all the effects the field has on the
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spin: Hiotal = Hq(F) + Hoatn({€a}), where Ho = 2 (A(t) + ﬁ(t)) - 0 is the coupling
Hamiltonian and the fluctuating field is 7 = g,/faéa due to coupling to the bath
variables &,. & = (0g,0y,0,) is the vector of Pauli matrices acting on the qubit
states. The vector A represents external control: A, = —eg, Ay — 1Ay = t(q1,q2)-
This stochastic field induces decoherence for the qubit. The calculation shows that
the decoherence includes pure dephasing from the o, coupling and spin-flip dephasing

t
from the o, and o, couplings, which can be calculated from: ¢(t) = [7,(t')dt' and
0

t N
¢, (t) = [e ™A'y, (¢')dt’ where (...) stands for ensemble average, and the decoherence
0

rate is

R(t) = max [(¢}(®), (I6.(0)%)] , (1.5)

by calculating the ensemble averages for related physical noise. This theory is then
applied to the major noise sources for the pc-qubit, including charge fluctuations,
quasi-particle tunneling, nuclear spin fluctuations etc. The estimation of this noise

shows that the decoherence is longer than 0.1 msec.

Electromagnetic emission is another important source of decoherence. In vacuum,

the electromagnetic field is:

_ /: hw ~ .k- ’\T _.k-
E(r) = Y,k "U\/_Lzeom [ak,c,ez T+ ay et ’]

(1.6)
. 2 2 3 N e N g
H(r) = —iX 0 X z,,/—k—zu;’m [ak,ae”’" - a,‘;,ae ”"]

where 7 is the position of the field, and k is the wave vector. d, and c‘z,t’,, are field
operators for corresponding photon modes. Following this expression, the interaction
between the qubit and the magnetic component of the field is dHy = fcirRzéB(t)
where R is the size of the qubit circuit and is about 5 times the size of the junc-
tion p. I, is the circulating current operator of the pc-qubit. The decay is es-
timated by Fermi’s Golden rule: T'j; = ”;’—:ff%l(\llﬂf |W3)|?, where p(hwp) is the

density of states at the energy wp that is the resonant frequency between the two

qubit states under the stable bias f2. Also p(hw) = L3w?%/3n%hc?, where L is

ex’
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the size of the cavity. The interaction between the qubit and the electric com-
ponent of the field is 0Hg = 2(1+ Q,,JE Q(ﬁﬁTﬂdeEm. Qp and Q,, are
charges conjugated to the phase variables. The decay rates for the two variables

2 4e2w3R2 > m 2 e“w, A
are TP = () A2l (0, | By W) and T4 = ()’ (o8| (0| By W) 2,

1+20+7,) 12weohsed

where P, and Pp are the momenta of the phase variables. Both the magnetic decay
and electric decay increases with the size of the qubit loop R. For the pc-qubit, the
decoherence time from the radiation decays is calculated to be longer than a few sec-
onds. The size dependence also gives a good reason to make superconducting qubits
smaller.

When many qubits are integrated into a chip, the interaction between qubits
becomes a substantial source of decoherence. For the pc-qubit, the qubits interact
by a dipolar type of interaction due to the circulating current in the superconducting

loop:

Heoupting = 3 FAijo @ P, hAy ~ V—N—%F (1.7)
2,J 2 J

where the dipole moment || = I.A =~ 0.2uA x pm?. If qubits are distributed ho-
mogeneously on the chip, the decoherence time from the dipole interaction is 15us,
significantly shorter than decoherence time from other environmental noise. There
are several ways to get around with this problem. One method is to intentionally
pair qubits together to cancel the dipole moments of the qubit pair. The remaining
interaction is the higher order (and weaker) quadrupole interaction. It can be shown

that this method improves the situation greatly for the pc-qubit.

1.2.4 Quantum Control on PC-Qubit

Dynamic control is a useful tool in quantum information processing. It can be applied
to achieve both accurate quantum gate operation and the decoupling of the qubit from
environmental noise. The theory of dynamic control is based on a group theoretic
approach on the Hilbert space of the quantum mechanical system. By applying

appropriate quantum operations according to the group theoretic properties of the
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operators, a desired unitary operation is implemented and the effective Hamiltonian of
the system over a finite time interval is derived. In chapter V, we apply this method
to improving the pc-qubit’s resistance to quantum errors. The following problems
are solved: (1). The control of the off-resonant transitions to higher states in the
pc-qubit during a qubit gate operation; and (2). The decoupling of the qubit from
the environmental noise by fast pulses. The two problems are different aspects of the

application of the dynamic control method.

The pc-qubit is a multi-level quantum system, the lowest two states of which
are selected to be an effective qubit. Calculation shows that the higher states are
separated from the qubit states by energy differences of the same order as the qubit
energy. During a single qubit gate operation, the pc-qubit is irradiated by a microwave
pulse with a frequency in resonance with the qubit energy. This radiation implements
the single qubit rotation between the qubit states. At the same time, it also causes
transitions between the qubit states to the higher energy states of the pc-qubit circuit.

For example, the transition amplitude for the off-resonant transition between state

1 and state 3 is P(1 — 3) = J%;Esin2 w,t, where w, = \/|713|2 + (w31 — wp)? is the
oscillation frequency for the off-resonant transition. The transition amplitude can
hence be estimated to be 0.01 which presents a very strong source of gate error.
This also agrees with the result of a numerical simulation. Note that the quantum
error from leakage to other states in a quantum system is a ubiquitous effect in the
physical implementation of quantum computation. Similar effects happen in the ion

trap systems and many other systems.

Group theory shows that the qubit’s original Hamiltonian and the radiation oper-
ator together form a complete operator set for the pc-qubit, meaning that by applying
the radiation operator alternatively with not applying the radiation operator (with
only the original Hamiltonian), any unitary transformation on the multi-level pc-qubit
circuit can be constructed. As a result, an operation which is block diagonal between
the qubit states and the rest of the states is possible by applying the radiation pulse in
some manner. In this thesis, we demonstrate a way to design a sequence of radiation

pulses for a perfect two-level operation with an O(2/N) number of pulses, N being the
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number of states of the pc-qubit. Each pulse is in resonance with Ey — Fy or Ey — F»,
respectively, with £ > 2. Our method works by expanding the pulse amplitude in

ascending order of relevant parameters:

. .. (1) . (2)
amen = offeitar +afPednr 4. (1.8)
: : (1) : ’ '
a32ez¢32 — ag;)el¢312 + a§22)61¢g22) + ...

where each of the higher order terms can be derived from the result of the lower
order terms. It can be proved that with this method, perfect two-level operations are
possible with arbitrary accuracy. In fact, the O(2N) pulses can be further simplified
into one pulse with sophisticated parameters. As each pulse in the sequence has
the same duration, the pulse amplitude has no singularity. The pulse method has
been experimentally explored in the NMR systems and accurate control of pulses can

achieve desired gate operations to very high accuracy. [150]

Another application of the dynamic control method is to apply pulse sequences
to the qubit to effectively decouple the qubit from its environment. By applying
fast pulses to the qubit, the dynamics of the system is perturbed by the incoming
pulses. At the end of one pulse sequence, the system evolution is described by an
averaged Hamiltonian which can be manipulated by the pulse sequences. Each of the
pulses can be viewed as a transformation which can rotate (e.g., flip) certain terms
in the Hamiltonian. After each pulse, the system can be viewed as evolving under
the rotated Hamiltonian. Hence, certain terms in the Hamiltonian, either the original
qubit term or the term of the qubit coupling to the environment, can be canceled out
at the end of the pulse sequence. We discuss the possibility of applying this method
to the pc-qubit to deal with the general type of noise. By “general”, we mean that the
noise includes o,, 0, and o, coupling to the pc-qubit. This requires a pulse sequence
that cancels all the Pauli matrices. Our study shows that it is marginally possible to
decouple the pc-qubit by applying a 0.5 psec short pulse at 2.5 nsec intervals between
the pulses. As this sequence cancels all the Pauli operators, it decouples the qubit
from noise sources whose correlation time is longer than ~ 1 usec. On the other

hand, this sequence also averages out any non-trivial dynamics for the qubit. To

40



achieve a gate operation together with the decoupling process, the gate pulse should
be designed in coordination with the symmetry of the decoupling pulses. Under this

condition, a Rabi rotation of 2z = 5 MHz can be achieved.
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Chapter 2

The Persistent-Current Quantum

Bit

To implement quantum algorithms to achieve the exponential speed-up promised by
theory, a physical carrier is needed—the algorithm has to be realized in a concrete
physical system. The first step in realizing quantum computing is to build a quantum
bit (qubit). There have been many proposals on using various systems to build a
qubit, including ion traps[11, 12|, cavity QED systems[13], nuclear spins[15, 16, 18],
quantum dots{14], and superconducting systems[20, 21, 22, 23, 25].

In this chapter, we investigate the properties of the superconducting persistent-
current qubit (pc-qubit). We will start the chapter by quantizing the Hamiltonian of
the pc-qubit. Numerical methods are then applied to calculate the band structure of
the qubit versus both the flux in the qubit loop and the gate voltage on the qubit.
Basis logic gates including single qubit rotation and the two-qubit controlled-not gate
(CNOT) are constructed. Then we discuss several simple quantum computing models

in this superconducting system. The decoherence of the qubit is discussed briefly.

2.1 Josephson-Junction Qubits

The superconducting Josephson tunnel junction is described by a critical current I,

and a capacitance C. (We will assume that the resistive channel of the junction is
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negligibly small.) For superconducting circuits the geometrical loop inductance L, is
also important if A = L;/L; < 1, where L; = ®,/271, is the inductance associated
with a Josephson junction in the loop. Here &, = h/2e is the superconducting flux
quantum. Josephson circuits can be divided into two general categories. Circuits of
the first type have A > 1 so that the induced flux in the loop is not important. These
circuits are typically made of aluminum, and the mesoscopic nature of their electronic
transport has been studied in nano-scaled circuits. Circuits of the second type have
A < 1 and induced flux caused by circulating currents is important. These circuits
are typically made of niobium, and the macroscopic nature of the tunneling of flux

has been studied in small-scaled circuits.

The prospects of using superconducting circuits of the first type as qubits is en-
couraging because extensive experimental and theoretical work has already been done
on mesoscopic superconducting circuits. (For a review of this work see Chapter 7 in
[43] and in Ref. [44].) In circuits of the first type (A > 1), two energy scales determine
the quantum mechanical behavior: The Josephson coupling energy, E; = I,®,/2w,
and the Coulomb energy for single charges, F, = €2/2C. The energies can be de-
termined by the phases of the Cooper pair wave function of the nodes (islands) and
the number of excess Cooper pairs on each node. The phase and the number can be

expressed as quantum mechanical conjugate variables[45].

In the “superconducting” limit E; > E,, the phase is well defined and the charge
fluctuates. In the “charging” limit, the charges on the nodes are well defined and the
phase fluctuates strongly. When E; and E. are within a few orders of magnitude of
each other, the eigenstates must be considered as quantum mechanical superpositions
of either charge states or phase states. Such superposition states are important in
designing qubits. Experimental studies have been performed by several groups with
aluminum tunnel junctions with dimensions below 100nm[43, 44]. Superposition of
charge states in circuits in the charging regime have been demonstrated[46, 47, 48]
and are in quantitative agreement with theory[49, 50]. The Heisenberg uncertainty
principle has been demonstrated when E; ~ E_[47, 51]. When E; > E, topologi-

cal excitations known as vortices exists and quantum mechanical interference of these
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Figure 2-1: The three-junction qubit. Josephson junctions 1 and 2 both have Joseph-
son energies £y and capacitance C and Josephson junction 3 has a Josephson energy
and capacitance o times larger. The nodes 1 and 2 represent the superconducting
islands (nodes) which are coupled by gate capacitors C;, = vC' to gate voltages V4
and Vg. The arrows define the direction of the currents. The flux is taken out of the

page.

quantities has been observed[52]. Unfortunately, circuits of the first type in the charg-
ing regime are sensitive to fluctuating off-set charges that are present in the substrate
[63, 54]. These random off-set charges make difficult the design of a controllable array

of quantum circuits and introduce a strong source of decoherence.

In circuits of the second type (A < 1), the quantum variables can be related to
the flux in the loops and their time derivatives. For a superconducting loop with a
single Josephson junction, known as an rf SQUID, thermal activation of macroscopic
quantum states[55] has been observed as well as macroscopic quantum tunneling be-
tween states and the discrete nature of the quantum states[56]. One of the advantages
of these rf SQUID systems is that the two states have circulating currents of opposite
sign and, hence, produce a readily measurable flux of opposite signs. To date no super-
position of states have been demonstrated in niobium circuits, although the improving

quality of the niobium tunnel junctions may allow such a demonstration[57, 58].
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The goal of this section is to present the design of a qubit using circuits of the
first type with aluminum, yet to have states (like in circuits of the second type) that
are circulating currents of opposite sign. These circulating current states create a
magnetic flux of about 1073®, and we refer to these as “persistent current (PC)

7

states.” These states obey all five functional requirements for a quantum bit. The
five requirements are: (1). well defined qubit states in a scalable physical system;
(2). universal quantum logic operations; (3). the initiation of qubit states; (4). the
readout of qubit states; (5). sufficiently slow decoherence on qubit states. The super-
conducting circuit is at a sufficiently low temperature that the PC states can be made
insensitive to background charges and effectively de-coupled from their electrostatic

environment. The magnetic coupling to the PC states and the environment can also

be made sufficiently weak.

2.1.1 The Circuit of a PC-Qubit

The circuit of the qubit is shown in Fig. 2-1. Each junction is marked by an “x”
and is modeled[43, 59] by a parallel combination of an ideal Josephson junction and a
capacitor C;. The parallel resistive channel is assumed negligible. The ideal Josephson
junction has a current-phase relation, I; = I,sin¢; where ; is the gauge-invariant
phase of junction ¢.

For the calculation of the energy the inductance of the loop is considered negligible
A > 1 so that the total flux is the external flux. In this case, fluxoid quantization
around the loop containing the junctions, gives @1 — @2 + p3 = —27f. Here f is the
magnetic frustration and is the amount of external magnetic flux in the loop in units
of the flux quantum &,.

The Josephson energy due to each junction is F,(1—cos ¢,). The total Josephson
energy is then U = ¥; E;;(1—cos ¢;). Combined with the flux quantization condition,
the Josephson energy is[60]

U
E—=2+a—cos<p1—coscpz—acos(27rf+<p1—<p2). (2.1)
J
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Figure 2-2: U/E; vs. f for o = 0.8 and for minimum energy phase configuration.
The energy is periodic with period f = 1 and is symmetric about f = 1/2. Near
f = 1/2, there is a region [1/2 — f.,1/2 + f;] where there are two stable solutions.
The inset plots f. as a function of a.

where « is the ratio between the Josephson current of third junction and the Josephson
current of the first and the second junctions. The important feature of this Josephson
energy is that it is a function of two phases [61]. For a range of magnetic frustration
f, these two phases, ¢; and ¢y, permit two stable configurations which correspond
to dc currents flowing in opposite directions. We illustrate this in Fig. 2-2, where we
plot the energy of the minimum of the system as a function of f for « = 0.8. The
energy is periodic with period f = 1 and is symmetric about f = 1/2. Near f = 1/2,
there is a region [1/2 — f.,1/2 + f.] where there are two stable solutions. The inset
plots f. as a function of a. These two solutions have circulating currents of opposite
direction and are degenerate at f = 1/2. The calculation of the energy for the stable

solutions and f. is given in Appendix A.
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These two states of opposite current are the two states of the qubit studied in
this thesis. By adding the charging energy (the capacitive energy) of the junctions
and considering the circuit quantum mechanically, we can adjust the parameters of
the circuit so that the two lowest states of the system near f = 1/2 will correspond
to these two classical states of opposite circulating currents. Moreover, we will show
that these two states can be made insensitive to the gate voltages and the random
off-set charges. The quantum mechanics of the circuit will be considered in detail in

the next section.

The stable classical solutions correspond to energy minima in U(pq,ps). Let’s
consider the case of f = 1/2. For a < 1/2, U has only one minimum at ¢; = ¢, =
0 mod 27. Above the critical value of a = 1/2, this minimum bifurcates into two
degenerate minima at ¢, = —ps = +¢* mod 27 where cos p* = 1/2a. The minima
form a two-dimensional pattern with the two minima at (¢*, —¢*) and (—¢*, ¢*)
repeated in a two-dimensional square lattice. This pattern can be seen in Fig. 2-3
which is a contour plot of the Josephson energy as a function of the phase variables
for « = 0.8. The nested nearly circular contours mark the maxima in the potential.
The figure-eight shaped contour encloses two minima. Fig. 2-3b shows the potential
along ¢,,, the phase between the two minima in a unit cell; that is, along the line
0o = —1. The upper curve is for @ = 1.0 and the lower for @« = 0.8. Fig. 2-3c
shows the potential vs (,, which connects one minimum (say at (—¢*, ¢*)) to its
next nearest neighbor (at (¢*, 27 — ¢*)). For a = 0.8 the energy barrier between the
two minima, is much lower than the energy barrier from the minimum in one unit cell
to the neighboring unit cell. For a = 1.0 the energy barrier from unit cell to unit cell
is nearly the same as the barrier within the unit cell. The ability to manipulate the

potential landscape by changing a will be important in designing the qubit.

We now consider the electric energy T stored in the five capacitors in the circuit.

Each capacitor C; has a voltage V; across it so that
1
T=33CVi — QaVa— QupVa. (2.2)
J
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Figure 2-3: (a) A contour plot of the Josephson energy (potential energy) U(y1, 2)
for f = 1/2 for @ = 0.8. The nested nearly circular shapes mark the maxima in the
potential, and the figure-eight shaped contours enclose two minima. (b) A plot of the
potential vs. ¢,,, the phase along the direction between these two minimum in the
same unit cell, (c) A plot of the potential vs. ¢,, the phase along direction from one
minima to its next nearest neighbor. Note that the barrier is a saddle point. The
upper curve in each figure is for @ = 1.0 and the lower for o = 0.8.

Here j = 1,2,3. gA and gB are the two metallic gate contacts. The last two terms
subtract the work done by the voltage source to give the available electric (free)
energy[62]. The voltage across each Josephson junction is given by the Josephson
voltage-phase relation V,, = (®,/27)p,, where the over-dot indicates a partial time
derivative. The ground in the circuit labels the zero of potential and is a virtual

ground.

The voltage across the gate capacitor gA is Vg4 = V4 — V] and similarly for

Vg = VB—Va. The electric energy can then be written in terms of the time derivatives

of the phases as

1 (bo 2—3T -
T_ﬁ(%) @ -C-op. (2.3)
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The constant term —%V‘gT -Gy - V; has been neglected and

5 %) l+a+7y -«
s=("" c=cC (2.4)
sz — 1+C¥+’)’

Vb 0 1

and

The classical equations of motion can be found from the Lagrangian L =T — U.
We take the electrical energy as the kinetic energy and the Josephson energy as the
potential energy [63].The canonical momenta are P, = 9L/0y;. To attach a more
physical meaning to the canonical momentum, we shift the Lagrangian by a Galilean-

like transformation to

@o -T —
£=T—U—(%)<p .c, 7, (2.6)

The canonical momentum is then

. d,N\% . o o, -
=(— R . 2.
P (271') C-¢ (27r) Ca Vs (2.7)
and is directly proportional to the charges at the islands at nodes 1 and 2 in Fig. 2-1

as

d=3F (2.8)

(For any Josephson circuit it can be shown that there exist linear combinations of the
phases across the junctions such that these linear combination can be associated with
each node, and the corresponding conjugate variable is proportional to the charge
at that node[64, 65]. If self and mutual inductances are need to be included in the

circuit (as we argue does not need to be done in our case), then additional conjugate

pairs would be needed[65].)
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The classical Hamiltonian, H = Y, P;p; — L, is

H=3(Prig) M (B 22q1) 1ugg) (29
2 2m 2m
where the effective mass M = (®,/27)?C is anisotropic and the induced charge on
the island is Cj’ =C,- V;,. The “7T ” operation is the transposition of the correspond-
ing operators. When driven by an additional external current source, the classical
dynamics of this system has been studied in recent years both theoretically[66, 67]
and experimentally.[68, 69]

Note that the kinetic energy part of this Hamiltonian is
-1 (@+q) - (G+@) (2.10)
2

which is just the electrostatic energy written is terms of the charges and induced
charges on the islands. Often this is the method used in discussing the charging part
of the Hamiltonian. See for example Reference [64] and the references therein. A char-
acteristic charge is e and a characteristic capacitance is C' so that the characteristic

electric energy is the so-called charging energy, E, = €2/2C.

2.1.2 Quantization of the Classical Hamiltonian

The transition to treating a circuit quantum mechanically is to consider the classically
conjugate variables in a classical Hamiltonian as quantum mechanical operators[70,
71]. For example, the momenta can be written as P, = —ihd/0p1 and Py = —ihd /0,
and the wave function can then be considered as |¥ >= ¥(i;, ¢,).

In this representation the plane-wave solutions, such as ¢ = exp{—i ({11 + a2 }
correspond to a state that has ¢; Cooper pairs on island (node) 1 and ¢, Cooper
pairs on island 2. These plane-wave states are the so-called charging states of the
system[49, 72]. Since a single measurement of the number of Cooper pairs on each
island must be an integer, then so should the £’s be here. (Note the expectation value

of the number of Cooper pairs is not restricted to an integer.) Furthermore, an eigen

o1



function ¥(py, @) can be written as a weighted linear combination of these charge
states. This means that ¥(y1, @s) is periodic when each of the phases are changed
by 27, as in the physical pendula|[73].

By considering

(@1, @2) = exp{i(kyo1 + kyp2) }x (01, ©2) (2.11)

with [k, k3] = —(vC/2€)[Va, V5], the Hamiltonian for x(¢1, ¢2) is almost the same
but the induced charges are now transformed out of the problem, and we refer to this

new Hamiltonian as the transformed Hamiltonian H;, where[74]

1—; —
H, = EPT'M_I'P+EJ{2+Q_COSQ01_COS(pz

—acos(2mf + o1 — pa)}. (2.12)

The resulting equation Hyx (1, p2) = Ex(p1,¥2) is the same as for an anisotropic,
two-dimensional particle in the periodic potential U. The solutions are Bloch waves
with the “crystal momentum” k-values corresponding to —k’, which is proportional
to the applied voltages. This choice of crystal momentum insures that U(pq, p2) is

periodic in the phases.

2.2 Qubit Properties

The Hamiltonian of this three junction circuit describes a particle in a two-dimensional
periodic potential. We choose the lowest two energy levels as the states of the qubit—
the effective two-level system that is well separated from the other states. These
two states have opposite circulating currents and the qubit behaves as a giant mag-
netic dipole. The dipole moment is exploited as a means for implementing two-qubit
coupling and for qubit detection. In our design, the qubit states are insensitive to
background charge noise as will be shown below.

In this section, we numerically study the energy structure of the qubit and plot

the energy spectrum versus the magnetic flux and the gate voltages. We analyze the
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physical origin of the insensitivity to background charges and compare our analysis
with the numerical result of the energy spectrum. A tight-binding model is also

applied to study the qubit states in addition to the numerical method.

2.2.1 Numerical Results

We will first present the numerical results of the energy levels and wave functions
for the circuit. Then we will use a tight-binding approach to understand the results
semi-quantitatively.

The eigenvalues and eigenwave functions for the transformed Hamiltonian H, are
determined numerically by expanding the wave functions in terms of states of constant
charge or states of constant phase. The states of constant charge result in the standard
- central equation for Bloch functions and are computationally efficient when E, > E.
The states of constant phase are solved by putting the phases on a discrete lattice and
the numerics are more efficient when E; > E,. Since the Josephson energy dominates,
we will show results computed using the constant phase states. (However, when we
used the constant charge states, we obtained the same results.)

The numerical calculations are done in a rotated coordinate system which diago-
nalizes the capacitance matrix C by choosing as coordinates the sum and difference
of the phases, ¢, = (1 + ¢2)/2 and ¢, = (1 — @2)/2. The resulting reduced

Hamiltonian is

1 P2 1 P2
H, = P ™R
g 2M, 2 M, T 1{2+a
—2 €08 p COS P, — a cos(27 f + 2¢0,) } (2.13)

where the momenta can be written as P, = —ihd/d¢, and P,, = —ihd/dp,,. The
mass terms are M, = (®,/27)?2C(1 +~) and M,,, = (9,/27)?2C(1+ 2+ 7). In this
coordinate system the full wave function ¥(yp,, ©m) = exp{i(k,©p + ki, 0m) } X (€p, ©m)
with [k, k] = —(vC/2e)[Va + VB, V4 — Vi| and Hyx(¢p, om) = Ex(#p, m). Also
the two minima of the potential U(y,, ¢) within a unit cell form a periodic two-

dimensional centered cubic lattice with lattice constants a, = 27i, and a; = 7, +7i,.
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Figure 2-4: The energy levels E vs. frustration and gate voltage for E;/E, = 80,
a = 0.8, and v = 0.02. The gate voltage is related to the K values by [kp, km] =
(yC/2€)[Va+ Vg, Va—Vg]. Left: E/E; vs f near f = 1/2 for [k,, k) = [0,0]. Right:
E/E; vs ky, for k, =0 and f =1/2.

Fig. 2-4 shows the energy levels as a function of f and as a function of the gate
voltage which is given in terms of k. We have taken E;/E. = 80, @ = 0.8, and
v = 0.02 in this example. The energy levels are symmetric about f = 1/2. In the
left hand side of Fig. 2-4, we see that the two lowest energy levels near f = 1/2,
have opposite slopes, indicating that the circulating currents are of opposite sign.
We also see that there is only a small range of 0.485 < f < 0.5 where the qubit
can be operated between these states of opposite circulating current. This range is
consistent with the range [ + f] from the classical stability as shown in Fig. 2-2. At
f = 0.49 direct calculation of the average circulating current, < ¥|I,sin ¢;|¥ > gives
that the circulating current for the lower level is I; /I, = —0.70 and for the upper level
is I;/I, = +0.70. (A calculation of the circulating current from the thermodynamic
relation —®;'0F,, /0f gives the same result.) For a loop of diameter of d = 10 um,
the loop inductance is of the order u,d ~ 10 pH|[75]. For I, ~ 400nA ( E; = 200 GHz
), the flux due to the circulating current is LI; = 10~3®,, which is detectable by an
external SQUID. Nevertheless, the induced flux is small enough, that we are justified
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in neglecting its effect when calculating the energy levels.

The difference in energy between the lower and upper levels at the operating
point of f = 0.485 is about 0.1 E; ~ 20 GHz. Moreover, in the right hand side of
Fig. 2-4 shows that the energies of these levels is very insensitive to the gate voltages,
or equivalently, to the random off-set charges. The numerical results show that the
bands are flat to better than one part in a thousand, especially at f = 0.48. To
understand the underlying physics, a tight-binding model is developed.

In Table. 2.1 and Table. 2.2, the numerical calculations on the gate voltage depen-
dence of the qubit states are shown. These results are calculated by varying the wave
vectors [kp, km] in the qubit Hamiltonian. The wave vectors directly correspond to
the charge fluctuations on the qubit gates. Table. 2.1 is for f; = 1/2 where the double
well potential is symmetric to each other and where the energy splitting of the two
qubits states is equal to the quantum tunneling ¢y3. Table. 2.2 is for f; = 0.48 where
the Zeemann energy due to the external flux dominates over the quantum tunneling.
In both situations, it is shown that the variation in energy due to wave vectors is
very small and the pc-qubit is insensitive to background charge fluctuations in the
environment.

The insensitivity can be explained by the tight-binding approach which will be de-
tailed in the next subsection. In the two-dimensional potential, a particle at each local
minimum can tunnel to three other minima: the tunneling to its nearest neighbour
characterized by ¢; and the tunneling to the two next nearest neighbours charac-
terized by ¢,. Physically, the gate voltage affects the qubit states via the tunneling
between the next nearest neighbours. The total tunneling term in the tight-binding
Hamiltonian is ty = t; -+ t,e ™79/ 4 tyei™92/¢ As t, < ¢1 in the pc-qubit, the effect of

the charge fluctuations on the qubit is also negligible.

2.2.2 Tight-Binding Model

Consider the case near the degeneracy point f = 1/2. The minima in energy occurs
when @7 = 0 and ¢, = £¢}, where cos ¢}, = 1/2a. Near the minimum at [pn,, p,] =

[r,,0], the potential looks like a double potential well repeated at lattice points
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(ks km] | [0, 0] | [0.1, 0.1] | [0.2, 0.2] | [0-3, 0.3] | [0-4, 0.4] | [0.5, 0.5]
E, | 17076 | 1.7076 | 1.7077 | 1.7078 | 1.7079 | 1.7080
E, |17163| 1.7163| 1.7161| 1.7160 | 1.7159 | 1.7158
E; |1.8904 | 1.8905 | 1.8008 | 1.8912 | 1.8915 | 1.8916
I 0 0 0 0 0 0
I 0 0 0 0 0 0
I3 0 0 0 0 0 0

kp, km] | 0,01 [0,02]| [0,04]| [0,06]| [0,08 ] [0,1]
E, |1.7076 | 1.7076 | 1.7078 | 1.7081 | 1.7083 | 1.7083
E, |1.7163| 1.7162| 1.7160 | 1.7157 | 1.7155 | 1.7154
E; | 1.8904 | 1.8906 | 1.8912 | 1.8919 | 1.8926 | 1.8928
I 0 0 0 0 0 0
I 0 0 0 0 0 0
I3 0 0 0 0 0 0

gy Bm] | (1, 0] | [0.8, 0.2] | [0.6, 0.4] | [0.4, 0.6] | [0.2, 0.8] [0, 1]
E, |1.7083| 1.7082 | 1.7080 | 1.7080 | 1.7082 | 1.7083
E, |17154| 17155 | 17158 | 1.7158 | 1.7155 | 1.7154
E; | 1.8928 | 1.8924 | 1.8917 | 1.8917 | 1.8924 | 1.8928
I 0 0 0 0 0 0
I, 0 0 0 0 0 0
I3 0 0 0 0 0 0

Table 2.1: Qubit energy dependence on gate voltage at f = 1/2.

a; = 27i, and ay = 7i, + 7i,. Fig. 2-5 shows the two eigen functions in a unit cell.
The wave function for the lower level (¥,) is symmetric and the wave function for
the upper level (¥;) is antisymmetric. Both of the wave functions are localized near
the two minima in U in the unit cell.

To find an approximate tight-binding solution, let u(¢m, ¢;p) be the wave function
for the ground state on one side of the double potential wells, and v(@m, @,) be the
wave function on the other side. The tight-binding solution for H; in Eqn. 2.13 is

® = c,u + c,v and satisfies

H uu H uv Cy Cy
=F
H,, H, Cy Cy

Because the double well is symmetric at f = 1/2, each wave function has the same

(2.14)

energy € and so Hy, = H,, = ¢ . Let t; be the tunneling matrix element between

these two minima in the same unit cell and ¢, between nearest neighbor minima in
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ko, km] | [0, 0] | [0.1, 0.1] | [0-2, 0.2] | [0.3, 0.3] | [0.4, 0.4] | [0.5, 0.5]
E, 1.6281 | 1.6281 | 1.6281 | 1.6281 | 1.6281 | 1.6281

E, 1.7942 1.7942 1.7941 1.7940 1.7940 1.7940
E3 1.8605 1.8606 1.8608 1.8611 1.8613 1.8614
I -0.6634 | -0.6634 | -0.6635 | -0.6635 | -0.6635 | -0.6635
I 0.6168 0.6164 0.6153 0.6139 0.6128 0.6124

13 |-0.3604 | -0.3602 | -0.3598 | -0.3593 | -0.3590 | -0.3588
[kp, km] | [0,0] | [0,0.2] | [0,0.4]| [0,0.6]| [0,0.8] [0, 1]
E, 1.6281 | 1.6281 | 1.6281 | 16281 | 1.6281 | 1.6281
Es 1.7942 | 17942 | 17940 | 1.7939 | 1.7938 | 1.7937
Es 1.8605 | 1.8607 | 1.8611 | 1.8616 | 1.8621 | 1.8622

I -0.6634 | -0.6634 | -0.6635 | -0.6635 | -0.6636 | -0.6636
I 0.6168 0.6159 0.6137 0.6109 0.6087 0.6079
I3 -0.3604 | -0.3600 | -0.3591 | -0.3581 | -0.3574 | -0.3571

s km] | (L, 0] | [0.8, 0.2] | [0.6, 0.4] | [0.4, 0.6] | [0.2, 0.8] [0, 1]
E 1.6281 | 1.6281 | 16281 | 1.6281 | 1.6281 | 1.6281
Es 1.7937 | 1.7938 | 1.7939 | 1.7939 | 1.7938 | 1.7937
Es 1.8622 | 1.8619 | 1.8614 | 1.8614 | 1.8619 | 1.8622

I -0.6636 | -0.6636 | -0.6635 | -0.6635 | -0.6636 | -0.6636
Iy 0.6079 0.6094 0.6120 0.6120 0.6094 0.6079
I3 -0.3571 | -0.3577 | -0.3587 | -0.3587 | -0.3577 | -0.3571

Table 2.2: Qubit energy dependence on gate voltage at f = 0.48.

the adjacent unit cells. Then H,, = H}, = —t; — tye’%32 — tye*(@1-22)  The eigen
energy levels are F = ¢y F |Hyy|- The effect of ; is to split the degeneracy of the
two states so that at k = 0, the energy is ¢y F (2¢5 + ;) for the symmetric and
antisymmetric states, respectively. The effect of ¢, is to give dispersion in k, that is,
in gate voltage and off-set charges, to the energy levels. Because we want to minimize
the gate-voltage (and off-set charge) dependence, we seek to minimize the tunneling
t, from one unit cell to another. Likewise, we want the two localized states in the
two wells to interact, so that we want ¢; to be non-zero. This is why the potential
landscape in Fig. 2-3 was chosen to have a = 0.8: The potential has a much lower
barrier between states in the double well, but a large barrier between states from one

double well to the next.

An estimate of ¢; can be obtained from calculating the action S; between the two

minima and using ¢; ~ (hw;/2m)e~%/" where w; is the attempt frequency of escape in
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Figure 2-5: The eigen wave functions for the lower (¥;) and upper (¥3) energy levels
at f =1/2 as a function of the phases.

the potential well. The action from point @, to @, is

Py 1/2

S= [ @Mun(E - V)" |dipn . (2.15)
Pa

Here n is a unit vector along the path of integration, dy, the differential path length,

and M,, =n” -M - n is the component of the mass tensor along the path direction.

In both cases we will approximate the energy difference E — U as the difference in

the potential energy AU from the minima along the path.

First, consider the calculation of ¢;, the tunneling matrix element within the unit
cell. The path of integration is taken from (—¢,,0) to (¢%,,0) along the direction
n = i, so that M,, = M,, for this path. The potential energy at the minima is
Upin = 2—1/2a. The difference in the potential energy from the minima at (-}, 0)
along this path is can we written as AU; = E;{20(cos ¢om — 1/20)?}. The action
along this path is then

™ 1
S = /«o (AMaEy)? (cos Om — —) dpm, (2.16)
P 20
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which yields

1
S, = Alda(l + 2a + ) Ey/ E]"2 (sin on — ﬁtp’:n) . (2.17)

Now consider t,, the tunneling from unit cell to unit cell. For example, take the
integration to be from (y},,0) to one of its nearest neighbor minima at (7 — ¢?,, 7).
We will take the path of integration to be a straight line joining these two points in the
©m-¢p plane. This path is not the optimal trajectory, but the difference of this straight
line path from the optimal trajectory is quadratic in the small deviations of these two
paths. The straight line path is described by ¢, = ¢}, + Ap, where A = (7 — 2%, ) /m;
it has a direction of n = Mi, +i, and a path length of ds = v/1 + A\2dy,. The mass on
this direction is M, = (M, + A2M,,)/(1 + X?). The difference of the potential energy
along this path from the minima energy is AU,/E; = —2cos g, cos (¢k, + App) +
2a.cos? (¢}, + App) + 1/2a.. The action is then

12 7 AUy /2
S2 = [2MaE5(1 4+ 47)] /0 (E—J?) di, . (2.18)

The integrand is not analytically integrable, but it is zero at the end points of the

integration and is well approximated by {/AU,/E; =~ (1/v/2a) cos(p, — 7/2). With
this approximation, Sy = (4MyE;(1 + 2?)/ a)l/ 2 which is

Sy = h\l E—Z <(1 + 7)(21 M) 2,\2> . (2.19)

To compare the tunneling rates we would first need the attempt frequencies in
the two directions. However, we can consider the attempt frequencies to be of the
same order of magnitude and thus ty/t; ~ e~ (52=5)/%  For o = 0.8, we find that
S1/(h\/Es/E;) ~ 0.6 and Sy/(h\/Es/E;) ~ 1.4. For E;/E, ~ 100, then to/t; ~
10~* < 1. We are therefore able to ignore t5, the tunneling from unit cell to unit cell.
This means that there is little dispersion in the energy levels with k and consequently,
with the voltage or off-set charges. In fact, using the action one can show that for o

smaller than about 0.85, t; > t; for E;/E, ~ 80. Throughout the rest of the paper
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we will choose parameters so that the effects of ¢, can be ignored.

We now obtain an approximate solution for the energy levels and tunneling ma-
trix elements by modeling each side of the double potential. Near the minimum at
[©m, ©p] = [¢h,, 0], the potential looks like an anisotropic two-dimensional harmonic

oscillator. The Hamiltonian in the vicinity of the minimum is approximately, (with

Qi =0)

H~ %Z—z + 5 Mywpio, + %;—i + %merzn(wm —om)? +Us (2.20)
where ,
e s 220
and
2 _
hg’j;n - \l a(l +42(::C-¥|- ¥) (llng/Ec) (222)

and U, = 2 — 1/2a. The ground state ¢, of the single harmonic well has energy
€0 = hi(wp + wm) /2 + U,. Let’s now use this approximation to understand the energy
levels, first at f = 1/2 and then near this point.

At f = 1/2 we expect the four lowest energy levels of the two-dimensional har-
monic oscillator to be with wy,, < wp, E1 =€y — t1, B = €g +t1, B3 = €9 — 1 + hwp,
E4 = ¢y + t1 + hw,,. Table 2.3 compares the results and we also list the small anhar-
monic corrections to the simple harmonic energy levels. We have chosen to compare
(E1 + E»)/2 and (F5 + E4)/2 so that the tunneling term is absent and a direct com-

parison with the simple harmonic oscillators can be made. The agreement between

hwm hwp Eo  (E1+ E2)/2 (E3+ Ey)/2
Harmonic 0.193 0.247 1.60 1.79 1.84
Anharmonic | 0.183 0.238 1.59 1.77 1.83
Numerical 0.154 0.226 1.58 1.74 1.81

Table 2.3: A comparison of the energy levels with the approximate harmonic oscillator
levels (with harmonic and anharmonic terms) with the numerical calculations.Here,
f=1/2, =038,y =0.02, and and E;/E, = 80. Also U, = 1.38 and Uypar = 0.225
for the harmonic and anharmonic estimations. All the energies are in units of E;.
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this tight-binding approximation and the numerical calculations is good. We have
also included the barrier height from one minimum to the other one in the same unit

cell.

If we estimate the attempt frequency for t; as w,,, then we find that for the
parameters in Table 2.3, the action calculation gives t; = 107*E;. From the full
wave functions, we estimate ¢, = (Fy — E1)/2 = 1073E;. This discrepancy can
be made smaller by noting that in the calculation of the action, we could more
accurately integrate from the classical turning points in the potential rather than from
the minima [76]. However, for our purposes, the action expression will be sufficient for
qualitative discussions, and we will use the full numerical calculations when estimating

actual numbers.

So far we have estimated the energy levels and tunneling matrix elements when
f=1/2. As f is decreased from f = 1/2 the potential U changes such that one well
becomes higher than the other, and the barrier height also changes. For the qubit
we are mainly interested in the lowest two energy states of the system, so we now
estimate the terms in the tight-binding expression of Eqn. 2.14. By defining the zero
of energy as the average of the two lowest energy states at f = 1/2, we find that the

Hamiltonian for these two states is

g (F -
= (_t _F) (2.23)

Here F' is the energy the change of each of the wells measured with respect to the
energy of the wells at the degeneracy point; that is, F' = (8U/8f)éf where U is
the potential energy. Note that since we will be operating the qubit just below the
degeneracy point f = 1/2, then F' < 0. Also, t = t; + At, where t; is the intra-cell
tunneling matrix element calculated at the degeneracy point and At is the change.
The eigen values are A\;2 = F+/F2 + 2 where we have explicitly assumed that F is

negative and ¢ is positive.
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The eigen vectors are given as the columns in the rotation matrix

Dg) — cosf/2 —sinf/2
)= (sin0/2 cosf/2 ) (2:24)

where § = —arctant/F. For example, at the degeneracy point, F' = 0, so that
E = Tt and the eigen vectors are (1/v/2,1/+/2)T and (=1/v/2,1/v/2)T. These are
just symmetric and antisymmetric combinations of the single well wave functions, as
expected. For f slightly below 1/2, we have |F| > ¢, so 8 = 0, and the energies are
E = 7VF2 + 2 =~ £F. The eigen vectors are approximately (1,0)7 and (0,1)7, so
that the eigen states are nearly localized in each well.

It is more convenient to discuss the Hamiltonian and eigen states in the rotated
coordinate system such that Hp = DT(9)HD(6). In the rotated coordinate system,

the Hamiltonian is diagonal with
Hp=—-VF?+1t0, (2.25)

and the eigen energies are E = ++/F2 + 2 and the eigen states are then simply spin
down |0 >= (1,0)T and spin up |1 >= (0,1)7 vectors. In other words, no matter
what the operating field is, we can always go to a diagonal representation; but the
rotation matrix must be used to relate the simple spin up and down vectors to the

linear combinations of the wave functions in the well.

2.3 Manipulation Qubit

Universal quantum logic[5, 7, 77] can be realized by constructing a discrete set of
elementary quantum gates[78]. A convenient choice of the discrete set consists of
single qubit rotations and a two-qubit CNOT gate. With these building blocks, any
unitary transformation in the state space can be constructed polynomially. In this
section, we discuss how to implement these elementary gates for the persistent-current

qubit by applying radio-frequency pulse and by inductive coupling between different
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Figure 2-6: The four-junction qubit. Two junctions form a SQUID loop and have
Josephson Energies and capacitance ( times larger than the other junctions 1 and
2 which both have Josephson energies E; and capacitance C. The nodes A and B
represent the superconducting islands which are coupled by gate capacitors Cy = vC
to gate voltages V4 and V. The arrows define the direction of the currents. The flux
is out of the page.

qubits.

As noted in the previous sections, the flexibility of the design of Josephson junction
circuits affords a variety of methods for manipulating and controlling the state of
qubits. In this section we show how the basic qubit circuit can be modified to allow
precise control of its quantum states. To manipulate the states of the qubit, we need
control over the properties of the qubit. For example, control over f, the magnetic
field, allows one to change the operating point and F', the value of the energy difference
between the two states. Control over the potential barrier height allows changing of

the tunneling through ¢. For example, if the operating point of F, and t, are changed
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by AF and At, then the Hamiltonian in the rotated coordinate system is

Hp=—\/F2+t0,+ AHp (2.26)

where with 6, = — arctant,/F,,

AHp = AF(cos@ o, —sinfo,) — At(sinf o, + cosb o,) . (2.27)

2.3.1 Single Qubit Rotation

The control over F' can be done by changing f. The control over ¢ can be done by
changing the barrier heights. To control the barrier heights by external parameters,
we replace the third junction by a SQUID which acts like a variable strength junction.
The modified circuit of the qubit is shown in Fig. 2-6.

We now analyze this circuit since it will be used in all subsequent discussions of
the qubit. Flux quantization around each of the two loops, gives ¢; —pa+¢p3 = —27f;
and @4 — @3 = —27 f,. The Josephson energy due to each junction is E;,(1 —cos ¢,).

The total Josephson energy U is then

U
7= 2+ 28 — 2¢0s pp €08 P, — 2 cos( f,) cos(2m fiy + 2¢0p,) , (2.28)
J

where @, = (91 + ©2)/2 and @ = (91 — ¥2)/2, and also f, = fs and f, = f1 + f2/2.
Hence we see that 28 cos(nf,) plays the role of a in the three junction qubit, but
now this term can be changed by changing f, = f2, the flux in the top SQUID loop.
Likewise, f, = f1 + f2/2 plays the role of f in the three-junction qubit. The reduced

Hamiltonian is then

1B} 1P2
H, = EE-FEE'-FEJ{Q-FZ,@
—2 €08 @y, €OS P, — 2 cos(7 fo) cos(27 fy + 20m) } (2.29)

where M, = (®,/27)?2C(1 + v) and M, = (®,/27)?2C(1 + 48 + 7).
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To manipulate the parameters in the Hamiltonian let the magnetic fields change
very slightly away from the same degeneracy point of f; and f; to a new operating
point f? = f¥ + € and f§ = f5 + 2. Then F' changes from zero to F, = r1€; + ra€y
and t changes to t, = t; + s1€1 + s2€2, where r; and s; are constants and ¢, is the
tunneling matrix element at the degeneracy point as found in the previous section.
We take the operating point to be effectively in the regime where f < 1/2 in Fig. 2-4,
so that €;o < 0. Hence, F, < 0. Also, t, is assumed to remain positive. In the

new rotated frame with 6, = — arctant,/F,, the Hamiltonian given by Eqn. 2.25 is
HD = —\/Foz +tgaz.

Away from this new operating point, let fi = f7 + 6, and fo = f§ + . In
the operation of the qubit, |§;| < |¢;| and §; usually will usually have a sinusoidal
time dependence. Then F = F, + 141 + 7m0, and ¢ = t, + s16; + S202, so that
AF = 1101 + 1202 and At = 5101 + s202. Then the Hamiltonian in the rotated system
with 6, = — arctant,/F, is

Hp=—/F2+ 820, + AHp (2.30)

where

AHD = (7‘161 + 1‘2(52)(008 90 O, — sin 90 0',;)

— (8101 + 8202)(sin 6, 0, + cos B, 0;) . (2.31)

Hence we see that changes in the magnetic field from the operating point of f? and

f3 cause both o, and o, types of interactions.

To find the magnitude of these changes, we calculate the coefficients of change
(r1, T2, $1 and sp) most simply at the degeneracy point where ¢; = 0; that is, at
the degeneracy point f? = f*. We choose the degeneracy point for the four-junction
qubit at f{ =1/3 and f; = 1/3. This results in classically doubly degenerate levels.
In fact, any choice which satisfies 2f; + f5 = 1 when the classical energy U has two

minima, will also result in doubly degenerate levels. For example f; = 1/2and f; =0
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is also a possible and convenient choice. However, we prefer f; = f5 = 1/3 for the

following reason. The change in potential energy with f, gives (with f, =1/2)

oUu

ar. = —2nBsinnf> cos 2¢?,
2
gflfj = —2n?Bcosmflcos2¢?, (2.32)

The first order terms vanishes if f§ = 0, resulting in the potential barrier always
decreasing with changes in f,. On the other hand, if f¢ = 1/3, then the barrier
height can be made to increase and decrease with changes in f5, thus allowing more

control of the qubit.

Now the coefficients of change (71, r2, s; and s3) can be estimated both from the
numerical calculations and from the tight-binding model as shown in Appendix B.

We find that at the degeneracy point of f; = fo = 1/3,

E—IJ = 2my/1 — 1/(402) . (2.33)

For our example with 3 = 0.8, we have r1/E; = 4.90. Estimates obtained from the
numerical calculations done by changing f; and fs, give r1/E; = 4.8 and ro/E; = 2.4

in good agreement with Eqn. B.6 in Appendix B.

- Likewise, from Appendix B we have that s; = 0 and s; = nt\/EJ/—EC where 7 is
of the order of unity. For the operating point we find  ~ 3.5. Therefore, changes
in H due to changes in ¢; go like o,. These tight-binding estimates for 3 = 0.8 give
sy = 0 and sy/FE; = 0.03. Full numerical calculations for our example with s; = 0
and s/F; = 0.20. The agreement with the tight-binding results are good, although

the tight-binding underestimates s, with for these parameters.

In summary, from the degeneracy point of f;' = f5 = 1/3, let the operating point
be f¢ = ff + € and f§ = f; + €, so that F, = r1(e1€2/2) and t, = t; + s2€2. Now
consider the changes in field about the operating point such that f; = f; +d; and
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fa = f5 + 6. In the rotated frame where 6, = — arctant,/F,, the Hamiltonian is

Hp = —/F2+ 0, + AHp (2.34)

where

AHp = r1(01 + 62—2)(cos 0,0, —sinb, o)

—  $209(sinf, o, + cosb,0;). (2.35)

and r/Ey = 2m4/1 —1/(4(?) and s, = nto\/m.

A typical design for a qubit will have E;/E, = 80, 8 = 0.8, v = 0.02. We find from
numerical calculations that ¢, ~ 0.005E; and n = 3.5, which agree well with our tight-
binding estimates. We operate at f; = f, = 0.33 so that €; = e, = —1/300. (This is
equivalent to operating the three-junction qubit at f = f; + fo/2 = 0.495 in Fig. 2-4.)
Writing the energies as E; = hv;, we have taken typical values of E; = 200 GHz and
E. = 2.5GHz, and we find that t, = 1 GHz and F,, = 5 GHz (which gives a splitting
between the two states of about 10 GHz). The Hamiltonian is found to be

% = —0.0250, + (4.08; + 2.18,) 7, — (0.466; + 0.415,) 0, . (2.36)
J

The numerical values used are from numerical calculations. These values agree well
with the estimates used in Eqns. 2.34 and 2.35 for the level splitting and the terms
proportional to r;; the terms proportional to ss match to about 50%, due to the more

sensitive nature of estimating the tunneling terms.

The terms containing o, can be used to produce Rabi oscillations between the two
states by modulating §; and d; with microwave pulses of the frequency of the level
splitting of 2F;, = 10 GHz. One could arrange the values of §; and d, to make the time-
varying o,-term vanish. Then the operation of the qubit would be isomorphic to the
NMR qubit. However, our simulations show that such an arrangement couples higher
energy levels and invalidates the simple two-state approximation. This is due to the

large matrix element between the ground state and the second excited state given
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by the change in potential due to varying d,. (It is interesting to note that similar
coupling to higher levels occurs in qubits based on the RF SQUID and on simple
charge states.) We propose to manipulate the qubit by varying &; which causes a
Rabi oscillation through the o, term as well as a strong modulation of the Larmor
precession through the time varying o, term. Because the Rabi frequency is much
smaller than the Larmor frequency, the precession causes no problem for manipulating
the qubit. For ; = 0.001 and d» = 0, the Rabi frequency is about 90 MHz. We note
that this mode of operation is also possible with the three-junction qubit. Of course,
it will not be possible to completely eliminate the deleterious effects of the d, coupling,
but the effect of this coupling can be greatly reduced if 4, is restricted below 0.0001.

The varying magnetic fields §; and d, can be applied locally to the qubit by using
a control line to inductively couple to the qubit. Moreover, if the control line is driven
by an Josephson oscillator, then the coupling circuit could be fabricated on the same

chip.

2.3.2 Interaction between Qubits

The qubits interact with each other via the mutual inductance between the super-
conducting loops. The qubit behaves as giant magnetic dipoles and to first order, the
interaction between qubits is the dipole interaction. This interaction strongly depends
on the geometry of the qubit layouts. In a planar layout, where qubits distribute on
the same surface, the interaction goes away with 1/r%, where r is the distance be-
tween the two qubits. A variety of methods are available for coupling qubits together.
As noted in [77, 79], essentially any interaction between qubits, combined with the
ability to manipulate qubits individually, suffices to construct a universal quantum
logic gate. Here we present two methods for coupling qubits inductively as shown in
Fig. 2-7. The inductive coupling could either be permanent, or could be turned on
and off at will by inserting Josephson junctions in the coupling loops.

Fig. 2-Ta shows one way of coupling two identical qubits. The lower portions of
each qubit (the loops that contain the circulating currents) are inductively coupled.

To a first approximation we model the coupling as changing the flux in each of the
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Figure 2-7: Coupling of qubits A and B through the mutual inductance between
(a) the lower regions of both, and (b) the lower region of A and the upper region of

B.
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two lower rings only through the mutual inductive coupling. (We ignore the the self-
inductance which can easily be included.) The effective frustration in the lower loop
of A, f#, is changed over the applied frustration f{ to f* = fA + MIB/®,. Here
the current in the lower loop of B is IZ. Similarly, fZ = f& + MI#/®,. The coupled
Hamiltonian is

Hap = HA(f) + HP(f8) + MIPIE (2.37)

which is the sum of the Hamiltonians for each system plus a term due to the mutual
inductive coupling.

The inductively coupled contribution to the frustration is estimated to be of the
order of 10~3®, which is much smaller than the applied frustration. Since each per-
sistent current will inductively couple into the other qubit, this will produce changes
in the Hamiltonian of the ¢, and o, type and these changes will be proportional to
the sign of the circulating currents in the qubit. Hence, we expect the coupling to be

described by an interaction Hamiltonian of the form,

HYY = k0208 + k0208 + +k30207 (2.38)
Hence we see that this interaction has both 202 and ¢2¢? types of coupling. We

have an estimated magnitude of x; =~ 0.01E}.

As Eqn. 2.36 shows, the inductive coupling between the qubits can be made to be a
substantial fraction of the qubit Larmor frequency. This is an attractive feature, as the
coupling between two qubits sets the speed limit for how rapidly two qubit quantum
logic operations can be performed in principle. In practice, it may be desirable to
sacrifice speed of operation for enhanced accuracy: in this case, the inductive coupling
could be designed to be smaller by decreasing the overlap of the inductive loops with
the circuits.

Coupling between qubits is similar to the coupling we envision between the qubit
and the measurement circuits containing SQUID-like detectors. In its usual configu-
ration, the SQUID is biased in the voltage state which produces a voltage related to

the flux through its detector loop. However, such a strong, continuous measurement
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on a qubit would destroy the superposition of states in the qubit and project out only
one of the states. This problem can be circumvented by designing a SQUID such
that it is current biased in the superconducting state and hence is not measuring the
flux in its detector loop. When one needs to measure the qubit, the SQUID can be
switched to its voltage state, for example, by applying a pulse of bias. The coupling
from mutual inductance between the SQUID and the qubit will also have to be con-
trolled. Other measurement schemes using SQUIDs which are weakly coupled to the
macroscopically coherent system have been proposed [80, 81, 82].

Detailed discussion on how to calculate the energy states of the interacting two

qubit system is presented in Appendix C.

2.4 Computing with A PC-Qubit

All the ingredients for quantum computation are now available. We have qubits
that can be addressed, manipulated, coupled to each other, and read out (chapter
3). As will be indicated later in this thesis (chapter 4, 5), the particular qubits that
we have chosen are well insulated from their environment as well. The flexibility
of design for collections of qubits now allows a wide variety of overall designs for
quantum computers constructed from such qubits. In this section, we will illustrate
the implementation of several simple quantum logic elements, including single qubit
rotation and a two-qubit CNOT gate. Then we will introduce the computation with
a linear chain of qubits and a network of quantum bits.

Before discussing various superconducting quantum computer architectures, let us
review some basic ideas about quantum logic and see how to implement quantum logic
using our superconducting qubits. A quantum logic gate is a unitary operation on
one or more qubits. Quantum computations are typically accomplished by building
up quantum logic circuits out of many quantum logic gates. Just as in the case of
classical computers, certain sets of quantum logic gates are universal in the sense that
any quantum computation can be performed by wiring together members of the set.

In fact, almost any interaction between two or more qubits is universal [77, 79]; but a
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convenient universal set of quantum logic gates widely used in the design of quantum
algorithms consists of single qubit rotations and the quantum controlled-NOT gate,

or CNOT [78].

2.4.1 One-Qubit Rotation

An arbitrary one qubit rotation can be written as e~"* = cost — isinto for some
Pauli matrix ¢ = ao, + bo, + co,, where a® 4+ b* + ¢ = 1. There are many ways
of accomplishing a one qubit rotation: the ability to rotate the qubit by a precise
amount around any two orthogonal axes suffices. Pursuing the analog with NMR,
we choose a method that involves applying an oscillatory field applied at the qubit’s
resonant frequency to rotate the qubit.

The Hamiltonian for a single qubit (A) can be gotten from Eqn. 2.36. Here
we assume F; = 200 GHz, §; = 0.001 coswt and d» = 0, and the level splitting is

w = 10 GHz. Then, the Hamiltonian is
Hp(GHz) =50, + 0.80 (coswt) o, — 0.09 (coswt) o, (2.39)

The Rabi frequency is 90 M Hz so that the duration of a 7 pulse would be about

20 nsec.

2.4.2 Two-Qubit Controlled NOT

A controlled NOT is a two qubit quantum logic gate that flips the value of the second
qubit if and only if the value of the first qubit is 1. That is, it takes: |00) — |00),
|01) — |01), |10) — |11), and [11) — |10). A controlled NOT can be combined
with single qubit rotations to give arbitrary quantum logic operations. A controlled
NOT can be straightforwardly implemented in the superconducting qubit system
by exploiting the analogy with NMR. Suppose that two qubits A and B have been
constructed with an inductive coupling between their lower loops as in the first part
of the previous section. Then the level splitting of qubit B depends on the state of
qubit A, with values AE, for A in the |0 > state and AE,; for A in the |1 >
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state. When a resonant pulse corresponding of AFE,;/h is applied to qubit B, it will
only change if qubit A is in its |1 > state. Since the coupling between the qubits
is considerably larger than the Rabi frequency, the amount of time that it takes to
perform the controlled NOT operation is equal to the amount of time it takes to
perform a 7 rotation of a single qubit.

So the basic quantum logic operations can be performed on our superconducting
qubits in a straightforward fashion. Accordingly, it is possible in principle to wire
groups of qubits together to construct a quantum computer. A variety of architectures
for quantum computers exist, usually consisting of regular arrays of quantum systems
that can be made to interact either with their neighbors or with a quantum “bus” such
as a cavity photon field or a phonon field in an ion trap that communicates equally
with all the systems in the array. Because of the flexibility inherent in laying out the
integrated Josephson junction circuit, a wide variety of architectures are possible. A
particularly simple architecture for a quantum computer can be based on the proposal

of Lloyd[5] for arrays of quantum systems such as spins or quantum dots.

2.4.3 Linear Chain of Qubits

Consider a linear array of qubits ABABABAB. ... Let the bottom of each qubit be
inductively coupled to the top of the neighbor to the left. Also let each type of qubit,
A and B, have a slightly different Josephson energy. Each qubit also has the area
of the top loop which is half that of the bottom loop. In the absence of the driving
electromagnetic fluxes (the 67), the Hamiltonian for the system can be generalized to

be written as

H=-h) (wkoi + 2Jk,k+laza,§+1) (2.40)
k

where hwy, = /F2 + t2 and Jx g1 = Kk x+1(T1k + T141)/2. This problem then maps
on the linear chain of nuclear spins which was shown by Lloyd to be a universal
quantum computer. The coupling needed to perform 7/2 pulses is provided by the
terms containing the 67’s. The nice feature of this linear chain is that separate control

lines for AC fields are not needed. The whole linear array can sit in a microwave cavity
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Figure 2-8: A method for coupling a single qubit to other qubits.

and be pulsed at the desired frequency. (The dc bias fields to ensure fi=fo=1/3
will require at least two dc control lines). The frequencies needed are around 10—
95 GHz with intervals of 1 GHz (and with a resolution of about 0.1 GHz). We could
make these numbers larger or smaller if needed.

Details of computing with this are given in various references, see for examples

Ref. [83] and Chapter 20 of Ref. [84].

2.4.4 Superconducting Quantum Integrated Circuits

There is no reason why the inductive loops cannot couple qubits that are far apart. In
addition, a single qubit can be coupled to several other qubits as shown in Fig. 2-8.

This arrangement requires separate AC control lines for each of the qubits, which
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then demands localized on-chip oscillators. One can build up essentially arbitrary
integrated circuits of superconducting qubits by this method. This flexibility in the
construction of quantum computer architectures is one of the benefits of using su-
perconducting Josephson junction circuits to perform quantum computation. The
quantum integrated circuit could be set up to provide a number of useful features.
For example [85], one might be able to design the circuit and interactions in such
a way that it automatically implements an intrinsically fault-tolerant quantum com-
puter architecture such as those proposed by Kitaev[86] and Preskill[87]. In addition,
since the circuits are parallelizable in that different quantum logic operations can be
performed in different places simultaneously, the circuit could be designed to provide
the maximum possible parallelization of a particular problem such as factoring[1],

database search[2, 3], or computing a discrete quantum Fourier transform(1, 88].

2.5 Decoherence

We have shown how superconducting circuits can be used to construct qubits and
quantum logic circuits. These superconducting qubits have been idealized in the
sense that we have ignored the effects of manufacturing variability, noise and de-
coherence. Manufacturing variability can be compensated for as discussed above:
before performing any quantum computations, the properties of individual qubits
can be measured, recorded in a look-up table in a conventional computer, and used
either to supply compensating calibration fields or to alter the frequencies with which
control pulses are supplied to the qubits.

The sources of decoherence can be divided into categories: the fluctuations of
the environment and the coherent error during gate operation, interaction with other
qubits, and leakage to other energy levels. The error can be probabilistic, continu-
ous and discrete. It can be shown that the evolution of the density matrix of the
qubit can be described by an operator method where possible qubit errors can be
completely described by n x n Hermitian operators as €(pg)(t) = 2’1’2 E;pE!, n being

the dimension of the quantum system, and E;,7 = 1---n are the error operators. As
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a result, even continuous error on the 2-level qubit can be described by the discrete
Pauli operators. The qubit error then includes the phase flip error which adds a —1
to the phase of state |1), the state flip error which flips the state |0) to |1) and vice

versa, and the combination of these two errors.

From the point of view of the ultimate performance of a superconducting com-
puter, a more pressing issue is that of environmentally induced noise and decoherence.
In real systems the performance of a qubit will be limited by dissipative mechanisms
which cause the quantum state to decohere in time 7,. The ‘quality factor’ for a qubit
is the decoherence time divided by the amount of time it takes to perform fundamen-
tal quantum logic operations[7]. The quality factor gives the number of quantum
logic operations that can be performed before the computation decoheres, and should
be 10* or greater for the quantum computer to be able to perform arbitrarily long
quantum computations by the use of error-correction techniques[89, 90, 91, 92, 93].

Decoherence can be due to “internal” dissipation (quasiparticle resistance), or
coupling to an environmental degree of freedom. It is also possible to couple to an
environmental degree of freedom, without a dissipative mechanism, that will still lead
to decoherence[94]

We will now discuss some of the major sources of decoherence.

Normal state quasi-particles can cause dissipation and energy relaxation at fi-
nite temperatures in Josephson junctions. However, mesoscopic aluminum junctions
have been shown to have the BCS temperature dependence for the density of quasi-
particles. At low temperatures this density is exponentially small[81], so quasi-particle
tunneling will be strongly suppressed at low temperatures and at low voltages, as was
seen in a system with multiple superconducting islands in Ref. [95]. We estimate a
lower bound of 10* for the quality factor, given a sub-gap resistance of 10° [81].

The qubit can also decohere by emitting photons. We estimate this by clas-
sically estimating the rate photons are emitted by magnetic dipole radiation from
oscillating current in the loop defining the qubit. For a loop with radius R with an
alternating current of frequency v and rms amplitude of I,,, the power transmitted

to free space is P, = K,R'I2v* where K,, = 8u,m®/3c%. A typical rate for pho-
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ton emission is 1/t,, = Pp,/hv, which gives an estimate of the decoherence time of
tm = h/KnR*I213. An estimate for the frequency is the Larmor frequency, (other
characteristic frequencies such as the Rabi frequency are even smaller). For our qubit
R~ 1um, v ~ 10GHz and I,, = 1nA, we find that t,, ~ 107s, so that this is not a
serious source of decoherence. However, it should be noted that proposals for using
RF SQUIDs for qubits, involve currents of the order of 1 A and and loops of the order
of 10 um. These RF SQUIDs have t,, ~ 1073 sec, which is substantially lower than
for our qubits which can be made much smaller and have much less current. However,
by making the rf SQUID loop in a gradiometer geometry, the dipolar radiation can
be greatly reduced[28].

Inhomogeneity in the magnetic flux distribution can also be a source of decoher-
ence. This is similar to 75 in NMR systems. We estimate this for our system by
calculating the amount of flux a 1 pm x 1 gm wire carrying 100 nA of current induces
in a loop of the same size which has its center 3 um away. We find that the induced
frustration is about §f = 10~7. If this is taken as an estimate of the typical variance
of the frustration that different qubits experience, then there will be a spread of op-
erating frequencies among the loops. An estimate of ¢; is the time for the extremes
of this frequency to differ by . This results in ¢4 &~ 7/(2r,6f), where we have taken
the larger value from Eqn. 2.36. With r,/h = 600 GHz, we find ¢4 ~ 1.5msec. The

dipole-dipole interaction between qubits gives a time of the same order.

We have also estimated the magnetic coupling between the dipole moment of the
current loops and the magnetic moments of the aluminum nuclei in the wire. At
low temperatures where the quasi-particles are frozen out, the decoherence time for a
single qubit is of the order of 77 which is exponentially large in the low-temperature
superconducting state. For an ensemble of qubits, the decoherence time may be of
the order of milliseconds due to the different configurations of nuclear spins in the
different qubits. However, this effect may be reduced by aligning the spins or by

applying compensating pulse sequences.

Coupling to Ohmic dissipation in the environment has been modeled for super-

conducting qubits operating in the charging regime[22]. These authors found that the
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source of decoherence could be made sufficiently small such that the quality factor
is large enough. Similar calculations for qubits in the superconducting regime of cir-
culating currents have not yet been done. Experiments to measure this decoherence
time in our circuits are underway. In practice, electromagnetic coupling to the normal
state ground plane can limit coherence[56]; however, a superconducting ground plane
can greatly reduce this coupling.

Other possible sources of decoherence are the effects of the measuring circuit,
the arrangement and stability of the control lines for the magnetic fields, the ac
dielectric losses in the substrate at microwave frequencies. These and other source of
decoherence will have to be estimated in a real circuit environment and measured.

Taking 0.1 msec as a lower bound on the decoherence time and 10 nsec as a switch-
ing time, we find that the quality factor is of the order of 10*. Furthermore, if the
proper set of topological excitations is used to store information, the decoherence
time for quantum computation can be made substantially longer than the minimum

decoherence time for an individual junction circuit[86].

2.6 Summary

In this chapter we have discussed a superconducting qubit which has circulating
currents of opposite sign as its two logic states. The circuit consist of three nano-scale
Josephson junctions connected in a superconducting loop and controlled by magnetic
fields. One of the three junctions is a variable junction made as a SQUID loop.
This qubit has quantum states which are analogous to a particle with an anisotropic
mass moving in a two-dimensional periodic potential. The Josephson junctions have
much larger Josephson energy E; than the charging energy E. E; > E,, so that the
qubit states are close to localized flux states. The circuit is intrinsically insensitive to
background charge fluctuations which is a serious problem in the Single-Cooper-Pair-
Box qubit (SCPB). This insensitivity comes from the almost zero tunneling between
the local minima in different unit cells of the potential energy.

We numerically calculated the energy band structure for this circuit versus the
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external flux in the superconducting loop. The numerical result gives a convenient
way to derive the tunneling between the local flux states and can be compared with
that from the WKB calculation. We also numerically calculated the transition matrix
elements between the qubit states when microwave radiation is applied. The result
shows a Rabi oscillation frequency of 100 MHz when the applied radiation amplitude
is about 0.001 flux quantum. We studied the inductively coupled qubits by a mean-
field method (see Appendix C). In this simulation, the interaction operator from one
qubit to the other is substituted by the average of the corresponding operators, and
the qubit states under this average are calculated. Then, the calculated results are
substituted to the next round of the iteration. Eventually the calculation converges.

We have applied the properties of the pc-qubit to implementing basic quantum
logic gates including single qubit rotation, a two-qubit CNOT gate, a one-dimensional
qubit chain, and qubit networks. Simply by applying microwave radiation to a qubit,
all these computations can be realized. These simple logic operations are the building
blocks of large scale quantum computing, and are a sufficient set of gates for universal
quantum computing.

In this chapter, we also briefly mentioned the readout of the qubit and the deco-
herence of the qubit. As was shown the readout can be simply achieved by a magne-
tometer. In Chapter 3, we will study the measurement process in detail, including the
interaction between the qubit and the detector, the noise related to the measurement
process and the built-in limit to the measurement efficiency. We mentioned the major
sources of qubit errors in this chapter. The decoherence by environmental noise will
be discussed further in Chapter 4 and quantum control on gate error will be discussed

in chapter 5.
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Chapter 3

Measurement of the PC-Qubit

Measurement is a crucial step in quantum information processing. In the first ex-
periments on the superconducting persistent-current qubit (pc-qubit), a dc SQUID
magnetometer was used to detect the flux of the qubit and the switching current
histogram of the SQUID was analyzed to obtain information about the qubit state.
In this chapter, we study this measurement procedure in detail by modeling the dc
SQUID as two interacting harmonic oscillators during the premeasurement entangle-
ment process. Two questions are answered regarding this study: (1). the spectrum
of the noise propagated to the qubit from the environment of the dc SQUID; (2). the
limitation on measurement efficiency in this qubit-magnetometer setup. We also cal-
culate the tunneling rate of the metastable SQUID state from the washboard potential
and compare the theoretical histogram with the experiment.

In this chapter we study the pc-qubit measured by a dc SQUID. Both the in-
formation obtained during the measurement and the noise transferred to the qubit
during the measurement are calculated. The decoherence and relaxation of the qubit
are then estimated with the calculated noise spectrum. In section 3.1, we study the
interacting system of the qubit and the SQUID in detail and derive the static re-
sponse of the SQUID to the qubit. Then, we analyze the measurement process for
this qubit-SQUID system in section 3.2 and derive an upper bound to the mutual
information that could be achieved during one measurement. In section 3.3, we apply

the Caldeira-Leggett formalism to calculate the spectrum of the noise transferred to
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the qubit from the SQUID’s environment by mapping the qubit-SQUID Hamiltonian
to a linear circuit. Relaxation and decoherence rates due to this transferred noise
are then estimated in terms of the noise spectral density in section 3.4. In section
3.5, the switching current histogram is calculated by taking the quantum fluctua-
tion into account. To improve measurement efficiency, a coherent transition assisted

measurement is designed in section 3.6. Finally, conclusions are given in section 3.7.

3.1 Qubit-SQUID interaction Hamiltonian

The superconducting persistent-current qubit (pc-qubit) is a solid-state Josephson
junction device that stores quantum information on circulating currents[20, 25]. pc-
qubits have been successfully fabricated and measured|[29]. These measurements are
not only the first steps in realizing solid state quantum computers, but also invoke
fundamental studies on verifying quantum mechanics at macroscopic scales[26, 28].
In the experiments the SQUID interacts with the qubit and influences the qubit’s
dynamics. To interpret experimental data correctly, we need to study the interaction
between the qubit and the detector carefully to analyze the influence of the detector
on the qubit, and to extract from the measured data the features that are due to the

qubit’s behavior.

3.1.1 Circuit

The superconducting persistent-current qubit[20, 25] is a single superconducting loop
that has three Josephson junctions in series as is studied in the previous chapter. One
junction has a slightly different critical current from that of the others. A magnetic
flux f,®, is applied in the loop, where ®, is the flux quantum. At f; near 1/2,
the lowest two energy levels of this quantum system are nearly localized flux states
with opposite circulating currents, and are chosen as the qubit states. The two qubit
states are analogous to spin states and can be described by SU(2) algebra of the
Pauli matrices. By identifying the localized flux states as eigenstates of o,, the qubit

Hamiltonian is H, = Lo, + Lo,, where ¢ o< (f; — 1/2) is controlled by flux f; in
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Figure 3-1: Persistent-current qubit measured by a dc SQUID. The qubit is in the
SQUID loop. I, is the critical current of the Josephson junctions in the SQUID; Cj is
the junction capacitances. ¢; and @, are the gauge invariant phases of the junctions
with their directions indicated by an arrow beside the junction. The SQUID is shunted
by a capacitance Cs. Z; is the environment of the dc SQUID. The SQUID is biased
by ramping the current I,.
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Figure 3-2: The STM image of the fabricated sample of the pc-qubit inside a dc
SQUID. The inner loop is the pc-qubit with three Josephson junctions. The external
loop is the under-damped dc SQUID with two Josephson junctions. Current can be
ramped into the dc SQUID via the leads connected with the SQUID.[29]

the qubit loop and ¢y is the tunneling between the two localized flux states. Typical

parameters are ¢g = 10 GHz at f = 0.495 and ¢, = 1 GHz.

The qubit state can be measured by inductively coupling the qubit to a dc
SQUID[29] as shown in Fig. 3-1. The flux of the qubit shifts the flux in the SQUID
loop, and hence the effective critical current of the SQUID. During measurement, a
bias current [, is ramped through the SQUID; and the switching current, where the
SQUID switches to a finite voltage state, is measured. Due to quantum fluctuations
and thermal activation, the SQUID switches before the critical current and has a finite
distribution. The average switching current shifts with the effective critical current
and reflects the probability of the two qubit states. In practice, a large capacitance

shunts the SQUID to suppress fluctuations and reduce the width of switching current
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distribution.

The sample of the superconducting pc-qubit being measured by a dc SQUID
has been fabricated and tested in the Delft group. Fig.3-2 is the STM image of
the fabricated sample, and Fig.3-3 is the current verses voltage character of the dc

SQUID.

3.1.2 Hamiltonian

When taking into account the self inductance, the SQUID has two independent vari-
ables: the inner variable phase &,, that represents the circulating current of the
SQUID loop; and the external variable phase @, that represents a quantum particle
in a washboard potential that is tilted by ramping current I. The external variable
Is in a metastable state when the potential is tilted by Iy. A detailed study on the
quantization of SQUID’s Hamiltonian can be found in [98]. Here we only consider
the case when the two junctions are symmetric.

After linearizing the potential energy near the energy minimum, the SQUID vari-
ables behave as harmonic oscillators interacting with each other. We have the follow-

ing approximate Hamiltonian for the qubit-SQUID system:

2 p2
MHe = Ho+ 38 + mpnw? (om + 6000,)? + 2y T 205 + Siompp  (3.1)

where H, is the qubit Hamiltonian. The phases ¢,, = Pm — @0, and @, = G, — @9
are the oscillator coordinates relative to the energy minimum (@2 , @g). P, P, are
the momenta of the inner and the external oscillators, and are conjugate operators
of the corresponding phases. The oscillator masses are m,, = 2C J(%‘} 2 and my =
(22)2(Cs + 2C;), where C; is the capacitance of the junctions and C, is the shunt
capacitance as shown in Fig. 3-1. The inner oscillator frequency w,, depends on
the self inductance of the SQUID Lg4c and the critical current of the junctions I, as
Wy = m. In the experiment, the self inductance of the SQUID is weak with
Br = 2nLy4.I./ Py = 0.004. Hence wm ~ 10° GHz is higher than all the other relevant
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Figure 3-3: Main figure: the distribution of the switching current I,; Inset: the I-V
character of the dc SQUID. The left arrow and the right arrow in the inset indicate
the switching directions of the SQUID state for increasing current and decreasing
current, respectively. The wigglings about the critical current on the I-V character
are possibly due to nonlinearity of the circuit and don’t have a definite theoretical
explanation yet.
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energies in the qubit-SQUID system. As a result, the inner oscillator is slaved to the
qubit and follows the qubit’s dynamics even during qubit operation. The external
oscillator frequency depends on the ramping current as w, = wp [1 — (—EI}T)Q]I/ * where
wg =/ oIl /C;s®, is the oscillator frequency at zero current and I¢// is the effective
critical current of the SQUID under external flux. The inner oscillator offset +dpq0,
originates from the inductive interaction between the qubit and the SQUID with
dpo = mMyI.ir /P, where I, is the circulating current of the localized states of the
qubit and M, is the mutual inductance. The J; term is the bilinear coupling between
¢m and @, at the potential energy minimum and is determined by the ramping
current I,. We have J; = |tan @), |I,®¢/2n. When the ramping current is turned
off, J1 coupling disappears, and ¢, and ¢, interact via a higher order term gomgof,
which brings negligible entanglement with the qubit state. Typical numbers for the
SQUID are: E% = 40GHz with I% = 80nA, C; = 2fF, C, = 5pF, Lq, = 16 pH and
M, = 8 pH. And dpy =~ 0.002; w) = 1.3 GHz and w, = 1.0 GHz at I, = 0.81¢//.

This linear model omits the escape of the particle from the washboard potential
which becomes stronger as I increases. As we mainly use this model to discuss
the decoherence and relaxation of the qubit by the SQUID’s environment during the
“pre-escape” entanglement process, this model is valid as far as w, is much smaller
than the energy barrier (which is true until I, =~ 0.95). We want to point out that
the escape from the washboard potential, which is a crucial step in this measurement

and will be discussed in the next section, is not included in this model.

When the qubit stays in an eigenstate of o,, the response of the SQUID can be
derived by a perturbation approach. Assuming the qubit in state | 1) and taking the
Ji term as a perturbation, the unperturbed eigenstates are: | 1, n! , np), where |n,) are
the external oscillator’s number states, |nl ) = e‘s“’°3\%|nm) are the inner oscillator’s
number states shifted by d¢, by interacting with the qubit. The perturbed ground
state of the qubit-SQUID system is:

hwpm

J16pozy
huw,

I"/}D = | T OIn’ 0P> - | T OIm 113) - l T lem 1P) (32)
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where z,, = ,/Qm o and 7, = o m.o, are the widths of the ground state wave
functions. The state includes contributions from |1,). Hence, the average of ¢,

increases linearly with I, as: (pp)o = LyJi(2 )25@0, where L; = (Csw?)™! is the
dynamic inductance of the external oscillator. When the ramping current is off,
¢, = 0, the external oscillator responds negligibly to the inner oscillator and is
effectively decoupled from the inner oscillator. When the ramping current is on, the
external oscillator becomes entangled with the inner oscillator. Given the parameters
from the experiment and at I, = 0.81¢//, we get (¢,)o = 0.002.

Compared with the Stern-Gerlach experiment, the qubit-inner oscillator system
acts as the spin of a particle passing through the gradient field. The external oscillator
acts as the spatial degree of freedom of this particle. As the particle passes the field,
the spatial wave function of the particle becomes separated for the two spin states;
by recording the spatial distribution, the probability of different spin states can be
obtained. In the SQUID, as the ramping current increases, the states of the external

oscillator become separated in its coordinate space in correlation with the two qubit

states; by detecting the switching current of the SQUID, the qubit state is detected.

3.2 Limits to Measurement Optimization

In the above measurement, the same measurement needs to be repeated many times
to obtain a satisfactory switching current histogram that can resolve the two qubit
states. It is thus crucial to analyze the limit to the mutual information gained in the
measurement. This will help the design of optimized experiments to approach this

limit within the flux-measuring configuration of qubit-SQUID coupling.

3.2.1 Efficiency of the experiment

In the experiment, the qubit interacts with the SQUID’s inner oscillator via mutual
inductance all the time and the flux of the qubit is detected by the inner oscillator
even when the measurement is not on; while the switching current histogram is the

directly observed physical quantity. We can divide the qubit-SQUID system into two
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parts: the measured system that includes the qubit and the inner oscillator of the
SQUID; and the “meter” that is the external oscillator of the SQUID. The current
ramping process entangles the system with the meter. When the SQUID switches,
the meter variable escapes from the supercurrent state to the finite voltage state, and
a macroscopically distinguishable record is obtained; in this process, the coherence of

the system is completely destroyed by quasiparticle excitations at gap voltage.

The histogram of the switching current is affected by many factors: the critical
current of the SQUID, fluctuations, and the time dependence of the ramping current
etc. Flux in the SQUID loop changes by +£d¢, due to the qubit states; as a result,
the effective critical current I¢/7 is shifted by AI, = £I¢/5pg|tan 9| ~ £10-31¢/f
respectively, which results in a shift of the same order in the histogram. Due to strong
quantum fluctuations and thermal activation, this shift is much smaller than the width
of the histogram [99], and hence the switching current in any given measurement is
not perfectly correlated with the state of the qubit. In other words the measurement
is not strictly speaking a von Neumann measurement, but rather a more general

positive operator valued measurement (POVM)[100].

The probability for the SQUID to switch at current I, and qubit state |s) is
P(Iy|s) = tr(Ap|ds){ds]), where Aj, is the positive operator in the POVM cor-
responding to the result I, and |@,) is the SQUID state when the qubit state is
|s). Assuming a qubit state of a| 1) + 3| 1), the density matrix of the SQUID is
psq = |al?|é1)(P1] + |81%|#,){¢y]. The probability that the SQUID switches at I,
is P(Iy) = tr(Ar,psq) = |a?P(Iy| 1) + |8]2P(I] ). By the Bayesian theorem, we
can derive the conditional probability of the qubit state when switching occurs at I:
Pt |I) = |a|*P(Iy| 1)/P(Ly) and P(} |I,) = |B|>P(Ly| 4)/P(Iy). If the histograms
for the two qubit states are well separated, given a switching at I, one can clearly
infer what the qubit state is after the measurement. But when the histograms for the
two qubit states are largely overlapped, which is the case in the experiment[29], it is
hard to decide the qubit state after switching. The mutual information gained in the
measurement is I; = H; — H,,,, where H; = —|a|?log |a|?—|8|?log | 8|? is the Shannon

entropy for the SQUID and Hy,, = — ¥y, P(L)(P(1 |Iy) log P(1 |I,) + P({ |I) log P({
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|1,)) is the ensemble averaged Shannon entropy after the switching event [101]. For
laf* = |8[* = 1/2, the mutual information can be estimated to be I; ~ 10~ given the
experimental parameters[99], which indicates each measurement only provides very
limited information and the same measurement has to be repeated many times to

resolve the qubit states.

3.2.2 Limit to the efficiency

Now let us look at the best we can achieve for this flux-measuring scheme. The
measurement process (ramping the current) is the detection of the inner oscillator
states by the external oscillator instead of the direct detection of the qubit state. In
other words, the “meter” switches according to the inner oscillator states instead of
the qubit state. As a result, with the qubit-SQUID coupling scheme, measurement
optimization is limited by how different the inner oscillator states corresponding to
the two qubit states are.

The inner oscillator entangles with the qubit even when the ramping current is
not on; furthermore, as w,, > Wo, wp, the inner oscillator follows the dynamics of
the qubit faithfully even during qubit operation. The inner oscillator is slaved by
the qubit just as an electron is slaved by the atomic nucleus in a solid. Due to
the inductive coupling with the qubit, the inner oscillator states are coherent states
la) and | — @) for the two qubit states respectively, where oy = eJW%IOm) and
a = 0po/2x,,. Written explicitly, the coherent state parameter « is determined by
the ratio between dpg = TMyleir /Py, the coordinate space shift of the oscillator
ground state due to coupling with the qubit, and Ty = \/%, the width of the
ground state wave function. In the experiment, dpy ~ 0.002 and Tm ~ 0.1, we have
@ = 0.01 and the overlap of the two coherent states is (—ala) =1-2x 104 Hence,
the two states are highly non-orthogonal, which means it is very hard to distinguish
them with any possible measurement. Let the density matrix of the inner oscillator
be pr, = L{la)(a| + | — a){(~a|] with equal probability for the two states. In any
measurement to resolve these two states, the mutual information is limited by an

upper bound[102]: I; < S, where § = —t1(pm log p,,) is the von Neumann entropy of
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pm- When « is given, this entropy can be calculated. At large o, which indicates well
separated states, the entropy goes to 1; at a &~ 0.01, the entropy is very small with
S = 0.0015. With this analysis, in the qubit-SQUID coupling, the most information
we could achieve in one measurement is I; =~ 0.0015, which is also very limited but
one order higher than that in the present experiment.

This analysis indicates that it is possible to improve the measurement by exploring
the potential of the SQUID measurement and keeping the same qubit and SQUID
parameters as in the present experiments. Meanwhile, by adjusting the qubit or
SQUID designs to increase a, better measurement can be expected. Another approach
which will be explored in future work is to go beyond the flux-measuring scheme to
exploit the orthogonality of the qubit states without measuring the small flux of the

qubit.

3.3 Induced Noise During Measurement

Quantum computers store and process information on quantum bits. Any coherent
controllable two-state quantum system|[5, 7] can register a quantum bit, or “qubit”,
and qubit has been realized in a wide variety of physical systems[11, 12, 13, 14, 15,
16, 18, 20, 25]. To collect, manipulate or transfer information from a qubit, we need
to entangle the qubit to an external quantum system such as a detector, a radia-
tion source or another qubit. The external quantum system acts as an information
transmission channel that performs an operation on the qubit state and collects its
information. In addition to the intrinsic decoherence of the qubit, this operation
transmits noise from the environment of the external system to the qubit and de-
coheres the qubit. The stronger the interaction between the qubit and the external
system is, the more information is obtained by one measurement, and at the same
time, the more noisy the qubit will be. Because the external system typically contains
macroscopic, non-coherent elements, it is often exposed to strong environmental noise
and becomes a crucial noise source for the qubit. This raises the problem of designing

optimized quantum circuits that can maximize the signal-to-noise ratio during infor-
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mation transmission. In this chapter we will study the information obtained in the
measurement of the persistent-current qubit by a dc SQUID and present a method

to derive the noise transferred to the qubit from the detector’s environment.

During a measurement, the detector entangles with the qubit and collects informa-
tion from the qubit; it then transfers this information into macroscopic distinguishable
states that are recorded. Meanwhile, via the same coupling, the detector transmits
noise from the output parts of the circuit, which are usually exposed to stronger envi-
ronmental noise, to the input parts where the qubit is located. The transferred noise
will damage the qubit state when it takes a long time to collect the information. This
problem exists in many kinds of qubits. In the pc-qubit experiment, the detector is
an underdamped dc SQUID, whose critical current is offset by the flux of the two
qubit states towards opposite directions. For the offsets to be large enough to resolve
the two qubit states, stronger qubit-SQUID coupling is preferred. But noise from
SQUID’s environment is transmitted to the qubit by the same inductive coupling;
moreover, this noise increases with the square of the coupling strength while the off-
sets increase linearly with the coupling strength. How to design a reasonable circuit

to optimize the measurement is thus an important issue.

A similar situation occurs when an ac radiation source is used to manipulate
a qubit. To operate the qubit efficiently, the frequency range of the pass band of
the source circuit needs to cover the qubit frequency; but this connection lets noise
of the same frequency pass as well, which may induce strong qubit damping and
decoherence. Therefore the problem of how to get best design of an external control

source is also an important problem to study.

In this section we study the noise that is transmitted to the persistent-current
qubit during the measurement by a underdamped dc SQUID. We apply the Caldeira-
Leggett formalism to calculate the noise spectral density of the transmitted noise. In
this formalism, the environment of the dc SQUID is modeled as a reservoir of bosonic
modes with continuous spectral density. The dc SQUID circuit adds two discrete os-
cillator modes to this reservoir. The combined boson-oscillator system can be mapped

to a linear circuit whose impedance determines the noise of the qubit. The mapping
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to the circuit can be derived from the qubit-SQUID Hamiltonian straightforwardly.
Discussions on a detailed study of the reservoir modes are given in the end together
with the conclusions. Note that the study presented here were developed in the course
of an ongoing collaboration with the Delft group. In particular, complimentary as-
pects of the problem were studied by F.K. Wilhelm, M. Grifoni[96], and C.H. van
der Wal et al.[97]. The decoherence and relaxation of the qubit due to this noise will

be studied in the next section following a master equation approach.

3.3.1 Effective environment

Now we investigate the environment of the qubit-SQUID system. In solid-state sys-
tems, decoherence warrants serious attention due to the many redundant degrees of
freedom that interact with the qubit. Noise from the direct environment of the pc-
qubit is presented in chapter IV of this thesis and in [41], and the decoherence time is
estimated to be longer than O(10~*) sec. However, during the ramping of current I,
as the qubit and the SQUID become entangled, the noise from the environment of the
SQUID affects the qubit via their inductive interaction. In this section, we calculate
the spectral density of the noise transferred to the qubit from the environment of the
SQUID and derive the decoherence and relaxation due to this noise. For simplicity we
only discuss the environment of the external oscillator and neglect the environment
of the inner oscillator[103]. Although we work on the example of pc-qubit measured
by a SQUID, the framework of our discussion is general and can be applied to an
arbitrary external system interacting with a qubit.

We use the Caldeira-Leggett approach for the reservoir where it is modeled as
oscillator modes with a continuous spectrum[104]. Localized spin modes[105] can be
mapped to oscillator modes when interaction with the reservoir modes is weak. With

the reservoir included, we have:

1
+ maw( +

- Ht'l'z

where H, is the Hamiltonian of the qubit-SQUID system; z, and p, are the coordi-

Ca 9
e e 00 (33
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nates and momenta of the reservoir modes. The ¢, terms are the bilinear interaction
between the external oscillator and its reservoir. The direct influence of the reser-
voir on the associated quantum system—the external oscillator—can be completely

described by the spectral density: Jo(w) = 5= 2 % _§ (W — wy).

MaoWa

The reservoir modes {z,} have no direct interaction with the qubit. They affect
the qubit via the interaction between the qubit and the SQUID. The qubit sees an
effective reservoir which includes both the {z,} modes and finite number of discrete
modes from the external system. In this “larger” reservoir, different modes are not
independent of each other: namely, modes from the detector interact with the {z4}
modes; meanwhile, the discrete modes of the detector interact with the qubit. In the
qubit-SQUID system, the SQUID adds two oscillators to this “larger” reservoir. The
external oscillator ¢, interacts with the {z,} modes; the inner oscillator ¢,, interacts
with the external oscillator; and the qubit interacts with this effective reservoir by
interacting with ¢,,. The noise spectral density for the qubit J,¢s, according to the
standard approach[106, 107, 108], can be derived from the dissipation which is the
imaginary part of the generalized susceptibility: Jerf(w) = lime_g %I m[K (2)] 2=w—ies
where K (2) is the generalized susceptibility of the qubit when taking account of the
SQUID.

Instead of calculating the susceptibility K(z) directly from the classical equa-
tions of motion, the noise can be derived from a simple but general linear circuitry
approach which is easily applied to an arbitrary external system to derive the trans-
ferred noise. Given the Hamiltonian of a linear quantum system, different energy
terms can be mapped to linear circuit elements such as inductances, capacitances,
and resistors of a linear network. The classical equations of motion for the inter-
acting system are the circuit equations of this linear circuit by Kirchofl’s laws. The
noise on any quantum variable can hence be calculated from the effective impedance
of this circuit[64]: Jé(})f(w) = #wRe[Y(w)] at zero temperature; for finite tem-

perature, Jg}(w) = ég)f(w) coth %, which is the Johnson-Nyquist noise at high

temperature.
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3.3.2 Classical equations of motion

First we are going to solve the noise spectrum following the method shown in [108]. We
illustrate this method by working out the example of the persistent current qubit[20,
25] measured by a DC-SQUID. With Eq. 3.1 and Eq. 3.3 for the linearized qubit-
SQUID-environment Hamiltonian and defining the qubit flux variable ¢ = dpgo, for
the convenience of discussion, the classical equations of motion for the qubit-SQUID

system are:

meq = _3,9_({;’L — Mpwh (4 + Pm)
MyPm = —MpWn (7 + Om) — J1¢p »
MpPp = —Mpwppp — J1Pm — Ta HE%EQDP — 20 CaZa 34
MaZa = —MaWile — Calfp

where m,, is the effective mass of the qubit flux ¢ and is determined by the capacitances
of the qubit junctions; and U, is the potential energy of ¢ and is dominated by the
self inductance of the qubit. The specific expressions of m, and U, will not affect
our results. We then apply a Fourier transformation to these linear equations and
derive the interdependence between the Fourier components of different variables.
For example, we have Zo(z) = 3775 —77Pp(2), where Zo(z) and @p(2) are Fourier
components of the corresponding variables at the complex frequency z. Using these
relations, we can cancel the components of all the other variables and derive an
equation for §: K (2)q = —%. Considering the environment of ¢, as an admittance

Yo(w) with Jo(w) = EZ‘?Re[Yg(w)]w, we derive K(z) from:

Ly(z) = —-mpz® +i(£)*Yo(2)z

~ J2
Lm(z) = —mmzz—m (35)

2 mw? Lom

K(z) = —mgs+ pmmipl,
which only depends on known parameters in the Hamiltonian H; and the shunt ad-
mittance. The effective spectral density J¢;(w) for the flux g can then be calculated

from K (z). As a result, the current noise coupling to the operator o, of the qubit is
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Figure 3-4: Equivalent circuit derived from the linearized Hamiltonian of the qubit-
SQUID system. The phases q, ¢m and ¢, are chosen as the independent circuit
variables of the three loops of the circuit. The capacitances of the ¢, loop and the
¢p loop are Cy, = 2C; and C, = Cs + 2C; respectively. The inductances in the
three loops interact via mutual inductances as indicated by the paired dots near the
inductances. Zp is the environment of the ¢, loop.
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Jeps = 6% Jos;(w) which follows the relation g = dyg 0.

Using the above results, we derive the effective noise spectrum on the qubit:

: 2712 _
Jep(@) = 00f e Rel(2iwCs + iy + Sgintsy) ] (3.6)
Yo(w) = wCs+ iwlLJ + Yy (w) '

where Y, is the admittance of the dynamic inductance L, the shunt capacitance and
the environmental admittance Yy(w) in parallel. This expression looks complicated,
but it has a simple correspondence in terms of linear circuitry which will be shown

in the next subsection.

3.3.3 Equivalent circuit

Now, we map the system described by Eq. 3.1 and Eq. 3.3 to an equivalent circuit. For
each (? term we introduce an inductance; for each P} term we introduce a capacitance
in parallel to the inductance; the environment of ¢, is an impedance Z, (admittance
Ys(w)) in parallel to the inductance element 2. The circuit is shown in Fig. 3-4.

It has three independent flux variables: ®, = %}(q), (@ = 6p02), ®m = %}((pm),
@, = %(‘Pp)-

From Fig. 3-4, the currents in the three loops are related to the flux by the inverse

inductance matrix:

I, Liq T 0 ®,
In = |2z 1o || ®n (37)
I, 0 (£)?h P,

where L, is determined by the self inductance of the qubit and will not affect our
result. I;(j = g,m,p) are currents in each of the loops in the circuit. Let v;(j =

g, m,p) be voltage of the corresponding inductance. The circuit equations are:
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wd, = v, = —-I,Z,
wh,y, = vy = —InZn (3.8)
w®, = v, = I Zeys

where Z, is the impedance of C}, and Z; in parallel; Z,, is the impedance of Cy,; and

Zesy is the effective impedance at the input where the qubit is located. The real part

of Ze'flf determines the current noise on the qubit.

We derive the effective admittance Y5 = Ze_flf = I, /v, from circuit equations:

— 1 16
1/‘3ff T iwlg + szflcYm
. 42 J,)2
Yo = wCn+ iy + S (3.9)
— 1 1
Y, = wC,+ wi; T2

where Y, is the admittance of the circuit without the qubit loop; and Y}, is the admit-
tance of the circuit without both the qﬁbit and the inner oscillator loops. Plugging
Yess into Ji¢;(w) and putting the 20¢pp factor back, the noise spectrum coupling to
the qubit is[106, 107, 108]:

-1
Jerr(w) = (2010)* 2 7 Re (2iwCJ+ 1+ [J14n?]? (w)))

fwly, iwLge w2¢g(iwCs+ﬁ+Yo
(3.10)
Note that this linear circuit does not have direct correspondence to the physical
system, but comes from the linearized Hamiltonian. This equivalent circuit method
is easier to apply to an arbitrary external system. Once the linearized Hamiltonian is
known, a linear circuit can be obtained whose admittance determines the noise and

can be calculated easily.

For the qubit-SQUID system, as wy, > wp, wo, the spectrum can be simplified for
w < wy, by ignoring the capacitance C,, term. Assuming an ohmic environment with

resistance R, and substituting dpo with 7 MyI../®Po, we have:
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® (2w GHz)

Figure 3-5: Effective noise spectrum verses frequency for ramping current I, =
0.81¢//, zero temperature and with an Ohmic environment of R, = 100 ).

4(EIcirIqu)2 w
C2h°R, (w?-— w2)? + (w/R,C;)? "

Jers(w) = (3.11)

Jesf(w) increases with the square of the mutual inductance and the square of the
ramping current; hence when the coupling between qubit and SQUID is stronger, the
noise is also stronger. When the ramping current is off, the noise transferred to the
qubit is negligible as the entanglement between the inner oscillator and the external
oscillator is negligible. For finite ramping current, at low frequency when w < Wp,
the spectrum increases linearly with w; compared with the spectrum Jo(w), Jess(w) is
rescaled by a constant factor as Jerr = Jo(2d¢p %%L)z. So at low frequency with I,
of the same order of I¢//, the noise transferred is reduced by an order of 2. At high
frequency when w >> w,, besides the rescaled linear term, another factor shows up

as Jeps = Jo (2009 2mke)?(#2)4, and the spectrum decreases with w™? which further
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reduces the noise at w = wg. The SQUID thus acts as a filter that cuts off the high
frequency noise transferred to the qubit. At w ~ w,, a sharp Lorenzian peak appears
in the spectrum with a width of (R,C;)~!. This structure is due to the discrete
external oscillator mode of the SQUID that interacts with the reservoir; when the
interaction between the SQUID and the reservoir goes to zero (Rs — 00), the peak

becomes a d-function. The spectrum is plotted in Fig. 3-5.

3.4 Effect of noise

During a measurement, information about the measured system is obtained by en-
tangling this system with a meter variable. In most discussions of measurement,
entanglement is accomplished in a very short time during which the evolution of the
measured system is neglected; in other words, the measurement basis is the basis of
the pointer variable. Afterward, the meter variable is projected to macroscopically
distinguishable states. Hence the dynamics of the measured system has no effect on
the result of measurement once an initial state is selected. However, in the measure-
ment of the pc-qubit, entanglement is a slow process (milliseconds) as the interaction
between the system and the meter is much weaker than the qubit energy wjy. At
the same time, the pointer basis which is the eigenstates of the o, operator of the
qubit is different from the qubit eigenstates as [H4, 0,] # 0. As a result, we have to
take the qubit dynamics into account, including relaxation and decoherence, when
studying the measurement. In the following we study the decoherence and relaxation
of the qubit due to the effective noise transferred to the qubit from the SQUID’s

environment.

3.4.1 Master equation approach

Here we introduce the master equation approach to discuss the effect of the environ-
ment with a noise spectral density J(w) on the qubit dynamics. Compared with the
qubit Hamiltonian, the interaction with the reservoir is much weaker; so the dynamics

of the qubit can be described by the master equation which treats the environmental
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perturbation to second order [110].

Consider a qubit interacting with a reservoir:

A . .
MH,p = %o—; +ol X + ol X! (3.12)

where o}, and o, correspond to the Pauli matrices when choosing |0, = £1) as the
qubit eigenstates. wp is the qubit frequency. X'; and X!E are the transverse and
longitudinal noise from the reservoir. The X! interaction creates random phase in
the qubit state; and the X! interaction flips the qubit state. Let J# (w) be the noise
spectrum of X! and J¥ (w) be the noise spectrum of X’ at zero temperature.

The reduced density matrix of the qubit p; = t¢r.(p), where the trace is taken
over the reservoir modes on the total density matrix p of the qubit and the reservoir,

evolves according to the master equation[110, 112]:

Qé% = —%l0% [07, ps]) /4 — B (nwo) +1)(20Lps0’y — o' 0l ps — pso’ o’ (3.13)
~Bn(wn) 20,0y — 0Ty — pr-0})

where n(w) = (/%87 — 1)~ is the boson number distribution at frequency w and
temperature T'. «, and <, are the transverse and the longitudinal relaxation rates
determined by the noise spectrum: +, = J* (w) coth 5 str |0 and g = J* (wo). The
decoherence time 7, and damping time 77 can be derived from the Bloch equations
of ptt — pyy and pyy[111] by Eq. 3.13, where Ty = ygcoth /2% and Ty = o, +

2'yd coth M— In terms of the noise spectrum, we have:

T;' = 1J%(wo)coth S
! 27 (@) 5T (3.14)
T;' = 1J%(w)coth 3 kT w0 + 1J¥ (wo) coth ﬂ"-

3.4.2 Effect of transmitted noise

The decoherence and relaxation are expressed in terms of the noise that couples to

o, and o,. However, in the persistent-current qubit, physical noise couples with the
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qubit by ¢, and og:

Hor = Hy + 0. X, + 0. X, (3.15)

where H, = $0,+ %az is the qubit Hamiltonian; X, and X, are noise from the reser-
voir. Eq. 3.15 is a general form of the qubit-reservoir interaction. The effective noise
transferred to the qubit from the SQUID’s environment is also included. Examples
of noise that give X, are flux noise and nuclear spin fluctuations; example of noise
that gives X, are charge fluctuations on the gates. Let the noise spectrum of X, be
J?(w) and the noise spectrum of X, be J?(w) at zero temperature. J*(w) and J*(w)
can be calculated directly from the system coupling and geometry. To derive J? and

J* from the physical noise, we rewrite #,, in the terms of ¢, and o7, with

o, =cosfo, +sinfo, and o), = —sinfo, + cosfo, (3.16)

where 6 is the angle between the qubit eigenstate and the o, basis with cos€ = ¢p/wy

and sin = ty/wy. wo = y/€§ + 3. Now the qubit-reservoir Hamiltonian is

h N - . A
Hyr = %a; + 0 (cos OX, + sin 6X,) + o', (— sin X, + cos 6X,) (3.17)

The comparison of Eq. 3.17 with Eq. 3.12 shows that X’ has contributions from both
X, and X,; and so does X/. The spectra J* (w) and J* (w) can be expressed in terms

of J% and J%:

J¥(w) = cos?8J%(w) + sin? §J°(w)
, | (3.18)
J¥(w) = sin?0J%(w) + cos? 8J%(w)
The transmitted noise affects the qubit via o, coupling. As [0, H,] # 0, which is

generally the case, damping occurs as well as decoherence. We write:

0! = cosfo, +sinfo,, ol = —sinfo, + cosfo, (3.19)
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where § is the angle between the qubit eigenstate and the o, basis with cos 8 = ¢y/wq
and sinf = to/wy. wo = /€3 +t5. o, and o, correspond to the Pauli matrices when

choosing |o,, = +1) as the qubit eigenstates. The qubit-reservoir Hamiltonian:

h N .
Hor = %0; + cos0 X, 0, —sinf X,o, (3.20)

where X, is the coupling between the qubit and the effective noise reservoir whose
spectrum is Jesf(w). In Eq. 3.20, we have both pure dephasing noise with spectrum
cos? 0J.;¢(w) and relaxation coupling with spectrum sin® 8J,5;(w). Once we know the
noise spectrum, the relaxation and decoherence rates can be derived[109, 110, 111].

At finite temperature,

- t2
Tr' = iy Jess(w) coth 57 umu, 3.21)
_ 2 t2 .
Ty' = gigJers(w) coth giglumso + gz Jers () coth Z227 |umw,

Due to the reduction factor wj /wj in the spectral density, relaxation is slowed by the
filtering of the SQUID. With the system parameters, we calculate the damping time as
7, = 0.15sec and the decoherence time as 7, = 2 usec at I, = 0.81] cef f. The decoherence
time is of the same order as was measured in the Delft experiment[29] and is much
shorter than the estimated intrinsic decoherence[41], while relaxation is slow enough
that it will not hinder the extraction of qubit information. The noise transferred to

the qubit is negligible at I, = 0 when no measurement is being conducted.

Note that the noise increases with the square of the inductive coupling; and so do
the decoherence and relaxation rates. In contrast, «, the coherent state parameter
that determines the information bound of this measurement, only increases linearly
with the inductive coupling. When increasing o by 10 times by adjusting the mutual
inductance, the relaxation rate is two orders faster. This puts an extra restriction on
measurement optimization—to keep the noise low for a good enough signal-to-noise

ratio.
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Figure 3-6: The thermal tunneling histograms for the dc SQUID at temperature
above the crossover temperature. Left: qubit flux d¢y; right: qubit flux —d¢py.
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3.5 Tunneling Rate of the DC SQUID

The switching current histogram of the dc SQUID can be calculated numerically.
Much has been done on calculating the switching rate for a one-dimensional particle
from a metastable washboard potential. When the temperature is higher than the
crossover temperature T,, = hw,/27kp (w,, the plasma frequency of the metastable
potential), the escape rate from the potential well is dominated by thermal acti-
vation rate: Ty = %22 exp (—AU/kpT), where a; = 4/[(1 + 2:2L)1/2 4 1]2, with
@ = wpRC, where R is the resistance shunting the junction, C is the capacitance,
and AU is the energy barrier of the potential. When the temperature is lower than

the crossover temperature, the escape rate is dominated by quantum fluctuations:

Ty = g2 exp (- E20C[1 + J125]), where ag ~ [1207(7.2AU /hws,]'/?. In Fig. 3-6 and

RC]
Fig. 3-7 the switching histogram by thermal rate and by quantum rate are plot-

ted respectively. The normalized probability of the switching histogram at cur-
rent I, is P(I,) = T'(L)|%|"}(1 — f* P(I)dI). This can be written as P(l;) =
D(L)I %1 exp (—|%17 fy* dI'T(I)).

The dc SQUID in the qubit measurement works at a temperature slightly above
the crossover temperature. Although the thermal rate dominates in this regime, the
quantum fluctuations can modify the escape rate significantly. At the same time, as
the dc SQUID is in fact a two-dimensional system, the escape from the potential can
be affected by the second dimension. Here, we calculate the SQUID escape rate by
taking account of both the quantum modification of the thermal rate and the effect
of the second dimension. We follow the method in [113] which is briefly described

below.

For a metastable system, the escape rate from the metastable state can be derived
from the free energy as I' = —EQImF above the crossover temperature, and the free
energy can be expressed as F = —Eln Z. Here we extend the method to a two-
dimensional system. The partition function Z can be derived with a path integral
approach as Z = [ D(je_SE([‘ﬂ). In the saddle point approximation, the partition

function Z consists of two parts: Z = Zy + Z,, where Z; is the contribution from
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Figure 3-7: The quantum tunneling histograms for the dc SQUID at temperature
below the crossover temperature. Left: qubit flux d¢py; right: qubit flux —d¢py,.
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the potential minimum and Z, is the contribution from the potential maximum (the

barrier). The action SF, can be expressed as:

h
Sy = WVos + "2 S (AenlEanl? + Aoaléoal?) (3.22)

where )\; are the roots of the following equations:

_ entbn)E/(an—bn)2+4ck

Ay = 5
an = Mn(v; + [vnlm +wh)
(3.23)
bn = Mp(V2+ |vnlyp £w2)
cn = —2E%singn,sing,

Here 7y,, are the spectral density of the inner variable and the external variable
environments, respectively. v, = n2m/h{ is the Matsubara frequency. M,, and M,
are the masses of the harmonic oscillators; wy, and w, are the frequencies. Substituting

the equations into the partition function, we have:

keT & (kgT)?
H( )

\//\3_0/\30 n=1 ?l-n)‘gn
Vimes kBT 37 (kBT)?

Zy is imaginary part from the contribution of the zeroth mode. Hence the final

ZO —_ e_ﬂvmin

(3.24)

Zb=i€

expression for the escape rate is:

kBTO /\3_0/\20 —BAU, e AO )\g
r= e P80 TT S22 3.25
ARPUrUNSE St (3.25)

which can be derived with loop integration. Ty is decided by the oscillator frequency

wp and by the dissipation rate v,:

h 2/ Y )
- 2 ‘Py2 _ 1P
kT = 5 (,/w,, + (B2 (3.26)

where v, = (RC)™! is the dissipation rate of the SQUID. With this equation, the
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modification of the escape rate by quantum fluctuations and by the interference of
the second dimension can be studied. It is shown that the effect on the escape rate

is negligibly small.

3.6 Radiation Assisted Measurement

Among the various physical realizations of a quantum bit, solid-state qubits have
the advantage of being easily scalable to large numbers and that their structures
and quantum states can be easily manipulated. The study of solid-state quantum
computing is a growing field [18, 20, 21, 22, 23, 24, 25, 114] and several mesoscopic
systems have been implemented[115, 29, 28, 116, 117]. Most measurements of these
solid-state qubits rely on the detection of the electromagnetic signal[30, 116, 118, 119,
120] of the qubit states which is usually a small signal. On the one hand, coupling
with the detector is necessary to get information from the qubit; on the other hand,
we want to keep the coupling weak so that the qubit be well isolated from the rest of
the world.

Effective measurement of quantum bits is a crucial step in quantum informa-
tion processing. An ideal measurement to resolve the qubit states is a projective
measurement|[100] that can project each state of the quantum bit onto a macroscop-
ically resolvable state. In reality, it is often hard to design an experiment that can
measure the qubit efficiently. The detectable signal of the qubits, which is usually an
electromagnetic signal, is small compared with the detector’s quantum state width.
This is a major problem in the study of the flux-based persistent-current qubits (pc-
qubit) [20, 25, 29].

The two qubit states of a pc-qubit have opposite circulating currents which gener-
ate a flux of a thousandth of a flux quantum. By inductively coupling this flux to a dc
SQUIDI29], which is one of the most sensitive flux detection devices, the qubit states
are measured. As the flux from the qubit is much smaller compared with the width
of the SQUID’s wave function, the histograms for the two qubit states largely over-

lap with each other. Hence, the same measurement has to be repeated many times
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Figure 3-8: (a). The circuit for the coherent transition assisted measurement, from left
to right: the qubit, the rf SQUID and the magnetometer. The pc-qubit is inductively
coupled to the rf SQUID via the mutual inductance M,. (b).
SQUID with its potential energy when biased near 1/2 flux quantum. The ancilla
qubit states are labeled with arrows and their wave functions are also shown. (c).
The effective four level system for the interacting qubit and the rf SQUID. The states
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I1,1,> 24 GHz

CNOT |14 GHz

1,0,> 10 GHz
01;> 8 GHz

qubit Tlo GHz
rotation
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0,0,> 0

are labeled beside the energy levels with their energies in GHz.
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to resolve the qubit states. However, considering the fact that the two qubit states
are orthogonal to each other, it is in principle possible to construct a measurement
operator that projects the two qubit states into perfectly distinguishable states.

In this section, we present a measurement scheme on the pc-qubit that projects
the eigenstates of the qubit onto macroscopicly different results. The idea is to first
entangle the qubit coherently to another quantum system which has much stronger
coupling to the detector and then measure this supplementary system to infer the
qubit states. We choose the supplementary system to be a rf SQUID which behaves
as an effective two level system with the flux difference between these two levels
being of order of a half flux quantum. This rf SQUID is of the same size as that
in Ref.[56] and the operation can be easily implemented. This larger flux can then
be easily measured by magnetometers such as a dc SQUID or an rf frequency tank
circuit[121]. This design is not only closely related with the present experiments for
the pc-qubit, but also brings a new way of effectively measuring solid-state qubits

with small signals.

3.6.1 Limit of direct flux detection

The superconducting persistent-current qubit[20, 25] is a superconducting loop that
has three Josephson junctions in series, Fig. 3-8 (a). One junction has a slightly
different critical current from that of the others. The qubit is controlled by the
magnetic flux f,®, in the loop, where ®; is the flux quantum. The static flux is f,
near 1/2. Microwave radiation can be coupled to the loop to rotate the qubit. The
lowest two energy levels of this quantum system are nearly localized flux states with
opposite circulating currents, and are chosen as the qubit states. The two qubit states
are analogous to spin states and can be described by SU(2) algebra of Pauli matrices.
By identifying the localized flux states as eigenstates of ¢, the qubit Hamiltonian can
be written as H, = $o, + %Qaz, where €y o (f; — 1/2) is controlled by the flux f; in
the qubit loop and %, is the coherent tunneling between the two localized flux states
through potential energy barrier. In this chapter we assume ¢y = 0 to emphasis the

discussion on the measurement process. ty can be calculated by the WKB approach.
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Typically, the circulating current is I;, =~ 0.71;, where I, is the critical current of the
Josephson junction and I, = 200nA. With a loop inductance of L, = 10 pH, the self
induced flux of the qubit is dp, = 1073®,,.

In the previous experiment[29], the pc-qubit was measured by a dc SQUID. By in-
ductively coupling the qubit to the dc SQUID, the flux of the qubit affects the critical
current of the SQUID by AI, = £1¢//§p, ~ £10731¢//. During measurement, a bias
current I is ramped through the dc SQUID; and the switching current, where the
SQUID switches to a finite voltage state from the supercurrent state, is recorded. Due
to quantum fluctuations and thermal activation, the switching current distribution
has a finite width. The average of the switching current changes with I¢// and reflects
the probability of the two qubit states. Due to quantum fluctuations and thermal
activation, the switching current distribution has a finite width. The two qubit states
result in two switching histograms that are only separated by order of Al,, which is
much less than the width of thé histogram. As a result, the histogram is not perfectly
correlated with the qubit states and the measurement has to be repeated many times

to derive information the qubit.

To understand what prevents the effective measurement on the pc-qubit, we an-
alyze the previous measurement in detail in Ref.[39]. The dc SQUID as a quantum
system interacts with the qubit inductively and can be modeled as two oscillators:
the inner oscillator ¢,, that represents the circulating current of the SQUID loop; and
the external oscillator ¢, that represents a quantum particle in a washboard potential
tilted by the ramping current I,. The external oscillator interacts with the inner os-
cillator through the ramping current. Only the inner oscillator interacts directly with
qubit and limits the measurement efficiency. A detailed study of the quantization of
the dc SQUID’s Hamiltonian can be found in [98]. Considering the inner oscillator of
the dc SQUID and the qubit interaction Hamiltonian

hw P2 1
Hy = 2002 + 2";" + Emmwfn((pm — 8ipod)? (3.27)
m

where wq is the qubit frequency, ¢ is the qubit Pauli matrix. P,, is the momentum
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of the inner oscillator, m,, is the mass of the oscillator and w,, is the frequency
of the oscillator[39]. The inner oscillator offset dpood originates from the inductive
interaction with dpg = 7Mylr /P ~ 0.002 with experimental parameters, where
M, = 8 pH is the mutual inductance and I;, = (I;) is the circulating current of the
qubit state. Corresponding to the two qubit states, the lowest oscillator stzates are

3 N __¥
(om|pE) = eXi800Fm/hyy () respectively, where ¢o(om) = (27(©2,) ~ie k1. The
width of the wave functions of these states is \/ (p2) = \/ E__ ~ 0.1. These two

2MmWm
2

_+6¢
states overlap with each other as (1, [1/) = e 2¥m) ~1-0.0002. In this experiment,

the measurement of the qubit becomes the detection and resolution of these two
largely-overlapping, highly non-orthorgonal oscillator states. The consequence of the
overlapping is the intrinsic limits to measurement efficiency (A quanlitative definition
of the measurement efficiency is how many bits of information, which is always less
than one, is derived from a measurement).

To measure the probability of each eigenstates in a qubit state, we study the
density matrix of the dc SQUID when the qubit state is |¢h,) = co|0q) + c1|14).
With the inductive coupling, the density matrix of the dc SQUID quickly relaxes to
pm = leo[¥F) (W | + leal? |5 ) (%7 |, which is a mixed state of the overlapping states
|¢;'E). Let the desired measurement accuracy be A,,. For a von Neumann measure-
ment, within N measurements, the average time we find |0) is |co|2/V and the deviation
is AN/N =1/(2/N). The accuracy of the measured |co|? increases with the number
of the measurements. N, = 1/(2A,,)? repetitions are required to achieve accuracy Ap,.
For a measurement with overlapping distributions, we assume each distribution is a
Gaussian to simplify the analysis. Let the Gaussians have slightly different averages

1 _(1/-111')2

o and y; and a deviation o with |y; — yo| K /o: y = 7€ 2 . With the given

qubit state, the average of the measured distribution is y¢®2 = |co|?yo + |c1]?y1. By
measuring this average we can infer |cy|? of the qubit state. The accuracy of the mea-
sured average ¥a.e is the accuracy we can achieve for the probability |co|?>. According
to the Central Limit Theorem, with yg,. = 7{,— chvzl Yr, the average yg. in N mea-

surements obeys a Gaussian distribution with an average y2 and a deviation o/N.

The relative accuracy with N measurements is Aygpe/|y1 — Yo| = 1/0/Nly1 — yo|%
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N, = ﬁNv repetitions are required to achieve accuracy A,,. In the previous
experiment, 2,/a/|y1 — Yo| = 50, so N,/N, = 2500 is required to get satisfactory
result.

This shows that the dc SQUID measurement on the pc-qubit is not an efficient
measurement. The detection of the weak flux of the pc-qubit prevents the efficient
derivation of qubit information. To get a more efficient measurement, we should

either encode information in the pc-qubit in some other way or measure the qubit

states with another method as described below.

3.6.2 Entanglement assisted measurement

Given two eigenstates of a Hamiltonian, a projective measurement that maps the
two qubit states into distinct macroscopic states can always be constructed according
to Newwark’s theorem[100]. But in reality, the measurement is usually the direct
detection of physical observables such as the flux or charge signal of the qubit states.
It is not obvious that we can build a measurement that effectively measures the pc-
qubit. In the following, we present a new measurement procedure for the pc-qubit
that improves on the previous measurement significantly.

The idea is that instead of detecting the direct effect of the qubit’s flux on the
detector (splitting of the SQUID wave function as in Eq.3.27 ), we entangle the qubit
with a second quantum system that behaves as an effective quantum two level system
(ETLS). The flux or charge difference between these two levels is designed to be much
larger than the quantum broadening of the quantum detector. Then we measure the
second system which exactly reflects the qubit state.

Let the pc-qubit interacts with this supplementary system via inductive interac-
tion. Assume the following Hamiltonian for the qubit and the ETLS,

hwg hwe ,  hwa

H= 5 ol +

5 0% 5 olo? (3.28)

where wy is the energy splitting of the qubit states, w, is the energy splitting of the

ETLS, and wa comes from the inductive interaction. ¢? and o2 represent the two
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level systems of the qubit and the ETLS respectively. The energy levels are shown in
Fig.3-8 (c). During regular computation, we store the supplementary system at state
|05). Due to the inductive coupling, the qubit energy is modified as E 0, — Eo,0, =
hwo — hwa. By applying local oscillation of A{2god at the qubit energy, single qubit
gates can be achieved. In the process, the ETLS stays in its ground state and has
trivial dynamics. To measure the qubit state, a local operation on the supplementary
system is applied to entangle the two systems. With the presence of the qubit, we
have: Ep,1, — Eo,, = Aw, — hiwa and By, — Fr0, = hw, + hwa. By applying
a pulse of Af2xo? at the frequency w, + wa, resonant transition between the ETLS
occurs when the qubit is at state |1,). The system is designed with wa > Qx so that
off-resonant transitions at |0,) are negligible. After a m-pulse, the ETLS becomes

completely entangled with the qubit,

(col0g) + c114)) 00} = col0, 00) + dcr]1, 1) (3.29)

The density matrix of this system is p, = |cg|?|04){0a| + |c1|%|1a)(1a| and p, is then
measured by a detector. Note that the secondary system may not be a good qubit
candidate itself as it couples strongly with the environment due to the large flux or
charge signal, but the coupling can be measured easily due to its large flux or charge

signal.

In this design, we choose an rf SQUID to be the supplementary system that
inductively couples with the qubit. The circuit is shown in Fig. 3-8(a): the pc-qubit,
the rf SQUID, and the magnetometer. In the following, we adopt the rf SQUID
parameters as in Ref. [28, 56] where the coherent manipulation of the system states
have been achieved. Typical SQUID parameters are: L,y = 154pH, I, =4 pA, C; =
40fF, E;/Ec =~ 4000. The inductance of the rf SQUID is much larger than that of the
qubit, which has two consequences: the flux difference between the states localized at
different potential wells is of order of half a flux quantum and can be resolved easily
by a magnetometer; the coupling between the rf SQUID and environmental noise is

strong, so that it is harder to keep the coherence of the rf SQUID and to choose
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the rf SQUID as a qubit. At 3; = 27L,fI./® ~ 1.9, the rf SQUID has a double
well potential with several eigenstates localized in each of the potential wells. The
potential energy of the rf SQUID is shown in Fig. 3-8(b) with the eigen levels. By
controlling the parameters of the rf SQUID, there exists an effective two level system
as is indicated by the up and down arrows in the figure. The currents of these two
states differ by Al ~ I. which results in a flux difference of A®,; = AIL,; ~ 0.3®,.
For Eq. 3.28, we choose wy = 13 GHz and w, = 11 GHz. By adjusting the mutual
inductance coupling to be M,/L, = 1/4, we have wa = 3 GHz. The equivalent four-
level system is shown in Fig. 3-8(c) with their energies labeled beside each level. The

complete energy spectrum of the rf SQUID over a large range of flux is plotted in
Fig. 3-9.

The rf SQUID is stored at the state |0,)[28] by suddenly switching the flux in
the loop. The qubit energy is E) o, — Eg,0, = 10 GHz and single qubit operation
is implemented with local rf pulse at this frequency. During this operation, the rf
SQUID has trivial dynamics. In the beginning of a measurement, a local rf source
with frequency Ey,1, — E1,0, = 14 GHz is applied to the rf SQUID for a 7 rotation.
This pulse flips the SQUID state when the qubit is at |1;,). When the qubit is at
state |0g), Eo,1, — Fo,0, = 8 GHz and is off-resonance with the pulse. With an am-
plitude of 0.0005 flux quantum, the 7 pulse takes 10 nsec with the rotating frequency
wx = 50 MHz. Hence the off resonant transition at |0,) is at most 10~%, and is neg-
ligible for the measurement. After the entanglement, the rf SQUID is measured by
a magnetometer. A simple dc SQUID magnetometer is shown in Fig. 3-8 (a). The

magnetometer can be improved by using radio-frequency devices[122].

In designing the rf SQUID, attention should be paid to several issues for the
successful implementation of this measurement. First, the two states of the rf SQUID
have an energy difference well below the gap energy of the superconductor so that
no quasiparticle is excited during the CNOT operation. Also, the two level system
should be well separated from other states so that no off-resonant leakage to other
levels happens during the rf pulse. In our design, the two states are at least 40 GHz

away from other states. And the off-resonant transitions can be ignored with the
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Figure 3-9: The energy of the rf SQUID versus flux. The parameters of the rf SQUID
are on the top of the figure. The z axis is the flux in the rf SQUID loop; the y axis is
the eigenenergies of the SQUID states versus the flux. The two energy bands labelled
with stars are the ancilla qubit’s states.
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given rf pulse strength. Finally, a trivial but crucial point, the parameters have to be

realistic for the sample. We base this design on existing experiments[28, 56].

3.6.3 Discussion on extra noise and conclusion

With the giant self-induced flux of 1 flux quantum, the rf SQUID is subjected to a
strong perturbation by the environment, such as randomly trapped flux, impurity
spins and nuclear spins. However, fortunately, the noise does not affect the qubit
during regular qubit operations. The flux-like noise adds to Eq. 3.28 a term o2 f(¢)
which perturbs the energy levels of the SQUID up and down randomly. As the rf
SQUID stays at |0,) during the qubit operations, this term only contributes as an
overall phase to the wave function of the interacting system and does not decohere
the qubit. For environmental degrees that assume o2 coupling with the rf SQUID,
the environmental modes with the frequency around 10 GHz can flip the rf SQUID
in principle. But in reality, this noise couples with the qubit much weaker than
the o noise. At the low temperature of 20 mK, there are no excitations in these
modes to excite the rf SQUID from the ground state to the second level. During
the entanglement operation, the rf SQUID makes transition from |0,) to |1,), and the
noise affects the dynamics of the rf SQUID. To ensure the successful implementation of
the measurement, it is important for the gate time to be shorter than the decoherence
time of the rf SQUID[123].

In conclusion, we present the design for a measurement on the pc-qubit that signifi-
cantly improves the measurement efficiency. By a qubit-controlled resonant transition
of the rf SQUID, the qubit information is conveyed to the rf SQUID which has a flux
signal of half a flux quantum. The subsequent measurement on the rf SQUID by a
magnetometer can resolve its state with one measurement. This design projects the
eigenstates of the qubit into macroscopically distinct states of the magnetometer and
efficiently obtains qubit information. Compared with the previous experiment[29],
this method avoids the difficulty of measuring 1073 flux quantum by a quantum de-
tector whose quantum width is 0.1 flux quantum. This measurement can also be

regarded as a first attempt in implementing a CNOT gate on the superconducting
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flux qubits to realize a quantum algorithm. Although we choose to couple the qubit
inductively to an rf SQUID in this chapter, other supplementary systems can also be

used with a different interaction mechanism and different detection technology.

3.7 Conclusions

In this chapter, we studied the measurement of the pc-qubit by a dc SQUID in terms
of the quantized SQUID Hamiltonian. During the premeasurement entanglement pro-
cess, the SQUID is modeled as two oscillators. Then, the SQUID switches to a finite
voltage state via tunneling. We derived the upper limit to the mutual information that
can be achieved in one switching event. This gives a natural limitation for the direct
detection of the qubit flux. Besides information, the measurement process also trans-
fers additional noise to the qubit from the SQUID’s environment. We calculated the
noise transferred to the pc-qubit with the Caldeira-Leggett formalism and estimated
the relaxation and decoherence of the qubit due to this noise. This study suggests
that a better readout circuit can be designed to optimize the measurement within the
qubit-SQUID coupling scheme. Hence, we propose a radiation-assisted measurement
at the end of this chapter which substantially improves the measurement efficiency.

When calculating the transferred noise, we map the linearized Hamiltonian of the
interacting qubit-SQUID system to a linear circuit. By calculating the impedance of
this circuit, the noise spectrum can be derived directly. This approach can be applied
to an arbitrary external system, including a measurement circuit, control circuit etc.
Note that this linear circuit can not be derived directly from the physical circuit
of the interacting systems, but is derived from the linearized Hamiltonian. Several
other impedance environments were examined from a direct circuit analysis[97] which
is valid in the specific parameter range of the experiment[29] with wy, > wp.

The inductive coupling between the qubit and the SQUID contributes o, noise to
the qubit. As [0,,H,] # 0, this noise induces damping as well as decoherence. We
found that when the measurement is on, relaxation is reasonably slow and will not

prevent the collection of accurate information of the qubit; when the measurement is
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off, the SQUID introduces negligible noise to the qubit. A more comprehensive study
of this structured environment shows that when the qubit frequency is close to the
plasma frequency of the external oscillator, the structure of the environment affects

the relaxation and decoherence in a complex way[96]

This study also brings up a general question in quantum information processing:
how to divide the system from the environment during any information exchange
between the quantum System and an external contro] device, such as a detector, a
controller or another qubit. To calculate the noise transferred to the qubit, the SQUID
and its environment form an effective environment with spectrum Jor;. However, in
order to determine the information obtained in the measurement, the qubit and the

SQUID’s inner oscillator must be treated as a joint quantum system in its own right,
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Chapter 4

Environmental Fluctuations

The power of quantum logic[77] depends on the coherence of the qubit[10] and on the
accurate manipulation of quantum logic. To successfully realize quantum algorithms,
a quantum computer needs to be both very well isolated from the external world and
to be very accurately controlled by an external program. Otherwise, quantum errors
that are lethal to quantum computing will occur during the process of computation.
Errors can occur during any process, even during the quantum storage process when
the qubit network is supposed to have trivial dynamics. The errors can either come
from environmental fluctuations that weakly couple with the qubit, or come from the
imperfectness of the controlled operations.

The theory of quantum error correction provides a remedy to the decoherence
effect. It was shown[124] that quantum errors can be corrected by encoding the
qubits with certain linear codes based on group theory proofs. By measuring the error
syndrome of the encoded qubit and applying state-recovering quantum operations
according to the measured syndrome, any independent qubit errors can be corrected.
To make sure this method works when the error also occurs during the error correction
process, fault-tolerant design of the error correction is required. In the fault-tolerant
quantum computing scheme, although error occurs in the error correction procedure,
the error can not propagate to qubits in the same encoded block. As a result, as far as
the probability of error is kept below a threshold, large scale quantum computing can

be realized. This threshold requires that the so-called “quality factor” of the qubit,
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the number of quantum operations performed during the qubit decoherence time,

should be at least 10* to allow fault-tolerant quantum computation[124, 125, 126].

Decoherence is an especially vital issue in solid state qubit designs, due to many
kinds of low energy excitations in the solid state environment that may couple to
qubit states and cause dephasing. A solid-state system is a complicated many-body
system. To construct the qubit state, we choose an effective two level system from the
solid-state sample. There are many other degrees of freedom that interact with qubit
states. The interaction, although designed to be weak, affects the qubit dynamics and
acts as source of decoherence. It is important to study the effect of the environment

on the qubit dynamics and to estimate the quality factor for a concrete qubit design.

In this chapter, we will first present a general formalism to study the environmen-
tal noise in solid state systems. Then we apply the formalism to estimate some of
the main sources of decoherence in the supercondutcing persistent-current, including
the background charge fluctuations, nuclear fluctuations, and quasiparticle conduc-
tion. The approach will be presented in a way making it easy to generalize it to
other systems. We emphasize those decoherence mechanisms that illustrate this ap-
proach. We will also study the interaction between the pc-qubit and electromagnetic
radiation. The interaction results in radiation decay of the qubit. The decay rate is
calculated with a perturbation approach. Dipole interaction between qubits causes
the oscillation of qubit energy and induces additional phase to the qubit dynamics.
We will also study the effect of this interaction and introduce a method to reduce
the interaction. Finally, we will summarize our results by categorizing different noise
according to their dephasing times and their noise correlation time and discussing the

potential method of controlling the noise in the different categories where it occurs.
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Figure 4-1: Schematic qubit design[20, 25] consisting of three Josephson junctions
connected as shown. Josephson energy of one of the junctions (number 3 in the
figure) is adjustable by varying the flux in the SQUID loop. The impedances Z
model the electromagnetic environment coupled to the qubit via gate capacitances
Cy(1,2)- Shunt resistors model the quasiparticle subgap resistance effect.

4.1 Classical Fluctuations

4.1.1 Model

The pec-qubit[20, 25] consists of three small Josephson junctions which are connected
in series, forming a loop, as shown in Fig. 4-1. The charging energy of the qubits
Eo = €2/2C) 5 is ~ 100 times smaller than the Josephson energy E; = hlp/2e, where
I, is the qubit Josephson critical current. The junctions discussed in [20, 25] are

200 nm by 400 nm, and E; =~ 200 GHz.

The qubit is realized by the two lowest energy states of the system corresponding
to opposite circulating currents in the loop. The energy splitting of these states
go ~ 10GHz is controlled by the external magnetic field flux f, the barrier height
is ~ 35 GHz and the tunneling amplitude between the two states is t &~ 1GHz. The

Hamiltonian derived in[20, 25] for the two lowest energy levels of the qubit has the

123



form

Hy = —£0/2  tlq, ) , (4.1)

t*(q1,32)  €0/2

where t(g1,¢2) is a periodic function of the gate charges ¢;. In the tight binding
approximation [20, 25], t(q1, g2) = t1 4 tae " B/® + 1,e'™92/¢ where ¢, is the amplitude
of the tunneling between the nearest energy minima and ¢, is the tunneling between
the next nearest neighbor minima in the model[20, 25]. Both t; and ¢, depend on
the energy barrier height and width exponentially. With the parameters of our qubit
design, to/t; < 1073, the effect of the fluctuations of ¢y 5 should be small.

Below, we consider a number of decoherence effects which seem to be most relevant
for the design[20, 25], trying to keep the approach general enough, so that it can be
applied to other designs. |

4.1.2 Basic Approach

We start with a Hamiltonian of a qubit coupled to environmental degrees of freedom

in the solid: Hiota1 = HQ (5) + ,Hbath({ga}), where HQ =Ho + Hcouplin93

h — N - N = A

Ho =5 (RO +i0) -6, =3 Ak, (4.2)
67

where ¢ = (03, 0y,0,) is the vector of Pauli matrices acting on the qubit states, the

vector A represents an external control function, and 7 is the noise due to coupling

to the bath variables &,. In (4.1), A, = —¢&¢, Ay — 1A, = t(q1, ¢2).

The degrees of freedom that may decohere the qubit dynamics are:

charge fluctuations in the gates coupling qubit states to other states;

quasiparticles in the superconductor giving rise to subgap resistance;

nuclear spins in the solid creating fluctuating magnetic fields;

electromagnetic radiation causing damping of Rabi oscillations;

coupling between qubits affecting operation of an individual qubit.
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In all cases except the last one, the qubit is coupled to a macroscopic number of
degrees of freedom N > 1 with about the same strength A, to each. In such a
situation, the qubit decoherence rate is much larger than the characteristic individual
coupling frequency A,/f. This means that dephasing happens on a shorter time scale
than it would have taken to create an entangled state of the qubit with one particular
element of the bath. In other words, on the decoherence time scale each element of
the bath remains in its initial state with probability 1 — O(1/N), and it is only due
to a large number of relevant degrees of freedom N that the state of the qubit is
significantly affected on this time scale.

This observation makes the analysis quite simple, especially because the condition
N > 1 allows one to replace quantum variables 7, ,(t) by classical fields fluctuating
in time. (Because all commutators [7;(t),n;(t')] = O(1/N) — 0.) As a result, the
problem becomes equivalent to that of longitudinal and transverse spin relaxation
times T} and 75, in NMR, corresponding to the noise 7;(¢) either flipping the qubit
spin, or contributing a random phase to the qubit states evolution, respectively. Thus
we can use the standard Debye-Bloch theory of relaxation in two-level systems.

To adapt this theory to our problem, we assume, without loss of generality, that
A(t) || # and is constant as a function of time. Then one can eliminate the term

A.G by going to the frame rotating around the z—axis with the Larmor frequency

N =

A = |A|. In the rotating frame the Hamiltonian (4.2) becomes:

N

Hq = (’ﬂn(t)Uz +e B (Hoy + Cimﬂi(t)ff—) ; (43)

where 7,(t) and 7, (t) correspond to components of vector 7(t) in (4.2) parallel and

perpendicular to 5, respectively.

The time evolution due to noise 7j(¢) is given by the evolution operator

Texp (—i / 'R'Q(t')dt') (4.4)

written in the rotating Larmor basis. However, for a simple estimate below, we

ignore noncommutativity of different parts of the Hamiltonian (4.3), and consider a
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c-number phase factor instead of an operator exponent.

Then the decoherence can be characterized using the function

R(t) = max [(¢}(2)), (6] (4.5)

where (...) stands for ensemble average, and

210 / M), gu(t) = [T nu(t)dr (4.6)

The function R(t) grows with time, and one can take as a measure of decoherence
the time 7 for which R(7) ~ 1. It is easy to justify neglecting noncommutativity of
evolution due to (4.3) at short times, when R(t) < 1. The condition R(7) ~ 1 thus
gives a correct order of magnitude estimate of the decoherence time 7. Note that this
estimate is a result of an ensemble average over many qubits. Although this is usually
a good lower bound for the decoherence of a single qubit, care needs to be taken in
the interpretation of 7 when the bath is “frozen” into a particular configuration so
that the ensemble averaging does not apply, as in the case of coupling to the nuclear

spins.

Since 7= Y. Ayl (t), it is the time evolution of £4(t) defined by Hypan that is what
[0
eventually leads to decoherence. One can express quantities of interest in terms of

the noise spectrum of the components of 7:

wt |2

Wy = [ dw%m(—wm.( ) (47)

(6.0 = [l =S g - dnwa). @8

In thermal equilibrium, by virtue of the Fluctuation—Dissipation theorem, the noise
spectrum in the RHS of (4.7) and (4.8) can be expressed in terms of the out-of-phase

part of an appropriate susceptibility.

Here we discuss the above listed decoherence mechanisms and use the expressions

(4.7) and (4.8) to estimate the corresponding decoherence times.
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4.1.3 Charge Fluctuations

We start with the effect of charge fluctuations on the gates due to electromagnetic
coupling to the environment modeled by an external impedance Z, (see Fig. 4-1),
taken below to be of order of 400¢2, the vacuum impedance.

The dependence of the qubit Hamiltonian on the gate charges ¢, is given by
(4.1), where the ¢; > vary in time, in response to the fluctuations of gate voltages,
dq12 = Cy0Vya2), where the gate capacitance is much smaller than the junction
capacitance: Cy < Cj,. The gate voltage fluctuations are given by the Nyquist
formula: (6V,(—w)déV,(w)) = 2Z,hw coth hw/kT.

In our design, [t(q1,¢2)| < €0, and therefore fluctuations of ¢, » generate primarily
transverse noise 7, in (4.3), n.(t) ~ (7/he)t2Cy0V,(t). In this case, according to
(4.8), we are interested in the noise spectrum of §Vj shifted by the Larmor frequency
A. Our typical A ~ 10 GHz is much larger than the temperature k3T /h = 1 GHz at
T = 50mK, and thus one has w ~ A > kT'/h in the Nyquist formula.

The Nyquist spectrum is very broad compared to the Larmor frequency and other
relevant frequency scales, and thus in (4.8) we can just use the w = A value of the

noise power. Evaluating the integral [ |(1 — e™*)/w|?*dw = 27t, we obtain

RO = (Ip20F) = 5 (Z66,) Bucs (4.9)

Rewriting this expression as R(t) = t/7, we estimate the decoherence time as

2 2
r=AL Ll g ( ° ) (4.10)

2e2 w=A wC gt2

where 71/2e* ~ 4kQ. In the qubit design e?/2C, ~ 100 GHz, and t, ~ 1 MHz when

ta/t; < 1073, With these numbers, one has 7 = 10 sec.

4.1.4 Quasiparticles

The next effect we consider is dephasing due to quasiparticles on superconducting

islands. At finite temperature, quasiparticles are thermally activated above the
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superconducting gap Ay, and their density is ~ exp(—2Ay/kT). The contribution of
quasiparticles to the Josephson junction dynamics can be modeled as a shunt resistor,
as shown in Fig. 4-1. The corresponding subgap resistance is inversely proportional
to the quasiparticle density, and thus increases exponentially at small temperatures:
Ry = RyexpAo/kT, where R, is the normal state resistance of the junction. For
a Josephson current Iy = 0.2uA, R, =~ 1.3kQ). At low temperatures the subgap
resistance is quite high, and thus difficult to measure[127]. For estimates below, we
take Ry, = 10" which is much smaller than what follows from the exponential

dependence for T'= 50 mK.

The main effect of the subgap resistance in the shunt resistor model is gener-
ating normal current fluctuations which couple to the phase of the junction. The

Hamiltonian describing this effect is
qp b e
’Hcoupling = Z '2_6'<lez (t) ) (411)
7

where i = 1,2, 3 labels the Josephson junctions. Projecting (4.11) onto the two qubit
states, one obtains the Hamiltonian (4.2) with n,(t) = I'*(¢)/2e, 75, = 0.

The noise spectrum of the quasiparticle current is given by the Nyquist formula:

(IP(—w)I%®(w)) = 2R hiw coth(hw/kT) (4.12)

After rotating the basis and transforming the problem to the form (4.3) we have
n.(t) = (t1/e0)my(t), where ny(¢) = I®(t)/2e since t; < &.

The analysis of (|¢1(t)|?) and (|¢(¢)|*) is similar to that described above for
charge fluctuations on the gates, and one obtains R, (t) = t(t1/€0)*hA/(2¢*Ryp),
and Ry|(t) = tkT/(2¢*?Ryp) which gives

2 2 9e2
T = min [71,7'”] = min [26h§qp (i_f) , e_k;zﬂ] (4.13)

Taking Ry, = 107 Q, T = 50mK, and &/t; = 100, the decoherence times are

7| = 10 msec and 7, = 10sec.
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4.1.5 Nuclear Spins

The decoherence effect of nuclear spins on the qubit is due to their magnetic field
flux coupling to the qubit inductance. Alternatively, this coupling can be viewed as a
Zeeman energy of nuclear spins in the magnetic field B (r) due to the qubit. The two
states of the qubit have opposite currents, and produce a magnetic field of opposite

sign. The corresponding term in (4.2) is

Heoupting = —0= 3 puB(r) - 3(r) (4.14)

T=r;

where 7; are positions of the nuclei, x4 is nuclear magnetic moment and 3(r;) are spin

operators.

Nuclei are in thermal equilibrium, and their spin fluctuations can be related to the
longitudinal relaxation time 77 by the Fluctuation-Dissipation theorem. Assuming

that different spins are uncorrelated, one has

2kgTix0
1+ w?T?’

(50(r)s-u(r)) = 27X = (4.15)

where xo = 1/kgT is the static spin susceptibility.

The spectrum (4.15) has a very narrow width set by the long relaxation time T;.
This width is much less then kg7 and A. As a result, only longitudinal fluctuations

n) survive in (4.7) and (4.8). One has

1 _ ezwt|2

@) = [awl Sk X WB) (ulr)s-ulr)) (4.16)

Plugging the spectrum (4.15) in (4.16) and integrating, one obtains
2 2 -1/2
R(t) = — (|t| T +T1e_|t|/T1) ,To = ( T n(r)B2(r)d°r ) , (4.17)
70

where n(r) is the nuclei concentration. The ensemble-averaged decoherence time
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that is defined by R(7) ~ 1 is then estimated as:

{7’0, for T > 71

. 4.18
Tg/Tl, for T1<TO ( )

In superconducting Al, nuclear spin relaxation time is strongly varying with temper-
ature: Ty ~ (300/T [K])e2/*8T sec. At T = 50 mK, the time T} is of order of minutes,
which exceeds all time scales relevant for qubit operation. To estimate 7y, we use the
magneton p ~ eh/Mc, where M is proton mass, and [ B?(r)d3r ~ 1075®7 /w, where
w ~ 0.5 um is the thickness of Al wires in the circuit, and ®; = hc/2e is the flux

quantum. The resulting 7y ~ 3 x 1078 sec < Tj.

According to (4.18), one apparently obtains a worryingly short time 7 = 7.
However, we note that this result corresponds to ensemble averaging, and one should

be careful in applying it to an individual qubit.

The physical picture is that the nuclei spin configuration stays the same over
times < T7. At such times the perturbation 77 due to spins has essentially no time
dependence, and so nuclei can be viewed as sources of random static magnetic field.
The fluxes of this field induced on the qubits depend on initial conditions, and are
uncorrelated for different qubits. A typical value of this flux corresponds to the change

in the Larmor frequency of order of A ~ 75! ~ 30 MHz.

To summarize, for an individual qubit the effect of nuclear spins is equivalent to
a random detuning caused by a random change in A. For an ensemble of qubits,
there will be a distribution of Larmor frequencies of width 6 A ~ 30 MHz, even if all
qubits are identical. However, since the qubit phase can be kept coherent within a
time < Ti, an indirect observation of Rabi oscillations is still possible by using the

so-called “spin-echo technique.”

A similar theory can be employed to estimate the effect due to magnetic impurities.
The main difference is that for impurity spins the relaxation time 7} is typically much
shorter than for nuclear spins. If T} becomes comparable to the qubit operation time,
the ensemble averaged quantities will describe a real dephasing of an individual qubit,

rather than effects of inhomogeneous broadening, like for nuclear spins.
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4.2 Radiation Decay of PC-Qubit

In the previous section , the environment is treated as a classical fluctuating field
whose noise spectrum determines its effect on the qubit dynamics. In this section,
we study the effect of a quantized electromagnetic field on the qubit. We use Fermi’s
Golden rule to study the radiation decay of the pc-qubit in the electromagnetic field.
First, we are going to study the decay rate of a single pc-qubit in the electromagnetic
filed. We study both the electrical dipolar radiation and the magnetic dipolar radia-
tion, both of which increase with the size of the qubit (though with different orders).
We will then apply the method to study the radiation decay of the rf SQUID circuit
which has a much larger size than the persistent-current qubit and as a result, a much
faster decay.

The electromagnetic field is given by

_ 3[R [ giki L gt ik
E(T) - Zs,kzs 2e0L3 [ak,sezr'f"ak’se ZT]

s s . . (4.19)
H(T) = — Zs,k ’l‘:k X 1;51 / 22—;)23 [&k’selkr _ &L'se—zk'r]

where the summation is over all modes in the field, with s beingthe polarization and &
being the wave vector. L is the size of the cavity where the sample stays. r is the spa-
tial coordinate in the cavity. As the qubit frequency wy is about 10 GHz, the relevant
photon wavelength is much longer than the size of the qubit, and hence the dipole
approximation can be applied when studying the transition between qubit states. So
in the following, we neglect the field’s dependence on the spatial coordinates.

The Hamiltonian of the pc-qubit depends on the external electromagnetic field as:

(B + £O1)? |, (Pt BCVa)?

Hy = oM, 2M,,

+ E;7(—2¢08 ¢, €08 P — @ COS(27 fop + 2001 ))

(4.20)
where P, = P, + P», P, = P, — P, are the momenta corresponding to the phase
variables ¢, and @, respectively. C, is the gate capacitance and Cy = yC;. We have

M, = 2C;(1 4+ 7)(£)* and My, = 2C;(1 + 2a + 7)(£)? in Eq. 4.20. The external
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electromagnetic environment affects the qubit by causing fluctuations in the gate
voltages V,, and V, (V, = Vi + V3, and V,,, = V4 — V,) and in the magnetic flux f; in
the qubit circuit. The fluctuations include both the zero-point fluctuations and the
thermal fluctuations. These fluctuations cause the coherence of the qubit to decay

which can be calculated with a perturbation approach.

4.2.1 Magnetic Radiation

The qubit interaction with the magnetic field introduces the following term the Hamil-

tonian:

6Hpy = 2m By sin(20m + 27 for)0 f (t) = Lird f (1)@ = I;r R*0B(t) (4.21)

where R is the size of the qubit loop and is about 5 times the size of the qubit
junction p. The term R2§B(t) is the fluctuating flux in the qubit loop, and it will
cause magnetic dipolar radiation of the qubit. From Fermi’s Golden rule, the decay

rate is:

_ pows R*
3rc3h

2w

(U1l1|%2)PR|(n = 1|Bln = 0)|” p(fuwo) (L[ T) [ (4.22)

where |¥;) and |¥,) are the qubit states. p(fiwp) is the density of states at the qubit
energy wy and p(hw) = L3w?/3m%kc® in a cavity of size L. The factor 3 comes from
the mode in the direction of the coupling field z. Eqn. 4.22 shows that the magnetic

dipolar radiation rate is proportional to the fourth square of the loop size R.

4.2.2 Electric Radiation

The electrical field also causes radiation decay. The interaction between the electrical

field and the qubit is:

132



Hp = ZLECV,+ LoLCyoV, = 35 RQ,0E, +

M, 2e 2(1+2a+y RQm‘SE (4.23)

where we assume that 6V, = ROE, and 6V, = RJE,, R being the size of the
qubit loop. The electrical modes E, and E,, can be written as the electrical modes
in Eqn. 4.19. The charge operators are defined by P, = LQ, and B, = £Q,,
corresponding to the sum and difference of the charges on the superconducting islands
1 and 2 respectively ( Qp =01 +Qyand O, = @, — Qg) With the Fermi-Golden

rule, the spontaneous decay rates are:

I = 2 () (01]Qp W) PR (LI B 0) 2 p(fuo)
2 ge2,3R2 ~ 9
= (+ ) Tomeswa (V1| P T)|
(m) A 2p2 2 (4.24)
Y = %(z(mm)) (21| Qum | Wa) P B[ (1] En|0) 2 (st

2 4
= (1+2a+’y) 12::,%@ (\I}1|Pm|q!2>|2

both of these radiation rates increase with the square of the size of the qubit loop.

In the pc-qubit, the current operator almost commutes with the Hamiltonian as
the qubit states are nearly localized flux states. As a result, the off-diagonal element of
the current operator is much smaller than the diagonal element of the current operator
which is average current of the eigenstate. This indicates a small magnetic dipolar
radiation rate. On the other hand, the electrical dipolar radiation depends on the
off-diagonal elements of the momentum operator P,,/h? and P,/h? with (P,/h%) =0
but P,/h* with (P,/h*) of the order one. This indicates strong radiation by this

electrical dipolar coupling. The ratio between electrical and magnetic radiation is:

2li/L)
2IPn /H7]1)

where R is in units of ym, and Ej; is in units of GHz. The electrical dipole radiation

T (3 x 108)2(y/(1 + 20 + 7))?
Ty (47 x 10°)2R2 x 10-12E2

(4.25)

is reduced largely by the gate capacitances that are much smaller than the junction

capacitances. The gates screen the pc-qubit from the electrical fluctuations.
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Figure 4-2: Contour map of logarithm of the decoherence time 74, of the pc-qubit
due to the magnetic dipolar radiation. The numbers labelled in the contour are the
10-based logarithm of the decoherence time.

With the parameters of the pc-qubit: E; = 200GHz, R = 5p = 1.5um, E¢ =
2 GHz, and bias flux f.; = 0.495, we estimate that the magnetic dipolar radiation
rate is 1 x 1075 /sec, and the electrical dipolar radiation rate is 1.5 x 10~*/sec. This

induces qubit decoherence by radiation decay with 74, = 1/I'§ = 7ksec.

4.2.3 Magnetic Radiation in an RF SQUID

As can be seen from eq. 4.22, the radiation rate depends on the cubic square of the
Larmor frequency and the fourth square of the size of the qubit. As a result, the
radiation increases dramatically when the qubit size is increased. In the rf SQUID
qubit, the loop inductance has to be large enough (1 < 8 = 2nL,I./®y < 4.6) to
have the double well potential. As a result, the circuit size has to be much larger

than that of the pc-qubit under the same junction parameters. When E; = 200 GHz
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Figure 4-3: Contour map of logarithm of the decoherence time 74, of the pc-qubit
due to the electric dipolar radiation. The numbers labelled in the contour are the
10-based logarithm of the decoherence time.

and 8 = 2, the loop size is 0.3 mm. This gives a magnetic dipolar radiation rate
roughly 108 stronger than that of the pc-qubit, since the energy difference Ey and the
dipole matrix < 1|7|2 > don’t change much in these two cases. This radiation kills

the coherence of the rf SQUID in a very short time.

The junction parameters of the qubit are mainly decided by the junction size p and
the critical current density J,. We have the critical current I = J.p?, the junction
capacitance C; = 40[fF/pm?]p?, and E;/Ec « J.p*. For the pc-qubit, the circuit
size is usually 4 ~ 6 times the junction size. For an rf SQUID, the circuit size is
much larger in order to make § ~ 2. We studied the dependence of the radiation
decoherence time on the junction size and the junction current density. Fig. 4-2
shows the decoherence of the pc-qubit by magnetic dipolar radiation, and Fig. 4-3
shows the decoherence of the pc-qubit by electrical dipolar radiation and Fig. 4-4
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Figure 4-4: The ratio between the electric dipole radiation rate and the magnetic
dipole radiation rate. The numbers labelled in the contour are the logarithms of the
ratios.

is the ratio between the electrical dipolar radiation rate and the magnetic dipolar
radiation rate. As is shown, the electrical dipolar radiation is about one order of
magnitude stronger than the magnetic one in most regimes. Fig. 4-5 is the rf SQUID
decoherence due to the magnetic dipolar radiation. As was analyzed in the previous
paragraph, this radiation increases with the size quickly. As a result, the regime
that can be designed as a flux qubit is very narrow. However, the rf SQUID can
be designed with a gradiometer geometry which reduces the dipolar radiation of the
SQUID significantly. With this geometry, the residual radiation is the higher order

quadrupole radiation and is much weaker than that of the dipole radiation.

136



RF-SQUID

109, T oo

0 505 1 1.5
log,,J, [KA/cm™ ]

Figure 4-5: The decoherence time of the M-dipole radiation of the RF-SQUID.
4.3 Dipole Interaction between Qubits

In our previous discussion, we concentrated on the decoherence of the persistent-
current qubit by environmental noise. Besides these random fluctuations, other
sources of decoherence exist. These sources of decoherence are not amenable to the
general approach considered in section 4.1. One of them is the interaction of the
qubit with the other qubits in the Josephson network. Here we are going to study

the effect of the qubit interactions on qubit decoherece.

4.3.1 Dipole Interaction

A qubit with a circulating current can be regarded as a magnetic dipole. For two
qubits with a large distance, the lowest order interaction is the dipole-dipole coupling
between the two magnetic momenta. Fig. 4-6 is a simple picture of this interaction.

Let the dipolar moments of the two qubits be i, and fi,, this interaction is described
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Figure 4-6: Dipole interaction between magnetic dipoles. 7" is the distance between
the qubits.

by

Heoupling = 3 Ao ® 0, g~ (4.26)

1,J
In our circuit, the circulating current is I =~ 0.2uA and the area of the circuit loop is
A ~ 1pm?. (This is the critical current of the Josephson junction. The actual current
is always smaller but of the same order.) The dipole moment is i = I.A =~ 0.2pA x
um?. Taking the distance between qubits to be R = 50um as a first estimation,
Egipole = 2 X 107K in units of temperature. For comparison, the tunneling energy
is A < 0.01E; = 0.06 K and the operating time is proportional to the inverse of this
energy 7o, = 1/A.
This interaction is strongest for nearest neighbors. For a square lattice of qubits
with the spacing R = 10 um, one has the nearest neighbor coupling A ~ 6 KHz.
The corresponding decoherence time 7 = A~! ~ 0.2msec is relatively short. The

interaction energy in the worst case is:

Ey
AFE = E —_— 4.27
a1 (n? + m2)3/2 ( )

where m and n are integers. The energy summation AFE converges as the number of

qubit increases and we have AE < 10Ey = 60K Hz. The corresponding decoherence
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time is Ti;; = 16us which means a quality factor of less than 10* when the Rabi

frequency is 100M Hz. This is a short decoherence time for quantum computation.

4.3.2 Quadrupole Interactions

Several alternatives of the design can be implemented to reduce the effect of qubit-
qubit interaction. One can arrange qubits in pairs with opposite signs of circulating
currents. This will eliminate the dipole moment of a pair, and reduce the coupling
between different pairs to a somewhat weaker quadrupole interaction. The same result
can be achieved by using a superconducting base plane, in which magnetic dipoles
will be imaged by dipoles of opposite sign, which will partially cancel the qubit-qubit
coupling. Also, one can detune Larmor frequencies of neighboring qubits, moving
them apart by more than A, which will make the couplings (4.26) off-resonance and
thereby reduce their effect.

Let us briefly discuss the pairing of the qubits. A qubit pair consists of two
adjacent qubits that always have opposite currents. When one qubit in the pair has
a state |¥; >= a;|0 > +az|1 >, the other qubit in the same pair always has the
state |¥; >= o3|l > +a2|0 >. By introducing this pairing, the dipole interaction is
cancelled and the interaction is a quadrupole coupling: H;,; = %%’;—2%2, where 7 is
the distance between the two qubits in the same pair. Let r = 1ym and R = 10um,
and we then have Ey = 0.36 K Hz. Summing over all the qubits, we have for a square

lattice of qubit pairs:

AFE = m,'n,g—:i-'n.)l (n2 +E7312)5/2 (4.28)
which gives us the result that AF < 10Ey) = 3.kK Hz and a decoherence time 74,, =
300ps. Now the quality factor is 6 x 10* and is improved from that of the dipole
configuration. Other designs can be adopted to reduce the qubit interaction as well.
At the same time, this will increase the complexity of the fabrication and might

bring in decoherence from technical features such as inhomogeneity between different

qubits. The more complicated the configuration is, the more difficult will be the
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Figure 4-7: Quadrupole interaction between paired dipoles. When two dipoles with
opposite dipole moments are paired closely together, their dipoles cancel each other.
The residue interaction is the higher order quadrupole interaction.

fabrication. Fig. 4-7 is a simple picture of this interaction.

Unwanted coupling between qubits is a common problem in quantum computers.
Sophisticated decoupling techniques that have been developed for NMR designs[16],
could be used here too. The idea is to apply a sequence of single qubit operations that
effectively average out the coupling Hamiltonian over time. Such methods would also
be effective for reducing the coupling with the environment[128]. These techniques
are fully compatible with quantum computation and could be used to lengthen sig-

nificantly the effective coherence times.

4.4 Summary

In this chapter, we concentrated on investigating qubit decoherence from environ-
mental fluctuations. Our method can be easily generalized to other qubit designs and
other origins of noise. Our analysis shows that for the pc-qubit[20, 25] the decoher-
ence time is limited by qubit-qubit coupling. By using methods discussed above, the
decoherence time can be made at least 1 msec, which for fra, = 100 MHz gives a
quality factor of 105, passing the criterion for quantum error correction.

In addition to the effects we discussed, some other decoherence sources are worthy
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of attention, such as low frequency charge fluctuations resulting from electron hop-
ping on impurities in the semiconductor and charge configuration switching near the
gates[129]. These effects cause 1/ f noise in electron transport, and may contribute to
decoherence at low frequencies. Also, we left out the effect of the ac field of coupling
the two low energy states of the qubit to higher energy states. Results of our numeri-
cal simulations of the coupling matrix in the qubit[20, 25] show that Rabi oscillations
can be observed even in the presence of the ac excitation mixing the states. For more

details on this effect, see the next chapter.

In Fig. 4-8, we categorize quantum errors according to the dephasing time by this
noise source and the correlation time of the noise fluctuations. The z axis is the
correlation time 7, scaled to the qubit operation time 7,, ~ 10 nsec, and the y axis,
also scaled to the qubit operation time 7., is the dephasing time 74 during which
the qubit gains a random phase of order 27. In the top area where 75 > 10%7,,
large scale fault-tolerant quantum computation can be realized via quantum error
correction[87, 124]. No additional pulse sequence is needed to further reduce the
decoherence rate. Hence 74, = 74. The noise sources in this area are the charge
noise, the quasiparticle tunneling, and the current noise from the external control
line. In the area where 7¢,, > N7, but 74 < 10%7,,, N is a number of order 10,
direct quantum error correction can not result in fault-tolerant quantum computation.
However, as 7., > N7, an average Hamiltonian method can be applied to average
out the random phase from the environment by exploiting the correlation between the
fluctuations at different times. As a result, the real decoherence time is longer than
the dephasing time 74, > 74 and the system can be modified to the quantum error
correction regime. Both the interaction with the nuclear spins and the interaction
with other qubits are in this area. In the area where the gate errors happen, including
the single qubit gate and two qubit gates, the error accumulates very fast and 745 < 7,p.
Fortunately, these errors are coherent errors from the unitary dynamics of a multilevel
quantum system. A dynamic pulse control method can be applied to reach the desired
quantum operation. When both the dephasing time and the correlation time are short,

both quantum error correction and dynamic control are not very helpful in keeping
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Figure 4-8: A summary of different noise sources and the control method applied to
correct the errors.
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the coherence of the qubit. Still, when the dephasing time is not too short, coherent

dynamics between the qubit states can still be observed and some fundamental physics

can be studied.

Some of these results are listed in Table 4.1.

error source time scale prevention
charge noise T > 10%7,, quantum error
quasiparticle

current noise Teor K Top correction
nuclear spin 75 < 10%7,, refocusing
dipole interaction | Teor 2> Top technique
higher levels T < Top dynamic
two-bit gate error | coherent error | pulse control

Table 4.1: Major error sources with potential control methods. The errors are cate-
gorized according to two time scales: the dephasing time 74 and the correlation time
Teor- At a different area, a potential error correction method is suggested.

In this study, we assume that the noise on different qubits is independent of each

other, so that quantum error correction can be applied fault-tolerantly to deal with

these independent errors. But in real life, the noise on different qubits is often spatially

and temporally correlated. One example is the radiation decay. A general method

for correcting strongly correlated error has been proposed [130, 131]. The effect of

the correlated errors on entangled qubits has also been studied for superconducting

charge qubits.
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Chapter 5

Dynamic Control on A Multilevel
Qubit

Successful quantum computation relies on accurate manipulation of the qubit states|5,
7]. In practice, qubits are subject to many sources of quantum errors including ther-
mal fluctuations of the environment(132, 133, 134, 135], qubit-qubit interactions[136],
and intrinsic redundant degrees of freedom within a qubit, such as the quasiparticle
conduction in the superconducting qubits[20, 25, 22, 23, 24, 25], and the effect of the
higher levels in many practical. qubit designs[22, 23, 24, 137]. The dynamic control
turns out to be a powerful tool to cope with the quantum errors during quantum
computation. In this section, we present two applications of the dynamic control
method: we propose a dynamic pulse control technique that efficiently eliminates un-
wanted off-resonance transitions and decouples the qubit from environmental noise;
we also design a pulse sequence of a 24 nsec period for decoupling the pc-qubit from
environmental noise.

Various schemes to protect the qubit from qubit errors have been proposed that
can be divided into two categories. The first one is the quantum error correcting
codes [87, 124, 125, 126, 131, 139, 140, 141, 142, 143, 144, 145] where the qubit state
is encoded by redundant qubits. Different errors project the qubit-extra-qubit system
into different subspaces that can be determined by measuring the extra qubits. By

applying a transformation according to the measurement, the correct qubit state can
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be restored. This approach relies on large numbers of extra qubits to keep the errors
from propagating. The second approach exploits “bang-bang” control techniques[146,
147], where the dynamics of the qubit and its environment are manipulated by fast
pulses that flip the qubit state. With the influence of the environment being averaged
out, the qubit evolves in the error-free subspace. This method relies on the ability
to apply the pulses rapidly compared with the correlation time of the environment.

This is an open loop control method.

The persistent-current qubit is not a perfect two-level system. Higher energy
states exist. During the gate operation, in addition to causing transitions between
the two qubit states, the gate perturbation also causes transitions to the higher levels.
This is the so-called leakage problem and is ubiquitous in many qubit designs. The
leakage is a coherent quantum error during the gate operation. It can be shown that
in many occasions this gate error has a much larger error rate than the environmental
noise. Dynamic control turns out to be a good approach to correct or prevent this
gate error. By applying the right sequence of pulses, this error can be completely

prevented.

The dynamic control method is also a very effective way of manipulating environ-
mental noise. A simple approach applies the average Hamiltonian method to decouple
the qubit from the environmental noise. This method works for noise which has a
finite correlation time. When the pulses can be applied sufficiently fast, the errors
due to the environment can always be cancelled out to at least the third order in the
interaction Hamiltonian. A practical problem is how to find the right pulse sequence

with implementable pulse duration and pulse strength.

In this chapter, we will study two applications of the dynamic control method to
the persistent-current qubit. Namely, the pulse control on a multilevel quantum sys-
tem and the average Hamiltonian method to decouple the qubit from environmental
noise. Both of these methods rely on the accurate manipulation of pulse sequences
and have open problems remained to be solved. The discussion on these problems
gives a different approach of correcting quantum errors from the quantum error cor-

rection method and can be a complementary approach to the standard quantum error
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correction.

5.1 Off-resonant Transitions

A particularly important form of intrinsic qubit errors comes from the off-resonant
transitions to the higher levels of a qubit during gate operation. Real qubits are not
S = 1/2 spins that are perfect two level systems; redundant levels always exist that
affect the information content of the qubit. The gate operation that is introduced
to couple the lowest two states of a qubit almost always induces unwanted couplings
between the lowest two states and the higher levels. When the interaction is applied
with the frequency w = ws — w1, a resonant transition occurs between the lowest two
states; meanwhile, off-resonant transitions to the higher states are also switched on.
These transitions cause deviations of the phase and amplitude of the qubit state from
perfect Rabi oscillation. Numerical simulations on the superconducting persistent
current qubit (pc-qubit)[20, 25, 148] show that this deviation can be severe when the
unwanted couplings are of the same order as the Rabi frequency.

In this section, we study the off-resonant leakage from the qubit states to these
higher states. we numerically simulate the dynamics of the lowest four energy levels

of the qubit circuit and estimate the error rate of the process.

5.1.1 Unwanted Transitions

We simulate the dynamics of the lowest 4 eigenstates of the persistent-current qubit

with a microwave pulse. The static qubit states are calculated from the Hamiltonian

1P 1P?
H= -L4-im g
t 2Mp+2Mm+ J{ + «
—2 €08 pp COS P, — @ €os(27 f + 2¢01,) } (56.1)

where the momenta can be written as P, = —ih9/0¢, and P,, = —ihd/0p,,. The
mass terms are M), = (®,/27)?2C(1+7) and M,,, = (®,/27)?2C (1 +2a++y). Typical
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Figure 5-1: The lowest 4 energy levels of a pc-qubit circuit are plotted. The energy
difference between the excited states and the ground state are labeled beside each
energy level in units of GHz. When a radio-frequency perturbation is applied, transi-
tions between different states are induced. The transition matrix elements are given

as Yij-
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parameters are: FE; = 200GHz, E;/E, = 80, a = 0.75 and v = 0.02. And the
flux bias is f = 0.495 in our calculation. The energies of the lowest four states
are: F, = 1.5228F;, F, = 1.5642F;, E3 = 1.6622F;, and E; = 1.7193E;. The
energy differences in terms of GHz are: Fy — Ey, = 4GHz, E3 — E; = 14 GHz, and
E, — FE; =20GHz.

Now apply a microwave pulse Hz = 270 f sin (2¢,, + 27 fez) cos wyt, where 8 f is
the amplitude of the microwave pulse and hwy = E; — Ej is the pulse frequency.
This pulse will induce transitions between the eigenstates. Ideally, we only want the
transition between the ground state and first excited state for a single qubit rotation.
But this simple pulse also induces unwanted transitions between the qubit states and

the higher states. The transition matrix is

(Hz)mn = 276 f (m|sin (2¢m + 27 fer) |0) (5.2)

where m, n are labels of the states. The transition matrix is given by

0 —0.4578 —0.2596 0.3195

—0.4578 0 0.6766  —0.0030
Hy/E; = 6f (5.3)
—0.2596 0.6766 0 2.4314

0.3195 —0.0030 2.4314 0

The matrix is written in units of E;. With E; = 200 GHz and df = 0.001, the
transition elements are v,2 = —92 MHz, 7,3 = —52 MHgz, and 753 = 136 MHz. The

energy levels and the coupling matrix are shown in Fig. 5-1.

5.1.2 Simulation

Starting from the numbers given above, we simulate the dynamics of the four-level
system with microwave radiation. The initial state of our simulation is the ground
state. Ideally, without the unwanted couplings to the higher states, we should observe
a Rabi oscillation between the two qubit states, with the Rabi frequency in proportion

to the amplitude of the pulse. With the unwanted couplings, the transitions to the
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Figure 5-2: Numerical simulation on the 4 level system from the persistent-current
qubit. The system starts from the ground state. Microwaves with a frequency of
hwy = E; — Ejy in resonance with the qubit frequency are applied. The z axis is the
evolution time in terms of wgt. The total simulation lasts 200 periods of the applied
pulse. The slower oscillation curves are the amplitudes of the ground state and the
first excited state, which in an ideal situation, should go through Rabi oscillations.
The fast oscillations are the amplitudes of the higher states and are the leakage from
the qubit states.
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higher states occur. As the probability for the leakage is small, we have following:

P(l — 2) = sin2 WRabil

2
sin? w, t (5.4)

Wy = \/|’)’13|2 + (w31 — wp)?

where the probability of the transition to the second level is approximately a Rabi
oscillation with frequency wgqpi. So the probability of the leakage is determined by

(713/wr)? and the off-resonant oscillation frequency is given by w,.

The simulated result is shown in Fig. 5-2. The z axis is the time of evolution in
units of wpt and the total simulation time is 200 periods of the rf pulse. The y axis
shows the logarithm of the probability of the wave functions. The slow oscillations
are the amplitudes of the ground state and the first excited state which behaves as a
Rabi oscillation. The fast oscillations are the off-resonance oscillation of the higher
states. The error rate from this simulation is 0.01/gate which is much higher than

that of the environmental Auctuations.

The off-resonant leakage during gate operation has two significant characteristics.
First, unlike the environmental fluctuations that affect the qubit only slightly (less
than 10~*) within one operation, the leakage changes the qubit dynamics by an am-
plitude of roughly (Qﬁﬁh)z and on a time scale 1/wq that is much shorter than qubit
operation time (about 1/wge). Conventional quantum error correcting codes correct
errors that occur with small probability and is not a suitable strategy to cancel these
strong off-resonance transitions. Neither can we use the bang-bang method to aver-
age this effect out[149, 150] simply by flipping the qubit states as the flipping pulses
induce the same transitions as well. Second, ignoring all interactions with external
variables, the leakage is coherent, although the coherent oscillation will collapse since
the revival time is too long to be observed due to the large number of transitions of
different frequencies[110]. As will now be shown, the coherent nature of the leakage
implies that this type of error can be corrected by applying a control sequence that

coherently modifies the qubit dynamics.
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5.2 Resonant Cancellation of Off-resonance Effects

In this section, we study the effect of the higher levels on qubit dynamics during qubit
operation by a group theoretic approach. We prove that the errors can be completely
avoided by applying a time varying operation Hamiltonian. Then we generalize this
result to the qubit-qubit interaction problem which can be mapped exactly onto
the first one. Extending the idea of dynamic pulse control[146], we design a pulse
sequence that cancels the leakage to the higher levels to arbitrary accuracy with a
O(N) number of pulses, N being the number of higher levels.

The proposed method for protecting quantum information is complementary to
quantum error correcting codes and the ‘bang-bang’ technique mentioned above. Like
the bang-bang method, it has the advantage that it does not require extra qubits to
enact. The proposed method protects against a different class of errors from those
corrected by the methods of [146], however. Dynamic pulse control can be used
in conjunction with quantum error correcting codes and the bang-bang decoupling

method.

5.2.1 Lie Group Analysis

Consider a N level quantum system with Hamiltonian H,, the lowest two states of
which are chosen as the qubit states | 1) and | ). The unitary transformations on
this N dimensional Hilbert space form the N? dimensional compact Lie group U(N).
Without other interactions, the trajectory of the qubit follows the Abelian subgroup
{e~"™ot ¢t € R}.

Now apply to the qubit the perturbation #;, [Ho, H] # 0, to induce a desired
transformation of the qubit. In most physical systems, unwanted transitions to the
higher levels are simultaneously induced. For example, in the pc-qubit[20, 25] oper-
ation, (Hz)mn = 270 f(m|sin (2¢m, + 27 f)|n) coswt, when the bias flux is modulated
with rf components of amplitude 6 f and frequency w. This perturbation has cou-
plings between all the energy levels. By successive commutation of Hg, H;, and their

commutators until no independent operator appears, a Lie algebra A is created. In
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almost all cases, A; = u(N)[77], u(N) being the Lie algebra of U(N). The only ex-
ception occurs in a zero measure subspace of u(/N) when H; and H, are both in the
same subalgebra of u(N). Thus, with almost all perturbations, the evolution operator
can be any element in U(V); and transitions to higher levels are unavoidable with an

initial state that only occupies the lowest two levels.

To prevent transitions to the higher states at time ¢ means to restrict the evolution
operator U(t) to the submanifold of U(2) @ U(N — 2), U(2) being the unitary group
on {| 1),| 1)} and U(N —2) on the remaining IV — 2 states. This applies 4(N — 2) real
domain restrictions on U(t): U(t)1x,U(t)sx = 0,k =3 ... N. In contrast to a perfect
qubit operation during which #(t) remains in the subspace U(2) & U(N — 2) all the
time, the qubit is allowed to stray away from this subspace if only it goes back to
this subspace at the designated time ¢. The qubit dynamics can be manipulated by
varying the strength and phase of the perturbation with time. As the N? dimensional
Lie group U(N) is compact, any transformation can be reached at time ¢ by adjusting

the N2 + 1 parameters in the following process[77]:

u(t) — e—iGHIth e—ia?-l.oth_l e e_ianotl (55)

where « is introduced to ensure that ¢ = Y ¢;. By playing with the N2 + 1 real
parameters, the 4(N — 2) real numbers in U(t)x,U(t)2x can be set to zero so that
the state of the qubit stays in the {1, |} space without leakage. Hence by turning the
perturbation on and off O(NN?) times, the lowest two states are completely decoupled
from the higher states. O(NN?) pulses give a sufficient condition that is required to
achieve an arbitrary transformation. As will be shown later in this chapter, with a
proper arrangement, we can design a pulse sequence of O(NN) pulses to cancel the
transitions to the higher levels. Furthermore, these pulses can be superposed to make
a single shaped pulse as in [147, 150] that averages out the unwanted transitions. For
a given driven power per unit frequency, the length of the shaped pulse is independent
of the number of higher levels. Unlike that in the quantum Zeno effect{151] where

measurement is used to prevent the system from evolving, the dynamics in this process
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is described completely by unitary evolutions.

As the unwanted transitions are off-resonance transitions whose amplitudes de-
crease roughly as 7;;/w; (w; is the energy of the ith level, v;; the coupling between
level ¢ and j), the influence of the levels with w;/wy > 1 can be ignored. In the
pc-qubit[20, 25] the energies of the lower levels increase fast enough (wip > 10wp)
that levels beyond |10) can be ignored. The energy of the ith level of the charge
state qubit increases as i%; fewer states affect the qubit dynamics than that in the
pc-qubit. Hence the number N of the higher states involved in the qubit dynamics
in real designs can be reasonably small. As a result, the number of pulses in the

previous analysis is also reasonable.

5.2.2 Generalization

One question to ask is whether there is any fundamental difference between the errors
due to transitions to the higher levels and those due to the fluctuations of environ-
mental variables. Putting it in another way: what is the difference between the
intra-qubit coupling in a multilevel qubit and the qubit-external-system coupling? In
the following we will show that the N-level qubit can be mapped into interacting
subsystems, and vice versa.

Let the initial state of a N-level qubit be |¥q) = o 1) +a§°)|2), |1) and |2) being
the lowest two states. To map the qubit into two subsystems, we divide the /V states
into two subspaces SP; and SP, by adding the vacuum states |V;) and |V3) to the
respective subspaces as SP; = {|V1),[1),]2)} and SP, = {|»),3), ... ,|N)}. Now
the N dimensional Hilbert space of the original qubit is embedded in the 3(N — 1)
dimensional direct product space SP; ® SP,. The states in the expanded space are
[T) =¥ 5 ﬂ,-,j|b,(-1)) |b§-2)), where bgl) and bgz) are basis of the two subspaces respectively.
The initial state is [To) = (a{”]1) + a§0)|2))|V2) in the expanded form. The unitary
transformations in this expanded space form the group U(3(N — 1)).

Perturbation introduces couplings between different states. When mapped to
the expanded space, the perturbation #; connects states in the N dimensional sub-

space spanned by {|1)|V2), |2)|V2), |Vi)I3), ..., |[VA)IN)}. So H; and H, create N2
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dimensional subalgebra u(N) in the expanded space. Under the perturbation, wave
functions in the expanded space can be described as |U) = (an]1) + @22))|V3) +
>N, @;[V1)[3), where o; are time dependent parameters evolving with the perturba-

tion.

that interferes strongly with the lowest two levels. Interaction strength and spectrum
density are the major differences between this effective environment and a real one[20,
25]. The couplings between SP; and SP, are strong and comparable to the Rabi
coupling that realizes qubit operation. In contrast, the interactions between the
environmental oscillators and the qubit are weak due to the O(1/VV) factor that
originates from the normalization of the extended modes. So the thermal fluctuations
are not enslaved to the qubit dynamics and can be treated classically. The strong
interaction with the higher levels also explains why the error due to leakage occurs
at such a short time that particular strategy other than the bang-bang technique
Is required to correct this error. The spectrum density of a real environment js
continuous with macroscopic degrees of freedom, while for the higher states, the
spectrum is discrete. Another thing to mention is that this effective environment
only comes with qubit operation, while the real environment affects the qubit all the
time. Hence we worry about the leakage only during qubit operation and choose to

correct the leakage by controlling the operation process.

tem by reversing the above mapping. This implies that errors due to qubit-qubit
interactions[136] can be treated with the proposed method. Off-resonant effects are
significant in existing NMR quantum computers, and techniques analogous to the
ones suggested have been developed to correct unwanted transitions[150]. Although
the number of levels 8rows exponentially with the number of qubits[152], because the
two-qubit couplings in NMR are relatively weak, effective decoupling procedures only
require that the number of pulses be polynomial in the number of qubits and the

complexity of a single shaped pulse also be polynomial in the number of qubits.
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5.2.3 Example

To illustrate the general idea of dynamic pulse control, we give an example of a
pulse sequence that completely cancels the transitions to the higher levels with O(NV)
pulses. Let us start from a three level system with eigenvalues w;,2 = 1,2,3. The
energy difference between level ¢+ and j is shorthanded as w;;. An interaction #;
that couples level ¢ and j by v;; is applied to the qubit. When the third level is not
present, 12 is the Rabi frequency of the lowest two states. For simplicity, we ignore
the diagonal couplings 7;; since 7; < w;. As will become clear, the effectiveness of
the designed pulse sequence depends on the condition |v;;/w;;j| < 1 which is satisfied
in most qubits.

The Hamiltonian in the interaction picture is H,y = €0 H e="0t cos (wi + ¢),
w being the pulse frequency. The wave function ¥(t) = [uvw]T evolves according
to the equation ia—q‘;gtl = H;n¥(t). When the perturbation is weak, this equation is

integrated order by order as:

U(t) = U(0)+ fy dt'Hin(t')T(0)

, (5.6)
+ Jodt' J5 dt"Hip(t') Hins (") (0) + -,

The cosine function is used in the rf pulse instead of a single frequency wave. In
many systems, no physical correspondence of the transversal polarized wave exists.
For example, the circuit of the pc-qubit is biased by the z direction magnetic flux
and the perturbation is the high frequency modulation of the z flux.

Our strategy to reduce the unwanted transitions is to divide the qubit operation
into short intervals of ¢, and attach additional pulses to each operation pulse to
correct errors from this short interval. The operation pulse is in resonance with
wy of the lowest two states. Besides rotating the qubit between the level 1 and
2, it brings up off-resonant transitions between the third level and these two levels
by the couplings 713 and 7,3. Then the same perturbation is applied in two other
pulses with different frequencies, amplitudes and phases as: a3 cos (w31t + ¢31)
and asaH 1 cos (wsat + ¢32), both for time ¢, to cancel the unwanted transitions to

the third level. This three-piece sequence is repeated 7,,/to times to finish the qubit
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operation. The time ¢, satisfies 1/w < to < 1/745,1,j = 1,2, 3 with both 1/w,ty and
7vijto being small parameters of the same order. Thus we have two small parameters
in this procedure. This is crucial for this simple pulse sequence to work.

Starting with an initial wave function ¥(0) = [ugvo wo]T, wy = 0, after the wy

pulse, the third level has the component:

i (7;3(6—1'(«'21 —w31)to—1) 7;3(ei(Wz1+w31)t0_1))
W= to we1—w31 we1+w3
7;3(3-1'(‘021-“'32)%_1) _ 7;3(ei(W21+W32)t0_1) 57
+ ’Uo( wa1—ws32 w21 +ws2 ) ’ ( )

+  upby, + vob,
where 6, and 6, are of third order. The main components in w are second order
terms that depend on the initial conditions o and vy linearly. With ¢, satisfying
e?wnto — 1 4 and v have third order deviations from the desired two-level rotation.
The other two pulses are applied to cancel the w component. The ws; pulse induces
a resonant transition between level one and three to cancel the ug term; the w3, pulse
induces a resonant transition between level two and three to cancel the vy term. The
amplitudes and phase shifts of these two pulses can be expanded in ascending order

as:

. . (1) .
ame®n = afedn’ +afletst 4. .. (5.8)

; i) 2 ’ :
Qe = aglz)ewaz + agé)e’% +---

The first order coefficients cancel the second order terms in w and modify the higher

order terms 6, and 6, when:

a(l)ei‘l’:(:.ll) _ e~iwai—walto_]  eilwartwai)to_1
31 - i{wa1—w31)to (w21 +wa1)to (5 9)
a(l)ei¢.(312) _ eTilwai-waalto_]  eilwatwszdto_1 ’
32 - i(wa1—waz2)to (w21 +wsa2)to

It turns out that the nth order terms of w after the correction pulses include linear

terms of o{7" and a{2™", and complicated terms that depend on alb)eis? (k =

1...(n—2)). So, for any n, agn_l) and aé’;_l) can be determined by the lower order

components of az; and ass to cancel the nth order of w. As a result, transitions to
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Figure 5-3: The pulse sequence that prevent leakage in the three level system. (a).
the three level system that is coupled by transition matrix; (b). the pulse sequence
that prevents the leakage. Each pulse has a duration of ¢; and in resonant with w;;
as labeled under the pulse. Their amplitude and phase shift are determined by the
parameters in the three level system and are given in the text. The amplitude and
phase provide 6 free parameters that can be adjusted. And the consequence is that
the unitary transformation is made block diagonal.

the third level can be completely erased. The parameters az; and as, do not depend
on the initial condition ug and vg. This is similar to solving the wave function in the
perturbation theory where the higher order terms are derived after the lower order

ones.

After the kth pulse sequence, with w = 0, the wave function is:

upqr || cos @+ §u_ —isin @ + t, U, ’ (5.10)

Vk41 —isinp+t, cos@+ S, Vg
where ¢ = 712t is the phase rotation of the two-level qubit; the § and ¢ terms are
of third order. As w = 0, this is a unitary transformation that deviates from the
Rabi oscillation by third order corrections. The matrix can be written as U(ty) =
exp (—i(y120z + 6o + X; 8:04)to), where §; are third order small numbers that can be
determined by known parameters and do not depend on the index k. This is a
renormalization of the qubit operation 7,2 with the third level decoupled.

This correction strategy is easily generalized to an N(N > 3) level system. By

applying rf pulses with frequencies wj;,w;o,? = 3...N, the transitions to the higher
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levels are completely erased. Assuming no particular symmetry between the states,

2(N — 2) pulses are required in this process.

One may wonder why this simple pulse sequence works so well to correct the off-
resonant transitions to the higher states. For NV — 2 higher levels, to decouple these
levels is to exert 4(N — 2) real domain restrictions on the transformation matrix:
Uy, Us; = 0,7 = 3...N. Our tools are the Hamiltonians Hy and #H; that create the

whole u(N) algebra by commutation. Our pulse sequence

( ) ( % ’ : ) f dt (5-11)
i,ﬂ

where 4 = 3... N and 8 =1,|. P(oup, dig) = e~ [ Hieig cos (wipt'+¢ig)dt  includes
4(N — 2) free parameters. By choosing proper pulse sequences, we can achieve the

decoupling with proper pulse parameters.

The proposed method is illustrated in Fig. 5-3 where the energy states and the

pulse sequence are plotted schematically.

5.2.4 Ending Remark

In conclusion, we discussed the errors due to unwanted transitions to the higher states
of a qubit during qubit operation. It was shown by a group theoretic argument that
these errors can be completely prevented in principle. Then we generalized the result
to the errors due to qubit interactions, which can also be prevented when the number
of coupled qubits is not too large. A simple pulse sequence that modifies the qubit
dynamics and cancels off-resonant transitions to arbitrary accuracy with O(N) pulses
was proposed to illustrate the general analysis. Our results showed that the idea of
dynamic pulse control[146] also works for the fast gate errors due to off-resonant
transitions to the higher states of a qubit. These results suggest that dynamic pulse
control, together with conventional quantum error correcting codes, can function as a

powerful tool for performing accurate quantum computation in the presence of errors.
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5.3 Average Hamiltonian Approach

Another application of the dynamical control method is to control the qubit’s cou-
pling with environmental noise by the so-called average Hamiltonian method. In this
method, fast pulses are applied in a systematical way that after one period of the
pulse sequence, the evolution of the qubit is characterized by an average Hamiltonian
in which the unwanted coupling between qubit and noise is averaged out. As a result,
at the end of each period, the noise has no effect on qubit dynamics. This method
provides stroboscopic windows where noise is effectively corrected. This method can
correct noise that has a finite correlation time longer than the period of the pulse
sequence. When pulses are applied to the Hamiltonian, the noise at a later time has
memory of the noise from a previous time so that the averaging is possible. The av-
erage Hamiltonian has been widely used in NMR experiments [149] where the pulses

are used to selectively turn on or turn off certain terms in the Hamiltonian.

The advantage of the dynamic control method for error correction is that no
additional qubit resource is required. Standard quantum error correction relies on
large number of extra qubits to encode quantum information and realize syndrome
testing. Sometimes, the requirements on a large number of extra qubits can be a
very difficult condition to be fulfilled in physical realization. The dynamic control
method, instead, is a open loop control method, where no additional information is
required of the qubit and hence no extra qubit is required either. At the same time,
the decoherence from the environment can be very fast so that it is beyond the ability
of the quantum error correction method to deal with these noise. An example is the
coupling with the nuclear spins for a persistent-current qubit which has a decoherence

time on the order of 10 nsec. This is where the dynamic control method steps in.

In this section, we apply the average Hamiltonian method to the decoupling of the
persistent-current qubit from environmental noise. We will first describe the method
in general. Then we will design a specific pulse sequence with realistic parameters.

We also discuss the limitations of this method.
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5.3.1 Average Hamiltonian Method

The goal of the average Hamiltonian method is to average out unwanted terms in the
static Hamiltonian Ho by fast pulse sequences that are represented by the interac-
tion Hamiltonian #,(t). These fast pulses are usually very strong and dominate the
dynamics of the quantum system. The pulses have a periodic structure with a finite

period of T..

Let the total Hamiltonian be

H=Ho+ Hi(t) (5.12)

The time evolution of this Hamiltonian can be studied in the “toggling” frame. By a
toggling frame, we mean that the static Hamiltonian H, is treated as a perturbation
and the evolution is studied in the interaction picture with this perturbation. The

unitary evolution can be written as:

Ut) = Ui(t)Uim(t)
Uy(t) = Teh®™O =yt +T)
Upe = TeiJods¥ol® (5.13)
Ho(s) = Ul(s)Holn(s)

where Uiy, is the unitary transformation in the toggling frame and U(t) is the unitary
transformation in the Schrodinger picture. They are different by a unitary transfor-
mation Ui (t) that can be determined from the pulse sequence. With the periodic
condition, U, (%) is also periodic with a period of T;. This also shows that U, (T,) = I.
Hence at the end of one pulse period, the dynamics of the quantum system is described

by the transformation U(t) = Usn(t).

Assume the pulse sequence has n fast pulses at time ¢;,2 = 1---n respectively.
The duration of each pulse is very short and can be ignored. Each pulse generates a
transformation P, = e~/ 4s1(s), Hence, the U, (t) operators and the ﬁo(t) operators

are
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Figure 5-4: The interaction between a qubit and the nuclear spins. The first two
terms are the qubit static Hamiltonian. ’;':top is the single qubit operation. Then there
is the magnetic interaction between the qubit and the nucleus, followed by the dipolar
interaction between the nucleus. The last term is the nuclear spin Zeeman energy.
l_;m is the local magnetic field on the ith spin.
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¢ <ty U(t) =1, Ho(t) = Ho = Ho
th<t<ty Ui(t)=P, Ho(t)=PH.P =H,

. ) _ (5.14)
ty <t <ts, Ul(t)= PP, Ho(t)=PPjHPP =7,

which shows that the effect of the pulses is to transform the Hamiltonian 7-20 into 7’-‘[,
with the product of the P; operators. After one period of the pulses, [}, P, = I and

’ﬁn =H,. As a result, we can write the time evolution of the qubit as

U(t) = e~ iHnltn | —iH1AN —iHoAte _ ,—~iHT. (5.15)

where A; is the time between pulse ¢ and pulse 7 + 1 with > A; = T.. # in the
last term is the average Hamiltonian of the pulse sequence. To the lowest order,
HO = %c(’;-lvoAto +H, Ay + -+ HoAt,). At times NT, (N: integer), the dynamics
is determined by the average Hamiltonian. And when the higher order contribution
can be neglected, H® is the only important term of the system. By manipulating
the sequence of the fast pulses, the average Hamiltonian can be selectively controlled

and the system dynamics can be manipulated.

When this method is applied to the decoupling of a quantum system from its
environment, the operators that appears in the coupling terms are average out by the
pulses. At the same time, the environment is required not to fluctuate too fast—- the
correlation time of the environment can not be too short. Otherwise, the randomness

of the environmental operator will destroy the averaging process.

This method can decouple the persistent-current qubit from the nuclear spin fluc-
tuations, for example. Fig. 5-4 shows the Hamiltonian of the qubit-nuclear spin
interaction. The first two terms are the qubit Hamiltonian, followed by a gate oper-
ation term on the qubit. The next term is the coupling between the qubit and the
nuclear spins. The magnetic interaction generates a o, coupling to the qubit. The
next term is the dipolar interaction between the nucleus, followed by the Zeeman

energy of the nuclear spins. As Tj can be very long in the superconducting system
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Figure 5-5: The pulse sequence designed to average noise of the persistent current
qubit. z axis: the time of the pulse sequence with duration T,.. Top: the pulse
sequence that can average out any temporally correlated noise with 0z, 0z and o,
couplings. Bottom: gate pulse that has non-trivial dynamics even with the fast
control pulses.

at a temperature well below the critical temperature, the nuclear spin fluctuation
time is determined by the dipolar interaction: 7., ~ 1 /Edipote = 10 usec. To apply
the average Hamiltonian method, the pulse sequence needs to be shorter than this

correlation time. As will be shown later, this is indeed possible.

5.3.2 Pulse Decoupling for PC-Qubit

Now we apply the average Hamiltonian method to the persistent-current qubit. We
propose a pulse sequence that can decouple the qubit from any Pauli noise. This

requires that the correlation time of the noise spectrum is longer than the period of
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the pulse sequence. This also requires that the pulse is sufficiently fast so that during
the pulses, the qubit original dynamics can be neglected. We will present the pulse
first, then we will discuss whether the proposed pulse is practical or not. As the pulse
sequence averages all the Pauli matrices to zero, attention should be paid when we
want to generate a qubit operation at the same time as the decoupling pulses. We

will discuss how the decoupling will affect the gate operation.

We start from the Hamiltonian:

7—20 = %0’2 + fR(t)QRO'I cos wot + UzXz + O':,;XI + O'yXy + 7‘23 (516)

where o, ¢ = z, y, z are the Pauli matrices of the qubit, wy is the qubit eigen fre-
quency, (g is the Rabi frequency of qubit operation, and fr is an envelope function
of the gate pulse and needs to be modified when the decoupling pulses are on. The

Xi, 1 = z, y, z is the operators of the environment. These terms are the coupling

between the qubit and the environment. Hp is the Hamiltonian of the environment.

To decouple the qubit from the most general type of noise, we need to average
all the Pauli matrices to zero. The decoupling pulse is plotted in Fig. 5-5. This is
an eight-pulse sequence with equal spacing between each pulse. The pulse labeled by
10, and the pulse labeled by io, can be implemented by the same microwave source
with a 7 shift: ’}Ql = ao, coswyt for i0, and H, = aog sinwgt for ioy,, where o is the
pulse amplitude.

The unitary transformation after one period of pulses is

U(Tc) =/ Uo(’1:0'1-)U()(’iay)Uo(‘idx)Ug(iay)Uo(in)Uo(iUI)Uo(in)Uo(iUz)\/ UO 517
= Ve~ iHoAtg—iHE At p—iH At o —iHE At o —iHo At o —iHY At o —iHE At o —iHE AL [ —iFlo At (5.17)

where At is the spacing between the pulses and e~ tHAt

,1 =1, Y, 2,is the Hamiltonian
after transformation. The signs of the Pauli matrices in each of these Hamiltonians
are shown in Table 5.1. As a result, the average Hamiltonian of the lowest orders

is: #H =HO =H,, +Hp + O([HoAt]?). As the sequence is designed to have time
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Ho | + | + | +

HE |+ - |+
HE| - |+ | —
Hy | — | — | +

Table 5.1: The effective Hamiltonian during the pulse sequence. The signs of the
Pauli matrices at different Hamiltonian are listed with + or —. When adding up
to the zeroth order of the average Hamiltonian, these terms cancel each other and
decouple the qubit from the environment.

reversal symmetry, all odd order contributions are zero. It can also be proved that

the second order term is also zero.

In the Hamiltonian, we write H,, instead of H,, as the gate operation. The
decoupling sequence modifies the gate operation as well as decoupling the noise. As
in Fig. 5-5, the envelope function is designed according to the decoupling pulse to

give a non-trivial operation on the qubit and ’ﬁop = %Eaz.

For the average Hamiltonian method to work, several conditions need to be sat-
isfied. First, the duration of the pulse needs to be much shorter than the spacing
between the pulses. Second, the period of the sequence needs to be much shorter
than the correlation time of the noise. So we have T, = 8At < 7o ~ 10 usec. Third,
during gate operation, the pulse needs to be faster than the gate operation. Consid-
ering all these restrictions, we have At = 2.5nsec, & = 27 x 1 GHz and Qf = 5 MHz.
In the superconducting persistent-current qubit, this design can be achieved with

existing technology.

In this pulse sequence, the pulses are ideal square pulses. In reality, pulses of
more complicated shape might do better, taking into account the higher level of the
qubit and the rotating wave approximation in this analysis. As the applied pulses
are very strong, o = 1 GHz, the dynamics of the qubit is expected to have significant
deviation from a perfect Rabi flip. Numerical derivation of the pulse shape and phase

is necessary to get the desired decoupling pulses.
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5.4 Summary

In this chapter, we studied the application of dynamic control approach to deal with
quantum gate error and environmental noise. We first applied a group theoretical
analysis to the accurate control of a multilevel quantum system. We proved that
given a pair of non-commuting operators, any unitary transformation on the Hilbert
space can almost always be constructed within n? pulses, where n is the number of
states in the Hilbert space. We used our analysis to prove that the leakage to the
higher qubit states during a gate operation can be completely prevented by applying
the right pulse sequence to the qubit. The problem is equivalent to the designing of the
right pulses to generate a unitary operation that is block diagonal. We further proved
that for the specific problem of preventing leakage, only O(n) pulses are required. We

calculated the pulse sequence for a 3-level system to illustrate the method.

Then, we applied the dynamic control method to the decoupling of a qubit from
environmental noise under the average Hamiltonian approach. The crucial point of
this method is that by applying fast pulses to the qubit, the Hamiltonian evolution
can be represented by an average Hamiltonian in which terms in the original Hamil-
tonian are selectively cancelled out. The method has been widely used in the NMR
experiment. In the model we used, the qubit interacts with a general environment
with couplings to all the Pauli operators. We designed a pulse sequence that can
average out any Pauli noise of the qubit. The sequence includes eight pulses of either
o or o, operations. The sequence averages out the qubit Hamiltonian as well. By
applying an envelope function to the gate pulse, we can achieve non-trivial qubit

dynamics even when the decoupling pulses are on.

The dynamic control approach turns out to be a very powerful tool in combination
with the quantum error correction method. This method can correct the fast gate
error without using extra qubit resources as it is an open loop control method. To
be successfully applied, this method relies either on the correlation between errors
at different times or on the coherence of a larger quantum system. The reliable

application of the method requires accurate control of the pulses. It has been shown
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that a shaped pulse is a better solution for many experimental systems, such as the
NMR experiment[150]. A numerical method to derive the pulse shapes is required to

implement this method and is not yet available for general problems.
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Chapter 6

Conclusions and Future Work

6.0.1 Conclusions

The superconducting flux qubits are macroscopic quantum systems and are promis-
ing candidates for large-scale quantum computation. The flexibility in fabricating
these qubits makes it possible to adjust the qubit’s characteristics and to control the

quantum operation on the qubits.

In this thesis, various aspects of a superconducting flux qubit—the persistent-
current qubit—are investigated in detail. The problems studied include: characteri-
zation and manipulation of qubit states, measurement efficiency and the back-effect,
decoherence by environmental fluctuations, and a dynamic control approach for accu-
rate gate operation and noise decoupling. This research covers major problems in the
physical implementation of the persistent-current qubit and is a first step in realizing
superconducting quantum computation.

The persistent-current qubit is made of three nano-scale Josephson junctions con-
nected in a superconducting loop. The system is a phase particle in a two-dimensional
periodic potential. By discretizing the phase space, the energy spectrum and the av-
erage current of the qubit eigenstates versus the magnetic flux and versus the gate
voltage are calculated numerically. It is shown that this qubit behaves as a giant
magnetic dipole in a magnetic field, and the field provides a Zeeman splitting for the

qubit states. Only near f; = 1/2 where the Zeeman term is zero, quantum tunnel-
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ing between flux states starts to dominate and an anticrossing appears in the energy
spectrum. The qubit states have opposite circulating currents which generate a flux
of 1072 flux quantum. The qubit can be manipulated by the external magnetic field
or microwave radiation in the superconducting loop. Qubits interact with each other
via inductive coupling due to the qubit circulating current. This provides a natu-
ral means for implementing controlled qubit operations. The calculation also shows
that the qubit spectrum versus gate voltage is almost a flat band. This indicates the

insensitivity of the qubit to charge fluctuations on the gate.

Measurement of the qubit is an important step in quantum information process-
ing. By inductively coupling the qubit to a dc SQUID magnetometer, the qubit is
measured. During measurement, a ramping current is increased until the dc SQUID
switches to the finite voltage state and the switching current is recorded. The switch-
ing current histogram is affected by the flux of the qubit and is recorded to decide
the qubit state. The detector is another quantum system with two degrees of free-
dom. The interaction between the qubit and the detector induces a displacement
between the wave functions of the two detector states regarding the two qubit states.
It is shown that this displacement is much smaller than the quantum width of the
detector’s wave packet. This puts an intrinsic limit to the measurement efficiency
and explains the fact that many repetitions are required for the measurement. To
improve this efficiency, a coherent transition assisted scheme is designed that is a
projective measurement on the qubit. During the measurement, the noise from the
environment of the detector is transmitted to the qubit and causes qubit decoherence.
This noise can be calculated with a generalized spin-boson approach by adding the
detector’s degrees of freedom to the boson bath. A general method to calculate this
noise from an equivalent circuit approach is developed that by mapping the qubit-
detector Hamiltonian to a linear circuit, the noise can be directly derived from the
circuit impedance. The method can be easily applied to other interacting quantum

systems.

The solid-state qubits are subjected to stronger environmental noise than other

qubit systems. A general approach for studying the qubit decoherence due to environ-
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mental fluctuations is developed. As the coupling between the qubit and environmen-
tal modes is weak, the noise is described as classical fluctuation fields that interact
with the qubit through the Pauli matrices. The decoherence of qubit can be studied
by integrating the noise spectral density over the whole frequency range according to
the fluctuation-dissipation theorem. This approach is applied to study intrinsic qubit
noise such as the charge fluctuations on the substrate, the nuclear spin fluctuations
and the quasiparticle tunneling. The study shows that the decoherence time due to
these noise sources is longer than 10* gate-operation times. The decoherence due to
electromagnetic decay is studied by a perturbation approach. The electromagnetic
field is written into the Hamiltonian of the qubit as the gate voltage and the magnetic
flux. The decay rate is calculated by Fermi’s Golden rule and is of order of seconds.
The decoherence due to the interaction between different qubits is also studied. It
turns out this is the major decoherence source. This interaction can be manipulated

by adjusting the qubit geometry and by a pulse decoupling method.

Dynamic control is a powerful method in coping with quantum errors in quantum
computation. In this approach, quantum operations are studied in a group theoret-
ical framework in the qubit Hilbert space. One application of dynamic control is
to construct accurate gate operations with available Hamiltonian operators. In the
pc-qubit, during the gate operation, the qubit makes transitions to higher states of
the circuit through off-resonance transitions. This leakage is a serious and ubiquitous
problem in quantum computation. By a Lie algebra analysis, it is proved that gate
operation only between the two qubit states can be realized by controlling the time
dependence of the operation. A pulse sequence is developed that can prevent the
leakage to arbitrary accuracy. Another application of the dynamic control is to de-
couple the qubit from environmental noise by pulse sequences. Fast pulses are applied
to the qubit and are equivalent to transformations of the qubit operators. Hence, the
dynamics of the qubit and the environment is described by different effective Hamilto-
nians at different moments during the pulse sequence. After one period, the evolution
operation is determined by an average Hamiltonian. In the lowest orders of this av-

erage Hamiltonian, the unwanted coupling to the environment is cancelled out. This
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method is applied to the pc-qubit and a pulse sequence of 24 nsec is designed. Noise
with a correlation time of the order of longer than 1 usec. can be decoupled from the

qubit with this pulse sequence.

6.0.2 Future Work

Many problems are left unanswered for building the superconducting flux qubit, such
as the effect of the 1/f noise, the effect of the fabrication inaccuracy for devices and
the calibration of accurate control on the qubit dynamics. These problems deserves
serious study in the path of realizing superconducting quantum computing. It will
take the join effort and both theoretical and experimental studies on these issues to
overcome the decoherence problem in the pc-qubit.

The study in this thesis concentrated on the properties of a single qubit. To re-
alize large scale quantum computation, however, qubit network with many qubits is
required. The designing of qubit geometry in the network is a complicated issue and
is related to the accurate and optimal control of the multi-qubit dynamics. Univer-
sal control over the complete Hilbert space of the multi-qubit system is required in
the qubit network. To have simple yet universal control is a trade-off between the
complication of circuit fabrication and the complication of temporal manipulation.

Another interesting question is that given the basic operation set, how to phys-
ically implement function calls in the quantum algorithms. In the mathematical
models, the function call is applied to the qubits by an oracle. To test the theory
experimentally, it is necessary to figure out how to achieve the quantum operation
in the oracle with available control over the system. Due to the complicated form
of many of the function calls, it is a difficult task to implement them physically and

hence, a challenging question to answer.
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Appendix A

Classical Stability

In this appendix we find the eigen values of the stability matrix for the three junction
potential and the range of frustration around f = 1/2 where there are two stable

classical solutions with opposite circulating currents.

The potential energy of the Josephson energy of the three junction qubit is given

by Eqn. 2.1

f]:EE=2+a—cos<,o1—cosgog—acos(27rf+<p1—902) (A1)
7

We are interested in minimum energy phase configurations; that is, stable solutions

of the following system of equations:

oU

—— = sing; +asin2rf + 1 — ) =0

390-'1

ou . :

— = sing; —asin(2rf + ¢; — ) = 0. (A.2)
02

The solutions (¢f, ¢3) comply with: sin ¢} = —sin ¢} = sin ¢*. Then

sin p* = —asin(27 f + 2¢%) (A.3)

In order to check the character of the solution we compute the eigen values of the
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load i

> W, where

stability matrix
o
9%
?U
9%
9’0
0105

= COSP1+ acos(27f + ) — ¢y)

= COS@y +acos(2mf + ¢ — ) (A.4)

—acos(2mf + o1 — ).

For the states with cos ] = cosps = cos p* (these are the ones we are interested

here), the eigen values are

A1 = cosy*

A2 = cosp* + 2acos(2r f + 2¢%). (A.5)

When f #0,1/2 we have used relaxation methods for computing ¢*. Both eigen
values are greater than zero which assures the minimum energy condition. Fig. 2-2
shows the energy of the minimum energy configurations for o = 0.8. We find that
there exists a region of values of the field for which two different minimum energy

phase configurations coexist.

Next we calculate the critical values of the external field for this coexistence. We
can restrict our analysis to the region around f = 0.5; that is, [0.5 — fe;0.5 + f.]
(where f. > 0). These extrema values of the field correspond to solutions for which
one of the eigen values is positive and the other equals zero. The inset of Fig. 2-2

shows f.(a).

We first calculate f, when o 2 1.0. The first eigen value which equals zero is ).
Then at f = 0.5+ £, A\, = 0 which implies ¢* = F7/2 mod 2r (here and below we
associate the sign in f, with the sign of the phase in order to have fe > 0). Then,
going to Eqn. A.3 we get

sin(Fr/2) = —asin(m £ 21 f, F )
+1 = ztosin(2nf,) (A.6)
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and

1 1
fe= 7 arcsin o (A7)

We now calculate f. when 0.5 < o < 1.0. Now the first eigen value to equal zero

is Ay, and we have to solve:

sing® = —asin27f + 2¢*) = asin(£27f, + 2¢*)

cosp® = —2acos(2mf + 2¢*) = 2acos(X2n f, + 2¢%). (A.8)
We will use A = £27f + 2¢*, so that

1 = sin®p* + cos? *

= a?sin? A +4a%cos’ A

= a®+3a%cos’A. (A.9)
Then
1— a2 1— a2
cosA = Sa? ;A = Farccos( 3 )
1— a2 — o2
cos " =2 3a ;" = Farccos(2 3a ). (A.10)

Here we have followed the solution corresponding to cos(¢*) > 0. Finally we have

the solution for f, (A = £2x f, + 2¢*)

1-a? 1—a?
2 arccos(24/ 3 ) — arccos( 302 ] . (A.11)

1
fc—g
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Appendix B

Tight-Binding Estimate of
Coefficients of Change

Recall that f, = f, and f, = fi + f2/2. Assume that we change f, and f, indepen-
dently. The minima in U occur at ¢, = 0 and ¢}, = +¢; Therefore, the energy due

to the potential energy is for each of the minima

EE =2+208 —2cos gy, — 2B cos(n f,) cos(2m fp + 2¢7,) - (B.1)
J

The change in the magnetic flux f, by §f, causes a change in U of

ou

W 0fo = —2mBsinmf, cos2¢2 6 f, (B.2)

which is the same for the minimum at +¢9,. Whereas, the flux f;, causes a change

Z—;j 0fp = FAnBcosmf,sin2¢2 6 f (B.3)
b

which has opposite signs for the two minimum. Therefore,

A
E—U = —2mBsinmf,cos2¢) 6f, 1 —4dmfBcosf,sin2¢? 6 fy0, . (B.4)
J

Recall that AF' is the change in the energy between the two states when there
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is no tunneling. This is the second term in Eqn. B.4, since the first term is only a

constant for both levels, so that
— = —4nfcosTf,sin 297 0 fp 0, . (B.5)
For this change AF = rid; + r2d2; and since § f, = 6; + 02/2, we have r; = 2ry and

— = 4nfcosT f,sin2¢?, . (B.6)
EJ

We have found previously that cos?, = 1/2a where o = 2fcosnf, so that with

fa = 1/37
;3 =om/1—1/(452). (B.7)

To find the changes in At, we see that the changes in t; = (Aw,,/27)e~5/" are

dominated by changes in Sy, so that

-1 Z 851

P2, 3f, (B.8)

The changes in f, do not change S; to first order. Hence, changes in ¢ come from
changes in f, = f> only, so that s; = 0. But changes in f, are equivalent to changes
in « in the three junction problem, so we can use Eqns. B.8 and 2.17 and the fact

that 203 cos(w f,) plays the role of o to find

7Tt 831

At = (2ﬁ sinmfy)df,. (B.9)

This allows us to write s, = nt4/E;/E. where 7 is of the order of unity. For the
operating point we find  ~ 3.5. Therefore, changes in H due to changes in ¢; go like
o5. These tight-binding estimates for 3 = 0.8 and f, = 1/3 give s; = 0 and s, = 0.03.
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Appendix C

Simulation of Coupled Qubits

The qubits interact with each other through their mutual inductive coupling. The
qubit flux is 1073 flux quantum. When two qubits are adjacent to each other, the
interaction energy is about 2 GHz. The effect of self inductance is omitted in this
discussion[153]. As the interaction is weak, the self-consistent mean field approach is
applied to solve the interaction Hamiltonian.

We start by discussing the Hamiltonian of two kinds of interacting circuits. An ap-
propriate approximation is made to simplify the Hamiltonian. The numerical method
is then described. In this method, the qubit states are calculated with a self-consistent
mean field approach. The influence of qubit coupling on the energy and current is

analyzed according to the numerical results.

C.1 Hamiltonians

In this part, we study two kinds of qubit coupling circuits which can implement a
Controlled-Not gate. The coupling circuits are plotted in Fig. C-1. In (a), flux fl(A)
of circuit A is modulated by the circulating current of circuit B I {B) through mutual
inductance My, p,. Similarly, the flux fl(B) of circuit B is changed by current IfA).
The roles of the two qubits are symmetric in the interaction. In (b), flux fl(A) of
circuit A is affected by the squid loop current IZSB) of circuit B, and flux fz(B) of

circuit B is affected by the circulating current II(A) of circuit A. In this case, the
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mutual inductance between these two loops is M4, p, and the two qubits are not

symmetric. The self inductance of both circuits is neglected in this discussion.

C.1.1 The First Kind of Coupling

The discussion in this part starts from the Lagrangian of this coupling circuit, then
the mean field approximation is applied for the simplification of the Hamiltonian.

First, we write down the Lagrangian as:

L = Ty4+Tg—Us—Up—Hipy (C.1)
where
Ta = LG,V — %12 4 10,(VEY — Jatiaz)
d d d d art®
IO + 1O (427 + 10,250 — 325+ Mo B
Us = Ej(—cospas—Ccospan)
+aEy(—2cosmf§Y cos(par — pas + 20 (FN + f50/2) + B My, 5, 1))
IfA) = I.sinpa,
IiB) = I.sin ¥B1
Ts Ty .
= byreplacing  pa1 — ¢B1 a2 — ¥B2 IfB) — IfA)
UB Ug
Hiye = MAl,Blll(A)IgB) .

(C.2)
In this equation, the parameters of circuit A and B are labeled by subscripts or
superscripts A and B respectively. The T4 and Tp terms are charge energies for
circuits A, B, and Uy, Up are potential energies for the Josephson Junctions. The
last term M, is the mutual inductive coupling between the two circuits. The effect
of the mutual inductance appears in the charging energy, potential energy and the
interaction terms. A simple estimation shows that M AI,BII{B) /®o =~ 1073, which

enables us to apply the mean field approach to individual circuits. We substitute the
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Figure C-1: The two-qubit coupling circuits. The qubits interact via mutual induc-
tance of neighbour circuits.
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operator I1 and dI]L B) /dt with the quantum averages < I (B) 5 and < dIl(B) /dt >
respectively. It turns out that the additional term M4, g, ﬁéf—) inside the charge energy
has no influence on the kinetic energy of the Hamiltonian except for a constant term
and a shift of wave vector Em, as this term only adds a full-differentiation which has

no effect on the dynamics. This constant term is:

dIl(B)

—Cs(May 5 (—))° (C.3)

which is of second order of My, Bl( )) /®o, and ~ 107%E;. It is neglected in the

calculation. In the last term Hj,;, we have

INB o [ 1B 5 [ S [B_ o [D 5 1B 5 (C.4)

Under this approximation, we obtained the following Hamiltonian:

H = Hy+Hp— My s (INIP)

Hy = (PAPZ-ll-VIB;AP) + (Ba, ";LBA m)’ _9F cos ©DApCOS PAm
—2E;cosmfiay cos(2¢am + 27 (f; () fQ(A)/2) + %MAI’BI (II(B)))
+Ma, 5, IV (1)

Hy = = pz-;ZBla)"’ + &s, ";LBB m) _ 9F; cos gp pcos op m)

—2E; cosmf{P ap cos(20p.m + 21 (fB) + £57/2) +2 MAI,BI (IMy)

+MA1,31 (II(A)>I{B)

(C.5)
By, and By, are wave vector shifts due to the external voltage and the mutual

inductance:

o6 (VD +VEY)
2 ; i ) (C.6)
Bam = 3 (ColVei” = Vi) = 4CsMa, 5, (1)

BA,p
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so for Bg, and Bp p,, the inductance causes a shift in the By ,, and Bp ,, with no other
effect. Therefore, H4 and Hp are essentially the same as that without the interaction,
except for the corrections to the flux in the coupled loops. More explicitly, flux fl(A)

and fl(B) are replaced by:

f(A) — f(A) MAl,Bl (Il(B)>
Q
(A) (C.7)
(B) ® , Ma,s (™)
_} [ N B
fi 7+ T,

C.1.2 The Second Kind of Coupling

The analysis of the second coupling circuit is similar to that of the first. Now the
mutual inductance is between the circulating current II(A) and the squid loop current
IZSB) which is equal to the current in the upper branch of the squid:

M=, sin(ap + Yam)
Ié = I .sin(ppp + ©Bm) + al.sin(2pp m + 21rf(B)) (C.8)

I (B) modifies flux fl( in the first qubit, and I changes flux fz(B) as:

f(A)—)f(A) MA1,32<I§B)>
0

£B) _, f1® M, 5,(17") (C.9)
@

Therefore the effective Josephson energy of the squid in circuit B is modified to
2aE; cosm( f2(B) 2 M, B, (I )) The other difference from the first coupling is
that the wave vector shift Bp ., is half of the shift of the first coupling:

¢
= 2 (CoVer) = Vi) = 205 May 5, (1Y) (C.10)

while By, is the same as that of the first circuit.

This circuit is not symmetric for the two qubits and the dependence on the qubit
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Figure C-2: The self-consistent process for solving the Hamiltonian in the mean field

approximation. ¢ = 1 in I,-(B) for the first kind of circuit and i=2 for the second kind.

state (especially qubit B) is more complicated than the first circuit. Numerical cal-

culation shows that it is an advantage for implementing the CNot gate.

C.2 Simulation of the Circuits

In this section, we simulate the coupled qubit circuit. In the Hamiltonian of qubit A
and B, there are terms that depend on the average current in the other qubit. By
an iterative process, we can solve this system self-consistently. The process is shown
in Fig. C-2. The initial values I{:g) and Iﬂi) (or Iéf,) in the second circuit) are set
as zero. The Hamiltonian for both qubits are solved with the initial current, and
(A)>
1

eigen values and eigen wave functions are calculated. Then, the currents (/ and
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(I'®)) are calculated and compared with the initial value. If the two sets of currents
are close enough, stop the process. Otherwise, the average currents (II(A) ) and (Il(B))
are put into the Hamiltonian again and the process is repeated until the calculation

converges.

In our system, the current is about 1 #A. The qubit size is of um. As a result, the
induced flux is about 10~3®,. In the simulation, we assume M Al,B,.Ici—’; to be 1073

for i =1,2.

C.2.1 Average of Operators

To get the matrix elements of the Hamiltonian, we need to calculate the average
of operators such as IfA) and dIfA) /dt. The average of the current operators are

straightforward. For example, we have II(A) = I.sin(pp + ¢m), and the matrix is:

(ny, my, KT g, ma, K) = L6y, ny6my ma Sin Any + my) (C.11)

where n; and m; are index for the phase space basis. k is the wave vector related to
the gate voltage. A is the distance between adjacent basis and is a measure of the

discreteness.

Another operator in the Hamiltonian is the time derivative of the coupling current,

dIl(A) /dt = I, cos cpl%, which can be expressed as momentum operators:

dr

TR cos(p + ©m)(

PA,p + BA,p N PA,m + BA,

7 ) (C.12)

In a discrete basis, the momentum operator is

Pln>=——(ln+1>—|jn—1>) (C.13)
So we have
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E, E, L I

|00 > A 15171 1.6144 -0.7155 0.7274
B | 1.5171 1.6144 -0.7155 0.7274

|01 > A 15236 1.6078 -0.7210 0.7222
B | 1.5171 1.6144 -0.7155 0.7275

10 > A | 1.5171 1.6144 -0.7155 0.7275
B | 1.5236 1.6078 -0.7210 0.7222

|11 > A | 1.5236 1.6078 -0.7209 0.7222
B |1.5236 1.6078 -0.7209 0.7222

My, B, =0 A]15203 1.6111 -0.7182 0.7243
B | 1.5203 1.6111 -0.7182 0.7248

Table C.1: The eigen values and currents for states of the first coupling circuit. The
first two rows are the lowest two energies of the quantum states with the corresponding
occupation configuration, followed by the average currents of these two states.

L 41 .
(nl,mh k|‘#|nz, ma, k) =
th e~ kel g 1—¢€
I A e (Sm m n1,n2+
. COS (n1+m1)2A( s | M,
e_kaAéml,mz+1 - ezkmAémlymz—l)

Mm,

ikpAd’nl,nz——l . (014)

+5n1,n2

C.2.2 Numerical Results

With this method, the eigen values and currents of states can be derived self-consistently.
The results are listed in Table. C.2.2 and Table C.2.2.

(B)

In the first circuit, the coupling currents are I;’ and I fA)

which are the circulating
currents that relate to the magnetic moments directly. The lowest two states of the
qubit have opposite currents and moments, which resembles the | 1> and | |> states
of 1/2 spin. These two states have opposite effect on the flux fl(A) (or fl(B) in the
other coupling circuit). Hence, when qubit B is in the states |0 >, the effective flux
fl(A) is lowered, and the first eigen level is lowered, the second eigen level raised; when
qubit B is in the states |1 >, the effective flux fl(A) is raised, and the first eigen level
is raised, the second eigen level lowered. The same is true for the effect of qubit A

on qubit B. This can be seen clearly from the numerical results. So the first coupling
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B E; I I, 5y iy

00>  A[1.5180 1.6135 -0.7163 0.7267
B|1.5180 1.6123 -0.7155 0.7275 -0.5134 0.2616

01> A [ 15215 1.6099 -0.7192 0.7239
B|1.5180 1.6123 -0.7155 0.7275 -0.5134 0.2616

10>  A[1.5180 1.6135 -0.7163 0.7268
B |1.5227 1.6099 -0.7210 0.7222 -0.5253 0.2615

11>  A[1.5215 1.6099 -0.7192 0.7239
B |1.5227 1.6099 -0.7209 0.7222 -0.5253 0.2615

My 5, =0 A|1.5203 16111 -0.7182 0.7248

B |1.5203 1.6111 -0.7182 0.7248

Table C.2: The eigen values and currents for states of the second coupling circuit. The
first two rows are the lowest two energies of the quantum states with the corresponding
occupation configuration, followed by the average currents of these two states.

can be treated as:

Hip = VFZ+ 8202+ (118 f{a, + a0 fial) ot + 530 fymoh

+ VF?+ t20£ + ("'lfsf1(,12t + Tzéfz(,git)gf + 820 2(,€2;th (0-15)
+ erjodoB

where € is small constant about 1072 and r, is equal to 4.90. The total energy of
the system can be obtained which is the sum of the energy of the two qubits and the
magnetic energy in the inductance that differs when the qubit state is different. This
energy levels are plotted in Fig. C-3 (a). State |0,1 > and |1,0 > are degenerate due
to the symmetry of the circuit.

The coupling currents in the second circuit are IéB ) and Il(A), where IéB) is the
loop current of the squid in qubit B. It can be proved that this current is equal to the
current in the outer branch of the squid. From our calculation, IQ(B) for the lowest
two levels always have opposite direction, but different value, | < 0|I§B)|0 > | =
2| < 1|IZ(B)|1 > |. Therefore, the states |0,1 > and |1,0 > are not symmetric and not

degenerate any more. In Fig. C-3 (b), there are four levels with different energies. This

indicates an easy way to perform a CNOT gate. If a rf pulse with fiw = Ej1;y — Ej10
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E
11>
32189 —
|10>
3.1347
01>
|00>
3.0375 ——
(a)

11>
3.2210
|10>
3.1338
|00>
’ 3.0384
(b)

Figure C-3: The total energy of the coupled qubits, including the magnetic energy
in the mutual inductance. The levels in (a) are levels for the first kind of coupling
circuit; that in (b) are for the second kind circuit. The energy for each level is labeled
beside the corresponding level. The states are labeled as |lk >, for state in level 1 of

qubit A and level k of qubit B.
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is applied to the circuit, the qubit B will flip only when qubit A is in state |1 >. Now

the interaction Hamiltonian can not simply be €'ro0408 + €"s,0408, as there is no

obvious relation between IZ(B) and the magnetic moment.
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Appendix D

Hamiltonian of Qubit-SQUID

Interaction

In this appendix, we detail the quantization of the qubit-SQUID interaction Hamilto-
nian. For simplicity, we only discuss the situation for symmetric Josephson junctions

in the dec SQUID. General results on SQUID quantization can be found in [98].

D.1 SQUID Quantization

The qubit-SQUID system is shown in Fig 3-1. The DC-SQUID has two Josephson
Junctions which have gauge invariance phases 3; and P2 respectively. For convenience
of discussion, we assume the two junctions are identical. A difference in the junction
critical currents will not affect the main results in this appendix. When the self

inductance of the SQUID is considered, the flux quantization relation gives:

~ d
Y1 — P2 + 2”# = _27r(fe1:t + fs) (Dl)
0

where ®;, is the flux from the self inductance, f.,; is the external applied frustration
in the SQUID loop, and f, is the induced frustration from the qubit loop. The
Lagrangian of the SQUID is, in terms of @1 and @,,
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Lge = %CJ (E,Q ‘;0:1)2 + %CJ (%rl ‘752) 1Cs ( ar 901 + ‘:0;2))2 — U($1, P2) (D.2)
. )

U = —Egccosél EJ COSQ02+ﬁ—Ibﬁ( 1+¢2)

where C is the junction capacitance, and C; is the shunt capacitance parallel to the
SQUID. E% = %22 is the Josephson energy of the junctions in the SQUID. The first
three terms in the Lagrangian depend on the time derivatives of the phase variables
and are the charge energies of the capacitances. U(@;, @2) is the potential energy of
the SQUID, including the Josephson energies of the junctions, the energy of the self

inductance and the work done by the ramping current I,.

The Hamiltonian of the qubit-SQUID system can be derived from the Lagrangian
by adding the qubit Hamiltonian H, to the total energy. We choose the independent
variables of the SQUID to be: @, = SL;@ and @, = 5’51—;@ @p is the external variable
that directly correlates with the ramping current I, and @,, is the inner variable that
corresponds to the circulating current of the SQUID. &,, inductively couples with the
qubit flux. The total Hamiltonian of the qubit-SQUID system is:

He = Ho+Hm+Hin

Hy = Po.+ mUz

H, = _L + —m— — 2E% cos @, cos @ + QE?W — L3520, o
Hinte = M(" + 7 feat) 02

which includes the qubit Hamiltonian H,, the SQUID Hamiltonian #,, under exter-
nal flux fes, and the qubit-SQUID interaction #H;n:. P, and P,, are the conjugate
variables of the corresponding phases. m,, = 2C;(22)? is the mass of the inner vari-
able; m, = (Cs + 2C;)(22)? is the mass of the external variable. For convenience

27 L g I

we introduce (4. = TL to represent the self-inductance. f; is the qubit’s contri-

bution to the flux in the SQUID loop and f; = M,l.,/®o, where M, is the mutual
inductance between the qubit and the SQUID and I, is the circulating current of the
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qubit state. Note that the qubit parameters €, can be adjusted by the external flux in
the qubit circuit, and is also affected by the back action of the inductive interaction.

Typical parameters of the experiments are: E = 40 GHz with % = 80nA,
C; = 2fF, Cs; = 5pF, Ly = 10pH, Ly = 16 pH and M;, = 8pH. The circulating
current of the qubit gives a flux of f, &~ 10~® flux quanta, which is coupled to the
SQUID by mutual inductance. The external frustration in the DC-SQUID loop is
fezt = 3/4 to ensure maximum sensitivity of dlg,/de?,.

To linearize the Hamiltonian in Eq. D.3, we expand the potential energy to second
order terms near the potential energy minimum (@9,, $9) which is determined by
OU /0@, = 0 and OU/0p, = 0. When ;. < 1, the inductive energy of @,, dominates;
50 @, & 7 fegr- The minimum of @, is determined by the relation 2I2° cos &b, sin ) =
1. Deriving the second derivatives at the potential energy minimum, we then obtain
the oscillator frequencies and the coupling between the two oscillators as in Eq. 3.1,

with wm = 1/2/L4Cs, wp = W[l — (#7)2]1/4 where w) = \/27rI§ff/C’s‘I>g, and

Jl = | tan (,'5?n|Ib<I>0/27r

D.2 Numerical Results

To study the dynamics of the qubit-SQUID system, it is necessary to know the en-
ergy structure of the system. The Hamiltonian in Eq. 3.1 can be solved numerically
by choosing the direct product space of the qubit states and the lowest harmonic
oscillator number states as the numerical basis. Because the interaction between the
qubit and the SQUID is weak, so is the interaction between the two corresponding
harmonic oscillators; hence only small number of basis states are required to solve the
low energy states of the Hamiltonian to high accuracy. By varying the o, component
€o from —20 GHz to 20 GHz, we can study the system in the full range of the qubit
bias flux of 0.49 < f, < 0.51.

Calculation shows that the lowest levels of the system can be described as the
product states of a spin and an harmonic oscillator: {|s,nz),s =1,l,n; = integer},

with the oscillator frequency @, ~ w, and the spin energy wp(€g) ~ 1/€2 + 2. Let the
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Figure D-1: The average of the external oscillator coordinate (p,) for the ground

state and the state |3,,0) verses €. €y o< (f; —1/2) is the o, component of the qubit.
Solid line: for the ground state at [, = 0.81¢//; dashed line: for the ground state
at I, = 0; dotted line: for the state |5,,0) at I, = 0.8]¢/Y. The inset is the energy

difference between the ground state and the state |5,,0).
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Effect of SQUID on Current Average Without Rampimg Current
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Figure D-2: More detail on the average current of the ground state of the qubit
and the corresponding response from the dc SQUID’s external oscillator mode, at
I, = 0.8I¢/7.

ground state be |sg4,0). Then, the state |54,0) = | — s4,0) is the lowest state that
has opposite spin to that of the ground state. @y is the energy difference between
the ground state and |3,,0), and is plotted in the inset of Fig. D-1. The qubit’s
effect on the SQUID when the ramping current I, is turned on is manifested in the
operator averages of the external oscillator coordinate (y,) for both the ground state
and |3,,0). We plot (p,) at I, = 0.81¢/ and I, = 0 respectively in Fig. D-1. We
found that, at I, # 0, (¢,)’s dependence on ¢, follows that of (o,); while at I, = 0,
(pp) is negligible. The calculated average currents for the qubit states are shown in
Fig. D-2 in comparison with the expected current of the qubit. The (p,) of the state
|34, 0) is plotted in Fig. D-3, which shows sharp peaks due to the degeneracy between
the state |55,0) and the state |sg, 1).
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Figure D-3: The average of the external oscillator coordinate (¢,) for the state |54, 0)
verses €. € x (f; — 1/2) is the o, component of the qubit at better numerical
resolution. The peaks come from the degeneracy between the state |5,,0) and the
state |sq, 1) and etc.
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