
On-chip Networks for Manycore Architecture

by

Myong Hyon Cho

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

ARCHIES

M F ECH NLY

U AR E'

o Massachusetts Institute of Technology 2013. All rights reserved.

Author '.......................
Department of Electrical Engineering and Computer Science

August 20, 2013

Certified by
Srinivas Devadas

Edwin Sibley Webster Professor
Thesis Supervisor

Accepted by
Lesie . olodziejski

Chair, Department Committee on Graduate Students

On-chip Networks for Manycore Architecture

by

Myong Hyon Cho

Submitted to the Department of Electrical Engineering and Computer Science
on September 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Over the past decade, increasing the number of cores on a single processor has suc-
cessfully enabled continued improvements of computer performance. Further scaling
these designs to tens and hundreds of cores, however, still presents a number of hard
problems, such as scalability, power efficiency and effective programming models.

A key component of manycore systems is the on-chip network, which faces increas-
ing efficiency demands as the number of cores grows. In this thesis, we present three
techniques for improving the efficiency of on-chip interconnects. First, we present
PROM (Path-based, Randomized, Oblivious, and Minimal routing) and BAN (Band-
width Adaptive Networks), techniques that offer efficient intercore communication for
bandwith-constrained networks. Next, we present ENC (Exclusive Native Context),
the first deadlock-free, fine-grained thread migration protocol developed for on-chip
networks. ENC demonstrates that a simple and elegant technique in the on-chip net-
work can provide critical functional support for higher-level application and system
layers. Finally, we provide a realistic context by sharing our hands-on experience
in the physical implementation of the on-chip network for the Execution Migration
Machine, an ENC-based 110-core processor fabricated in 45nm ASIC technology.

Thesis Supervisor: Srinivas Devadas
Title: Edwin Sibley Webster Professor

3

4

Acknowledgments

This thesis would not be complete without offering my sincere gratitude to those who

motivated, guided, assisted, and supported me during my Ph.D. study.

Foremost, words cannot do justice to express my deepest appreciation to Professor

Srinivas Devadas. I respect him not only for his intelligence prowess but also for his

kindness, patience, and understanding. I feel fortunate to have had the opportunity

to study under his guidance; what he showed and taught me will continue to guide

me even after graduation.

I am deeply honored to have Professor Joel Emer and Professor Daniel Sanchez

on my committee. Professor Emer has always been such an inspiration to me for his

continuing achievements in this field. I am also grateful for Professor Sanchez, whose

work I have always admired even before he came to MIT. Both professors provided

invaluable feedback and suggestions during the development of this thesis.

I cannot thank my fellow students enough. I was able to perform at my best

because I knew they were doing the same. While all of the students in the Computa-

tion Structures Group at MIT deserve my appreciation, I reserve the most heartfelt

gratitude for Keun Sup Shim and Mieszko Lis for being great friends and truthful

colleagues. Also, when I was faced with the formidable task of building a 110-core

processor, Sunghyun Park, Owen Chen, Chen Sun and Yunsup Lee (at U.C. Berkeley)

surprised me by helping me in every possible way they could.

I have to leave a special thanks to Google, because quite honestly, there is no

way I could have done this research without it. I also thank 1369 Coffee House,

Neptune Oyster, Five Guys, Toscanini's, Boston Symphony Orchestra, and Catalyst,

for helping me keep my faith in the belief that my life is so awesome. I would like

to extend my special gratitude to Samsung Scholarship for financially supporting the

first two years of my Ph.D. program.

Saving the best for last, I would like to thank the most special people in my life.

Above all, my wife Yaejin Kim who never let me think that I was alone, gave me

the strength to carry on even in the hardest time. Although I cannot find words to

5

express how deeply grateful I am to her, I hope she will be able to find out as we

share the rest of our lives together. I also thank my one month old son, Allen Minjae

Cho, who made me realize his dad cannot be a graduate student forever. I am so

genuinely grateful to Haram Suh, for always being a truly faithful friend, no matter

how far apart. Finally, I would like to send my gratitude to my family in South

Korea; my parents, Gieujin Cho and Kyoungho Shin, have never lost their faith in

me in all these years, and I owe everything I am to them. I am also much obliged to

my parents-in-law, Chungil Kim and Mikyoung Lee, for always believing in me and

treating me like their own son.

6

Contents

1 Introduction 15

1.1 Chip Multiprocessors: Past, Present and Future 15

1.1.1 The Birth of Multicore . 15

1.1.2 From Multicore to Manycore 16

1.1.2.1 Technical Issues of Manycore Architecture 16

1.1.2.2 Why Manycore Architecture is Still the Most Promis-

ing Solution . 17

1.1.2.3 Examples of Manycore Processors 18

1.2 On-chip Network for Manycore Architecture 19

1.2.1 Circuit-level Optimization . 20

1.2.2 Network-level Optimization 20

1.2.3 System-Level Optimization . 21

1.3 Thesis Organization . 21

2 Oblivious Routing with Path Diversity 23

2.1 Introduction . 23

2.1.1 Oblivious vs. Adaptive Routing 23

2.1.2 Deterministic vs. Path-diverse Oblivious Routing 24

2.2 Path-based, Randomized, Oblivious, Minimal Routing (PROM) . . . 27

2.2.1 Coin-toss PROM . 27

2.2.2 PROM Variants . 28

2.2.3 Virtual Channel Assignment 32

2.3 Implementation Cost . 35

7

2.4 Experimental Results .

2.4.1 Ideal Throughput .

2.4.2 Simulation Setup .

2.4.3 Simulation Results .

2.5 C onclusions .

3 Oblivious Routing in On-chip Bandwidth-Adaptive Networks

3.1 Introduction .

3.1.1 Trade-off between Hardware Complexity and Global Knowledge

36

36

37

39

40

45

45

in Adaptive Routing . 45

3.1.2 Oblivious Routing with Adaptive Network Links 46

3.2 Adaptive Bidirectional Link . 47

3.2.1 Conventional Virtual Channel Router 47

3.2.2 Bidirectional Links . 49

3.2.3 Router Architecture with Bidirectional Links 51

3.3 Bandwidth Allocation in Bidirectional Links 54

3.4 Results and Comparisons . 57

3.4.1 Experimental Setup . 57

3.4.2 Non-bursty Synthetic Traffic 58

3.4.3 Non-bursty Synthetic Traffic with Multiplexed VC Outputs . . 61

3.4.4 Bursty Synthetic Traffic . 62

3.4.5 Traffic of an H.264 Decoder Application 62

3.4.6 Link Arbitration Frequency 63

3.5 C onclusions . 65

4 On-chip Network Support for Fine-grained Thread Migration

4.1 Introduction .

4.1.1 Thread Migration on CMPs

4.1.2 Demand for a New Thread Migration Protocol

4.2 Deadlock in Thread Migration .

4.2.1 Protocol-level Deadlock .

67

67

67

68

69

69

8

4.2.2 Evaluation with Synthetic Migration Benchmarks

4.3 Exclusive Native Context Protocol 73

4.3.1 The Basic ENC Algorithm (ENCO) 76

4.3.2 The Full ENC Algorithm . 76

4.4 Performance Evaluation . 79

4.4.1 Baseline Protocols and Simulated Migration Patterns 79

4.4.2 Network-Independent Traces (NITs) 80

4.4.3 Simulation Methodology . 81

4.4.4 Simulation Results . 83

4.5 C onclusions . 87

5 Physical Implementation of On-chip Network for EM 2 89

5.1 Introduction . 89

5.2 EM 2 Processor . 90

5.2.1 Shared Memory Model . 90

5.2.2 On-chip Network Architecture 91

5.2.3 Tile Architecture . 91

5.3 Design Goals, Constraints, and Methodology 92

5.3.1 Goals and Constraints . 92

5.3.2 Methodology . 93

5.4 Physical Design of the 110-core EM2 Processor 95

5.4.1 Tile-level Design . 95

5.4.2 Chip-level Design . 99

5.4.2.1 Chip-level Floorplanning 99

5.4.2.2 Building a Tile Array 100

5.4.2.3 Final EM 2 Layout 101

5.5 Design Iteration Using BAN on EM2 102

6 Conclusions 107

6.1 Thesis Contributions . 107

6.2 Summary and Suggestions . 107

9

71

10

List of Figures

2-1 Randomized minimal routing in PROM 28

2-2 Probability functions of uniform PROM(a) and parameterized PROM(b) 30

2-3 Probability distributions of PROM routes with various values of f . 31

2-4 Permitted (solid) and prohibited (dotted) turns in two turn models 32

2-5 Virtual channel assignment in PROM 34

2-6 Ideal balanced throughput of oblivious routing algorithms 36

2-7 Saturated Throughput of oblivious routing algorithms 39

2-8 Throughput with dynamic VC allocation 42

2-9 Throughput with exclusive-dynamic VC allocation 43

3-1 Conventional router architecture with p physical channels and v virtual

channels per physical channel. 48

3-2 Adaptivity of a mesh network with bidirectional links 49

3-3 Connection between two network nodes through a bidirectional link . 50

3-4 Network node architecture with u unidirectional links and b bidirec-

tional links between each of p neighbor nodes and itself. 51

3-5 Deadlock on deadlock-free routes due to bidirectional links 56

3-6 Link configurations for BAN evaluation 57

3-7 Throughput of BAN and unidirectional networks under non-bursty traffic 59

3-8 Throughput of BAN and unidirectional networks under bursty traffic 60

3-9 Throughput of BAN and unidirectional networks under H.264 decoder

traffic . 63

3-10 Frequency of direction changes on bidirectional links 63

11

3-11 BAN performance under bursty traffic with various link arbitration

periods (N) .

4-1 Protocol-level deadlock of fine-grain, autonomous thread migration .

4-2 Deadlock scenarios with synthetic sequences of fine-grained migrations

on 2VC and 4VC networks .

4-3 Acyclic channel dependency graph of ENC

4-4 The percentage of accesses to a threads native core in SPLASH-2 ap-

plications .

4-5 Total migration cost of ENC and SWAP with 4-flit contexts

4-6 Total migration distance of ENC and SWAP for various SPLASH-2

benchm arks. .

4-7 Part of migration cost of ENC and SWAP due to congestion

4-8 Total migration cost of ENC and SWAP with 8-flit contexts

EM 2 Tile Architecture

EM 2 tile floorplan

Placement of the tile components by Encounter . .

EM 2 tile layout .

EM 2 chip-level floorplan

EM 2 clock module

EM2 global power planning

Clock tree synthesized by Encounter

Tapeout-ready EM 2 processor layout

Wire connected to input and output network ports

Migration traffic concentration

Average migration latency on BAN+EM 2.

. 90

. 95

. 96

. 97

. 99

. 99

. 100

. 101

. 102

. 103

. 104

. 104

12

64

70

72

74

75

83

85

86

87

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

List of Tables

1.1 Recent multicore and manycore processors 19

2.1 Deterministic and Path-diverse Oblivious Routing Algorithms 26

2.2 Synthetic network traffic patterns . 37

2.3 Simulation details for PROM and other oblivious routing algorithms . 38

3.1 Hardware components for 4-VC BAN routers 54

3.2 Simulation details for BAN and unidirectional networks 58

4.1 Simulation details for synthetic migration patterns with hotspot cores 71

4.2 Simulation details for ENC with random migration pattern and SPLASH-

2 applications . 82

4.3 Maximum size of context queues in SWAPinf relative to the size of a

thread context....... 84

5.1 Peak and average migration concentration in different applications . . 103

13

14

Chapter 1

Introduction

1.1 Chip Multiprocessors: Past, Present and Fu-

ture

1.1.1 The Birth of Multicore

Until the end of the 20th century, the scaling down of CMOS devices was the driving

force behind continued improvement in computer performance [82]. There were two

fundamental impacts; first, microprocessors were able to embed more sophisticated

functionality with smaller transistors to accelerate complex operations. And second,

clock speeds increased by orders of magnitude, thanks to smaller and faster CMOS

devices. Dennard's scaling theory [19] showed when transistor dimensions scaled down

by a factor of a, the power density remained the same so the required supply voltage

decreased by a. Therefore, the power required to maintain the same frequency for

the same logic was reduced by a 2, and we were able to increase the frequency for

better performance without using more power. Dennard scaling enabled processor

performance to improve 52% annually for nearly two decades since 1985 [35].

The relentless scaling down of transistors, per Moore's law [63], still enables more

transistors on recent microprocessor designs. Since the 90nm technology node, how-

ever, the long-lasting race of clock speed improvements came to an abrupt end. This

15

was mostly due to leakage current becoming a major contributor to power consump-

tion, and because supply voltage stopped scaling with the channel length [77]. The

inability to scale down the supply voltage caused higher energy consumption at higher

clock frequency, and power and cooling limitations prohibited further frequency in-

creases.

The continuation of Moore's law and the demise of Dennard's scaling theory forced

changes in the old strategy of smaller transistors, lower supply voltage, and higher

clock rate [29]. As it became infeasible for single-core performance to benefit from

a higher frequency, the microprocessor industry quickly adapted to another strategy:

chip multiprocessors (CMPs). As Moore's law continues to hold, manufacturers were

able to duplicate previously designed cores on a single die with less effort than in-

creasing the frequency. At the same time, new applications such as image processing,

video encoding/decoding, and interactive applications with graphical user interface,

have a lot of thread-level parallelism that CMPs can easily exploit to boost the per-

formance. Consequently, multicore has quickly made its way into the mainstream

since it was first introduced to the market in 2005 [21, 74, 75].

1.1.2 From Multicore to Manycore

Eight years have passed since Intel shipped the first x86 dual-core processor in 2005,

and current trends clearly indicate an era of multicores. In 2013, commercially avail-

able x86 desktop processors have up to eight cores per chip, server processors up to

ten. Even mobile processors also have up to eight cores on a single chip. The big

question is, will the number of cores keep increasing to tens and hundreds?

1.1.2.1 Technical Issues of Manycore Architecture

We are at the best time to ask this question, because more breakthroughs are required

than ever before in order to further increase the number of cores in a multicore pro-

cessor. For example, a few cores can be connected using a totally ordered bus inter-

connect that enables the implementation of cache coherence with a snooping protocol.

16

However, a simple common bus is not scalable to more than eight cores [67]. Intel

actually replaced its Front-Side Bus (FSB) with the point-to-point Intel QuickPath

Interconnect (Intel QPI) for Nehalem [68], which is Intel's first microarchitecture that

supports up to eight cores per chip. And as more scalable on-chip networks are used,

the lack of ordering complicates the implementation of cache coherence [83].

The implementation of cache coherence is an example of the scalability issues

on manycore architecture. Another issue is the gap between the speed of cores and

external memory, commonly known as the memory wall [94]. The gap has become

significantly wider in multicore as multiple cores share the off-chip memory inter-

face [47]. The power wall also plays an important role as the number of cores grows;

due to the fixed power budget, 21% of a chip must be powered off at all times at the

22nm technology node [25]. These issues prevent the maximum theoretical speedup

of multicore processors, leaving challenges for researchers in achieving continuing per-

formance improvements.

Innovations are also required in the software development. To fully benefit from

large-scale CMPs, applications need a sufficient level of thread-level parallelism. Effi-

cient parallel programming models must be provided to ease the difficulties of writing

massively threaded applications. Due to the prevalence of single-threaded applica-

tions, manual or automatic extraction of thread-level parallelism from existing pro-

grams is also very important [8].

1.1.2.2 Why Manycore Architecture is Still the Most Promising Solution

Despite all these difficult challenges, however, manycore architecture is still the most

viable option to maintain the growth in performance. Recall that the number of

cores has increased mainly because 1) we could not improve the clock speed without

hitting the power limit, but 2) we could still have more transistors in the same area.

If an alternative technology can realize higher frequency devices than silicon-based

technology, then we might not need manycore processors to get more performance. On

the other hand, if it becomes impossible to further scale down transistor dimensions,

it would be infeasible to increase the number of cores beyond the current trend. Will

17

either of these two scenarios be the case in the near future?

As a matter of fact, good progress has been made in the research of non-silicon

based technologies in the hope that one such technology would eventually over-

come the speed limit of silicon-based computers. For example, field-effect transistors

(FETs) that work with a cut-off frequency as high as 100 GHz have been fabricated

on a graphene wafer [52]. However, none of the alternative technologies has yet

surmounted the hurdles of mass production to match the outstanding technological

maturity of silicon processes. As a result, it is expected to take another couple of

decades before such technologies reach to the consumer market [15, 30].

The number of transistors on a chip has kept increasing as well. In 2011, Intel

integrated 3.1 billion transistors on a 18.2 x 29.9mm 2 die using 32nm technology. One

year later, Intel put almost 5 billion transistors on the Xeon Phi coprocessor using

22nm technology [42]. In case of GPUs, NVIDIA crammed 7.1 billion transistors into

its GK110 chip using the 28nm node in 2012 [13]. As the current process technology

roadmap predicts [28], Moore's law will continue for at least another half a decade,

until the point where transistors get four times smaller.

In summary, having more cores still remains a feasible and attractive solution

because the reasons why multicore processors came into place still hold. The lack of

alternatives urges researchers to address the technical issues of manycore processors

and extend its practicality. Section 1.1.2.3 illustrates recent efforts to transit from a

few cores to many cores.

1.1.2.3 Examples of Manycore Processors

Intel has long been trying to develop a practical manycore architecture; in 2008,

Intel demonstrated its 80-core Polaris research processor with simple VLIW cores

and a high-performance 8 x 10 2-D mesh network [89]. Two years later, the Single-

Chip Cloud Computer (SCC) followed, which contained 48 full-fledged P54C Pentium

cores [38]. Finally, the 60-core Xeon Phi coprocessor was released to the consumer

market in 2012 [12].

Tilera Corporation has focused on manycore general-purpose processors since its

18

Name #Cores Technology Frequency Power Year
Intel Polaris* 80 65nm 4.27GHz 97W 2008
Intel Single-Chip *

Cloud Computer (SCC)* 48 45nm 1.0GHz 125W 2010
Intel Xeon E7-8870 10 32nm 2.4GHz 130W 2011
AMD FX-8350 8 32nm 4.0GHz 125W 2012
Tilera TILE-Gx36 36 40nm 1.2GHz 28W 2013
Intel Xeon Phi 7120 61 22nm 1.2GHz 300W 2013
Tilera TILE-Gx72 72 40nm 1.0GHz N/A 2013

Table 1.1: Recent multicore and manycore processors

founding in 2004. Based on a scalable mesh network [91], Tilera provides processors

with various numbers of cores. Recently the company announced that their 72-core

TILE-Gx72 processor achieved the highest single-chip performance for Suricata, an

open source-based intrusion detection system (IDS) [14].

Table 1.1 shows several examples of recent multicore and manycore processors'.

1.2 On-chip Network for Manycore Architecture

Solving the issues in Section 1.1.2.1 requires a broad range of system layers to be

optimized for manycore architecture. For example, low-power circuit design, scalable

memory architecture, and efficient programming models are all important to continue

scaling up the number of cores. Among the various approaches, however, the on-chip

network is one of the most critical elements to the success of manycore architecture.

In manycore CMPs, the foremost goal of the on-chip network is to provide a

scalable solution for the communication between cores. The on-chip network almost

always stands at the center of scalability issues, because it is how cores communi-

cate with each other. The on-chip network also worsens the power problem as it

contributes a significant portion of the total power consumption. In the Intel's 80-

core Polaris processor, for example, the on-chip network consumes 28% of total chip

power [37]. In addition, high-level system components may require the on-chip net-

'The names of research chips are shown with asterisk marks.

19

work to support specific mechanisms. For instance, directory-based cache coherence

protocols require frequent multicast or broadcast, which is a challenge for the on-chip

network to implement efficiently.

Researchers have taken many different approaches to on-chip networks to overcome

the challenges of manycore architecture. These approaches can be categorized into

circuit-level optimization, network-level optimization, and system-level optimization.

1.2.1 Circuit-level Optimization

Research in this category aims at improving the performance and reducing the cost of

data movement through better circuit design. For example, a double-pumped cross-

bar channel with a location-based channel driver (LBD), which reduces the crossbar

hardware cost by half [88], was used in the mesh interconnect of the Intel manycore

processor [37]. The ring interconnect used for the Intel Nehalem-EX Xeon micropro-

cessor also exploits circuit-level techniques such as conditional clocking, fully shielded

wire routing, etc., to optimize its design [68]. Self-resetting logic repeaters (SRLR) is

another example that incorporates circuit techniques to better explore the trade-off

between area, power, and performance [69].

1.2.2 Network-level Optimization

The logical and architectural design of the on-chip network plays an essential role in

both the functionality and performance of the on-chip network. An extensive range of

network topologies have been proposed and examined over the years [18]. Routing [87,

65, 66, 76, 49, 31, 9] is another key factor that determines the characteristics of on-

chip communication. This level of optimization also has a significant impact on the

power dissipation of the network because the amount of energy consumed by on-

chip network is directly related to activity on the network. Therefore, using better

communication schemes can result in reducing the power usage as shown in [51].

20

1.2.3 System-Level Optimization

While most work on on-chip networks focuses on the area/power/performance trade-

off in the network itself, an increasing number of researchers have begun to take a

totally different approach, for example, embedding additional logic into the on-chip

network that is tightly coupled with processing units so the on-chip network can

directly support high-level functionality of the system.

One example of such functionality is Quality of Service (QoS) across different ap-

plication traffic, which is important for performance isolation and differentiated ser-

vices [501. Many QoS-capable on-chip networks have been proposed; while early work

largely relies on time-sharing of channel resources [32, 60, 7], Globally-Synchronized

Frames (GSF) orchestrate source injection based on time windows using a dedicated

network for fast synchronization [50]. In Preemptive Virtual Clock (PVC), routers in-

tentionally drop lower-priority packets and send NACK messages back to the sources

for later retransmission [34].

Additionally, on-chip networks can alleviate the lack of scalability of directory-

based cache coherence protocols. By embedding directories within each router, for

example, requests can be redirected to nearby data copies [22]. In another example,

each router keeps information that helps to decide whether to invalidate a cache line

or send it to a nearby core so it can be used again without going off-chip [23].

1.3 Thesis Organization

First, our network-level research on oblivious routing is described in Chapter 2. We

continue in Chapter 3 with the introduction of the bandwidth-adaptive network, an-

other network-level technique that implements a dynamic network topology. Chap-

ter 4 describes the Exclusive Native Context protocol that facilitates fine-grained

thread migration, which is a good example of system-level optimization of an on-chip

network. Chapter 5 shares our hands-on experience in the physical implementation

of the on-chip network for a 110-core processor. Finally, Chapter 6 presents the

conclusions of this thesis and summarizes its contributions.

21

22

Chapter 2

Oblivious Routing with Path

Diversity

2.1 Introduction

The early part of this thesis focuses on network-level optimization techniques. These

techniques abstract the on-chip network from other system components and aim to

improve the performance of the network under general traffic patterns. In this ap-

proach, the choice of routing algorithm is a particularly important matter since rout-

ing is one of the key factors that determines the performance of a network [18]. This

chapter will discuss oblivious routing schemes for on-chip networks, present a solu-

tion, Path-based, Randomized, Oblivious, Minimal (PROM) routing [10], and show

how it improves the diversity of routes and provides better throughput across a class

of traffic patterns.

2.1.1 Oblivious vs. Adaptive Routing

Routing algorithms can be classified into two categories: oblivious and adaptive.

Oblivious routing algorithms choose a route without regard to the state of the net-

work. Adaptive algorithms, on the other hand, determine what path a packet takes

based on network congestion. Because oblivious routing cannot avoid network con-

23

gestion dynamically, it may have lower worst-case and average-case throughput than

adaptive routing. However, its low-complexity implementation often outweighs any

potential loss in performance because an on-chip network is usually designed within

tight power and area budgets [43].

Although many researchers have proposed cost-effective adaptive routing algo-

rithms [3, 16, 26, 31, 33, 40, 48, 84], this chapter focuses on oblivious routing for

the following reasons. First, adaptive routing improves the performance only if the

network has considerable amount of congestion; on the other hand, when congestion

is low oblivious routing performs better than adaptive routing due to the extra logic

required by adaptive routing. Because an on-chip network usually provides ample

bandwidth relative to demand, it is not easy to justify the implementation cost of

adaptive routing.

Furthermore, the cost of adaptive routing is more severe for an on-chip network

than for its large-scale counterparts. Many large-scale data networks, such as a wire-

less network, have unreliable nodes and links. Therefore, it is important for every

node to report its status to other nodes so each node can keep track of ever-changing

network topology. Because the network nodes are already sharing the network sta-

tus, adaptive routing can exploit this knowledge to make better routing decisions

without additional costs. In contrast, on-chip networks have extremely reliable links

among the network nodes so they do not require constant status checking amongst the

nodes. Therefore, monitoring the network status for adaptive routing always incurs

extra costs in on-chip networks.

2.1.2 Deterministic vs. Path-diverse Oblivious Routing

Deterministic routing is a subset of oblivious routing, which always chooses the same

route between the same source-destination pair. Deterministic routing algorithms are

widely used in on-chip network designs due to their low-complexity implementation.

Dimension-ordered routing (DOR) is an extremely simple routing algorithm for

a broad class of networks that include 2D mesh networks [17]. Packets simply route

along one dimension first and then in the next dimension, and no path exceeds the

24

minimum number of hops, a feature known as "minimal routing". Although it enables

low-complexity implementation, the simplicity comes at the cost of poor worst-case

and average-case throughput for mesh networks1 .

Path-diverse oblivious routing algorithms attempt to balance channel load by

randomly selecting paths between sources and their respective destinations. The

Valiant [87] algorithm routes each packet via a random intermediate node. Whenever

a packet is injected, the source node randomly chooses an intermediate node for the

packet anywhere in the network; the packet then first travels toward the intermediate

node using DOR, and, after reaching the intermediate node, continues to the original

destination node, also using DOR. Although the Valiant algorithm has provably op-

timal worst-case throughput, its low average-case throughput and high latency have

prevented widespread adoption.

ROMM [65, 66] also routes packets through intermediate nodes, but it reduces

latency by confining the intermediate nodes to the minimal routing region. n-phase

ROMM is a variant of ROMM that uses n -1 different intermediate nodes that divide

each route into n different phases so as to increase path diversity. Although ROMM

outperforms DOR in many cases, the worst-case performance of the most popular

(2-phase) variant on 2D meshes and tori has been shown to be significantly worse

than optimal [85, 76], and the overhead of n-phase ROMM has hindered real-world

use.

OlTURN [76] on a 2D mesh selects one of the DOR routes (XY or YX) uniformly

at random, and offers performance roughly equivalent to 2-phase ROMM over stan-

dard benchmarks combined with near-optimal worst-case throughput; however, its

limited path diversity limits performance on some traffic patterns.

Unlike DOR, each path-diverse algorithm may create dependency cycles amongst

its routes, so it requires extra hardware to break those cycles and prevent network-

The worst-case throughput of a routing algorithm on a network is defined as the minimum
throughput over all traffic patterns. The average-case throughput is its average throughput over all
traffic patterns. Methods have been given to compute worst-case throughput [85] and approximate
average-case throughput by using a finite set of random traffic patterns [86]. While these models of
worst-case and average-case throughput are important from a theoretical standpoint, they do not
model aspects such as head-of-line blocking, and our primary focus here is evaluating performance
on a set of benchmarks that have a variety of local and non-local bursty traffic.

25

DOR 01TURN 2-phase n-phase Valiant
ROMM ROMM

Path diversity None Minimum Limited Fair to Large Large
#channels used
for deadlock 1 2 2 n (2 required) 2
prevention

#hops minimal minimal minimal minimal non-minimal
Communication
overhead in None None log2N (n - 1) 0log 2N log2 N

bits per packet

Table 2.1: Deterministic and Path-diverse Oblivious Routing Algorithms

level deadlock. Additionally, ROMM and Valiant also have some communication

overhead, because a packet must contain the information of an intermediate node, or

a list of intermediate nodes. Table 2.1 compares DOR and the path-diverse oblivious

routing algorithms. Note that n different channels are not strictly required to im-

plement n-phase ROMM; although it was proposed to be used with n channels, our

novel virtual channel allocation scheme can work with n-phase ROMM with only 2

channels without network-level deadlock (Section 2.2.3).

We set out to develop a routing scheme with low latency, high average-case

throughput, and path diversity for good performance across a wide range of patterns.

The PROM family of algorithms we present here is significantly more general than

existing oblivious routing schemes with comparable hardware cost (e.g., 01TURN).

Like n-phase ROMM, PROM is maximally diverse on an n x n mesh, but requires

less complex routing logic and needs only two virtual channels to ensure deadlock

freedom.

In what follows, we describe PROM in Section 2.2, and show how to implement it

efficiently on a virtual-channel router in Section 2.3. In Section 2.4, through detailed

network simulation, we show that PROM algorithms outperform existing oblivious

routing algorithms (DOR, 2-phase ROMM, and 01TURN) on equivalent hardware.

We conclude the chapter in Section 2.5.

26

2.2 Path-based, Randomized, Oblivious, Minimal

Routing (PROM)

Given a flow from a source to a destination, PROM routes each packet separately

via a path randomly selected from among all minimal paths. The routing decision is

made lazily: that is, only the next hop (conforming to the minimal-path constraint)

is randomly chosen at any given switch, and the remainder of the path is left to the

downstream nodes. The local choices form a random distribution over all possible

minimal paths, and specific PROM routing algorithms differ according to the distri-

butions from which the random paths are drawn. In the interest of clarity, we first

describe a specific instantiation of PROM, and then show how to parametrize it into

a family of routing algorithms.

2.2.1 Coin-toss PROM

Figure 2-1 illustrates the choices faced by a packet routed under a PROM scheme

where every possible next-hop choice is decided by a fair coin toss. At the source

node S, a packet bound for destination D randomly chooses to go north (bold arrow)

or east (dotted arrow) with equal probability. At the next node, A, the packet can

continue north or turn east (egress south or west is disallowed because the resulting

route would no longer be minimal). Finally, at B and subsequent nodes, minimal

routing requires the packet to proceed east until it reaches its destination.

Note that routing is oblivious and next-hop routing decisions can be computed

locally at each node based on local information and the relative position of the current

node to the destination node; nevertheless, the scheme is maximally diverse in the

sense that each possible minimal path has a non-zero probability of being chosen.

However, the coin-toss variant does not choose paths with uniform probability. For

example, while uniform path selection in Figure 2-1 would result in a probability of

for each path, either border path (e.g., S -> A -> B -+ - - D) is chosen with

probability , while each of the four paths passing through the central node has only

27

B -

0.5

0.5
A --

0.51

0.5
S ----.

Figure 2-1: Randomized minimal routing in PROM

a I chance. In the next section, we show how to parametrize PROM and create a8

uniform variant.

2.2.2 PROM Variants

Although all the next-hop choices in Figure 2-1 were 50-50 (whenever a choice was

possible without leaving the minimum path), the probability of choosing each egress

can be varied for each node and even among flows between the same source and

destination. On a 2D mesh under minimum-path routing, each packet has at most

two choices: continue straight or turn;2 how these probabilities are set determines the

specific instantiation of PROM:

01TURN-like PROM OlTURN [76] randomly selects between XY and YX routes,

i.e., either of the two routes along the edges of the minimal-path box. We can emulate

this with PROM by configuring the source node to choose each edge with probability
1 and setting all intermediate nodes to continue straight with probability 1 until a

corner of the minimal-path box is reached, turning at the corner, and again continuing

straight with probability 1 until the destination. 3

2While PROM also supports other non-minimal schemes, we focus on minimal-path routing.
3This slightly differs from OlTURN in virtual channel allocation, as described in Section 2.2.3.

28

Uniform PROM Uniform PROM weighs the routing probabilities so that each

possible minimal path has an equal chance of being chosen. Let's suppose that a

packet on the way to node D is currently at node S, where x and y indicate the

number of hops from S to D along the X and Y dimensions, respectively. When

either x or y is zero, the packet is going straight in one direction and S simply moves

the packet to the direction of D. If both x and y are positive, on the other hand, S

can send the packet either along the X dimension to node Sx, or the Y dimension to

node S'. Then, for each of the possible next hops,

{(x - 1)+ y}!

(X - 1)! - y!

Ns' { + (y -)}!

where NAB represents the number of all minimal paths from node A to node B.

In order that each minimal path has the same probability to be taken, we need

to set the probability of choosing Sx and Sy proportional to NS'-D and NStD,

respectively. Therefore, we calculate P2, the probability for S to move the packet

along the X dimension as

NSI-D X -(i + y --1)! X
NS>-D +NS'-D X ' (X - y - 1)!--y (X + y - x + y

and similarly, P = . In this configuration, PROM is equivalent to n-phase ROMM

with each path being chosen at the source with equal probability.4

Parametrized PROM The two configurations above are, in fact, two extremes of

a continuous family of PROM algorithms parametrized by a single parameter f, as

shown in Figure 2-2(b). At the source node, the router forwards the packet towards

the destination on either the horizontal link or the vertical link randomly according

to the ratio x + f : y + f, where x and y are the distances to the destination along

the corresponding axes. At intermediate nodes, two possibilities exist: if the packet

4again, modulo differences in virtual channel allocation

29

x

(y -2) X
x+(y-2) x+(y-2)

+(y-)
(y - 1) X

x+(y-1) x+(y-1)

y y
3)Y 3)+

x+y (x-1)+y

b X (x 1)+y
X+3) (x-1)±y

x

E - .. [I

(y--2)+f

x+(y-2)+f x+(y-2)+f

(y -1) +1

x+(y -1) + x+(y-1)+f

y+f y
x+y+2f (x-1)+y+f

x+f (x-i)+f
x+y+2f (x-1)+y+f

(a) (b)

Figure 2-2: Probability functions of uniform PROM(a) and parameterized PROM(b)

arrived on an X-axis ingress (i.e., from the east or the west), the router uses the

ratio of x + f : y in randomly determining the next hop, while if the packet arrived

on an Y-axis ingress, it uses the ratio x : y + f. Intuitively, PROM is less likely to

make extra turns as f grows, and increasing f pushes traffic from the diagonal of the

minimal-path rectangle towards the edges (Figure 2-3). Thus, when f = 0 (Figure 2-

3(a)), we have Uniform PROM, with most traffic near the diagonal, while f = 0C

(Figure 2-3(d)) implements the 01TURN variant with traffic routed exclusively along

the edges.

Variable Parametrized PROM (PROMV) While more uniform (low f) PROM

variants offer more path diversity, they tend to increase congestion around the center

of the mesh, as most of the traffic is routed near the diagonal. Meanwhile, rectangle

edges are underused especially towards the edges of the mesh, where the only possible

traffic comes from the nodes on the edge.

Variable Parametrized PROM (PROMV) addresses this shortcoming by using

different values of f for different flows to balance the load across the links. As the

minimal-path rectangle between a source-destination pair grows, it becomes more

30

y

0.81 08O's

0.7 07,

03A

(a) f 0 (b) f 10

(c) f =25 (d) f =oc

Figure 2-3: Probability distributions of PROM routes with various values of f

likely that other flows within the rectangle compete with traffic between the two

nodes. Therefore, PROMV sets the parameter f proportional to the minimal-path

rectangle size divided by overall network size so traffic can be routed more toward the

boundary when the minimal-path rectangle is large. When x and y are the distance

from the source to the destination along the X and Y dimensions and N is the total

number of router nodes, f is determined by the following equation:

f =fnax -(2.1)

The value of fmax was fixed to the same value for all our experiments (cf. Section

31

(a) West-First (rotated 1800) (b) North-Last (rotated 2700)

Figure 2-4: Permitted (solid) and prohibited (dotted) turns in two turn models

2.4). This scheme ensures efficient use of the links at the edges of the mesh and

alleviates congestion in the central region of the network.

2.2.3 Virtual Channel Assignment

To provide deadlock freedom for PROM, we invoke the turn model [31], a systematic

way of generating deadlock-free routes. Figure 2-4 shows two different turn models

that can be used in a 2D mesh: each model disallows two of the eight possible turns,

and, when all traffic in a network obeys the turn model, deadlock freedom is guar-

anteed. For PROM, the key observation 5 is that minimal-path traffic always obeys

one of those two turn models: eastbound packets never turn westward, westbound

packets never turn eastward, and packets between nodes on the same row or column

never turn at all. Thus, westbound and eastbound routes always obey the restrictions

of Figures 2-4(a) and 2-4(b), respectively, and preventing eastbound and westbound

packets from blocking each other ensures deadlock freedom.

Therefore, PROM uses only two virtual channels for deadlock-free routing; one

virtual channel for eastbound packets, and the other for westbound packets. When

a packet is injected, the source node S checks the relative position of the destination

node D. If D lies to the east of S, the packet is marked to use the first VC of each

link on its way; and if D lies to the west of S, the second VC is used for the packet.

If S and D are on the same column, the source node may choose any virtual channel

because the packet travels straight to D and does not make any turn, conforming

5due to Shim et al. [79]

32

to both turn models. Once the source node chooses a virtual channel, however, the

packet should use only that VC along the way.6

Although this is sufficient to prevent deadlock in PROM, we can optimize the

algorithm to better utilize virtual channels. For example, the first virtual channel

in any westbound links are never used in the original algorithm because eastbound

packets never travel on westbound links. Therefore, westbound packets can use the

first virtual channel on these westbound links without worrying about blocking any

eastbound packets. Similarly, eastbound packets may use the second virtual channel

on eastbound links; in other words, packets may use any virtual channel while they

are going across horizontal links because horizontal links are used by only one type

of packets. With this optimization, when a packet is injected at the source node S

and travels to the destination node D,

1. if D lies directly north or south of S, the source node chooses one virtual channel

that will be used along the route;

2. if the packet travels on horizontal links, any virtual channel can be used on the

horizontal links;

3. if the packet travels on vertical links and D lies to the east of S, the first VC is

used on the vertical links;

4. if the packet travels on vertical links and D lies to the west of S, the second

VC is used on the vertical links;

(When there are more than two virtual channels, they are split into two sets and

assigned similarly). Figure 2-5 illustrates the division between eastbound and west-

bound traffic and the resulting allocation for m virtual channels.

It is noteworthy that PROM does not explicitly implement turn model restrictions,

but rather forces routes to be minimal, which automatically restricts possible turns;
6If such a packet is allowed to switch VCs along the way, for example, it may block a westbound

packet in the second VC of the upstream router, while being blocked by an eastbound packet in the
first VC of the downstream router. This effectively makes the eastbound packet block the westbound
packet and may cause deadlock.

33

- - ---- --

L - - 1- - -

T F

Case 2 1 Case 1

(a) East- and westbound routes

m /2+1:m 1:m 1:m/2

1:m m/2+1:m 1M1:m/2

1M 1:m

:m1:m/2

m/2+1:m 1:m 1:m/2

(b) VC set allocation

Figure 2-5: Virtual channel assignment in PROM

thus, we only use the turn model to show that VC allocation is deadlock-free. Also

note that the correct virtual channel allocation for a packet can be determined locally

at each switch, given only the packet's destination (encoded in its flow ID), and which

ingress and virtual channel the packet arrived at. For example, any packet arriving

from a west-to-east link and turning north or south must be assigned the first VC (or

VC set), while any packet arriving from an east-to-west link and turning must get

the second VC; finally, traffic arriving from the north or south stays in the same VC

it arrived on.

The virtual channel assignment in PROM differs from that of both 01TURN and

n-phase ROMM even when the routing behavior itself is identical. While PROM

with f = oc selects VCs based on the overall direction as shown above, 01TURN

chooses VCs depending on the initial choice between the XY and YX routes at the

source node; because all traffic on a virtual network is either XY or YX, no deadlock

results. ROMM, meanwhile, assigns a separate VC to each phase; since each phase

uses exclusively one type of DOR (say XY), there is no deadlock, but the assignment

is inefficient for general n-phase ROMM which uses n VCs where two would suffice.

34

2.3 Implementation Cost

Other than a randomness source, a requirement common to all randomized algo-

rithms, implementing any of the PROM algorithms requires almost no hardware

overhead over a classical oblivious virtual channel router [18]. As with DOR, the pos-

sible next-hop nodes can be computed directly from the position of the current node

relative to the destination; for example, if the destination lies to the northwest on

a 2D mesh, the packet can choose between the northbound and westbound egresses.

Similarly, the probability of each egress being chosen (as well as the value of the

parameter f in PROMV) only depends on the location of the current node, and on

the relative locations of the source and destination node, which usually form part of

the packet's flow ID.

As discussed in Section 2.2.3, virtual channel allocation also requires only local

information already available in the classical router: namely, the ingress port and

ingress VC must be provided to the VC allocator and constrain the choice of available

VCs when routing to vertical links, which, at worst, requires simple multiplexer logic.

This approach ensures deadlock freedom, and eliminates the need to keep any extra

routing information in packets.

The routing header required by most variants of PROM needs only the destination

node ID, which is the same as DOR and OlTURN and amounts to 2log 2 (n) bits for

an n x n mesh; depending on the implementation chosen, PROMV may require an

additional 2log 2(n) bits to encode the source node if it is used in determining the

parameter f. In comparison, packets in canonical k-phase ROMM carry the IDs

for the destination node as well as the k - 1 intermediate nodes in the packet, an

overhead of 2k log 2(n) bits on an n x n mesh, although one could imagine a somewhat

PROM-like version of ROMM where only the next intermediate node ID (in addition

to the destination node ID) is carried with the packet, and the k + 1st intermediate

node is chosen once the packet arrives at the kth intermediate destination.

Thus, PROM hardware offers a wide spectrum of routing algorithms at an over-

head equivalent to that of 01TURN and smaller than even 2-phase ROMM.

35

2.4 Experimental Results

To evaluate the potential of PROM algorithms, we compared variable parametrized

PROM (PROMV, described in Section 2.2.2) on a 2D mesh against two path-diverse

algorithms with comparable hardware requirements, OlTURN and 2-phase ROMM,

as well as dimension-order routing (DOR). First, we analytically assessed throughput

on worst-case and average-case loads; then, we examined the performance in a realistic

router setting through extensive simulation.

2.4.1 Ideal Throughput

To evaluate how evenly the various oblivious routing algorithms distribute network

traffic, we analyzed the ideal throughput7 in the same way as [85] and [86], both for

worst-case throughput and for average-case throughput.

Worst-Case Average-Case

I-

O01TURN 0

*PROMV

* ROMM

E DOR-XY

(a) Worst-Case

Figure 2-6: Ideal balanced throughput of

IO1TURN
mPROMV

* ROMM

* DOR-XY

(b) Average

oblivious routing algorithms

On worst-case traffic, shown in Figure 2-6(a), PROMV does significantly better

than 2-phase ROMM and DOR, although it does not perform as well as OlTURN

(which, in fact, has optimal throughput [76]). On average-case traffic, however,
7 "ideal" because effects other than network congestion, such as head-of-line blocking, are not

considered. In this model, each network flow is assumed to have a constant throughput demand.
When a network link is saturated by multiple flows, those flows are throttled down by the same ratio,
so that their total throughput matches the link bandwidth.

36

0

0
Z

04 1

03

01

1.06

08

06

Name Pattern Example (b=4)
Bit-complement di = s (d, d2 , d 1 do)= (,i1s3 , , '81, ,so)
Bit-reverse di= sb-i-1 (d3, d2, di, do) = (so, si, S2, 83)
Shuffle di = s(i-1) mod b (d3, d2, 1,d0) (2,1, S80, S3)
Transpose di= S(i+b/2) mod b (d3, d2 d, d) (8Si, 30 s 3, s2)

Table 2.2: Synthetic network traffic patterns

PROMV outperforms the next best algorithm, OlTURN, by 10% (Figure 2-6(b));

PROMV wins in this case because it offers higher path diversity than the other

routing schemes and is thus better able to spread traffic load across the network.

Indeed, average-case throughput is of more concern to real-world implementations

because, while every oblivious routing algorithm is subject to a worst-case scenario

traffic pattern, such patterns tend to be artificial and rarely, if ever, arise in real NoC

applications.

2.4.2 Simulation Setup

The actual performance on specific on-chip network hardware, however, is not fully

described by the ideal-throughput model on balanced traffic. Firstly, both the router

architecture and the virtual channel allocation scheme could significantly affect the

actual throughput due to unfairness of scheduling and head-of-line blocking issues;

secondly, balanced traffic is often not the norm: if network flows are not correlated at

all, for example, flows with less network congestion could have more delivered traffic

than flows with heavy congestion and traffic would not be balanced.

In order to examine the actual performance on a common router architecture, we

performed cycle-accurate simulations of a 2D-mesh on-chip network under a set of

standard synthetic traffic patterns, namely transpose, bit-complement, shuffle, and bit-

reverse. In these traffic patterns, each bit di of the b-bit destination address is decided

based on the bits of the source address, s3 [18] (See Table 2.2 for the definition of each

pattern, and Table 2.3 for other simulation details). One should note that, like the

worst-case traffic pattern above, these remain specific and regular traffic patterns and

do not reflect all traffic on an arbitrary network; nevertheless, they were designed to

37

Characteristic Configuration
Topology 8x8 2D MESH
Routing PROMV(fmax 1024), DOR,

01TURN, 2-phase ROMM
Virtul channel allocation Dynamic, EDVCA
Per-hop latency 1 cycle
Virtual channels per port 8
Flit buffers per VC 8
Average packet length (flits) 8
Traffic workload bit-complement, bit-reverse,

shuffle, transpose

Warmup / Analyzed cycles 20K / 100K

Table 2.3: Simulation details for PROM and other oblivious routing algorithms

simulate traffic produced by real-world applications, and so are often used to evaluate

routing algorithm performance.

We focus on delivered throughput in our experiments, since we are comparing

minimal routing algorithms against each other. We left out Valiant, since it is a

non-minimal routing algorithm and because its performance has been shown to be

inferior to ROMM and 01TURN [76]. While our experiments included both DOR-

XY and DOR-YX routing, we did not see significant differences in the results, and

consequently report only DOR-XY results.

Routers in our simulation were configured for 8 virtual channels per port, allo-

cated either in one set (for DOR) or in two sets (for 01TURN, 2-phase ROMM, and

PROMV; cf. Section 2.2.3), and then dynamically within each set. Because under dy-

namic allocation the throughput performance of a network can be severely degraded

by head-of-line blocking [79] especially in path-diverse algorithms which present more

opportunity for sharing virtual channels among flows, we were concerned that the true

performance of PROM and ROMM might be hindered. We therefore repeated all ex-

periments using Exclusive Dynamic Virtual Channel Allocation [53] or Flow-Aware

Virtual Channel Allocation [4], dynamic virtual channel allocation techniques which

reduce head-of-line blocking by ensuring that flits from a given flow can use only

one virtual channel at each ingress port, and report both sets of results. Note that

38

under this allocation scheme multiple flows can share the same virtual channel, and

therefore they are different from having private channels for each flow, and can be

used in routers with one or more virtual channels.

2.4.3 Simulation Results

Under conventional dynamic virtual channel allocation (Figure 2-7(a)), PROMV

shows better throughput than ROMM and DOR under all traffic patterns, and slightly

better than OlTURN under bit-complement and shuffle. The throughput of PROMV

is the same as 01TURN under bit-reverse and worse than OlTURN under transpose.

* DOR-XY
DROMM
E01TURN
*PROMV

Bit-complement Bit-reverse Shuffle

(a) Dynamic VC allocation

Transpose

* DOR-XY
EgROMM
E01TURN
*PROMV

Bit-complement Bit-reverse Shuffle Transpose

(b) Exclusive-dynamic VC allocation

Figure 2-7: Saturated Throughput of oblivious routing algorithms

39

3.5

3

C)Is 2

= 1.5

0

-a

Cm0.5

0

3.5

3

2.5

2

1.5
1

0.5

0

Using Exclusive Dynamic VC allocation improves results for all routing algorithms

(Figure 2-7(b)), and allows PROMV to reach its full potential: on all traffic patterns

but bit-complement, PROMV performs best. The perfect symmetry of bit-complement

pattern causes PROMV to have worse ideal throughput than DOR and OlTURN

which have perfectly even distribution of traffic load all over the network; in this

special case of the perfect symmetry, the worst network congestion increases as some

flows are more diversified in PROMV8 .

Note that these results highlight the limitations of analyzing ideal throughput

given balanced traffic (cf. Section 2.4.1). For example, while PROMV has better ideal

throughput than OlTURN on transpose, head-of-line blocking issues allow OlTURN

to perform better under conventional dynamic VC allocation; on the other hand,

while the perfectly symmetric traffic of bit-complement enables OlTURN to have

better ideal throughput than PROMV, it is unable to outperform PROMV under

either VC allocation regime.

While PROMV does not guarantee better performance under all traffic patterns

(as exemplified by bit-complement), it offers competitive throughput under a variety

of traffic patterns because it can distribute traffic load among many network links.

Indeed, we would expect PROMV to offer higher performance on most traffic loads

because it shows 10% better average-case ideal throughput of balanced traffic (Figure

2-6(b)), which, once the effects of head-of-line blocking are mitigated, begins to more

accurately resemble real-world traffic patterns.

2.5 Conclusions

We have presented a parametrizable oblivious routing scheme that includes n-phase

ROMM and 01TURN as its extreme instantiations. Intermediate instantiations push

traffic either inward or outward in the minimum rectangle defined by the source

and destination. The complexity of a PROM router implementation is equivalent

8Exclusive Dynamic VC allocation also makes the networks stable [18] (compare Figure 2-8 and
Figure 2-9), as it improves the fairness of the routing schemes.

40

to OlTURN and simpler than 2-phase ROMM, but the scheme enables significantly

greater path diversity in routes, thus showing 10% better performance on average in

reducing the network congestion under random traffic patterns. The cycle-accurate

simulations under a set of synthetic traffic patterns show that PROMV offers compet-

itive throughput performance under various traffic patterns. It is also shown that if

the effects of head-of-line blocking are mitigated, the performance benefit of PROMV

can be significant.

Going from PROM to PRAM, where A stands for Adaptive is fairly easy. The

probabilities of taking the next hop at each node can depend on local network con-

gestion. With parametrized PROM, a local network node can adaptively control the

traffic distribution simply and intuitively by adjusting the value of f in its routing

decision. This may enable better load balancing especially under bursty traffic and

we will investigate this in the future.

41

Bit-reverse

2.4

2.2

12

C)

1.8

C1CL

S1.6
C1

2 1.4

0
I- 1.2

0.8
0 5 10 15 20 25 30 35

Offered injection rate (packets/cycle)

Shuffle

-)

C)

C,)
:)

0)

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8
5 10 15 20 25 30 35

Offered injection rate (packets/cycle)

2.2

2

0 5 10 15 20 25 30 35
Offered injection rate (packets/cycle)

Transpose

01TURN
DOR-XY - -

ROMM ---
PROM(v)

0 5 10 15 20 25 30 35
Offered injection rate (packets/cycle)

Figure 2-8: Throughput with dynamic VC allocation

42

- -----

-x

C)

1.6
Ca

1.4

2 1.2

01

0.8 F

0.6

01TURN
DOR-XY ---- - ---

ROMM - - -
PROM(v) ----

X
_-

3.5

3

2.5

2

1.5

CO

a)

C)

C)
-C

0)

0

-
-D

-D

01TURN
DOR-XY -X

ROMM --- -

PROM(v)

0

Bit-complement

>
!

1

1

01TURN
DOR-XY ---

ROMM ---- -
PROM(v)

Bit-complement

U

Ca,

0.

z-

2.4

2.2

2

1.8

1.6

1.4

1.2

2.2

2

1.8

1.6

3 1.4
CL

2 1.2

- 1

. i
0 5 10 15 20 25 30 35

Offered injection rate (packets/cycle)

Shuffle

CD

0

Cl)

0)
Cu
0

0)

2.4

2.2

2

1.8

1.6

1.4

1.2

0 5 10 15 20 25 30 35
Offered injection rate (packets/cycle)

0 5 10 15 20 25 30 35
Offered injection rate (packets/cycle)

Transpose

D-

-- ----- - -- -

01TURN
DOR-XY ---- -

ROMM --
PROM(v) -

0 5 10 15 20 25 30 35
Offered injection rate (packets/cycle)

Figure 2-9: Throughput with exclusive-dynamic VC allocation

43

Bit-reverse

L--A

O1TURN
DOR-XY ---- -

ROMM -
PROM(v)

0.8

0.6

-

-

01TURN
DOR-XY X -

ROMM
PROM(v)

0.8

3.5

3

2.5

2

1.5

)-5
0

01TURN
DOR-XY X--

ROMM -

PROM(v)- i

1

1
1

| |

44

Chapter 3

Oblivious Routing in On-chip

Bandwidth-Adaptive Networks

3.1 Introduction

This chapter presents another network-level optimization technique, Bandwidth-Adaptive

Network (BAN). Like PROM (Chapter 2), BAN also aims at performance improve-

ment of oblivious routing. Instead of changing how packets are routed, however, BAN

changes the directions of network links adaptively based on network state.

3.1.1 Trade-off between Hardware Complexity and Global

Knowledge in Adaptive Routing

As mentioned in Section 2.1.1, adaptive routing algorithms collect network conges-

tion information and thus incur hardware and performance overheads. To alleviate

the overheads, many adaptive routing schemes for on-chip networks use only local

information of next-hop congestion to select the next egress port. The congestion

metrics include the number of free next-hop virtual channels [16], available next-hop

buffer size [48], etc.

Using only locally available information significantly reduces the hardware com-

plexity. However, the local nature of the routing choices makes it difficult to make

45

assertions about, or optimize for, the network as a whole. Greedy and local decisions

can actually do more harm than good on global load balance for certain traffic pat-

terns [33]. Therefore some adaptive routing schemes go beyond local congestion data.

Regional Congestion Awareness [33] combines local information with congestion re-

ports from a neighborhood several hops wide; because reports from far-away nodes

take several cycles to propagate and can be out of date, they are weighted less than

reports from close-by nodes. Path-load based routing [84] routes packets along some

minimal path and collects congestion statistics for switches along the way; when the

destination node decides that congestion has exceeded acceptable limits, it will send

an "alert" packet to the source node and cause it to select another, less congested

minimal path. Both of these schemes require additional storage to keep the congestion

data, and possibly inaccuracies when congestion information is several cycles old.

Researchers continue to search for the optimum balance between hardware com-

plexity and routing performance. For example, DyAD [39] attempts to balance the

simplicity of oblivious routing with the congestion-avoiding advantages of adaptive

routing by using oblivious routing when traffic is light, and adaptive routing only if

network is heavily loaded. Globally Oblivious Adaptive Locally (GOAL) [81] is an-

other example of hybrid approaches where the direction of travel is chosen obliviously

and then the packet is adaptively routed.

3.1.2 Oblivious Routing with Adaptive Network Links

Both DyAD and GOAL try to take advantage of oblivious routing techniques to

to reduce the overhead of adaptive routing. If it is adaptive routing that causes

significant overheads, then why do we not stick to oblivious routing and try to achieve

adaptivity in a different way?

This is the fundamental idea of BAN; in BAN, the bisection bandwidth of a

network can adapt to changing network conditions, while the routing function always

remains oblivious. We describe one implementation of a bandwidth-adaptive network

in the form of a two-dimensional mesh with adaptive bidirectional linksi, where the

'Bidirectional links have been preferred to as half-duplex links in router literature.

46

bandwidth of the link in one direction can be increased at the expense of the other

direction. Efficient local intelligence is used to appropriately reconfigure each link,

and this reconfiguration can be done very rapidly in response to changing traffic

demands. Reconfiguration logic compares traffic on either side of a link to determine

how to reconfigure each link.

We compare the hardware designs of a unidirectional and bidirectional link and

argue that the hardware overhead of implementing bidirectionality and reconfigu-

ration is reasonably small. We then evaluate the performance gains provided by a

bandwidth-adaptive network in comparison to a conventional network through de-

tailed network simulation of oblivious routing methods under uniform and bursty

traffic, and show that the performance gains are significant.

In Section 3.2, we describe a hardware implementation of an adaptive bidirectional

link, and compare it with a conventional unidirectional link. In Section 3.3, we

describe schemes that determine the configuration of the adaptive link, i.e., decide

which direction is preferred and by how much. The frequency of reconfiguration can

be varied. Simulation results comparing oblivious routing on a conventional network

against a bandwidth-adaptive network are the subject of Section 3.4. Section 3.5

concludes this chapter.

3.2 Adaptive Bidirectional Link

3.2.1 Conventional Virtual Channel Router

Although bandwidth adaptivity can be introduced independently of network topology

and flow control mechanisms, in the interest of clarity we assume a conventional

virtual-channel router on a two-dimensional (2-D) mesh network as a baseline.

Figure 3-1 illustrates a conventional virtual-channel router architecture and its

operation [18, 64, 70], As shown in the figure, the datapath of the router consists of

buffers and a switch. The input buffers store flits waiting to be forwarded to the next

hop; each physical channel often has multiple input buffers, which allows flits to flow

47

(1, ...,p)
... ...ir u l h a n e A o c t r.Virtal C annl Alocatr FCredits in-

Routing Logic Switch Allocator

.D t

Q: p-by-p
Flits ir u pb -

crossbar 1 --- P)
switch

(1, .., v) -
Credits out

Figure 3-1: Conventional router architecture with p physical channels and v virtual
channels per physical channel.

as if there were multiple "virtual" channels. When a flit is ready to move, the switch

connects an input buffer to an appropriate output channel. To control the datapath,

the router also contains three major control modules: a router, a virtual-channel (VC)

allocator, and a switch allocator. These control modules determine the next hop, the

next virtual channel, and when a switch is available for each packet/flit.

Routing comprises four steps: routing (RC), virtual-channel allocation (VA),

switch allocation (SA), and switch traversal (ST); these are often implemented as

four pipeline stages in modern virtual-channel routers. When a head flit (the first flit

of a packet) arrives at an input channel, the router stores the flit in the buffer for

the allocated virtual channel and determines the next hop node for the packet (RC

stage). Given the next hop, the router then allocates a virtual channel in the next

hop (VA stage). The next hop node and virtual channel decision is then used for

the remaining flits of the given packet, and the relevant virtual channel is exclusively

allocated to that packet until the packet transmission completes. Finally, if the next

hop can accept the flit, the flit competes for a switch (SA stage), and moves to the

output port (ST stage).

48

3.2.2 Bidirectional Links

In the conventional virtual-channel router shown in Figure 3-1, each output channel

is connected to an input buffer in an adjacent router by a unidirectional link; the

maximum bandwidth is related to the number of physical wires that constitute the

link. In an on-chip 2-D mesh with nearest neighbor connections there will always be

two links in close proximity to each other, delivering packets in opposite directions.

We propose to merge the two links between a pair of network nodes into a set

of bidirectional links, each of which can be configured to deliver packets in either

direction, increasing the bandwidth in one direction at the expense of the other. The

links can be driven from two different sources, with local arbitration logic and tristate

buffers ensuring that both do not simultaneously drive the same wire.

(a) Flow A is dominant (b) Flow B is dominant

Figure 3-2: Adaptivity of a mesh network with bidirectional links

Figure 3-2 illustrates the adaptivity of a mesh network using bidirectional links.

Flow A is generated at the upper left corner and goes to the bottom right corner,

while flow B is generated at the bottom left corner and ends at the upper right corner.

When one flow becomes dominant, bidirectional links change their directions in order

to achieve maximal total throughput. In this way, the network capacity for each flow

can be adjusted taking into account flow burstiness without changing routes.

Figure 3-3 shows a bidirectional link connecting two network nodes (for clarity,

49

from other nodes A r dfrom other nodesto other nodes:
A

to other nodes;

to other nodes: direction to other nodes:

1-f-Bandwidth
pressure Allocator pressure

Figure 3-3: Connection between two network nodes through a bidirectional link

only one bidirectional link is shown between the nodes, but multiple bidirectional

links can be used to connect the nodes if desired). The bidirectional link can be

regarded as a bus with two read ports and two write ports that are interdependent.

A bandwidth arbiter governs the direction of a bidirectional link based on pressure

(Section 3.3) from each node, a value reflecting how much bandwidth a node requires

to send flits to the other node. Bold arrows in Figure 3-3 illustrate a case when flits

are delivered from right to left; a tri-state buffer in the left node prevents the output

of its crossbar switch from driving the bidirectional link, and the right node does not

receive flits as the input is being multiplexed. If the link is configured to be in the

opposite way, only the left node will drive the link and only the right node will receive

flits.

Router logic invalidates the input channel at the driving node so that only the

other node will read from the link. The switching of tri-state buffers can be done

faster than other pipeline stages in the router so that we can change the direction

without dead cycles in which no flits can move in any direction. Note that if a dead

cycle is required in a particular implementation, we can minimize performance loss

by switching directions relatively infrequently. We discuss this tradeoff in Section 3.4.

While long wires in on-chip networks require repeaters, we focus on a nearest-

50

-X -71
(1)- _ Mx ar .

0 switch

nop

no

D(, .. ,V) -- Mxar
0 switch

neighbor mesh network. As can be seen in Figure 3-3, only a short section of the

link is bidirectional. Tri-state buffers are placed immediately to either side of the

bidirectional section. This will be true of links connecting to the top and bottom

network nodes as well. Therefore, the bi-directional sections do not need repeaters. If

a bi-directional link is used to connect faraway nodes in a different network topology,

a pair of repeaters with enable signals will be required in place of a conventional

repeater on a unidirectional link.

3.2.3 Router Architecture with Bidirectional Links

input ports (1, ..., p)

Flits in

(1 v)
Credits ou

... V1ta0han e lo a o redis i

Rout-n---g- Switch Alloctr output ports (1, .. ,p)

- -1 |1Flits out :

x -------

:pv-y-pb

Figure 3-4: Network node architecture with u unidirectional links and b bidirectional
links between each of p neighbor nodes and itself.

Figure 3-4 illustrates a network node with b bidirectional links, where each link

has a bandwidth of one flit per router cycle; gray blocks highlight modules modified

from the baseline architecture shown in Figure 3-1. Adjacent nodes are connected

via p ports (for the 2-D mesh we consider here, p = 4 at most). At each port, b input

channels and b output channels share the b bidirectional links via tri-state buffers: if

a given link is configured to be ingressive, its input channel is connected to the link

while the output channel is disconnected, and vice versa (output channels are not

shown in the figure).

We parametrize architectures with and without bidirectional links by the number

of unidirectional links u and the number of bidirectional links b; in this scheme, the

51

conventional router architecture in Figure 3-1 has u = 1 and b = 0. We will compare

configurations with the same bisection bandwidth. A router with a = 0 and b = 2 has

the same bisection bandwidth as u - 1 and b = 0. In general, we may have hybrid

architectures with some of the links bidirectional and some unidirectional (that is,

u > 0 and b > 0). A (u, b) router with bidirectional links will be compared to a

conventional router with u + b/2 unidirectional links in each direction; this will be

denoted as (u + b/2, 0).

We assume, as in conventional routers, that at most one flit from each virtual

channel can be transferred in a given cycle - if there are v virtual channels in the

router, then at most v flits can be transferred in one cycle regardless of the bandwidth

available. In a (u, b) router, if i out of b bidirectional links are configured to be

ingressive at a router node, the node can receive up to u + i flits per cycle from the

node across the link and send out up to (u + b - i) flits to the other node. Since each

incoming flit will go to a different virtual channel queue, 2 the ingress demultiplexer in

Figure 3-4 can be implemented with b instances of a v-to-1 demultiplexer with tri-state

buffers at the outputs; no additional arbitration is necessary between demultiplexers

because only one of their outputs will drive the input of each virtual channel.

In a bidirectional router architecture, the egress link can be configured to exceed

one flit per cycle; consequently, the crossbar switch must be able to consider flits from

more than one virtual channel from the same node. In the architecture described so

far, the output of each virtual channel is directly connected to the switch and competes

for an outgoing link. However, one can use a hierarchical solution where the v virtual

channels are multiplexed to a smaller number of switch inputs. The Intel Teraflops

has a direct connection of virtual channels to the switch [37. Most routers have

v-to-1 multiplexers that select one virtual channel from each port for each link prior

to the crossbar.

In addition, the crossbar switch must now be able to drive all p - (u + b) outgoing

links when every bidirectional link is configured as egressive, and there are u unidi-

2 Recall that once a virtual channel is allocated to a packet at the previous node, other packets
cannot use the virtual channel until the current packet completes transmission.

52

rectional links. Consequently, the router requires a p -v-by-p - (u + b) crossbar switch,

compared to a p -v-by-p - (u + b/2) switch of a conventional (u + b/2, 0) router that

has the same bisection bandwidth; this larger switch is the most significant hardware

cost of the bidirectional router architecture. If the v virtual channels are multiplexed

to reduce the number of inputs of the switch, the number of inputs to the crossbar

should be at least equal to the maximum number of outputs in order to fully utilize

the bisection bandwidth. In this case, we have a p - (u + b/2)-by-p - (u + b/2) crossbar

in the (u + b/2, 0) case. In the (u, b) router, we will need a p - (u + b)-by-p - (u + b)

crossbar. The v virtual channels at each port will be multiplexed into (u + b) inputs

to the crossbar.

To evaluate the flexibility and effectiveness of bidirectional links, we compare,

in Section 3.4, the performance of bidirectional routers with (u, b) = (0, 2) and

(u, b) = (0, 4) against unidirectional routers with (u, b) = (1, 0) and (u, b) = (2, 0),

which, respectively, have the same total bandwidth as the bidirectional routers. We

also consider a hybrid architecture with (u, b) = (1, 2) which has the same total band-

width as the (u, b) = (2, 0) and (u, b) = (0, 4) configurations. Table 3.1 summarizes

the sizes of hardware components of unidirectional, bidirectional and hybrid router

architectures assuming four virtual channels per ingress port (i.e., v = 4). There

are two cases considered. The numbers in bold correspond to the case where all

virtual channels compete for the switch. The numbers in plain text correspond to

the case where virtual channels are multiplexed before the switch so the number of

inputs to the switch is restricted by the bisection bandwidth. While switch allocation

logic grows as the size of crossbar switch increases and bidirectional routers incur

the additional cost of the bandwidth allocation logic shown in Figure 3-3, these are

insignificant compared to the increased size of the demultiplexer and crossbar.

When virtual channels directly compete for the crossbar, the number of the cross-

bar input ports remains the same in both the unidirectional case and the bidirectional

case. The number of crossbar output ports is the only factor increasing the crossbar

size in bidirectional routers (u, b) = (0, 4) and (1, 2) when compared with the unidi-

rectional (2, 0) case; this increase is size is roughly equal to the ratio of the output

53

Architecture Ingress Demux Xbar Switch
(u, b) (1, 0) one 1-to-4 demux 4-by-4 or 16-by-4
(u, b) (0, 2) two 1-to-4 demuxes 8-by-8 or 16-by-8
(u, b) (2, 0) two 1-to-4 demuxes 8-by-8 or 16-by-8
(u, b) (0, 4) four 1-to-4 demuxes 16-by-16 or 16-by-16
(u, b) (1, 2) three 1-to-4 demuxes 12-by-12 or 16-by-12

Table 3.1: Hardware components for 4-VC BAN routers

ports. Considering that a 32 x 32 crossbar takes approximately 30% of the gate count

of a switch [45] with much of the actual area being accounted for by queue memory

and wiring which is not part of the gate count, we estimate that a 1.5x increase in

crossbar size for the (1, 2) case will increase the area of the node by < 15%. If the

queues are smaller, then this number will be larger. Similar numbers are reported in

[33].

There is another way to compare the crossbars in the unidirectional and bidi-

rectional cases. It is well known that the size of a n x n crossbar increases as n 2

(e.g., [93]). We can think of n as p - (u + b/2) -w, where w is the bit-width for the

unidirectional case. If a bidirectional router's crossbar is 1.5x larger, then one can

create an equivalent-size unidirectional crossbar with the same number of links but

I.5x bit-width, assuming zero buffer sizes. In reality, the buffers will increase by

1.5 = 1.22x due to the bit-width increase, and so the equivalent-size unidirectional

crossbar will have a bit-width that is approximately 1.15x of the bidirectional cross-

bar, assuming typical buffer sizes. This implies the performance of this crossbar in a

network will be 1.15x the baseline unidirectional case. As can be seen in Section 3.4,

the bidirectional link architecture results in greater gains in performance.

3.3 Bandwidth Allocation in Bidirectional Links

Bidirectional links contain a bandwidth arbiter (Figure 3-3) which governs the direc-

tion of the bidirectional links connecting a pair of nodes and attempts to maximize

the connection throughput. The locality and simplicity of this logic are key to our

54

approach: the arbiter makes its decisions based on very simple information local to

the nodes it connects.

Each network node tells the arbiter of a given bidirectional link how much pressure

it wishes to exert on the link; this pressure indicates how much of the available link

bandwidth the node expects to be able to use in the next cycle. In our design, each

node counts the number of flits ready to be sent out on a given link (i.e., at the head

of some virtual channel queue), and sends this as the pressure for that link. The

arbiter then configures the links so that the ratio of bandwidths in the two directions

approximates the pressure ratio, additionally ensuring that the bandwidth granted

does not exceed the free space in the destination node. Consequently, if traffic is

heavier in one direction than in the other, more bandwidth will be allocated to that

direction.

The arbitration logic considers only the next-hop nodes of the flits at the front of

the virtual channel queues and the available buffer space in the destination queues,

both of which are local to the two relevant nodes and easy to compute. The arbitration

logic itself consists of threshold comparisons and is also negligible in cost.

With one-flit packets, the pressure as defined above exactly reflects the traffic that

can be transmitted on the link; it becomes approximate when there are multiple flits

per packet, since some of the destination queues with available space may be in the

middle of receiving packets and may have been assigned to flows different from the

flits about to be transmitted. Although more complex and accurate definitions of

pressure are possible, our experience thus far is that this simple logic performs well

in practice.

In some cases we may not want arbitration to take place in every cycle; for ex-

ample, implementations that require a dead cycle after each link direction switch

will perform poorly if switching takes place too often. On the other hand, switch-

ing too infrequently reduces the adaptivity of the bidirectional network, potentially

limiting the benefits for quickly changing traffic and possibly requiring more complex

arbitration logic. We explore this tradeoff in Section 3.4.

When analyzing link bandwidth allocation and routing in a bidirectional adaptive

55

A A B

ffA

D

Figure 3-5: Deadlock on deadlock-free routes due to bidirectional links

network, we must take care to avoid additional deadlock due to bidirectional links,

which may arise in some routing schemes. Consider, for example, the situation shown

in Figure 3-5: a flow fB travels from node B to node C via node A, and all links

connecting A with B are configured in the direction B -+ A. Now, if another, smaller

flow fA starts at D and heads for B, it may not exert enough pressure on the A --* B

link to overcome that of fB, and, with no bandwidth allocated there, may be blocked.

The flits of fA will thus eventually fill the buffers along its path, which might prevent

other flows, including fB, from proceeding: in the figure, fB shares buffering resources

with fA between nodes C and D, and deadlock results. Note that the deadlock arises

only because the bidirectional nature of the link between A and B can cause the

connection A -> B to disappear; since the routes of fA and fB obey the west-first

turn model [31], deadlock does not arise in the absence of bidirectional links. One

easy way to avoid deadlock is to require, in the definition of pressure, that some

bandwidth is always available in a given direction if some flits are waiting to be sent

in that direction. For example, if there are four bidirectional links and there are eight

flits waiting to travel in one direction and one in the opposite direction, BAN assigns

three links to the first direction and one to the opposite direction.

56

............. I... -- - - - - ___ - --- - - - "

3.4 Results and Comparisons

3.4.1 Experimental Setup

(u, b) =(1, 0) (u, b)= (0, 2)

(u, b)=(2, 0) (u, b)=(1, 2) (u, b)=(0, 4)

Figure 3-6: Link configurations for BAN evaluation

A cycle-accurate network simulator was used to model the bidirectional router ar-

chitectures with different combinations of unidirectional (u) and bidirectional (b) links

in each connection (Figure 3-6 and Table 3.2 for details). To evaluate performance un-

der general traffic patterns, we employed a set of standard synthetic traffic patterns

(transpose, bit-complement, shuffle, and uniform-random) both without burstiness

and with a two-state Markov Modulated Process (MMP) bursty traffic model [18].

In the MMP model, a source node is in one of the two states, the "on" state or the

"off" state, and the injection rate is r0 , in the on state and 0 in the off state. In every

cycle, a source node in the off state switches to the on state with the probability of

a, and from the on state to the off state with probability 3. Then the source node

stays in the on state with the probability of ' , so the steady-state injection rate r

is x ron. In our experiments, a was set to 30% and 4 was set to 10%, so that

the injection rate during the on state packets during the on state at a = 4 times
a 3

larger than steady-state injection rates.

For the evaluation of performance under real-world applications, we profiled the

network load of an H.264 decoder implemented on an ASIC; we measured how much

data is transferred between the modules in the ASIC design, and mapped each module

to a network node in such a way that each module is close to other modules that it

directly communicates with. We then simulated the resulting traffic pattern on the

unidirectional and the bidirectional networks. We also examined several frequencies

57

Characteristic Configuration
Topology 8x8 2D MESH
Link configuration (u, b) = (1,0), (0,2)

(2,0), (1,2), (0,4)
Routing DOR-XY and DOR-YX
VC output multiplexing None,

Matching maximum bandwidth
Per-hop latency 1 cycle
Virtual channels per port 4
Flit buffers per VC 4
Average packet length (flits) 8
Traffic workload transpose, bit-complement,

shuffle, uniform-random
profiled H.264 decoder

Burstiness model Markov modulated process
Warmup cycles 20,000
Analyzed cycles 100,000

Table 3.2: Simulation details for BAN and unidirectional networks

of bandwidth allocation to estimate the impact on architectures where a dead cycle

is required to switch the link direction.

Although the bidirectional routing technique applies to various oblivious routing

algorithms, we have, for evaluation purposes, focused on Dimension Ordered Routing

(DOR), the most widely implemented oblivious routing method. While our exper-

iments included both DOR-XY and DOR-YX routing, we did not see significant

differences in the results, and consequently report only DOR-XY results. In all of our

experiments, the router was configured for four virtual channels per ingress port un-

der a dynamic virtual channel allocation regimen. The effect of multiplexing virtual

channels in front of the crossbar switches was also examined.

3.4.2 Non-bursty Synthetic Traffic

Figure 3-7 shows the throughput in the unidirectional and bidirectional networks

under non-bursty traffic. When traffic is consistent, the improvement offered by

bidirectional links depends on how symmetric the flows are. On the one extreme,

bit-complement, which in steady state is entirely symmetric when routed using DOR

58

Ca2

1-

i)
is

HL

06

H,
Is
is

Transpose

-W

u=1,B=0 -

U=2,B=O
U=1,B=2
U=O, =4 -

10 20 30 40
Offered Injection Rate (packets/cycle)

Bitcomp

U=1,B=O
U=0,B=2
U=2,B=O
U=1,8=2
U=,B=4

5 10 0 35 on S 50

050 110 20 30 40 50 60 7
Offered Injection Rate (packets/cycle)

Transpose with Multiplexing

U=1,B=0
U=0,B=2

- U=2,B=0
U=I,B=2
U=0,B=4

0 0 0 0 40 50 60
Offered Injection Rate (packets/cycle)

Bitcomp with Multiplexing

U=1,B=5
U=OB=2

1.5 -U=2.B=0 U=1,B=2
U=,B=4

25 -

:2- t

CL'S

CL

-

F-

Rs

ia

Z 7

5 5

6

63

7S

Zs

i
0

1ffere 40 50
Offered Injection Rate (packets/cycle)

Offered Injection Rate (packets/cycle)

Uniform Random

O 7

6-

10 20 30 40 50 A0 7

Offered Injection Rate (packets/cycle)

Shuffle with Multiplexing

o 1t 20 3o 40 5o 6 7(
Offered Injection Rate (packets/cycle)

Uniform Random with Multiplexing

8 A
A

0 10 20 30 40 50
Offered Injection Rate (packets/cycle)

Figure 3-7: Throughput of BAN and unidirectional networks under non-bursty traffic

59

Shuffle

U=1,B=O
U=0, B=2

8 U=2,B=0
U=1.B=2
U=0O,B=4

6

3 -

0 t 20 30 40 so 60 7

U=1,B=2
U=1.B=2U=2,8=0
U=1.B=2
U=O,B=4

U=1,B=0O
- U=0,8=2

U=2,B=O
U=1,B=2
U=O.B=4

-A -~ 11

50

3

U=1,B=0
U=0, B=2
U=2,B=O
U=1,B=2
U=0,1B=4

I

0

60 70

5-

5 3

2

Transpose (Burst) Shuffle (Burst)
U=1,B=O

5 -U=0,B=2
U= 2,B=4

.5U=B

3 44

uC, CL

U=0,B=2
U=2,B=0 -
U=1,B=2

1.5 U=0,B=4

Offered Injection Rate (packets/cycle) Offered Injection Rate (packets/cycle)

Bitcomp (Burst) Uniform Random (Burst)

5.5

3 ui5 -

2.5 U=2,B=O

U=n,e=4 3.5

U=1.BL

SU=0e=2

U=2,8=0
5 U=1 ,=2

U=0,8=4

Offered Injection Rate (packets/cycle) Offered Injection Rate (packets/cycle)

Figure 3-8: Throughput of BAN and unidirectional networks under bursty traffic

and results in equal traffic in each direction on any link, shows no improvement; on

the other extreme, in transpose, packets move in only one direction over any given

link, and bidirectional links improve throughput twofold. Shuffle lies between the two

extremes, with the bidirectional network outperforming the unidirectional solution by

60% when total bandwidth is equal.

Uniformly random traffic is also symmetric when averaged over a period of time.

For very short periods of time, however, the symmetry is imperfect, allowing the

bidirectional network to track the traffic shifts as they happen and outperform the

unidirectional network throughput by up to 8% without multiplexing virtual channel

outputs.

60

3.4.3 Non-bursty Synthetic Traffic with Multiplexed VC Out-

puts

If the outputs of virtual channels are multiplexed, the number of inputs to the crossbar

switch can be significantly reduced, especially in unidirectional networks. However,

the use of multiplexers can limit the flexibility of switch allocation because fewer

virtual channels can compete for the switch at a given cycle.

This limited flexibility does not significantly affect performance of bit-complement,

transpose and shuffle because packet flow at each network node is in steady-state un-

der these traffic patterns. If packet flow is in steady-state, each port at each network

node has the same inflows and outflows of flits, which are bounded by the maximum

outgoing bandwidth. Therefore, multiplexing corresponding to the maximum outgo-

ing bandwidth does not affect throughput because we need not connect more virtual

channels to the switch than the number of multiplexer outputs.

On the other hand, if the congestion at each link is not in steady-state as in

the uniform-random example, each port sees a temporal mismatch between inflows

and outflows of flits. If all virtual channels can compete for the switch without

multiplexers, flits in ingress queues can be quickly pulled out as soon as the link to the

next hop becomes less congested. The results show that the unidirectional networks

have 10% less throughput under uniform-random when multiplexers are used, as they

cannot pull out congested flits as fast as networks without multiplexers. Bidirectional

networks have more multiplexer outputs than unidirectional networks because their

maximum outgoing bandwidth is greater than unidirectional networks. Therefore,

the size of crossbar switches of bidirectional networks increases, but they can send

out more flits in congested ports than unidirectional networks. Consequently, the

bidirectional networks outperform the unidirectional network throughput by up to

20% under uniform-random when virtual channel outputs are multiplexed, as shown

in Figure 3-7.

61

3.4.4 Bursty Synthetic Traffic

The temporary nature of bursty traffic allows the bidirectional network to adjust the

direction of each link to favor whichever direction is prevalent at the time, and results

in throughput improvements across all traffic patterns (Figure 3-8). With bursty

traffic, even bit-complement, for which the bidirectional network does not win over the

unidirectional case without burstiness, shows a 20% improvement in total throughput

because its symmetry is broken over short periods of time by the bursts. For the

same reason, shuffle and uniform-random outperform the unidirectional network by

66% and 26% respectively, compared to 60% and 8% in non-bursty mode. Finally,

transpose performance is the same as for the non-bursty case, because the traffic, if

any, still only flows in one direction and requires no changes in link direction after

the initial adaptation.

These results were obtained with virtual channels directly competing for the cross-

bar. We have simulated these examples with multiplexed VC outputs and the results

have the same trends as in Figure 3-8, and therefore are not shown here.

3.4.5 Traffic of an H.264 Decoder Application

As illustrated in the example of transpose and bit-complement, bidirectional networks

can significantly improve network performance when network flows are not symmet-

ric. As opposed to synthetic traffic such as bit-complement, the traffic patterns in

many real applications are not symmetric as data is processed by a sequence of mod-

ules. Therefore, bidirectional networks are expected to have significant performance

improvement with many real applications. Figure 3-9 illustrates the performance of

the bidirectional and the unidirectional networks under traffic patterns profiled from

an H.264 decoder application, where the bidirectional network outperforms the uni-

directional network by up to 35%. The results correspond to the case where virtual

channels directly compete for the crossbar, and are virtually identical to the results

with VC multiplexing.

62

C)
=3

0.

H264
6

)(-U=1,B=O
U=0,B=2
U=2,B=0

5 - U=1,B=2
U=0,B=4

4--

3

"6 2 4 6 8 10
Offered Injection Rate (packets/cycle)

Figure 3-9: Throughput of BAN and unidirectional networks under H.264 decoder
traffic

3.4.6 Link Arbitration Frequency

So far, our results have assumed that the bandwidth arbiter may alter the direction

of every link on every cycle. While we believe this is realistic, we also considered

the possibility that switching directions might require a dead cycle, in which case

changing too often could limit the throughput up to 50%. We therefore reduced the

arbitration frequency and examined the tradeoff between switching every N cycles

Shuffle
Uniform Random

- -- - III 9

Frequency of Direction Switches

Figure 3-10: Frequency of direction changes on bidirectional links

63

Eo

03

0

40

35

30

25

20

15

10

5

0

12 14

Shuffle (Burst) Uniform Random (Burst)

2U=2,B=52- U=2,B=Q

S5 -N

-*- U=1,5=2N=IeO -*- U=1 B=2,N=100

0 1 20 30o 40 SO 60 70 0 1 20 30o 40 s0 50 70
Offered Injection Rate (packets/cycle) Offered Injection Rate (packets/cycle)

Figure 3-11: BAN performance under bursty traffic with various link arbitration
periods (N)

(thereby lessening the impact of a dead cycle to N1) and limiting the network's

adaptivity to rapid changes in traffic patterns. The results in this section illustrate

the relevant tradeoffs.

Figure 3-10 shows how often each bidirectional link actually changes its direction

under bursty shuffle and uniform-random traffic: the x-axis shows how frequently

links' directions change and the y-axis shows how many links switch that often. For

example, under shuffle traffic, only 8% of the bidirectional links change their direction

more frequently than once in two hundred cycles. Traffic exhibiting the uniform-

random pattern, in comparison, is more symmetric than shuffle, and so the link

directions change more often.

The observation that no link changes its direction more frequently than once in

ten cycles led us to investigate how infrequent the link switches could be without

significantly affecting performance. In Figure 3-11 we compare the performance of

the bidirectional network under different link arbitration frequencies; as expected,

throughput decreases when the links are allowed to switch less often.

Even with a switching period as large as 100 cycles, the bidirectional network still

significantly outperforms the unidirectional design under many loads (e.g., by more

than 20% for shuffle). In the case of uniform-random, however, the bidirectional net-

work performance trails the unidirectional design when switching is infrequent. This

is because, when each link arbitration decision lasts 100 cycles, any temporary benefit

64

from asymmetric bandwidth allocation is nullified by changes in traffic patterns, and,

instead of improving throughput, the asymmetric allocations only serve to throttle

down the total throughput compared to the unidirectional router.

Infrequent link switching, therefore, demands a more sophisticated link band-

width arbiter that bases its decisions on the pressures observed over a period of time

rather than on instantaneous measurements. For uniform-random, for example, the

symmetry of uniform random traffic over time would cause the link bandwidths to

be allocated evenly by such an arbiter, allowing it to match the performance of the

unidirectional network.

3.5 Conclusions

We have proposed the notion of bandwidth-adaptive networks, given one concrete

example of bidirectional links in a 2-D mesh, and evaluated it. Adaptivity is controlled

by local pressure that is easily computed. While more comprehensive evaluation

should be performed, adaptive bidirectional links provide better performance under

both uniform and bursty traffic for the tested benchmarks.

We have focused on a mesh; however, adaptive bidirectional links can clearly be

used in other network topologies. In adaptive routing decisions are made on a per-

packet basis at each switch. In bandwidth-adaptive networks, decisions are made on a

per-link basis. We believe this difference makes bandwidth-adaptivity more amenable

to local decision making, though more rigorous analysis is required.

65

66

Chapter 4

On-chip Network Support for

Fine-grained Thread Migration

4.1 Introduction

Two network-level optimization techniques were introduced in the previous chapters.

These techniques aim to improve network performance without significantly increas-

ing complexity. However, network performance is not the only thing that on-chip net-

works can provide. Because the network is tightly coupled with other components in a

manycore system, it is capable of directly supporting system-level or application-level

functionality (Section 1.2.3). In this chapter, we present Exclusive Native Context

(ENC), the first deadlock-free fine-grained thread migration protocol built on an on-

chip network. ENC demonstrates that a simple and elegant technique in an on-chip

network can provide critical functional support for the higher-level application and

system layers.

4.1.1 Thread Migration on CMPs

In SMP multiprocessor systems and multicore processors, process and thread mi-

gration has long been employed to provide load and thermal balancing among the

processor cores. Typically, migration is a direct consequence of thread scheduling

67

and is performed by the operating system (OS) at timeslice granularity; although

this approach works well for achieving long-term goals like load balancing, the rel-

atively long periods, expensive OS overheads, and high communication costs have

generally rendered fast thread migration impractical [90].

Recently, however, several proposals with various aims have centered on thread

migration too fine-grained to be effectively handled via the OS. In the design-for-

power domain, rapid thread migration among cores in different voltage/frequency

domains has allowed less demanding computation phases to execute on slower cores

to improve overall power/performance ratios [72]; in the area of reliability, migrat-

ing threads among cores has allowed salvaging of cores which cannot execute some

instructions because of manufacturing faults [71]; finally, fast instruction-level thread

migration has been used in lieu of coherence protocols or remote accesses to provide

memory coherence among per-core caches [46] [55]. The very fine-grained nature of

the migrations contemplated in these proposals-a thread must be able to migrate

immediately if its next instruction cannot be executed on the current core because

of hardware faults [71] or to access data cached in another core [46]-demands fast,

hardware-level migration systems with decentralized control, where the decision to

migrate can be made autonomously by each thread.

4.1.2 Demand for a New Thread Migration Protocol

The design of an efficient fine-grained thread migration protocol has not, however,

been addressed in detail. The foremost concern is avoiding deadlock: if a thread

context can be blocked by other contexts during migration, there is an additional re-

source dependency in the system which may cause the system to deadlock. But most

studies do not even discuss this possibility: they implicitly rely on expensive, central-

ized migration protocols to provide deadlock freedom, with overheads that preclude

frequent migrations [41], [62], or limit migrations to a core's local neighborhood [78].

Some fine-grain thread migration architectures simply give up on deadlock avoidance

and rely on expensive recovery mechanisms (e.g., [59]).

With this in mind, we introduce a novel thread migration protocol called Exclusive

68

Native Context (ENC). To the best of our knowledge, ENC is the first on-chip network

solution to guarantee freedom from deadlock for general fine-grain thread migration

without requiring handshaking. Our scheme is simple to implement and does not

require any hardware beyond that required for hardware-level migrations; at the

same time, it decouples the performance considerations of on-chip network designs

from deadlock analysis, freeing architects to consider a wide range of on-chip network

designs.

In the rest of this chapter,

" we present ENC, a novel deadlock-free fine-grained thread migration protocol;

" we show how deadlock arises in other migration schemes, and demonstrate that

ENC is deadlock-free;

" we show that ENC performance on SPLASH-2 application benchmarks [92]

running under a thread-migration architecture [46] is on par with an idealized

deadlock-free migration scheme that relies on infinite resources.

4.2 Deadlock in Thread Migration

4.2.1 Protocol-level Deadlock

Most studies on on-chip networks focus on the network itself and assume that a

network packet dies soon after it reaches its destination core-for example, the result

of a memory load request might simply be written to its destination register. This

assumption simplifies deadlock analysis because the dead packet no longer holds any

resources that might be needed by other packets, and only live packets are involved

in deadlock scenarios.

With thread migration, however, the packet carries an execution context, which

moves to an execution unit in the core and occupies it until it migrates again to a

different core. Thus, unless migrations are centrally scheduled such that the migrating

context always finds available space at its destination, execution contexts occupying

69

a core can block contexts arriving over the network, creating additional deadlock

conditions that conventional on-chip network deadlock analysis does not consider.

T1 T2

N1 N2
Thread T1 Thread T2 77 Other threads

(a) Network Buffers in a Protocol-level
Deadlock

Figure 4-1: Protocol-level deadlock of

N1-C1

N2-.N1

C2-N2

N1-N2

SN2 C2

(b) Channel Dependency Graph

fine-grain, autonomous thread migration

For example, suppose a migrating thread T1 in Figure 4-1(a) is heading to core

C1. Although T1 arrives at routing node N1 directly attached to C1, all the execution

units of C1 are occupied by other threads (~), and one of them must migrate to

another core for T1 to make progress. But at the same time, thread T 2 has the same

problem at core C2 , so the contexts queued behind T 2 are backed up all the way

to C1 and prevent a C1 thread from leaving. So T1 cannot make progress, and the

contexts queued behind it have backed up all the way to C2, preventing any of C2's

threads from leaving, and completing the deadlock cycle. Figure 4-1(b) illustrates

this deadlock using a channel dependency graph (CDG) [18] where nodes correspond

to channels of the on-chip network and edges to dependencies associated with making

progress on the network.

We call this type of deadlock a protocol-level deadlock, because it is caused by the

migration protocol itself rather than the network routing scheme. Previous studies in-

volving rapid thread migration typically either do not discuss protocol-level deadlock,

implicitly relying on a centralized deadlock-free migration scheduler [41, 62, 78], using

deadlock detection and recovery [59], employing a cache coherence protocol to mi-

grate contexts via the cache and memory hierarchy, effectively providing a very large

70

Core and Migration

Core architecture single-issue, two-way
multithreading

The size of a thread context

(relative to the size of network flit)
Number of threads 64
Number of hotspots 1, 2, 3 and 4
Migration interval 100 cycles

On-chip Network
Network topology 8-by-8 mesh

Routing algorithms Dimension-order
wormhole routing

Number of virtual channels 2 and 4
The size of network buffer 4 per link

(relative to the size of context) or 20 per node
The size of context queue 0, 4 and 8
(relative to the size of context) per core

Table 4.1: Simulation details for synthetic migration patterns with hotspot cores

buffer to store contexts [72], or employing slow handshake-based context swaps [71].

All of these approaches have substantial overheads, motivating the development of

an efficient network-level deadlock-free migration protocol.

4.2.2 Evaluation with Synthetic Migration Benchmarks

As a non-deadlock-free migration protocol, we consider the naturally arising SWAP

scheme, implicitly assumed by several works: whenever a migrating thread T1 arrives

at a core, it evicts the thread T 2 currently executing there and sends it back to the

core where T1 originated. Although intuitively one might expect that this scheme

should not deadlock because T 2 can be evicted into the slot that T1 came from, this

slot is not reserved for T2 and another thread might migrate there faster, preempting

T 2; it is therefore not guaranteed that T 2 will exit the network and deadlock may

arise. (Although adding a handshake protocol with extra buffering can make SWAP

deadlock-free [71], the resulting scheme is too slow for systems which require frequent

migrations).

71

100 F

II II
80-

0)
B 602

40-

20-

CD 0 * CO 0 0 C 00 0 1 00 0 t 00
++++ + + +
U U UUU U U U U U

r4 (N N N (* r r N r4 r

Number of hotspots

Figure 4-2: Deadlock scenarios with synthetic sequences of fine-grained migrations
on 2VC and 4VC networks

In order to examine how often the migration system might deadlock in practice,

we used a synthetic migration benchmark where each thread keeps migrating between

the initial core where it was spawned and a hotspot core. (Since migration typically

occurs to access some resource at a core, be it a functional unit or a set of memory

locations, such hotspots naturally arise in multithreaded applications). We used vary-

ing numbers (one to four) of randomly assigned hotspots, and 64 randomly located

threads that made a thousand migrations to destinations randomly chosen among

their originating core and the various hotspots every 100 cycles. To stress the migar-

tion framework as in a fine-grain migration system, we chose the migration interval of

100 cycles. We used the cycle-level network-on-chip simulator DARSIM [57], suitably

modified with a migration mechanism, to model a 64-core system connected by a 2D

mesh interconnect. Each on-chip network router had enough network buffers to hold

4 thread contexts on each link with either 2 or 4 virtual channels; we also examined

72

the case where each core has a context queue to hold arriving thread contexts when

there are no available execution units. We assumed Intel Atom-like x86 cores with

execution contexts of 2 Kbits [72] and enough network bandwidth to fit each context

in four or eight flits. Table 4.1 summarizes the simulation setup.

Figure 4-2 shows the percentage of runs (out of the 100) that end with deadlock

under the SWAP scheme. 2VC+0 and 4VC+0 correspond to networks with 2 and

4 virtual channels, respectively. 2VC+4 and 2VC+8 are 2 virtual-channel networks

which have an extra buffer for 4 and 8 thread contexts at each node. Without the

extra buffer, nearly all experiments end in deadlock. Further, even though context

buffering can reduce deadlock, deadlock still occurs at a significant rate for the tested

configurations.

The synthetic benchmark results also illustrate that susceptibility to deadlock de-

pends on migration patterns: when there is only one hotspot, the migration patterns

across threads are usually not cyclic because each thread just moves back and forth

between its own private core and only one shared core; when there are two or more

hotspots and threads have more destinations, on the other hand, their paths intersect

in more complex ways, making the system more prone to deadlock. Although small

context buffers prevent deadlock with some migration patterns, they do not ensure

deadlock avoidance because there are still deadlock cases.

4.3 Exclusive Native Context Protocol

ENC takes a network-based approach to provide deadlock freedom. Unlike coarse-

grain migration protocols, ENC allows autonomous thread migrations. To enable

this, the new thread context may evict one of the thread contexts executing in the

destination core, and ENC provides the evicted thread context a safe path to another

core on which it will never be blocked by other threads that are also in transit.

To provide the all-important safe path for evicted threads, ENC uses a set of

policies in core scheduling, routing, and virtual channel allocation.

Each thread is set as a native context of one particular core, which reserves a

73

Channel for

Channel for If C, is full

EitdTraffic
N2 -Ni This node depends

2C1 N, on nothing.

2-N N1-N2

N,-.Cn N2-.Nn C2-.N2 f ,ifulN 2-C 2If C2 is full
This node depends

on nothing.

Figure 4-3: Acyclic channel dependency graph of ENC

register file (and other associated context state) for the thread. Other threads cannot

use the reserved resource even if it is not being used by the native context. Therefore,

a thread will always find an available resource every time it arrives at the core where

the thread is a native context. We will refer to this core as the thread's native core.

Dedicating resources to native contexts requires some multithreading support in

the cores. If a thread may migrate to an arbitrary core which may have a different

thread as its native context, the core needs to have an additional register file (i.e.,

a guest context) to accept a non-native thread because the first register file is only

available to the native context. Additionally, if a core has multiple native contexts,

there must be enough resources to hold all of its native contexts simultaneously so no

native thread is blocked by other native threads. The number of additional registers

depends on the size of context, which varies greatly among different architectures;

while the size of a thread context is usually less than 2Kbits for a simple 32-bit RISC

core (32 general-purpose registers, plus additional registers such as program counter,

possibly including a few TLB entries), complex cores with additional resources such as

floating-point registers have more than 2 x larger contexts. However, it is a reasonable

assumption that an efficient fine-grain, migration-based architecture will require some

level of multithreading, in order to prevent performance degradation when multiple

threads compete for the resources of the same core.

If an arriving thread is not a native context of the core, it may be temporarily

blocked by other non-native threads currently on the same core. The new thread

74

100

80-

cw 60-
)

CU

CL 40

20-

0 _
FFT RADIX LU OCEAN WATER

Figure 4-4: The percentage of accesses to a threads native core in SPLASH-2 appli-
cations

evicts one of the executing non-native threads and takes the released resource. Note

that a thread never evicts a native context of the destination core because the resource

is usable only by the native context. To prevent livelock, however, a thread is not

evicted unless it has executed at least one instruction since it arrived at the current

core. That is, an existing thread will be evicted by a new thread only if it has made

some progress in its current visit on the core. This is why we say the arriving thread

may be temporarily blocked by other non-native threads.

Where should the native core be? In the first-touch data placement policy [58]

we assume here, each thread's stack and private data are assigned to be cached in

the core where the thread originates. We reasoned, therefore, that most accesses

made by a thread will be to its originating core (indeed, Figure 4-4 shows that in

the SPLASH-2 benchmarks we used, about 60%-85% of a thread's accesses are to its

native core). We therefore select each thread's originating core as its native core.

In what follows, we first describe a basic, straightforward version of ENC, which

we term ENCO, and then describe a better-performing optimized version.

75

4.3.1 The Basic ENC Algorithm (ENCO)

Whenever a thread needs to move from a non-native core to a destination core,

ENCO first sends the thread to its native core which has a dedicated resource for

the thread. If the destination core is not the native core, the thread will then move

from its native core to the destination core. Therefore, from a network standpoint, a

thread movement either ends at its native core or begins from its native core. Since a

thread arriving at its native core is guaranteed to be unloaded from the network, any

migration is fully unloaded (and therefore momentarily occupies no network resources)

somewhere along its path.

To keep the migrations deadlock-free, however, we must also ensure that move-

ments destined for a native core actually get there without being blocked by any other

movements; otherwise the native-core movements might never arrive and be unloaded

from the network. The most straightforward way of ensuring this is to use two sets

of virtual channels, one for to-native-core traffic and the other for from-native-core

traffic. If the baseline routing algorithm requires only one virtual channel to prevent

network-level deadlock like dimension-order routing, ENCO requires a minimum of

two virtual channels per link to provide protocol-level deadlock avoidance. Note that

ENCO may work with any baseline routing algorithm for a given source-destination

pair, such as Valiant [87] or OlTURN [76], both of which require two virtual channels

to avoid deadlock. In this case, ENCO will require four virtual channels.

4.3.2 The Full ENC Algorithm

Although ENCO is simple and straightforward, it suffers the potential overhead of

introducing an intermediate destination for each thread migration: if thread T wishes

to move from core A to B, it must first go to N, the native core for T. In some cases,

this overhead might be significant: if A and B are close to each other, and N is far

away, the move may take much longer than if it had been a direct move.

To reduce this overhead, we can augment the ENCO algorithm by distinguishing

migrating traffic and evicted traffic: the former consists of threads that wish to mi-

76

grate on their own because, for example, they wish to access resources in a remote

core, while the latter corresponds to the threads that are evicted from a core by

another arriving thread.

Whenever a thread is evicted, ENC, like ENCO, sends the thread to its native

core, which is guaranteed to accept the thread. We will not therefore have a chain of

evictions: even if the evicted thread wishes to go to a different core to make progress

(e.g., return to the core it was evicted from), it must first visit its native core, get

unloaded from the network, and then move again to its desired destination. Unlike

ENCO, however, whenever a thread migrates on its own accord, it may go directly

to its destination without visiting the home core. (Like ENCO, ENC must guarantee

that evicted traffic is never blocked by migrating traffic; as before, this requires two

sets of virtual channels). Note that network packets always travel within the same

set of virtual channels.

Based on these policies, the ENC migration algorithm works as follows:

1. If a native context has arrived and is waiting on the network, move it to a

reserved register file and proceed to Step 3.

2. (a) If a non-native context is waiting on the network and there is an available

register file for non-native contexts, move the context to the register file

and proceed to Step 3.

(b) If a non-native context is waiting on the network and all the register files

for non-native contexts are full, choose one among the threads that have

finished executing an instruction on the core' and the threads that want

to migrate to other cores. Send the chosen thread to its native core on

the virtual channel set for evicted traffic. Then, advance to the next cycle.

(No need for Step 3).

3. Among the threads that want to migrate to other cores, choose one and send it

to the desired destination on the virtual channel set for migrating traffic. Then,

'No instructions should be in flight.

77

advance to the next cycle.

This algorithm effectively breaks the cycle of dependency of migrating traffic and

evicted traffic. Figure 4-3 illustrates how ENC breaks the cyclic dependency shown

in Figure 4-1(b), where C,, denotes the native core of the evicted thread, and N" its

attached router node.

There is a subtlety when a migrating context consists of multiple flits and the

core cannot send out an entire context all at once. For example, the core may find

no incoming contexts at cycle 0 and start sending out an executing context T1 to its

desired destination, but before T1 completely leaves the core, a new migrating context,

T 2, arrives at the core and is blocked by the remaining flits of T1 . Because T1 and T 2

are on the same set of virtual channels for migration traffic, a cycle of dependencies

may cause a deadlock. To avoid this case, the core must inject migration traffic only

if the whole context can be moved out from the execution unit so arriving contexts

will not be blocked by incomplete migrations; this can easily be implemented by

monitoring the available size of the first buffer on the network for migration traffic or

by adding an additional outgoing buffer whose size is one context size.

Although both ENCO and ENC are provably deadlock-free under deadlock-free

routing because they eliminate all additional dependencies due to limited context

space in cores, we confirmed that they are deadlock-free with the same synthetic

benchmarks used in Section 4.2.2. We also simulated an incomplete version of ENC

that does not consider the aforementioned subtlety and sends out a migrating context

if it is possible to push out its first flit. While ENCO and ENC did not deadlock,

deadlocks occurred with the incomplete version because it does not provide a safe

path for evicted traffic in the case when a migrating context is being sequentially

injected to the network; this illustrates that fine-grained migration is very susceptible

to deadlock and migration protocols need to be carefully designed.

78

4.4 Performance Evaluation

4.4.1 Baseline Protocols and Simulated Migration Patterns

We compared the performance overhead of ENCO and ENC to the baseline SWAP

algorithm described in Section 4.2.2. However, as SWAP can deadlock, in some cases

the execution might not finish. Therefore, we also tested SWAPinf, a version of

SWAP with an infinite context queue to store migrating thread contexts that arrive

at the core; since an arriving context can always be stored in the context queue,

SWAPinf never deadlocks. Although impractical to implement, SWAPinf provides a

useful baseline for performance comparison. We compared SWAP and SWAPinf to

ENCO and ENC with two virtual channels. The handshake version of SWAP was

deemed too slow to be a good baseline for performance comparison.

In order to see how ENC would perform with arbitrary migration patterns, we

first used a random sequence of migrations in which each thread may migrate to

any core at a fixed interval of 100 cycles. In addition, we also wished to evaluate

real applications running under a fine-grained thread-migration architecture. Of the

three such architectures described in Section 4.1, we rejected core salvaging [71] and

ThreadMotion [72] because the thread's migration patterns do not depend on the

application itself but rather on external sources (core restrictions due to hard faults

and the chip's thermal environment, respectively), and could conceivably be addressed

with synthetic benchmarks. We therefore selected the EM 2 architecture [46], which

migrates threads to a given core to access memory exclusively cached in that core;

migrations in EM2 depend intimately on the application's access patterns and are

difficult to model using synthetic migration patterns.

We used the same simulation framework as described in Section 4.2.2 to examine

how many cycles are spent on migrating thread contexts.

79

4.4.2 Network-Independent Traces (NITs)

While software simulation provides the most flexibility in the development of many-

core architectures, it is severely constrained by simulation time. For this reason, com-

mon simulation methods do not faithfully simulate every detail of target systems, to

achieve reasonably accurate results in an affordable time. For example, Graphite [61]

provides very efficient simulation of a many-core system based on the x86 architec-

ture. However, it has yet to provide faithful simulation of network buffers. Therefore,

Graphite simulator does not model the performance degradation due to head-of-line

blocking, and moreover, deadlock cannot be observed even if the application being

simulated may actually end up in deadlock.

On the other hand, most on-chip network studies use a detailed simulator that

accurately emulates the effect of network buffers. However, they use simple traffic

generators rather than simulating actual cores in detail. The traffic generator often

replays network traces captured from application profiling, in order to mimic the traf-

fic pattern of real-world applications. It, however, fails to mimic complex dependency

between operations, because most communication in many-core systems depends on

the previous communication. For example, a core may need to first receive data from

a producer, before it processes the data and sends it to a consumer. Obviously, if the

data from the producer arrives later than in profiling due to network congestion, send-

ing processed data to the consumer is also delayed. However, network traces typically

only give the absolute time when packets are sent, so the core may send processed

data to the consumer prior to it even receiving the data from its producer! In other

words, the network-trace approach fails to realistically evaluate application perfor-

mance, because the timing of packet generation, which depends on on-chip network

conditions, is assumed before the actual simulation of the network.

It is very important to reflect the behavior of network conditions, because it is crit-

ical not only for performance, but also to verify that network conditions don't cause

deadlock. Therefore, we use DARSIM [57], a highly configurable, cycle-accurate

on-chip network simulator. Instead of using network traces, however, we generate

80

network-independent traces (NITs) from application profiling. Unlike standard ap-

plication traces, NITs keep inter-thread dependency information and relative timings

instead of absolute packet injection times; the dependencies and relative timings

are replayed by an interpreter module added to the network simulator. By replac-

ing absolute timestamps with dependencies and relative timings, NITs allow cores

to "respond" to messages from other cores once they have arrived, and solve the

consumer-before-producer problem that occurs with network traces.

The NITs we use for EM 2 migration traffic record memory instruction traces of

all threads, which indicate the home core of each memory instruction and the num-

ber of cycles it takes to execute all non-memory instructions between two successive

memory instructions. With these traces and the current location of threads, a sim-

ple interpreter can determine whether each memory instruction is accessing memory

cached on the current core or on a remote core; on an access to memory cached in a

remote core, the interpreter initiates a migration of the corresponding thread. After

the thread arrives at the home core and spends the number of cycles specified in the

traces for non-memory operations, the interpreter does the same check for the next

memory instruction.

The interpreter does not, of course, behave exactly the same as a real core does.

For one, it does not consider lock/barrier synchronization among threads; secondly,

it ignores possible dependencies of the actual memory addresses accessed on network

performance (consider, for example, a multithreaded work-queue implemented via

message passing: the memory access patterns of the program will clearly depend on

the order in which the various tasks arrive in the work queue, which in turn depends

on network performance). Nevertheless, NITs allow the system to be simulated in a

much more realistic way by using memory traces rather than network traces.

4.4.3 Simulation Methodology

For the evaluation under arbitrary migration patterns, we used a synthetic sequence of

migrations for each number of hotspots as in Section 4.2.2. We also chose five applica-

tions from the SPLASH-2 benchmark suite to examine application-specific migration

81

Protocols and Migration Patterns
Migration Protocols SWAP, SWAPinf, ENCO and ENC

a random sequence &
5 SPLASH-2 applications:

FFT, RADIX,
Migration Patterns LU (cnIu

LU (contiguous)
WATER (n-squared)
OCEAN (contiguous)

Core

Core architecture single-issue, two-way
multithreading EM 2

The size of a thread context 4, 8 flits
Number of threads 64

On-chip Network
Network topology 8-by-8 mesh

Routing algorithms Dimension-order
wormhole routing

Number of virtual channels 2
The size of network buffer 4 per link
(relative to the size of context) (20 per node)
The size of context queue oc for SWAPinf, 0 otherwise

Table 4.2: Simulation details for ENC with random migration pattern and SPLASH-2
applications

patterns, namely FFT, RADIX, LU (contiguous), WATER (n-squared), and OCEAN

(contiguous), which we configured to spawn 64 threads in parallel. Then we ran those

applications using Pin [2] and Graphite [61], to generate memory instruction traces.

Using the traces and the interpreter as described in the previous section, we executed

the sequences of memory instructions on DARSIM.

As in Section 4.2.2, we first assumed the context size is 4 flits. However, we also

used 8-flit contexts to examine how ENC's performance overhead would change if

used with an on-chip network with less bandwidth, or a baseline architecture which

has very large thread context size. The remaining simulation setup is similar to

Section 4.2.2. Table 4.2 summarizes the simulation setup used for the performance

evaluation.

82

2 eviction autonomous migration

2.0-

1.5-
.4-J

0
U

-. 5a

1.0
0

0.5
U U U
0 0 0

:6 V6 -0

Ro F R

(JUU

RA-O FF RADIX LU OCEA WATER

Figure 4-5: Total migration cost of ENC and SWAP with 4-flit contexts

4.4.4 Simulation Results

Figure 4-5 shows the total migration cost in each migration pattern normalized to

the cost in SWAPinf when the context size is equivalent to four network flits. Total

migration cost is the sum of the number of cycles that each thread spends between

when it moves out of a core and when it enters another. First of all, the SWAP

algorithm causes deadlock in FFT and RADIX, as well as in RANDOM, when each

thread context migrates in 4 network flits. As we will see in Figure 4-8, LU and

OCEAN also end up with deadlock with the context size of 8 flits. Our results

illustrate that real applications are also prone to deadlock if they are not supported

by a deadlock-free migration protocol, as mentioned in Section 4.2.2.

Deadlock does not occur when SWAPinf is used due to the infinite context queue.

The maximum number of contexts at any moment in a context queue is smaller

83

RANDOM FFT RADIX LU OCEAN WATER
8 61 60 61 61 61

Table 4.3: Maximum size of context queues in SWAPinf relative to the size of a thread
context

in RANDOM than in the application benchmarks because the random migration

evenly distributes threads across the cores so there is no heavily congested core (cf.

Table 4.3). However, the maximum number of contexts is over 60 for all application

benchmarks, which is more than 95% of all threads on the system. This discourages

the use of context buffers to avoid deadlock.2

Despite the potential overhead of ENC described earlier in this section, both ENC

and ENCO have comparable performance, and are overall 11.7% and 15.5% worse than

SWAPinf, respectively. Although ENCO has relatively large overhead of 30% in total

migration cost under the random migration pattern, ENC reduces the overhead to

only 0.8%. Under application-specific migration patterns, the performance largely de-

pends on the characteristics of the patterns; while ENC and ENCO have significantly

greater migration costs than SWAPinf under RADIX, they perform much more com-

petitively in most applications, sometimes better as in applications such as WATER

and OCEAN. This is because each thread in these applications mostly works on its

private data; provided a thread's private data is assigned to its native core, the thread

will mostly migrate to the native core (cf. Figure 4-4). Therefore, the native core is

not only a safe place to move a context, but also the place where the context most

likely makes progress. This is why ENCO usually has less cost for autonomous migra-

tion, but higher eviction costs. Whenever a thread migrates, it needs to be "evicted"

to its native core. After eviction, however, the thread need not migrate again if its

native core was its migration destination.

The effect of the portion of native cores in total migration destinations can be

seen in Figure 4-6, showing total migration distances in hop counts normalized to the

SWAPinf case. When the destinations of most migrations are native cores, such as

2 Note that, however, the maximum size of context buffers from the simulation results is not a
necessary condition, but a sufficient condition to prevent deadlock.

84

1.4-

1.2-

' 1.0-0

0

0

N

E 0.6 -
0

0.4-

0.2 - _ 0 0

0.0. URANDU FF- A LU OCEAU T4-U
< U <. U < S UZ < U Z < U Z <.SU Z

3: <A U < WA <A

RANDOM FIFT RADIX LU OCEAN WATER

Figure 4-6: Total migration distance of ENC and SWAP for various SPLASH-2 bench-
marks.

in FFT, ENC has not much different total migration distance from SWAPinf. When

the ratio is lower, such as in LU, the migration distance for ENC is longer because

it is more likely for a thread to migrate to non-native cores after it is evicted to its

native core. This also explains why ENC has the most overhead in total migration

distance under random migrations because the least number of migrations are going

to native cores.

Even when the migrating thread's destination is often not its native core, ENC

has an overall migration cost similar to SWAPinf as shown in LU, because it is less

affected by network congestion than SWAPinf. This is because ENC effectively dis-

tributes network traffic over the entire network, by sending out threads to their native

cores. Figure 4-7 shows how many cycles are spent on migration due to congestion,

normalized to the SWAPinf case. ENC and ENCO have less congestion costs under

85

2.5 F

2.0 -

-4-1

0

1.5
.L4

E
0

C1.0-

0.5 - -le- -U U
0 0 0

a) a))

0.01 Q - 0U a - U a 4- U L4-OUL C 4-o0U 0-OU

3:.Z a- Z a-zW a Z W C ~OZ U C OZ W 3:a.Z W
Ln< U u<LU Ln<W in<L W L<W

(/) if) Ln (I)

RANDOM FFT RADIX LU OCEAN WATER

Figure 4-7: Part of migration cost of ENC and SWAP due to congestion

RANDOM, LU, OCEAN, and WATER. This is analogous to the motivation behind

the Valiant algorithm [87]. One very distinguishable exception is RADIX; while the

migration distances of ENC/ENCO are similar to SWAPinf because the native-core

ratio is relatively high in RADIX, they are penalized to a greater degree by congestion

than SWAPinf. This is because other applications either do not cause migrations as

frequently as RADIX, or their migration traffic is well distributed because threads

usually migrate to nearby destinations only.

If the baseline architecture has a large thread context or an on-chip network

has limited bandwidth to support thread migration, each context migrates in more

network flits which may affect the network behavior. Figure 4-8 shows the total

migration costs when a thread context is the size of eight flits. As the number of

flits for a single migration increases, the system sees more congestion. As a result,

86

I eviction M autonomous migration

1.6-

1.4-

1.2-
4-J
U,
0

1.0

0.8-
L_
0

0.6

0.4-

0 0 0 0 0
0.2 - -0 0

0.0 a_ (U) (U a.4(U a -C p UC

) U) U')) U')
0.0

RANDOM FFT RADIX LU OCEAN WATER

Figure 4-8: Total migration cost of ENC and SWAP with 8-flit contexts

the migration costs increase by 39.2% across the migration patterns and migration

protocols. While the relative performance of ENC/ENCO to SWAPinf does not change

much for most migration patterns, the increase in the total migration cost under

RADIX is greater with SWAPinf than with ENC/ENCO as the network becomes

saturated with SWAPinf too. Consequently, the overall overhead of ENC and ENCO

with the context size of 8 flits is 6% and 11.1%, respectively. The trends shown in

Figure 4-6 and Figure 4-7 also hold with the increased size of thread context.

4.5 Conclusions

We have developed ENC, deadlock-free migration protocol for general fine-grain

thread migration. Using ENC, threads can make autonomous decisions on when

87

and where to migrate; a thread may just start traveling when it needs to migrate,

without being scheduled by any global or local arbiter. Therefore, the migration cost

is only due to the network latencies in moving thread contexts to destination cores,

possibly via native cores.

Compared to a baseline SWAPinf protocol which assumes infinite queues, ENC

has an average of 11.7% overhead for overall migration costs under various types

of migration patterns. The performance overhead depends on migration patterns,

and under most of the synthetic and application-specific migration patterns used

in our evaluation ENC shows negligible overhead or performs even better; although

ENC may potentially increase the total distance that threads migrate by evicting

threads to their native cores, it did not result in higher migration cost in many cases

because evicted threads often need to go to the native core anyway, and intermediate

destinations can reduce network congestion.

While the performance overhead of ENC remains low in most migration patterns,

a baseline SWAP protocol actually ends up with deadlock, not only for synthetic

migration sequences but also for real applications. Considering this, ENC is a very

compelling mechanism for any architecture that exploits very fine-grain thread mi-

grations and which cannot afford conventional, expensive migration protocols.

Finally, ENC is a flexible protocol that can work with various on-chip networks

with different routing algorithms and virtual channel allocation schemes. One can

imagine developing various ENC-based on-chip networks optimized for performance

under a specific thread migration architecture.

88

Chapter 5

Physical Implementation of

On-chip Network for EM 2

5.1 Introduction

Like many other research projects, PROM, BAN, and ENC all focus on specific

target components; PROM on routing, BAN on the network links, and ENC on

the migration protocol. In their evaluation, other system layers that are not closely

related to the main ideas are represented in a simplified or generalized form. In this

way, researchers can concentrate their efforts on the key research problem and the

solution can be evaluated not only in one specific design instance but also with many

different environments.

This approach, however, makes it hard to take into account every detail in the

whole system. For example, architects often face credibility problems if they do not

fully discuss related circuit-level issues.

Therefore, building the entire system is a very important experience in computer

architecture research because it reveals every issue that might not be obvious at the

architectural level. In this chapter, we share our hands-on experience in the physical

implementation of the on-chip network for Execution Migration Machine (EM 2), an

ENC-based 110-core processor in 45nm ASIC technology.

89

Figure 5-1: EM2 Tile Architecture

5.2 EM 2 Processor

EM 2 is a large-scale CMP based on fine-grained hardware-level thread migration [54],

which implements ENC to facilitate instruction-level thread migration. We have

taped out our design in a 110-core CMP, where the chip occupies 100mm 2 in 45nm

technology.

5.2.1 Shared Memory Model

The most distinctive feature of EM2 is its simple and scalable shared memory model

based on remote cache access and thread migration [56]. As in traditional NUCA

architectures, each address in the system is assigned to a unique core where it may

be cached; by allowing data to be cached only at a single location, the architecture

scales trivially and properties like sequential consistency are easy to guarantee. To

access data cached at a remote core, EM 2 can either send a traditional remote access

(RA) request [27], or migrate the execution context to the core that is "home" for

that data. Unlike RA-only machines, it can take advantage of available data locality

because migrating the execution context allows the thread to make a sequence of local

90

accesses while it stays at the destination core.

5.2.2 On-chip Network Architecture

EM 2 has three types of on-chip traffic: migration, remote access, and off-chip memory

access. Although it is possible for this traffic to share on-chip interconnect channels,

this would require suitable arbiters (and possibly deadlock recovery logic), and would

significantly expand the state space to be verified. To avoid this, we chose to trade

off area for simplicity, and route traffic via six separate channels, which is sufficient

to ensure deadlock-free operation [11].

Further, the six channels are implemented as six physically separate on-chip net-

works, each with its own router in every tile. While using a single network with six

virtual channels would have utilized available link bandwidth more efficiently and

made inter-tile routing simpler, it would have exponentially increased crossbar size

and significantly complicated the allocation logic (the number of inputs grows pro-

portionally to the number of virtual channels and the number of outputs to the total

bisection bandwidth between adjacent routers). More significantly, using six identical

networks allowed us to verify in isolation the operation of a single network, and then

safely replicate it six times to form the interconnect, significantly reducing the total

verification effort.

While six physical networks would provide enough bandwidth to the chip, it is

still very important to minimize the latency because the network latency affects the

performance of both migration and RA. To keep the hardware complexity low and

achieve single cycle-per-hop delay, EM2 routers use dimension order routing.

5.2.3 Tile Architecture

Figure 5-1 shows an EM 2 tile that consists of an 8KB instruction cache, a 32KB data

cache, a processor core, a migration predictor, and six on-chip network routers [54].

The processor core contains two SMT contexts, one of them can be used only by

its native thread. The core also has two hardware stacks, "main" and "auxiliary";

91

instructions follow a custom stack-machine ISA. The 32KB data cache serves not only

memory instructions from the native and guest contexts at the same core, but also

RA requests from distant cores. Finally, a hardware migration predictor [80] keeps

track of memory access patterns of each thread and decides whether to make RA

requests or migrates to the home core.

5.3 Design Goals, Constraints, and Methodology

5.3.1 Goals and Constraints

Scalability was the foremost concern throughout this project. Distributed directory

cache coherence protocols (DCC) are not easily scalable to the number of cores [1,

5, 20, 44, 95]. EM2 provides a simple but flexible solution that scales to the de-

mands of the diverse set of programs running on manycore processors. To prove EM 2

scales beyond DCC, our major design objective was to build a massive-scale multicore

processor with more than 100 cores.

The goal of 100 cores or more imposed a fundamental constraint for the project:

tight area budget. EM2 is a 10mmx 10mm chip in 45nm ASIC technology, fairly large

for a research chip. Each tile, however, has only a small footprint for its process core,

caches, and on-chip network router. Therefore, our design process focused on area

efficiency, often at the expense of clock speed.

Maintaining a simple design was another important goal, because we planned to

finish the entire 110-core chip design and implementation process (RTL, verification,

physical design, tapeout) with only 18 man-months of effort. While the simplicity

of directoryless memory substrate was the key to meet the tight schedule of the

whole project, we also needed to make salient design choices to simplify design and

verification.

Vying for simplicity brought an important implication for the I/O design for the

chip. There are two common methods used to connect a chip to its packaging: wire

bonding and flip chip. In general, wire bonding is widely used for the ICs with up to

92

600 I/O pins, while flip chip can provide better scalability and electrical advantages

for larger designs [24]. We opted for the wire bonding method, because it simplifies

the layout process of EM 2 significantly. In wire bonding, wires are attached only to

the edges of the chip, so the tile layout need not include solder bumps that complicate

the place and route (P&R) process (for the hierarchical design process of EM 2, see

Section 5.3.2).

Using the wire bonding technique for EM 2 had a severe impact on its power

budget. Wire bonding limits the total number of pins for large chips because the

number of pins scales with the length of boundaries, not the area. The EM 2 chip has

a total of 476 pins, where 168 pins are signal pins and 308 pins are power pins (for

154 power-ground pairs). The 308 power pins can supply a maximum of 13.286W'

of power for the entire chip, which is quite low for this size of chip 2 . As will be

shown in the following sections, the tight power budget affected the entire design and

implementation process significantly.

5.3.2 Methodology

Bluespec [6] is a high-level hardware design language based on synthesizable guarded

atomic actions [36]. In Bluespec, each distinct operation is described separately (as

a "rule"), as opposed to VHDL or Verilog which describes each distinct hardware

elements. In this way, implementation errors are localized to specific rules, which

reduces the scope of each bug-fix and simplifies the verification process significantly.

The Bluespec compiler automatically generates the necessary logic that controls how

those rules are applied, and converts the design to synthesizable Verilog which can

be used for the standard ASIC flow.

We used Synopsys Design Compiler to synthesize the RTL code into gate-level

netlists. Despite the tight power budget, we were not able to rely on custom circuit

design techniques to scale down the power, due to the limited resources. Instead, we

'from the maximum DC current constraints of the I/O library for reliable operation
2 The actual power budget further decreases to 11.37W due to the power grid of the chip. See

Section 5.4.2.

93

compromised performance for power efficiency in two ways. To save leakage power,

we switched to the high-voltage threshold (HVT) standard cell library, which reduced

the leakage power dissipation by half. To save dynamic power, on the other hand,

we used Synopsys Power Compiler for automatic clock gating insertion. Although

clock gating effectively lengthened the critical path, it resulted in 5.9x decrease in

3the average power

Throughout the design process, hierarchical design and floorplanning was essential

to exploit the benefit of homogeneous core design and verification. Every tile on

the chip has the same RTL and the same layout, except only for the two memory

controller (MC) cores which contain additional logic to communicate with external

memory. The perfectly homogeneous tile design was duplicated to built an 11x10

array. To integrate as many cores as possible, we took a bottom-up approach; we first

build a layout of single tile as compact as possible, and then instantiated the layout

for the chip-level design.

3from the power reports by Synopsys Design Compiler

94

Figure 5-2: EM 2 tile floorplan

5.4 Physical Design of the 110-core EM 2 Processor

This section illustrates the physical design process of EM 2, highlighting the key en-

gineering issues in manycore processor design. We used Cadence Encounter for the

P&R of the complete design.

5.4.1 Tile-level Design

Figure 5-2(a) is the floorplan for the EM 2 tile, and Figure 5-2(a) magnifies the view

near the upper left corner of the tile. They reveal that only the eight SRAM blocks are

manually placed, and other blocks are automatically placed by Encounter. Because

the tile is relatively small, all components are flattened to provide the most flexibility

for the tool to optimize placement to the finest level.

Additionally, Figure 5-2(a) shows the tile pins are manually aligned on the tile

boundaries. Because we are following a bottom-up approach, Encounter does not

have a chip-level view at this stage so it does not know where these tile pins will

connect to. Therefore, these pins are manually placed along the edges in such a way

95

(a) (b)

(a) Processor core (b) Migration predictor

(c) On-chip network router

Figure 5-3: Placement of the tile components by Encounter

96

Figure 5-4: EM2 tile layout

that once tiles are aligned into an array, the pins to be connected will be the closest

to each other.

The floorplan view also reveals the power planning of the tile. There are total

eight power rings, and horizontal and vertical power stripes are connected to the

rings. The power nets are routed down to the lower metal layers and connected to

standard cells or SRAM blocks only from the vertical stripes. In Figure 5-2(a), note

that every SRAM block has vertical power stripes running over itself, so the power

nets can be easily routed down to the SRAM blocks. Also, because the SRAM blocks

intersect the horizontal power rails that supply power to the standard cells, a set of

vertical power stripes are manually placed in every narrow space between two SRAM

97

blocks.

Figure 5-3 illustrates the actual placement of each tile component after the P&R

process. It is most noticeable in Figure 5-3(c) that the tool was able to optimize

the placement efficiently; it placed the ingress buffer of the router close to the tile

boundaries, to reduce the wire length and leave a large space in the middle for the

processor core logic. Finally, Figure 5-4 shows the final layout of the EM2 tile design

with the area of 0.784mm2 (855pmx9l7pm).

98

Figure 5-5: EM 2 chip-level floorplan

5.4.2 Chip-level Design

5.4.2.1 Chip-level Floorplanning

Figure 5-5 is the floorplan for the chip-level design. First, the tile layout from Sec-

tion 5.4.1 is duplicated into an 11 x10 array. The small rectangle below the tile array

is the clock module, which selects one among the three available clock sources: two

external clock sources (single-ended and differential) and one from the PLL output.

This module is custom designed except for the PLL block (Figure 5-6).

Figure 5-6: EM 2 clock module

99

(b) Magnified view on the power grid

Figure 5-7: EM 2 global power planning

As mentioned in Section 5.3.1, the EM2 chip uses the wire bonding technique; the

I/O ring outside of the tile array has 476 bonding pads to connect to a package. While

wire bonding simplifies the design process, the tiles in the middle are placed too far

away from the power pads, exacerbating IR drop issues. Therefore, we took a very

conservative approach to global power planning. In order to use as many as wires as

possible, the top two metal layers in the design are dedicated for the global power

rings and stripes. Figure 5-7 shows the upper left part of the chip, revealing part of

the 122 power rings and the dense power grid. All power stripes, both horizontal and

vertical, have a width of 2pm and a pitch of 5 pm, covering 64% of the area. The

power rings are even denser at 4pm width and 5.2pm pitch.

5.4.2.2 Building a Tile Array

Although EM 2 tiles are perfectly homogeneous, it is not trivial to integrate them to a

tiled array. The foremost concern is clock skew, which is illustrated in Figure 5-8(a).

Suppose that the output of a flip-flop FFA in tile A is driving the input of FFB

in tile B. Even though FFA and FFB are next to each other, tile A and tile B are

very distant nodes on the global clock tree, so there could be a significant clock skew

100

(a) A corner of global power rings

(a) Tile-level (b) Chip-level

Figure 5-8: Clock tree synthesized by Encounter

between FFA and FFB. If clock edges arrive at FFB sooner than FFA, the output of

FFA begins to change later and FFB samples the input earlier, so it becomes more

difficult to avoid setup-time violations. If clock edges arrive at FFA earlier, on the

other hand, the output of FFA can change to a new value even before FFB samples

the current value, so it is possible to violate hold-time constraints. The latter case

is a more serious problem because while we can eliminate setup-time violations by

lowering operating frequency, there is no way to fix hold-time violations after tape-

out. In order to fix this problem, a negative-edge flip-flop is inserted between FFA

and FFB; even if FFA changes its output before FFB samples the current value,

the output of the negative-edge flip-flop does not change until half cycle later, so

hold-time violations can be avoided.

5.4.2.3 Final EM2 Layout

Figure 5-9 shows the taped out layout of the entire EM 2 chip. The chip area is

lOmmx 10mm, and the static timing analysis with extracted RC parasitics estimates

that the chip works at 105MHz, dissipating 50mW at each tile. Note that a number

of decoupling capacitors are manually inserted around the clock module.

101

Figure 5-9: Tapeout-ready EM2 processor layout

5.5 Design Iteration Using BAN on EM2

From the final layout of the chip, we noticed a severe wire routing complexity for

the router pins (Figure 5-10). Adding more router pins results in more design rule

violations that are not easy to fix. Therefore, it is not straightforward to further

increase the on-chip network bandwidth. Is the current total bandwidth sufficient

to meet the needs of various applications? If not, how can we reduce the network

congestion and improve the network performance degradation without adding more

router pins?

102

(b) Inside the red box, magnified

Figure 5-10: Wire connected to input and output network ports

To evaluate how much network bandwidth applications need, we ran five different

applications in migration-only mode4 on a 64-core version of EM2 using the Hornet

simulator [73]. To assess migration patterns of applications, we defined the peak and

average concentrations as follows:

Definition 1 Application running time is divided into a set of 1000 time windows,

W = {W1, W2 ,. . . , W 1000}. There is also a set of cores C = {C1, C2,..., C64}. The

destination popularity function P(c, w) is defined as the number of threads that visit

core C, at least once in time window W.

4 Threads use only migration, not RA, to access remote cache.

Barnes LU Radix Water-n2
-contiguous -contiguous

PeakPe. 5 18 15 64 5
concentration
Average 2.2 1.6 6.8 4.1 2.1
concentration 2 1 6 4

Table 5.1: Peak and average migration concentration in different applications

103

(a) Tile-level view

(a) Concentrate-in (b) Concentrate-out

Figure 5-11: Migration traffic concentration

Average Migration Latency

*UN * BAN

LU

Figure 5-12: Average migration latency on BAN+EM 2

Concentration F(w) = Max{P(c, w)}
c=1...

Definition 3 Peak concentration = Max {F(w)}
w=1 ...1000

Definition 4 Average concentration = Avg {F(w)}
w=1... 1000

Table 5.1 reveals that applications such as ocean-contiguous or radix have a very

high degree of concentration. Note that an incoming thread always evicts a currently

running thread to its native core. This evicted thread is likely to come back and

compete for the same core again to access data it needs. Therefore, high-level con-

centration may cause severe ping-pong effects, and burden the network with a lot

104

1.2

1

0.8

0.6

0.4

0.2

0

0

.to

:E

L.
0z

OW F IId

Definition 2

of migration traffic. If we cannot simply increase total link bandwidth, how can we

optimize the network to deal with the high bandwidth demand of highly concentrated

applications?

In Figure 5-11 a lot of threads make frequent visits to the core in the middle. Be-

cause EM2 uses DOR-YX routing, the migration traffic to the middle core is jammed

more on the horizontal links (Figure 5-11(a)). When threads are moving out of the

core, on the other hand, the vertical links get more congested as shown in Figure 5-

11(b). As explained in Section 3.4, this is a perfect opportunity for BAN to take

advantage of asymmetric network patterns. We applied BAN to the migration net-

work of EM2 and performed a simulation study. Figure 5-12 illustrates that without

increasing total link bandwidth, BAN can improve the network performance for ap-

plications with high-level concentration by up to 16%.

105

106

Chapter 6

Conclusions

6.1 Thesis Contributions

This thesis makes the following contributions:

" A new path-diverse oblivious routing algorithm with both flexibility and sim-

plicity,

" A novel adaptive network that uses oblivious routing and bidirectional links,

" The first deadlock free, fine-grained autonomous thread migration protocol,

* An extension of existing on-chip network simulation to flexible manycore system

simulation, and

" An example on-chip network implementation from RTL to silicon.

6.2 Summary and Suggestions

In this thesis, we have taken a wide range of approaches to optimize on-chip network

designs for manycore architectures. First, we have introduced PROM and BAN,

optimization focused on throughput improvement. These techniques both improve

the performance and maintain design simplicity as low complexity implementation

is paramount in on-chip network design. Second, we have presented ENC, the first,

107

deadlock-free, fine-grained thread migration protocol. This research not only solves

the specific problem of efficient cycle-level thread migration, but also encourages a

design paradigm that relaxes the conventional abstraction and uses the resources of

the network to support higher-level functionality. Finally, we have undertaken the

arduous task of implementing a 110-core EM2 processor on silicon. This effort has

helped to address realistic implementation constraints and provided perspective for

future research.

An important lesson that can be learned from this thesis is that, an on-chip net-

work is not just about making physical connections between system components. The

benefits and constraints that each component brings to the system are consolidated

into a complex global design space by an on-chip network. Therefore, the on-chip net-

work must take a role as an arbiter and tightly integrate the components to meet the

design goals. For example, ENC is designed to take the burden of deadlock prevention

off processor cores; shipping the context of a running thread out of the pipeline is an

essential operation to solve the deadlock issue because it forces progress. In order to

not lose the thread context, however, the evicted thread must be stored in another

place immediately. And because the registers in processor cores are tightly utilized,

it is better to store the context in a relatively underutilized resource - the network

buffer. Therefore, ENC puts only the minimum amount of additional buffer in pro-

cessor cores (for just one thread context at its native core), and lets the thread context

utilize the ample network buffer until it arrives at its native core. This is a example

of resource arbitration between system components, which is efficiently handled by

the on-chip network. Future on-chip network design for manycore architecture must

take this role into account and take charge in orchestrating all system components.

108

Bibliography

[1] Arvind, Nirav Dave, and Michael Katelman. Getting formal verification into
design flow. In FM2008, 2008.

[2] Moshe (Maury) Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi
Devor, Kim Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons, Harish Patil,
and Ady Tal. Analyzing parallel programs with Pin. Computer, 43:34-41, 2010.

[3] H.G. Badr and S. Podar. An Optimal Shortest-Path Routing Policy for Network
Computers with Regular Mesh-Connected Topologies. IEEE Transactions on
Computers, 38(10):1362-1371, 1989.

[4] Arnab Banerjee and Simon Moore. Flow-Aware Allocation for On-Chip Net-
works. In Proceedings of the 3rd ACM/IEEE International Symposium on
Networks-on-Chip, pages 183-192, May 2009.

[5] Jesse G. Beu, Michael C. Rosier, and Thomas M. Conte. Manager-client pairing:
a framework for implementing coherence hierarchies. In MICRO, 2011.

[6] Bluespec, Inc. Bluespec System Verilog" Reference Guide, 2011.

[7] Evgeny Bolotin, Israel Cidon, Ran Ginosar, and Avinoam Kolodny. QNoC:
QoS architecture and design process for network on chip. Journal of Systems
Architecture, 50(2):105-128, 2004.

[8] Matthew J. Bridges, Neil Vachharajani, Yun Zhang, Thomas B. Jablin, and
David I. August. Revisiting the sequential programming model for the multicore
era. IEEE Micro, 28(1):12-20, 2008.

[9] Ge-Ming Chiu. The Odd-Even Turn Model for Adaptive Routing. IEEE Trans.
Parallel Distrib. Syst., 11(7):729-738, 2000.

[10] Myong Hyon Cho, Mieszko Lis, Keun Sup Shim, Michel Kinsy, and Srinivas
Devadas. Path-based, randomized, oblivious, minimal routing. In In Proceedings
of the 2nd International Workshop on Network on Chip Architectures, pages
23-28, December 2009.

[11] Myong Hyon Cho, Keun Sup Shim, Mieszko Lis, Omer Khan, and Srinivas De-
vadas. Deadlock-free fine-grained thread migration. In NOCS, 2011.

109

[12] Intel Corporation. Intel delivers new architecture for discovery with intel xeon
phi coprocessors. Press release, November 2012.

[13] NVIDIA Corporation. NVIDIA's next generation CUDA compute architecture:
Kepler GK110. Whitepaper, April 2012.

[14] Tilera Corporation. Tilera's tile-gx72 processor sets world record for suricata
ips/ids: Industry's highest performance. Press release, July 2013.

[15] A Correia, M Perez, JJ Sienz, and PA Serena. Nanotechnology applications: a
driving force for R&D investment. Physica Status Solidi (a), 204(6):1611-1622,
2007.

[16] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer
networks using virtual channels. IEEE Transactions on Parallel and Distributed
Systems, 04(4):466-475, 1993.

[17] William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in Mul-
tiprocessor Interconnection Networks. IEEE Trans. Computers, 36(5):547-553,
1987.

[18] William J. Dally and Brian Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003.

[19] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc.
Design of ion-implanted MOSFET's with very small physical dimensions. Solid-
State Circuits, IEEE Journal of, 9(5):256-268, October 1974.

[20] A. DeOrio, A. Bauserman, and V. Bertacco. Post-silicon verification for cache
coherence. In ICCD, 2008.

[21] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza,
S. Meyers, E. Fang, and R. Kumar. An integrated quad-core Opteron proces-
sor. In Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical
Papers. IEEE International, pages 102-103, 2007.

[22] Noel Eisley, Li-Shiuan Peh, and Li Shang. In-network cache coherence. In Mi-
croarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM International Sym-
posium on, pages 321-332. IEEE, 2006.

[23] Noel Eisley, Li-Shiuan Peh, and Li Shang. Leveraging on-chip networks for data
cache migration in chip multiprocessors. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, PACT '08, pages
197-207, 2008.

[24] Peter Elenius and Lee Levine. Comparing flip-chip and wire-bond interconnec-
tion technologies. Chip Scale Review, pages 81-87, July/August 2000.

110

[25] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings
of the 38th annual international symposium on Computer architecture, ISCA '11,
pages 365-376, 2011.

[26] Wu-Chang Feng and Kang G. Shin. Impact of Selection Functions on Routing
Algorithm Performance in Multicomputer Networks. In In Proc. of the Int. Conf.
on Supercomputing, pages 132-139, 1997.

[27] Christian Fensch and Marcelo Cintra. An OS-based alternative to full hardware
coherence on tiled CMPs. In High Performance Computer Architecture, 2008.
HPCA 2008. IEEE 14th International Symposium on, pages 355-366. IEEE,
2008.

[28] International Technology Roadmap for Semiconductors. http://www.itrs. net/
Links/2012ITRS/2012Tables/ORTC_2012Tables.xlsm, 2012.

[29] Samuel H. Fuller and Lynette I. Millett. Computing performance: Game over or next

level? Computer, 44(1):31-38, January 2011.

[30] Andre K Geim and Konstantin S Novoselov. The rise of graphene. Nature Materials,
6(3):183-191, 2007.

[31] Christopher J. Glass and Lionel M. Ni. The turn model for adaptive routing. J. ACM,
41(5):874-902, 1994.

[32] Kees Goossens, John Dielissen, and Andrei Radulescu. Ethereal network on chip:

concepts, architectures, and implementations. Design & Test of Computers, IEEE,
22(5):414-421, 2005.

[33] P. Gratz, B. Grot, and S. W. Keckler. Regional Congestion Awareness for Load

Balance in Networks-on-Chip. In In Proc. of the 14th Int. Symp. on High-Performance
Computer Architecture (HPCA), pages 203-214, February 2008.

[34] Boris Grot, Stephen W Keckler, and Onur Mutlu. Preemptive virtual clock: a flexible,
efficient, and cost-effective qos scheme for networks-on-chip. In Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 268-
279. ACM, 2009.

[35] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
5th edition, 2011.

[36] James C. Hoe and Arvind. Scheduling and Synthesis of Operation-Centric Hardware

Descriptions. In ICCAD, 2000.

[37] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-GHz Mesh Interconnect

for a TeraFLOPS Processor. IEEE Micro, 27(5):51-61, Sept/Oct 2007.

111

[38] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gregory
Ruhl, David Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom, et al. A 48-core
IA-32 message-passing processor with DVFS in 45nm CMOS. In Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, pages 108-
109, 2010.

[39] Jingcao Hu and Radu Marculescu. Application Specific Buffer Space Allocation for
NetworksonChip Router Design. In Proc. IEEE/ACM Intl. Conf. on Computer Aided
Design, San Jose, CA, November 2004.

[40] Jingcao Hu and Radu Marculescu. DyAD: Smart Routing for Networks on Chip. In
Design Automation Conference, June 2004.

[41] Wei Hu, Xingsheng Tang, Bin Xie, Tianzhou Chen, and Dazhou Wang. An efficient
power-aware optimization for task scheduling on noc-based many-core system. In
Proceedings of CIT 2010, pages 172-179, 2010.

[42] James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High Performance
Programming. Morgan Kaufmann Publishers Inc., 1st edition, 2013.

[43] Natalie Enright Jerger and Li-Shiuan Peh. On-Chip Networks. Morgan and Claypool
Publishers, 1st edition, 2009.

[44] Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark Tuttle, and Yuan
Yu. Checking Cache-Coherence Protocols with TLA+. Formal Methods in System
Design, 22:125-131, 2003.

[45] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and N. Chrysos. Variable packet
size buffered crossbar (CICQ) switches. In 2004 IEEE International Conference on
Communications, volume 2, pages 1090-1096, June 2004.

[46] Omer Khan, Mieszko Lis, and Srinivas Devadas. EM2 : A Scalable Shared Memory
Multi-Core Achitecture. In CSAIL Technical Report MIT- CSAIL- TR-2010-030, 2010.

[47] Hasina Khatoon, Shahid Hafeez Mirza, and Talat Altaf. Exploiting the role of hard-
ware prefetchers in multicore processors. International Journal of Advanced Computer
Science and Applications(IJACSA), 4(6), 2013.

[48] H. J. Kim, D. Park, T. Theocharides, C. Das, and V. Narayanan. A Low Latency
Router Supporting Adaptivity for On-Chip Interconnects. In Proceedings of Design
Automation Conference, pages 559-564, June 2005.

[49] Michel Kinsy, Myong Hyon Cho, Tina Wen, Edward Suh, Marten van Dijk, and Srini-
vas Devadas. Application-Aware Deadlock-Free Oblivious Routing. In Proc. 36th Int'l
Symposium on Computer Architecture, pages 208-219, June 2009.

[50] Jae W. Lee, Man Cheuk Ng, and Krste Asanovic. Globally-synchronized frames for
guaranteed quality-of-service in on-chip networks. In Computer Architecture, 2008.
ISCA '08. 35th International Symposium on, pages 89-100, 2008.

112

[51] Kangmin Lee, Se-Joong Lee, and Hoi-Jun Yoo. SILENT: serialized low energy trans-

mission coding for on-chip interconnection networks. In Proceedings of the 2004

IEEE/ACM International conference on Computer-aided design, pages 448-451. IEEE
Computer Society, 2004.

[52] Y-M Lin, Christos Dimitrakopoulos, Keith A Jenkins, Damon B Farmer, H-Y Chiu,
Alfred Grill, and Ph Avouris. 100-GHz transistors from wafer-scale epitaxial graphene.

Science, 327(5966):662-662, 2010.

[53] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas. Guaranteed in-order packet delivery

using Exclusive Dynamic Virtual Channel Allocation. Technical Report CSAIL-TR-

2009-036 (http://hdl.handle.net/1721.1/46353), Massachusetts Institute of Technol-

ogy, August 2009.

[54] Mieszko Lis, Keun Sup Shim, Brandon Cho, Ilia Lebedev, and Srinivas Devadas.

Hardware-level thread migration in a 110-core shared-memory processor. In HotChips,
2013.

[55] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Omer Khan, and Srinivas Devadas.

Scalable directoryless shared memory coherence using execution migration. In CSAIL

Technical Report MIT- CSAIL- TR-2010-053, 2010.

[56] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Omer Khan, and Srinivas Devadas.

Directoryless Shared Memory Coherence using Execution Migration. In PDCS, 2011.

[57] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Pengju Ren, Omer Khan, and Srinivas

Devadas. DARSIM: a parallel cycle-level NoC simulator. In Proceedings of MoBS-6,
2010.

[58] M. Marchetti, L. Kontothanassis, R. Bianchini, and M. Scott. Using simple page

placement policies to reduce the cost of cache fills in coherent shared-memory systems.

In IPPS, 1995.

[59] Steve Melvin, Mario Nemirovsky, Enric Musoll, and Jeff Huynh. A massively multi-

threaded packet processor. In Proceedings of NP2: Workshop on Network Processors,
2003.

[60] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch. Guaranteed band-

width using looped containers in temporally disjoint networks within the nostrum net-

work on chip. In Design, Automation and Test in Europe Conference and Exhibition,
2004. Proceedings, volume 2, pages 890-895. IEEE, 2004.

[61] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan Beck-

mann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. Graphite: A dis-

tributed parallel simulator for multicores. In Proceedings of HPCA 2010, pages 1-12,
2010.

[62] Matthew Misler and Natalie Enright Jerger. Moths: Mobile threads for on-chip net-

works. In Proceedings of PACT 2010, pages 541-542, 2010.

113

[63] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114-117, April 1965.

[64] Robert D. Mullins, Andrew F. West, and Simon W. Moore. Low-latency virtual-
channel routers for on-chip networks. In Proc. of the 31st Annual Intl. Symp. on
Computer Architecture (ISCA), pages 188-197, 2004.

[65] Ted Nesson and S. Lennart Johnsson. ROMM Routing: A Class of Efficient Mini-
mal Routing Algorithms. In in Proc. Parallel Computer Routing and Communication
Workshop, pages 185-199, 1994.

[66] Ted Nesson and S. Lennart Johnsson. ROMM routing on mesh and torus networks. In
Proc. 7th Annual ACM Symposium on Parallel Algorithms and Architectures SPAA'95,
pages 275-287, 1995.

[67] George Nychis, Chris Fallin, Thomas Moscibroda, and Onur Mutlu. Next generation
on-chip networks: what kind of congestion control do we need? In Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, pages
12:1-12:6, 2010.

[68] Cheolmin Park, Roy Badeau, Larry Biro, Jonathan Chang, Tejpal Singh, Jim Vash,
Bo Wang, and Tom Wang. A 1.2 TB/s on-chip ring interconnect for 45nm 8-core
enterprise Xeon@ processor. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2010 IEEE International, pages 180-181, 2010.

[69] Sunghyun Park, Masood Qazi, Li-Shiuan Peh, and Anantha P Chandrakasan. 40.4
fJ/bit/mm low-swing on-chip signaling with self-resetting logic repeaters embedded
within a mesh NoC in 45nm SOI CMOS. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 1637-1642. EDA Consortium, 2013.

[70] Li-Shiuan Peh and William J. Dally. A Delay Model and Speculative Architecture for
Pipelined Routers. In Proc. International Symposium on High-Performance Computer
Architecture (HPCA), pages 255-266, January 2001.

[71] Michael D. Powell, Arijit Biswas, Shantanu Gupta, and Shubhendu S. Mukherjee.
Architectural core salvaging in a multi-core processor for hard-error tolerance. In
Proceedings of ISCA 2009, pages 93-104, 2009.

[72] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. Thread motion: Fine-grained
power management for multi-core systems. In Proceedings of ISCA 2009, pages 302-
313, 2009.

[73] Pengju Ren, Mieszko Lis, Myong Hyon Cho, Keun Sup Shim, Christopher W Fletcher,
Omer Khan, Nanning Zheng, and Srinivas Devadas. Hornet: A cycle-level multicore
simulator. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 31(6):890-903, 2012.

[74] R.J. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer, P. Gronowski, and
T. Grutkowski. A 32nm 3.1 billion transistor 12-wide-issue Itanium@ processor for
mission-critical servers. In Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2011 IEEE International, pages 84-86, 2011.

114

[75] S. Rusu, Simon Tam, H. Muljono, D. Ayers, Jonathan Chang, B. Cherkauer, J. Stinson,
J. Benoit, R. Varada, Justin Leung, R.D. Limaye, and S. Vora. A 65-nm dual-core

multithreaded Xeon@ processor with 16-MB L3 cache. Solid-State Circuits, IEEE
Journal of, 42(1):17-25, 2007.

[76] Daeho Seo, Akif Ali, Won-Taek Lim, Nauman Rafique, and Mithuna Thottethodi.

Near-optimal worst-case throughput routing for two-dimensional mesh networks. In

Proc. of the 32nd Annual International Symposium on Computer Architecture (ISCA),
pages 432-443, 2005.

[77] Ohad Shacham. Chip Multiprocessor Generator: Automatic Generation of Custom

and Heterogeneous Compute Platforms. PhD thesis, Stanford University, May 2011.

[78] Kelly A. Shaw and William J. Dally. Migration in single chip multiprocessor. In

Computer Architecture Letters, pages 12-12, 2002.

[79] K. S. Shim, M. H. Cho, M. Kinsy, T. Wen, M. Lis, G. E. Suh, and S. Devadas. Static

Virtual Channel Allocation in Oblivious Routing. In Proceedings of the 3 rd A CM/IEEE

International Symposium on Networks-on-Chip, pages 253-264, May 2009.

[80] Keun Sup Shim, Mieszko Lis, Omer Khan, and Srinivas Devadas. Thread migration

prediction for distributed shared caches. Computer Architecture Letters, Sep 2012.

[81] Arjun Singh, William J. Dally, Amit K. Gupta, and Brian Towles. GOAL: a load-

balanced adaptive routing algorithm for torus networks. SIGARCH Comput. Archit.

News, 31(2):194-205, 2003.

[82] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The impact of technology scal-

ing on lifetime reliability. In Dependable Systems and Networks, 2004 International

Conference on, pages 177-186, 2004.

[83] Karin Strauss. Cache Coherence in Embedded-ring Multiprocessors. PhD thesis, Uni-

versity of Illinois at Urbana-Champaign, 2007.

[84] Leonel Tedesco, Fabien Clermidy, and Fernando Moraes. A path-load based adaptive

routing algorithm for networks-on-chip. In SBCCI '09: Proceedings of the 22nd Annual

Symposium on Integrated Circuits and System Design, pages 1-6, New York, NY, USA,
2009. ACM.

[85] Brian Towles and William J. Dally. Worst-case traffic for oblivious routing functions.

In SPAA '02: Proceedings of the fourteenth annual ACM symposium on Parallel algo-

rithms and architectures, pages 1-8, 2002.

[86] Brian Towles, William J. Dally, and Stephen Boyd. Throughput-centric routing algo-

rithm design. In SPAA '03: Proceedings of the fifteenth annual ACM symposium on

Parallel algorithms and architectures, pages 200-209, 2003.

[87] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In

Proc. 13th annual ACM symposium on Theory of Computing STOC'81, pages 263-277,
1981.

115

[88] Sriram Vangal, Nitin Borkar, and Atila Alvandpour. A six-port 57gb/s double-pumped
nonblocking router core. In VLSI Circuits, 2005. Digest of Technical Papers. 2005
Symposium on, pages 268-269. IEEE, 2005.

[89] Sriram R Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson, James
Tschanz, David Finan, Arvind Singh, Tiju Jacob, Shailendra Jain, et al. An 80-tile
sub-100-W TeraFLOPS processor in 65-nm CMOS. Solid-State Circuits, IEEE Journal
of, 43(1):29-41, 2008.

[90] Boris Weissman, Benedict Gomes, Jiirgen W. Quittek, and Michael Holtkamp. Efficient
fine-grain thread migration with active threads. In Proceedings of IPPS/SPDP 1998,
pages 410-414, 1998.

[91] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl
Ramey, Matthew Mattina, Chyi-Chang Miao, John F Brown, and Anant Agarwal.
On-chip interconnection architecture of the Tile processor. Micro, IEEE, 27(5):15-31,
2007.

[92] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:
characterization and methodological considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages 24-36, 1995.

[93] T. Wu, C. Y. Tsui, and M. Hamdi. CMOS Crossbar. In Proceedings of the 1 4 th IEEE
Symposium on High Performance Chips (Hot-Chips 2002), August 2002.

[94] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the
obvious. SIGARCH Comput. Archit. News, 23(1):20-24, March 1995.

[95] Meng Zhang, Alvin R. Lebeck, and Daniel J. Sorin. Fractal coherence: Scalably
verifiable cache coherence. In MICRO, 2010.

116

