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Abstract

In this thesis, we present several works done in last three years. They include three
directions in the string theory. In the first direction, we use the brane setup to find
mirror pairs of SO(n) and Sp(k) gauge groups for N = 4 three-dimensional gauge
field theories. To reach this result, we analyze carefully the s-configuration and
predict a nontrivial string dynamics, i.e., the splitting of branes on the orientifold
planes. In the second direction, we develop the “inverse algorithm” and use it to get
nontrivial world volume theories of D-branes probing more exotic singularities. In this
process, we find the “toric duality” which relates different phases of D-brane probe
theories. We realize later that the toric duality is an example of the more powerful
Seiberg-duality so these different phases are related by the Seiberg duality. In the
third direction, by using numerical calculation we get a strong evidence to support
the second conjecture of Sen’s three conjectures. We show that if the identity field is
BRST exact state around the tachyon vacuum, the open string spectrum will decouple
from the physics and leave only the closed string spectrum.
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Title: Professor of Physics
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Chapter 1

The introduction

String theory[1, 2, 3, 4], originally emerged as a description of strong interaction,
has turned out to be the most promising candidate for unified theory. There are
five consistent supersymmetric string theories: Type IIA, Type IIB, Type I SO(32),
Heterotic SO(32) and Heterotic Eg x Eg. All of them contain the graviton naturally in
their perturbative spectrum. They are also consistent theories of quantum gravity, at
least in perturbation theory. Furthermore, all of them live on ten dimensional space-
times so that these theories are big enough to include the known Standard model of
lower energy description in four dimensional space-times. The way that string theory
naturally unifies the Standard model and gravity is a very encouraging sign that we
are in the right track.

Around 1995, two important works expanded our view about the relationship
between the string theory and the unified theory. The first one is the emergence of M-
theory(5, 6]. By the study of duality, especially the S-duality which relates the physics
in strong interaction regions to the physics in weak interaction regions, we realized
that all five string theories plus the eleven-dimensional supergravity theory are just a
part of a more fundamental theory in eleven-dimensional space-times which is named
as M-theory. In another word, all five string theories and the eleven-dimensional
supergravity theory are just effective theories at some particular regions of the moduli
space of M-theory. We can intuitively show this idea by a famous figure 1-1.

The second important work around 1995 was the understanding of D-branes. D-
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branes have been studied since 1989 in [7, 8] as a string propagating with Dirichilet
boundary condition. However, only at 1995, Polchinski [9] realized that the D-brane
is a BPS particle which carries Ramond-Ramond charge and breaks half of super-
symmetries. As a Ramond-Ramond source required by string dualities, D-branes are
intrinsic to Type II theories and can be used as a probe to investigate the string
theory.

D-branes as a probe in string theory have a lot of merits. First they are heavier
than strings so they could probe the distance smaller than the one seen by strings.
Second, D-branes allow open strings ending on them. It has profound consequences.
The massless spectrum of ended open strings provides a supersymmetric gauge field
theory living on the world volume of D-branes. The study of relationships between
the string theory and the lower energy world volume field theory of D-branes is the

central task in recent few years.

11-dim Supergravity

Type IIA SO(32)Heterotic

E8 x E8 Heterotic
Type 11B

Type 1

Figure 1-1: All string theories and the eleven-dimensional supergravity theory are
limits of one theory, M-theory.

There are several works, which were along above main line and related to our

studies, needed to be mentioned. The first one is the brane setup, i.e., the system of
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different kinds of branes(NS-branes, D-branes and orientifold planes). We will talk
about it in more details in next chapter. The brane setup was first constructed in
[10]. In that paper, Hanany and Witten used the brane system of NS-branes, D5-
branes and D3-branes to exploit the three-dimensional supersymmetric gauge theory.
Using the brane setup, it is easier to visualize the moduli space of gauge theories,
the phase transition from the electric gauge theory to magnetic gauge theory as well
as to derive the mirror symmetry of N = 4 three-dimensional gauge theories. More
important, by consistent arguments from the field theory, they predicted the nontrivial
s-configuration (i.e., there can not be more than one D3-brane between one NS-brane
and one D5-brane) which was demonstrated later from various points of view. Brane
setups serve as an dictionary between the string theory and the gauge field theory.
Results in one part can be applied to another part. This two way communications

have taught us a lot in recent years.

The second related work is the famous AdS/CFT corresponding. From the match-
ing of low energy absorption cross-sections of various particles calculated by the string
theory and the effective world-volume field theory of corresponding branes [11, 12],
people wondered already that there may be a close relationship between field theories
and string theories. However, it was Maldacena who put this conjecture into a clear
form in [13]. In this paper, Maldacena suggested that “ Type IIB string theory on
(AdSs x S®)n plus some appropriate boundary conditions (and possible also some
boundary degrees of freedom) is dual to N = 4,d = 3 + 1 U(N) super-Yang-Mills”.
The basic idea behind this conjecture is that we have two different, but equivalent
ways to describe a stack of Dp-branes. In one side, we have classical solutions in
Type II closed string theory which are in terms of curved metric and other back-
ground fields including the Ramond-Ramond p-form potential. In another side, we
have low energy effective U(N) supersymmetric gauge theories living on the world
volume of Dp-branes. Since these two different points of view describe same thing,
they must equivalent to each other. However, these two pictures of D-branes are
perturbatively valid for different regions in the moduli space. Perturbative field the-

ory is valid when we keep g;/V small while the low-energy gravitational description
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is perturbatively valid when the radius of curvature is much larger than the string
scale, which is g,V very large. So AdS/CFT corresponding is a kind of strong-weak
dualities.

The third related work is the study of geometries probed by D-branes [14]. The
basic idea is that, from the D-brane perspective, the spacetime is a derived concept
which emerges from the nontrivial moduli spaces of D-brane world volume gauge
theories. In general, the analytic solutions for moduli spaces are difficult to get.
However, in some particular cases we can have a powerful tool, i.e., toric geometry, to
solve our problems. The authors of [14] explicitly demonstrated these ideas by world
volume theories of D-branes probing orbifold singularities. They further found that
corresponding linear sigma models are not generic in the sense that they probe only
a part of the moduli space of the linear sigma model and see only geometric phases
while project out non-geometric phases. A large part of our works will follow this line.
We will show how to use the toric geometry to find corresponding gauge theories for
more generic singularities which we do not know how to handle before. In this process
we found the toric duality, which states that two different world volume theories are
toric dual to each other if they have same toric variety as the moduli space. Later
we realized that toric duality is nothing more, but the celebrating Seiberg-duality in
toric cases. These studies expanded our understanding of the connection between
geometry and physics.

The last related work is the study of string field theories, especially the Witten’s
Cubic String Field theory. String field theories have been studies about fifteen years
already [15, 16, 17, 18]. However, recent interests on string field theories were intrigued

by Sen’s three conjectures [19, 20]. These three conjectures are:

e (i) The difference in energy between the perturbative and the tachyon vacuum

exactly cancels the tension of the corresponding D-brane system,;

e (ii) After the tachyon condenses, all open string degrees of freedom disappear,

leaving us with the closed string vacuum; and

e (iii) Non-trivial tachyon field configurations correspond to lower-dimensional
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D-branes.

Since the tachyon condensation is an off-shell process, we can not use the perturbative
string theory to make the calculation. String field theory as an off-shell description
provides us the tool to investigate above conjectures. In recent three years we have
achieved a huge progress, where the first and third conjectures have been well un-
derstood. Now most pressing problems remained are to find the analytic solution for
tachyon condensation and to understand the emergence of the closed string[120, 21].

The remainder part of this thesis is organized as follows. In the second chapter,
we prepare some backgrounds, which are used extensively in later chapters. Starting
from chapter three, we present works we have done in last a few years. In chapter
three, the study of mirror symmetry of three dimensional SO(n) and Sp(k) gauge
theories is showed. In chapter four, we develop the “inverse algorithm” and use it
to get world volume theories of some toric singularities. In chapter five, we study
the ambiguity in the inverse algorithm and present different phases for a given toric
singularity. In chapter six, we give our understanding about the ambiguity found in
chapter five and demonstrate that this ambiguity is a result of the well known Seiberg
duality. In chapter seven, we move the study to the string field theory and show how
to use the identity field to prove (numerically) the Sen’s second conjecture. Finally

we give a list of works done in these years.

27



28



Chapter 2

Some backgrounds

In this section, we will review some backgrounds which are needed for our works.
These materials can be divided into three parts. In the first part we will introduce
the brane setup and show how to use them to derive mirror pairs in three-dimensional
N = 4 supersymmetric field theories. The second part is devoted to the “forward
algorithm” presented in [14]. To understand the algorithm, we also introduce a little
bit of the toric geometry. The third part is a brief introduction of string field theories,
especially the bosonic string field theory established by Witten [15]. This will establish

the frame which we will use to do some calculations.

2.1 The brane setup

Brane setup was first introduced in [10] (For a review, see reference [22]). Since then,
the brane setup has been applied to discuss field theories in various dimensions. For
example, in [10] the brane setup was used to study the relationship of certain moduli
spaces of magnetic monopoles and Coulomb branches of certain three-dimensional
supersymmetric theories. It was also used to derive the mirror symmetry of N = 4
three-dimensional supersymmetric theories in [10, 23], mirror symmetry of N = 2
three-dimensional supersymmetric theories in [24].

For the four-dimensional supersymmetric field theory, brane system has also a lot

of applications. Witten used the NS — D4 brane system to discuss Seiberg-Witten
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curves of N = 2 theories by lifting it into the M-theory in [24]. This result was
immediately generalized to the NS ~ D4 — 04 brane system in [26]. Elitzur et al
[27, 28] used the NS— NS’ — D4 system to study the Seiberg-duality of N = 1 SUU (V)
gauge theories and by adding orientifold planes, Evans et al [29]managed to study
the Seiberg-duality of N = 1 SO(N) or Sp(N) gauge theories. We can also discuss
finite chiral theories by brane box models [30, 31]. There are many works done in

this direction and we can not review them completely here.

For applications of brane setups to other dimensions we will just mention ref-
erences here. The study of six-dimensional conformal theories can be found in
[33, 32, 34]. The five dimensional gauge field theories and corresponding (p, @)-webs

were investigated in [35, 36]. The two-dimensional field theory was discussed in [37].

From above brief survey, it is obviously that we can not discuss the brane setup
and its applications thorough. In following we will introduce only the basic idea of

brane setups.

2.1.1 Branes in string theory

In general we will have massless form-fields in the perturbative spectrum of string
theories. Just as the 1-form field (gauge field A,) in QED coupling to electrons and
monopoles, these form fields can couple to electron-like objects and monopole-like
objects. These objects (BPS states) will have extended directions in general and are
called “branes”. We listed them in following table 2.1.1, where we have assumed the
hodge dual relationship. For example, Neveu-Schwarz 6-form is hodge dual to Neveu-
Schwarz 2-form so there is only one independent freedom. Also the D8-brane and
D9-brane are little special [9] since there are no propagating states corresponding to
9-form and ten-form. This subtle point has been explained in detail in [9]. In loosing
sense, the D9-brane is whole space-time and corresponds to Neveu-Schwarz boundary
condition for strings while the D8-brane is the source of cosmological constants in
Type IIB supergravity. In addition to above branes we have also the orientifold-

planes which are fixed planes under a Z action. This Z, symmetry reverses the
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spacetime coordinates as well as the orientation of strings, i.e.,

t'(z,2) = —2'(2,2); I=p+1,..9 (2.1)

For every type of branes, we have corresponding orientifold planes, for example

D4 & 04, M2 & OM2. Among them, Op planes are better understood while

OM-planes and ON-planes still need more works.

Table 2.1: The summary of branes in string theories.

brane Theory form
Fl(string) | IIA,IIB Neveu-Schwarz 2-form
NS-brane ITA,IIB Neveu-Schwarz 6-form
D(-1)-brane IIB Ramond-Ramond 0-form
DO-brane ITA Ramond-Ramond 1-form
D1-brane 1IB Ramond-Ramond 2-form
D2-brane ITA Ramond-Ramond 3-form
D3-brane IIB Ramond-Ramond 4-form (self dual)
D4-brane ITA Ramond-Ramond 5-form
D5-brane 1IB Ramond-Ramond 6-form
D6-brane 1IA Ramond-Ramond 7-form
D7-brane 1IB Ramond-Ramond 8-form
D8-brane ITA Ramond-Ramond 9-form
D9-brane I1IB Ramond-Ramond ten-form
M2-brane | M-theory 3-form
Mb5-brane | M-theory 6-form
The tension of a Dp-brane is
1
T, = m (2.2)

where g; is string coupling constants and I, is the string length. Notice that in (2.2)

we have chosen the normalization so that the tension of the fundamental string (F1)

isTm = zlz In this convention, the Dp-brane tension is equal to its RR-charge. The
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RR-charge of the corresponding orientifold Op*-planes are
Qopr = £2- 2P °Qpy (2.3)

As we will discuss later, Op®-planes exist on any dimension p. However, for p < 6

there are other types of orientifold-planes, for example (’)}51 The tension of NS-brane

is
1
TNS = —2—l6‘ (24)
8§78
Comparing it with the tension of the D5-brane, we see that
Tps
Tos s (2.5)

From it we conclude that in small coupling region, NS-branes are much heavier than

D5-branes.

Type IIA string theory has (1, 1) spacetime supersymmetry, where the (1, 1) means
one left and one right chiral supercharges in ten-dimensional space-times (see (2.6)).
The spacetime supersymmetric charges generated by left and right moving QL,Qr

have opposite chirality:
rrt.r°Q; = +Qp, I'T.I°Qr=-Qr. (2.6)

Type 1IB string theory has (2,0) (two left chiral supercharges, see (2.7)) spacetime

supersymmetry and chirality of charges are
T . 1°Q; = 4Qp, TI°T.T°Qr = +Qkr (2.7)

We will focus on Type II theories since the Type I can be considered as the Type IIB
string theory with orientifold planes and is a special case. Heterotic strings do not
have D-branes, but do have NS-branes similar to these in Type II theories. D-branes
are BPS saturated states and preserve half supersymmetries. More precisely, a Dp-

brane with the world-volume extended along X'?# will preserve the supercharge of
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the form €, Q1 + egQr Where

ep =TT ..IPep (2.8)

An anti Dp-brane will carry opposite charges and preserve another half supersymme-
tries. An NS five brane stretched in X'23*5 will preserve the supercharge of the form

€1Q1 + €erQr where for the Type IIA fivebrane

e, =TT .T%;,  €p =TT ..[P¢g, (2.9)
while for the Type IIB fivebrane

e =TT ..T%;,  eg= —T'T. IPeg, (2.10)

Notice the projection (2.9) and (2.10) tell us that in non-chiral Type IIA theory the
world volume theory in fivebrane will be chiral (2,0) SUSY in six dimensions while in
chiral Type IIB theory the world volume theory in fivebrane will be non-chiral (1,1)

SUSY in six dimensions.

The low energy worldvolume theory on an infinite Dp-brane is a p+ 1 dimensional
field theory invariant under preserved 16 supercharges. The massless spectrum can be
read out from the open string ending on this brane. They are a p+1 dimensional U(1)
gauge field A,, 9 — p scalars X' which parameterize fluctuations of the Dp-brane in
transverse directions and fermions required by SUSY. The bosonic part of low energy
worldvolume theory is

1 1 1

S = [ V(G FL P +

2 T 9, X"0" X1) (2.11)
9y m s

with the U(1) gauge coupling on the brane given by
Gym = gsli~° (2.12)

At high energy, we need to include massive modes of the open string as well as the

interaction with the closed string in the 9 4+ 1 dimensional bulk of spacetime. So to
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study the supersymmetric Yang-Mills theory living on the brane we must decouple
gauge theory from the gravity and massive string modes. This requires the limit
I, — 0 with fixed gyss. Using (2.12), it means that (2.11) describes the UV behavior
for p < 3 and IR behavior for p > 4.

There is a U(1) gauge theory living on one Dp-brane. To get non-Abelian theory,
we can put on a stack of nearby parallel Dp-branes and Chan-Paton indices to fields.

In this case, the action becomes

S = / &P+ Tr( 4Fu,,F’“’ + 1D, XIDRX,) + V(XT) (2.13)

gYM s

where X! are adjoint fields of corresponding gauge group. One interesting thing is

that the potential for X7 is

S Trix’, X (2.14)

ls 9y m 1,0

which indicates that the moduli space of Higgs branch is parametered by eigenvalues
of X

Z=(Xi), i=1,..,N (2.15)

In the brane setup, the ¢« — th vector Z; will geometrically denote the position of
i — th brane in transverse directions. The vacuum expectation values of (2.15) will
generally break the U(N) gauge symmetry to U(1)" and off-diagonal gauge fields will
get masses

7 — 7] (2.16)

Geometrically above masses will be the length of the fundamental string stretched
between 7 — th brane and j — th brane in the unit of string length.

After discussing the low energy world volume theory of D-branes, we turn to the
world volume theory of NS fivebranes. For a single Type ITA NS fivebrane the mass-
less field is the tensor multiplet of six dimensional (2,0) SUSY, which is consisted of
a self-dual 2-form B, field, five scales and corresponding fermion fields. For a single

Type IIB NS fivebrane the massless field is the vector multiplet of six dimensional
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(1,1) SUSY, which is consisted of a six-dimensional gauge field, four scalars and cor-
responding fermions. Recalling that scales of D-brane world volume theories describe
the fluctuation of D-branes in transverse directions, here we should have same expla-
nation. For the Type IIB NS-brane, four scalars match four transverse directions in
ten dimensional space-times. But how to explain the Type IIA NS-brane where we
have five scalars? In fact, the fifth scalar indicates another hidden direction which

will finally lead us to the eleven dimensional M-theory.

The low energy world volume theory of N Type IIB NS-branes is a 5 + 1 dimen-
sional (1,1) U(N) SYM theory with gauge coupling constant

gy =1 (2.17)

Comparing with the gauge coupling constant living on the D5-brane, we found the

ratio
912/M D5
IYMDbs _ (2.18)
9y M,NS

The massless spectrum of above low energy theory can be obtained by analyzing the
D-string ending on these NS-branes. The low energy world volume theory of N Type
ITA NS-branes is more exotic field theory.

Now we turn to M2-branes and M5-branes. The preserved supercharges are given
by
e = [T .. TP, (2.19)

and their tensions are fixed by SUSY to be

1

=2  P=25 (2.20)
11

where [1; is the eleven dimensional Planck scale. The world volume theories of M2-

branes and M5-branes are not very clear at this moment.

To get the Type IIA theory from the M-theory, we need to compactify the M-
theory on R'® x S where the radius of S? is Rjp. The relationship of coupling
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constants are

Ry 1
5= (2.21)
RIO = gsls (222)

Thus the strong coupling limit g; — oo of Type IIA theory is equivalent to un-
compactify the M-theory.

To get the Type IIB theory from the M-theory is more involving since Type IIB
theory has explicitly SL(2,Z) symmetry which does not showed in M-theory. To
realize this symmetry we need to wrap the M-theory on a finite two-torus. In the
case of zero vacuum expectation value of the massless RR scalar the two-torus is

rectangular with radius Rg, R;o. Then the relationship of coupling constants are

Ro 1
5= (2.23)
Ry 1
I 2.24
l%l gslg’ ( )
Ry Ry 1 ‘
- 2.25
13 Rp (225)

where Ry is the radius of Type IIB theory wrapping on S?.

Now let us turn to a new direction: the duality. These branes we introduced
above are related to each other by all kinds of duality transformations. They are
called the U-duality[38]. However, the ones we familiar with and most used are T-
duality and S-duality. By T-duality we can relate Dp-branes in the Type ITA (IIB)
theory to D(p+1)-branes or D(p-1)-branes in the Type IIB (IIA) theory dependent
on if the wrapped direction is transverse or parallel to them. Under the T-duality,
moment modes of the fundamental string in one theory is traded to wrapping modes
of the fundamental string in another theory and vice versa. The coupling constant

has relationship

RARE = 12 (2.26)
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9 _ 9 (2.27)
For NS fivebranes, the T-duality property is that if the T-dual direction is parallel
to the fivebrane, the NS-brane in Type IIA (IIB) will become the NS-brane in Type
IIB (IIA), but if the T-dual direction is transverse to the fivebrane, the NS-brane in
Type ITA will become the KK-monopole while the Type IIB NS5-brane will turn into
the general (p, g)-web.

As we have mentioned, Type IIB string theory has explicitly SL(2, Z) symmetry
which includes both T-duality and S-duality. We have discussed the T-duality above.
Under the S-duality, the F1-string is exchanged to the D1-brane, the NS5-brane to
the D5-brane while the D3-brane is invariant. If we apply both of them arbitrarily,

we will have general (p, ¢) brane webs for dimension one, five and seven.

2.1.2 The brane system and three dimensional field theory

As we have mentioned above, there are a lot of brane systems which are tailed for
different problems. Here we will not review all of them, but try just a special case
which relates to our concern later. Although it is special, it shows all essential proper-
ties of brane setups already. This special case is the NS5-D5-D3 brane system which
preserves 8 supercharges at final [10].

In this system, we usually put NS5-branes along X'?345, D5-branes along X 12789
and D3-branes along X'%. Using equations (2.7), (2.8) and (2.10) it is easy to see that
there are eight supercharges left. The configuration breaks the Lorentz group SO(1, 9)
to SO(1,2) x SO(3) x SO(3), where the SO(1,2) acts on %2, first SO(3) = SO(3)y
acts on m = (z°,z*,2°) and the second SO(3) = SO(3)y acts on w = (27,28, 2°).
The two double covering groups SU(2) of these two SO(3), which have clear geometric
picture, will become symmetries of Coulomb and Higgs branches in the corresponding
field theories. The way that we can see these symmetries pictorially in the brane setup
is a great advantage of this method.

The key part of above system is the D3-brane. More precisely, we will let D3-
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branes ending on NS5-branes or D5-branes. Since these five branes have two more ex-
tended directions than D3-branes’, these five branes are much heavier than D3-branes
and can be considered as backgrounds for field theories living on the world volume
of D3-branes. Furthermore, since the X direction is finite for ending D3-branes, the
effective field theory is three-dimensional gauge theory. Above all observations lead

to two important conclusions:

e (a). that the parameters (z,t,m,w) specifying the positions of five branes
will be interpreted as coupling constants in the effective gauge field theory on

D3-brane world volume.

e (b). the positions of D3-branes on five branes are dynamical moduli which

parameterize the vacua of field theories.

Having above general idea, let us give more details. First let us identify the sym-
metry of theories. Since there are eight supercharges left, we get N = 4 supersym-
metric three-dimensional field theory. The R-symmetry SO(4) = SU(2)y x SU(2)n
are nothing more, but the two double covering groups of two SO(3) rotations we met
above.

Second let us discuss the matter content living on D3—branes. This will be a little
of complex and we will do it step by step. First let us consider the infinite D3-brane.
In this case, we have N = 4 supersymmetric gauge theory in four-dimension and the
matter content is the N = 4 vector multiplet. An N = 4 vector multiplet in four-
dimension can be divided into two parts: an N = 2 vector multiplet in four-dimension
and an N = 2 hyper-multiplet in four-dimension. After one dimension reduction we
get an N = 4 vector multiplet in three-dimension and an N = 4 hyper-multiplet in
three-dimension. Next we need to know the projection when D3-branes end on five

branes. The results are

e (a). If D3-branes end on NS5-branes, the N = 4 vector multiplet will be kept
while the N = 4 hyper-multiplet will be projected out. |

e (b). If D3-branes end on D5-branes, the N = 4 hyper-multiplet will be kept
while the N = 4 vector multiplet will be projected out.
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e (c). If one side of D3-branes end on D5-branes and another side, on NS5-branes,
all massless modes are projected out. The infrared theory has a unique vacuum

with a mass gap.

The gauge theory arising when two sides of D3-branes end on NS5-branes is called

“electric gauge theory”. The gauge coupling constant is
= = [t — 1] (2.28)

where ¢;,t; parametrized the X® coordinates of two NS5-branes. The gauge theory
arising when two sides of D3-branes ending on D5-branes is called “magnetic gauge

theory”. The gauge coupling constant is

1

7 = |z1 — 23| (2.29)
where z;, 2o parameterize the X% coordinates of two D5-branes. We call them this
way because after the S-duality, they are exchanged to each other just like the electric
charge and magnetic charge are exchanged under the Montonet-Olive duality. To
simplify the discussion we will mainly focus on the electric gauge theory.

There is still a little piece we have left. After ending D3-branes on NS5-branes at
two sides, we left only the N = 4 vector multiplet. To get the N = 4 hyper-multiplet
coupling to this gauge field, we can do two things. The first way is to put a bunch of
D5-branes (k D5-branes) between these two NS5-branes. When D3-branes moving on
the NS5-brane along directions X34%, D5-branes can touch D3-branes and contribute
massless modes, hence k¥ N = 4 hyper-multiplets. The second way is to put some
D3-branes, for example k again, at another side of one NS-branes (or both). The
D3-branes at the two sides of the NS-brane can meet and give massless modes, i.e.,
k N = 4 hyper-multiplets.

Above two methods are in fact equivalent to each other since they are related to
each other by the famous “brane transaction”, see figure 2-1. This can be explained

by the requirement of the conservation of “linking numbers” of five branes. The
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linking number of an NS5-brane is defined as
1
Lyg = 5(7‘ — l) + (L - R) (230)

where r,[ are the numbers of D5-branes at its right and left sides while L, R are the
numbers of D3-branes ending on its left and right sides. The linking number of a

D5-brane is defined in a similar way as
1

where 7,1 are the numbers of NS5-branes at its right and left sides.

The last piece we need to finish this subsection is the “s-configuration”. This
was first proposed in [10] to get the consistent result from the field theory. The
basic idea is that if there are more than one D3-brane connecting an NS-brane to a
D5-brane, the brane setup is not supersymmetric. This result can be generalized to
other dimensions by duality. We will also generalize it to the case in the presence of

orientifold planes. More discussions can be found later.

NS—brane NS—brane

D5—brane D5~—brane

X

D3—-brane

(a) (b)

Figure 2-1: One D3-brane is created after the D5-brane crossing the NS-brane.
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2.1.3 A simple application: the mirror symmetry

Mirror symmetry of N = 4 three-dimensional field theory was first discussed in [39).
The basic idea is that the R-symmetry SO(4) = SU(2); x SU(2)g make sure that
moduli spaces of the Coulomb branch and the Higgs branch are both hyper-Kahler
manifolds. Furthermore, moduli spaces and other parameters transform under the

group SU(2), x SU(2)g as

Table 2.2: The symmetries of gauge field theory.

SU@)L % SUQ2)n
Higgs branch (1,3)
Coulomb branch (3,1)
gauge coupling (1+3,1)
Mass term (3,1)
Fayet-Iliopoulos term (1,3)

The authors of [39] found that, at the nontrivial IR fixed point, there is a duality
which relates two different theories by exchanging: (1) SU(2), and SU(2)g; (2) The
Coulomb branch and the Higgs branch; (3) Mass terms and Fayet-Iliopoulos D-terms.
Such a pair is called the “mirror pair”. In [39], they showed that U(1) gauge theory
with n +1 electrons is mirrored to gauge theory given by A, singularity while SU(2)
gauge theory with n quarks is mirrored to gauge theory given by D, singularity.

Continuing the study of [39], Hanany and Witten [10] used the brane setup to
derive the mirror pairs for general situations in much easy way. First there is a
correspondence SU(2);, — SU(2)y and SU(2)r — SU(2)y between the field theory
and the brane setup. Second, the mirror symmetry in string theory is nothing more
but a simple S-duality. Using the S-duality property of NS5-branes, D5-branes and
D3-branes, it is easy to identify the mirror pair.

We will use a simple example to demonstrate the method. The example will be
U(2) theory with four hyper-multiplets. To find its mirror theory, we do following

steps. First we draw the corresponding brane setup in part (a) of Figure 2-2. Second,
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we go to the Higgs branch by breaking D3-branes among D5-branes and NS5-branes
as part (b). Notice the way we break D3-branes makes sure that there is no s-
configuration. At third step we make brane transaction in part (c). In last step, we
make the S-duality and reach the final mirror theory U(1) x U(2) x U(1) with two

bi-fundamentals and two U(2) hyper-multiplets as in part (d).

NS-brane D5—brane D5—brane

X X X X

NS—braﬁe

X— —

D3-brane
(a) (b)
DS5—brane NS—-brane D5—brane
NS-brane

X X

(© (d)

Figure 2-2: The brane method to derive the mirror theory of U(2) theory with four
hyper-multiplets.

2.2 Orbifold Resolution by D-branes: The For-
ward Algorithm

As we have mentioned at the introduction, it is interesting to use D-branes as a
probe to study the geometry of backgrounds. This direction was initiated by Douglas
and Moore in [40] and continued in [41, 42]. In these papers, it was showed that
the effective world volume theory of D-brane probes is a projection of SYM with

sixteen supercharges, with Fayet-Iliopoulos terms controlled by twist sector moduli.
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For C?/T case, it was observed that the classical gauge theory moduli space is the
resolved orbifold. To reach this result, the hyper-Kahler quotient construction of
Kronheimer was used [43].

We would like to see if similar thing happens in three dimensions, especially C3/T.
In this case, the world volume theory has only four supercharges, i.e., if we use the
D3-brane as the probe, we will get N = 1 four-dimensional SYM. Since there are
less supersymmetries, the manifold would not be hyper-Kahler quotient, but rather
singular Kahler quotient. As singularities get resolved in two dimensions, we expect
singular Kahler quotient resolved by, for example, blow-up. To show this is true in
general will be very difficult. However, for orbifold singularities we have a powerful
tool, toric geometry, to help us. Using this tool in [14], it was showed that above
expectation is true. The superpotential defines the complex structure and the blow-
up, while the D-term defines the periods of the metric (though the full metric depends
on both data).

To carry out above idea, the starting point will be the world volume theory of
the D-brane probe. When we discuss the singular (complex) three-dimensional space,
we usually use D3-branes as the probe. For orbifold singularities, the world volume
theory is easy to work out [40, 42, 44, 45, 46, 31, 30]. The result can be summarized
into the so called “quiver diagram”. Quiver diagram ( or Moose diagram) is a easy
way to encode the matter content of a given theory, which we will introduce more
later. To complete the N =1 theory, we need also to specify the superpotential.

Although it is easy to get world volume theories of orbifold singularities, it is not
easy for other singularities. This is one main motivation for our inverse algorithm
which will be presented later. The idea is that for toric singularities, it is easy to find
the geometry from toric data, then by inverting the line of [14], we may end up at the

starting point, i.e., the world volume theory of D3-brane probes on that singularity.

2.2.1 A quick introduction of toric geometry

In this part, we will briefly introduce the toric geometry. There are two books [47, 48]

for this topic, but for our purpose we will follow the work of Greene in [49].

43



There are three ways to see the toric geometry. The first way is by holomorphic
quotient. It is a very intuitive way. For example, we are familiar with the expression

for complex projective space CP"

_ ™1 - {0,0,...,0}

Pn
C c

(2.32)

A toric variety is just the generalization of above quotient. We remove a point set
F instead of the origin and quotient by a number of C* actions, the n-dimensional

toric variety can be written as

C™ — Fa

ey

m—-p=n (2.33)

To fix a given toric variety, we need to fix the point set F and C* actions (i.e., the
action of multiplying nonzero complex number). It was found that these data can be
encoded into a certain simple combinatorial data which will be the idea for the third

method.

The second way is symplectic quotient. The basic idea is to realize the holomorphic
quotient in two steps by writing C* = R, x U(1). The first step is called “moment
map” which fixes the action of R,. The second step is moduli the U(1) phase factor.
Physicist likes the second way because it is explicitly realized by the linear sigma
model[50] where the moment map is just the D-term of supersymmetric gauge theory

and U(1) phase action is just the U(1) gauge transformation.

The third way which is used a lot in mathematics literatures is to use “fan” A. A
fan is a collection of strongly convex rational polyhedral cones o; in the real vector
space Ng = N ®z R. Every cone o; defines a coordinate patch of V' and will be glued
together properly. To make the connection to lattice data more clear, we define the

dual cone g; in Mg as
i ={me€ Mg : (m,n) >0,Yn € 0;} (2.34)

where Mp = M ®z R and M is the dual lattice of N, M = Hom(N, Z). Using this we
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can easily describe the patch. For each dual cone &; we choose a finite set of elements

{mij € M,j=1,...,7;} such that

5’1; NM= Zzomi,l + ...+ Zzomi’,.‘. (235)
This set has R relations
Eps,jmi,j = 0’ § = 17 srey R (236)
j=1

We choose the relations such that every other relation among them can be written as
a linear combination of above R’s by integer coefficients. Knowing this data we can
write the patch as

U.,

7

= {(ui,l: ) ui,‘l‘i) € Criluzslllu’zi),aﬂ"'ups“ = 11 VS} (237)

1,75

Using same way we can glue two patches together. First we find the relations
T j
D gsamig+ Y g5, mig =0 (2.38)
=1 =1

For every relation we have coordinate transition relation

’ ’ /
4s,1 . 4s,2 Gs,r; 951 92 q""'j _
Uil U Ui Ui Uy =1 (2.39)

Now we record some results in toric geometry:

e (1). Let V be a toric variety associated to a fan A in N. V is smooth if for each
cone o in the fan we can find an integral basis {n,,...,n,} of N and a integer

T S n SllCh tha,t g = Rzonl + ...+ RZO”T-

e (2). To resolve the singularity, we can subdivide the fan. This process is called

“blow-up”.

e (3). In order to have nothing new to canonical class when resolving the singu-

larity, the singularity must be “canonical Gorenstein singularity”.

45



e (4). The singularities of the affine toric variety U, are canonical Gorenstein
singularities if all the points in S lie in an affine hyperplane H in Ng of the

form

H = {z € Ng|(m,z) = 1}, (2.40)

for some m € M and if there are no lattice pointsx € cNN with0 < (m,z) < 1.

2.2.2 The Forward Procedure: Extracting Toric Data From

Gauge Theories

We shall here give a brief review of the procedures involved in going from gauge theory
data on the D-brane to toric data of the singularity, using primarily the notation and
concepts from [14]. In the course thereof special attention will be paid on how toric
diagrams, SUSY fields and linear o-models weave together.

A stack of n D-brane probes on algebraic singularities gives rise to SUSY gauge
theories with product gauge groups resulting from the projection of the U(n) theory
on the original stack by the geometrical structure of the singularity. For orbifolds
C* /T, we can use the structure of the finite group I to fabricate product U(n;) gauge
groups [40, 42, 44]. For toric singularities, since we have only (Abelian) U(1) toroidal
actions, we are so far restricted to product U(1) gauge groups!. In physical terms,
we have a single D-brane probe. Extensive work has been done in [84, 14] to see
how the geometrical structure of the variety can be thus probed and how the gauge
theory moduli may be encoded. The subclass of toric singularities, namely Abelian
orbifolds, has been investigated to great detail [40, 69, 14, 80, 84] and we shall make
liberal usage of their properties throughout.

Now let us consider the world-volume theory on the D-brane probe on a toric
singularity. Such a theory, as it is a SUSY gauge theory, is characterised by its matter
content and interactions. The former is specified by quiver diagrams which in turn
give rise to D-term equations; the latter is given by a superpotential, whose partial

derivatives with respect to the various fields are the so-called F-term equations.

!Proposals toward generalisations to D-brane stacks have been made [84].
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Z, x Z,

-L1,1) ©,1.1) (LLD)
—&  J

A B

[ ]
1,0,1)

(1,-1,1)
Toric Diagram Quiver Diagram

Figure 2-3: The toric diagram for the singularity C*/(Zy x Z;) and the quiver diagram
for the gauge theory living on a D-brane probing it. We have labelled the nodes of
the toric diagram by columns of G, and those of the quiver, with the gauge groups

U(1)¢a,,c,D}-

F and D-flatness subsequently describe the (classical) moduli space of the theory.
The basic idea is that the D-term equations together with the FI-parametres, in
conjunction with the F-term equations, can be concatenated together into a matrix
which gives the vectors forming the dual cone of the toric variety which the D-branes
probe. We summarise the algorithm of obtaining the toric data from the gauge theory
in the following, and to illuminate our abstraction and notation we will use the simple

example of the Abelian orbifold C*/(Z, x 7,) as given in Figure 2-3.

1. Quivers and D-Terms:

(a) The bi-fundamental matter content of the gauge theory can be conve-
niently encoded into a quiver diagram Q, which is simply the (possibly
directed) graph whose adjacency matrix a;; is precisely the matrix of
the bi-fundamentals. In the case of an Abelian orbifold? prescribed by the
group I, this diagram is the McKay Quiver (i.e., for the irreps R; of ', a;

is such that R® R; = ®;a;; R; for some fundamental representation R). We

2This is true for all orbifolds but of course only Abelian ones have known toric description.

47



denote the set of nodes as Qp := {v} and the set of the edges, Q; := {a}.
We let the number of nodes be r; for Abelian orbifolds, » = |I'| (and for
generic orbifolds r is the number of conjugacy classes of I'). Also, we let
the number of edges be m; this number depends on the number of su-
persymmetries which we have. The adjacency matrix (bi-fundamentals) is
thus 7 x r and the gauge group is ﬁ SU(wj). For our example of Zy x ZZ,
r = 4, indexed as 4 gauge groupsjz'l(l)A x U(l)p x U(l)¢ x U(1)p corre-

sponding to the 4 nodes, while m = 4 x 3 = 12, corresponding to the 12
0111

arrows in Figure 2-3. The adjacency matrix for the quiver is 1 (1) ; i
1110

Though for such simple examples as Abelian orbifolds and conifolds, brane
setups and [44] specify the values of w; as well as a;; completely®, there
is yet no discussion in the literature of obtaining the matter content and
gauge group for generic toric varieties in a direct and systematic manner

and a partial purpose of this note is to present a solution thereof.

(b) From the r x r adjacency matrix, we construct a so-called 7 x m incidence
matrix d for Q; this matrix is defined as dy, := 0y head(a) = v,tail(a) fdr
v € @y and a € Q;. Because each column of d must contain a 1, a
—1 and the rest 0’s by definition, one row of d is always redundant; this
physically signifies the elimination of an overall trivial U(1) corresponding
to the COM motion of the branes. Therefore we delete a row of d to define
the matrix A of dimensions (r — 1) x m; and we could always extract d
from A by adding a row so as to force each column to sum to zero. This
matrix A thus contains almost as much information as a;; and once it is
specified, the gauge group and matter content are also, with the exception
that precise adjoints (those charged under the same gauge group factor and
hence correspond to arrows that join a node to itself) are not manifest.

For our example the 4 x 12 matrix d is as follows and A is the top 3 rows:

3For arbitrary orbifolds, 3" w;n; = || where n; are the dimensions of the irreps of I'; for Abelian
J
case, n; = 1.
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Xap XBc Xcs Xpa Xap Xpa Xcp Xpc Xac Xpp Xca XpB

A -1 0 0 1 ~1 1 0 0 ~1 0 1 4]
d=| B 0 -1 1 0 1 -1 0 0 0 -1 0 1
c 0 1 -1 0 o 0 -1 1 1 0 -1 0
p| 1 0 0 -1 0 0 1 -1 0 1 0 ~1

(c) The moment maps, arising in the sympletic-quotient language of the toric
variety, are simply x := d - |z(a)|? where z(a) are the affine coordinates
of the C” for the torus (C*)" action. Physically, z(a) are of course the
bi-fundamentals in chiral multiplets (in our example they are XijeiaB,C, D}

as labelled above) and the D-term equations for each [ (1) group is [50]
Di = —€*(3_ diaz(a)]* - ¢;)

with ¢; the FI-parameters. In matrix form we have A - |z(a)|? = ¢ and see
that D-flatness gives precisely the moment map. These (-parameters will

encode the resolution of the toric singularity as we shall shortly see.
2. Monomials and F-Terms:

(a) From the super-potential W of the SUSY gauge theory, one can write the
F-Term equation as the system ainW = 0. The remarkable fact is that
we could solve the said system of equations and express the m fields X; in

terms of 7 + 2 parameters v; which can be summarized by a matrix K.
Xi=TIvi",  i=12.,m j=12 .r+2 (2.41)
J

This matrix K of dimensions m x (r 4+ 2) is the analogue of A in the
sense that it encodes the F-terms and superpotential as A encodes the
D-terms and the matter content. In the language of toric geometry K

defines a cone! M, : a non-negative linear combination of m vectors K,

“We should be careful in this definition. Strictly speaking we have a lattige M = Z™? with its
dual lattice N = Z™+2. Now let there be a set of Z -independent vectors {k;} € M and a cone is
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in an integral lattice ZZ"*2.

For our example, the superpotential is

W = XacXcpXpa—XacXeBXBa+ XcaXaBXBe — XcaXapXpe
+XepXpcXcp — XBpXpaXap — XppXBcXcp,

giving us 12 F-term equations and with the manifold of solutions param-
eterizable by 4 + 2 new fields, whereby giving us the 12 x 6 matrix (we
here show the transpose thereof, thus the horizontal direction corresponds

to the original fields X; and the vertical, v;):

Xac Xpp Xca Xpp XaB Xpa Xcp Xpc Xap Xpc Xce Xpa

vy 1 0 0 1 1 0 0 1 0 0 0 0

vy 0 1 1 0 -1 0 0 -1 0 0 0 0

K'=| s 0 0 0 0 0 1 0 1 0 1 0 1
v 0 0 0 0 1 0 1 0 0 -1 0 -1

vs 0 0 -1 -1 0 0 0 0 1 1 0 0

vg 0 0 1 1 0 0 0 0 0 0 1 1

For example, the third column reads X¢a = vyv3 'vs, i.e., XapXca =
XspXcp, which the the F-flatness condition ﬁ%?o' The details of ob-
taining W and K from each other are discussed in [14, 84] and Subsection

3.4.

We let T be the space of (integral) vectors dual to K, i.e., K -T > 0 for
all entries; this gives an (r + 2) x ¢ matrix for some positive integer c.
Geometrically, this is the definition of a dual cone N composed of vectors
T. such that K-T > 0. The physical meaning for doing so is that K
may have negative entries which may give rise to unwanted singularities
and hence we define a new set of ¢ fields p; (a priori we do not know the

number ¢ and we present the standard algorithm of finding dual cones in

defined to be generated by these vectors as o := {>_, aik; | a; € R>o}; Our My should be M No.
In much of the literature My is taken to be simply M/, := {3, aiﬁi | a; € Z>o} in which case
we must make sure that any lattice point contained in My but not in M, must be counted as an
independent generator and be added to the set of generators {I?:.l} After including all such points
we would have M/, = M. Throughout our analyses, our cone defined by K as well the dual cone
T will be constituted by such a complete set of generators.
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(c)

(d)

the Appendix). Thus we reduce (2.41) further into

v; = [[ p° (2.42)
[0
whereby giving X; = [J; vf‘l" =T1l, pazj HiiTse with 37, K;;Tjo > 0. For our
%5 X Z example, c = 9 and
( PL_P2 P3 P4 P5s Ps P7_Ps Po \
Xg4e |1 1 0 0 0 0 0 0 1
Xgp|0O 1 1 0 0 0 0 0 1
Tja=| Xga |0 0 1 1 1 0 0 0 O
Xep |0 0 1 0 1 1 0 0 0
Xap|0 0 0 0 0 1 1 0 1
\ Xcs |0 0 0 0o o 1 1 1 o )

These new variables p, are the matter fields in Witten’s linear o-model.
How are these fields charged? We have written 7 + 2 fields v; in terms of
c fields p,, and hence need ¢ — (7 + 2) relations to reduce the independent
variables. Such a reduction can be done via the introduction of the new
gauge group U(1)*""+2) acting on the p;’s so as to give a new set of D-
terms. The charges of these fields can be written as Q.- The gauge
invariance condition of v; under U(1)°~(+2) by (2.42), demands that the
(c—r —2) x ¢ matrix Q is such that 3, TjaQra = 0. This then defines for

us our charge matrix ¢ which is the cokernel of T':
TQt = (,‘rja)(Qka)t = 07 .] = 17 WwT+2, a= 1,.,¢ k= 1’ ) (C -r- 2)

For our example, the charge matrix is (9 — 4 — 2) x 9 and one choice is

00 01 -1 1 -1 0 0
Q=0 1 00 0 0 1 -1 -1].

1 -110 -1 0 0 0 O

In the linear o-model language, the F-terms and D-terms can be treated
in the same footing, i.e., as the D-terms (moment map) of the new fields

Pa; With the crucial difference being that the former must be set exactly
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to zero® while the latter are to be resolved by arbitrary FI-parameters.

Therefore in addition to finding the charge matrix @) for the new fields p,
coming from the original F-terms as done above, we must also find the
corresponding charge matrix @Qp for the p; coming from the original D-
terms. We can find (Jp in two steps. Firstly, we know the charge matrix
for X; under U(1)"~!, which is A. By (2.41), we transform the charges
to that of the v,’s, by introducing an (r — 1) x (r 4+ 2) matrix V so that
V- K* = A. To see this, let the charges of v; be Vj; then by (2.41) we
have A; = %:VUK,-J- = V .- K. A convenient V which does so for our

1 0 -101 0

2y x Zy example is( 01 1 00 —1) . Secondly, we use (2.42)
10 0 10 1/ 4 iyxusa

to transform the charges from v;’s to our final variables p,’s, which is done

by introducing an (r + 2) x ¢ matrix Ujq so that U - T% = Id42)x(r+2)- In

1 0 0000 0 00
-1 1. 0000 0 00
: . 0 0 0100 0 00
our example, one choice for U isu;, =
0 0 000 1 -1 00
0 -1 0000 0 01
N 0 0.0000010(44‘,2)><9
Therefore, combining the two steps we obtaln ®Qp =V -U and in our

1 -1 0 -1 0 0
example,(v-U)a=[ -1 1 0 1 -1 0

-1 0 0 O

3. Thus equipped with the information from the two sides: the F-terms and D-
terms, and with the two required charge matrices () and V - U obtained, finally
we concatenate them to give a (c—3) X ¢ matrix ;. The transpose of the kernel
of Q;, with (possible repeated columns) gives rise to a matrix G;. The columns
of this resulting G, then define the vertices of the toric diagram describing the

polynomial corresponding to the singularity on which we initially placed our D-

5Strictly speaking, we could have an F-term set to a non-zero constant. An example of this
situation could be when there is a term a¢ + ¢QQ in the superpotential for some chargeless field ¢
and charged fields Q and Q. The F-term for ¢ reads QQ = —a and not 0. However, in our context
¢ behaves like an integration constant and for our purposes, F-terms are set exactly to zero.
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0 0 0 1 -11 -1 0 0]o
0o 1 0 0 0 0 1 -1 -1[0
. V 1 -1 1 0 -1 0 0 0 00
branes. Once again for our example,q. =
1 -1 0 -1 0 0 0 0 1]|¢
-1 1 0 1 0 0 0 -1 0 |¢
-1 0 0 0 0 1 -1 1 0|

100 -10 1 11
110 1 0 -1 0 o]. The columns of Gy, up to repetition, are
111 1 1 1 11

precisely marked in the toric diagram for ZZ; x 75 in Figure 2-3.

andg, =

P e
=)

Thus we have gone from the F-terms and the D-terms of the gauge theory to the
nodes of the toric diagram. In accordance with [48], G; gives the algebraic variety
whose equation is given by the maximal ideal in the polynomial ring
ClYZ,XYZ,Z, X 'YZ, XY Z, XZ] (the exponents (i, j, k) in X*Y7Z* are exactly
the columns), which is uvw = s?, upon defining u = (YZ)(XY 2)*(Z)(X 2)%v =
(Y22 (2)X( XY Z)%w=(Z)) (XY 1Z)(XZ)? and
s=(YZ2)XXYZ)(Z)>(X'YZ)(XY~'Z)(X Z)?% this is precisely C*/(Zy x Z,). In
physical terms this equation parametrises the moduli space obtained from the F and

D flatness of the gauge theory.

We remark two issues here. In the case of there being no superpotential we could
still define K-matrix. In this case, with there being no F-terms, we simply take K
to be the identity. This gives 7' =Id and @) = 0. Furthermore U becomes Id and
V = A, whereby making Q; = A as expected because all information should now be
contained in the D-terms. Moreover, we note that the very reason we can construct
a K-matrix is that all of the equations in the F-terms we deal with are in the form
[IXF=1X Jl-’j; this holds in general if every field X; appears twice and precisely twice
i;l the supjerpotential. More generic situations would so far transcend the limitations

of toric techniques.

Schematically, our procedure presented above at length, what it means is as fol-
lows: we begin with two pieces of physical data: (1) matrix d from the quiver encoding

the gauge groups and D-terms and (2) matrix K encoding the F-term equations. From
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these we extract the matrix G; containing the toric data by the flow-chart:

Quiver — d — A
!
F-Terms — K V552 v
\ X
T=Dualk) 5" U - VU
\ \
Q = [Ker(T)]" — Q= ( 9 ) — Gy = [Ker(Q))'
VU

2.3 Witten’s Cubic String Field Theory

String field theories have been studied for more than twenty years and become a
very broad topic. There are all kinds of string field theories, for example, Witten’s
bosonic cubic string field theory [15], Witten’s supersting field theory[16], Berkovits’
superstring field theory [109], Zwiebach’s closed string field theory [110] and Witten’s
boundary string field theory[111]. It will be hard to introduce all of them in this
thesis, so we will focus only on the Witten’s Cubic String Field Theory (CSFT)

which our calculation is based on (for a review, see[112]).

2.3.1 The basic idea

The basic idea in [15] is following. We start with an associative non-commutative
algebra B with a Z, grading (in fact, in string field theory, it is Z grading) and define
three basic operations: multiplication x, integration [ and derivation @), with

following properties:

grading(axb) = grading(a)+ grading(b), (2.43)
Qaxb) = (Qa)xb+(—)'ax(Qb), (2.44)
Q*> = 0, (2.45)
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/a*b - (—)“b/b*a, (2.46)
/ Q®b) = 0, Vb (2.47)
(axb)xc = ax(bxc), (2.48)

To have an intuition about these requirements, we can compare it with forms in
manifold, where @ will be the external derivative d, x will be the wedge product
A and [ will be integration of forms on the manifold. From this comparing, we
notice that there is a natural subspace By € B (zero form) which is closed under the
multiplication.

Using only above properties, we can define the gauge transformation of 1 — form

as

A = QA+ AxA—AxA, (2.49)
A = eQ+ At (2.50)

where we have written down both small and big gauge transformations. From them,

we can construct following quantities

F = QA+ AxA, (2.51)
L = AQA+§A3 (2.52)

For Witten’s Cubic string field theory, the action is proposed to be

I= /AQA + §A3 (2.53)
and the equation of motion is
F=QA+AxA=0 (2.54)

Having the aim in front of us, the task is to find the proper definitions of @, [, %
which satisfy these properties (2.43-2.48). To reach this, Witten has used his inspiring
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geometry picture. Using this picture, the x product of two strings is defined by gluing
the right half string of first string to the left half string of second string, which can

be written briefly as
(SL, SR) * (TL, TR) = (SL, TR)(S(SR - TL), (255)

Using the same gluing idea, the [ can be defined as to glue the left half string to the
right half string, i.e.,

/ S = / dS1dSré(St — Sr) (2.56)

The last piece is the derivative operator. For this, there is a natural candidate in

string theory, the BRST operator @p.

2.3.2 The string field theory in the oscillator modes

Although above geometry picture is very intuitive and attractive, it is hard to make
the calculation. Furthermore, to make the theory well defined, we need to deal a
lot of subtle points, like the ghost number, delta-interaction. These considerations
motived Gross and Jevicki [17, 18] to develop the oscillator mode expression for the
string field theory. It is the form most of calculations follow.

To do this, we expand the field X* into modes as
2(0) = z9 + V2 Y 2, cos(no), (2.57)
n=1

and define the creation and annihilation operators as

e i
Tn = 1@ Z(an —ar), (2.58)
.0 1 m N
= U7 = 71/ - \Qn ) 2.
pn Zaxn 2 a, (a’ + an) ( 59)
o n
To = 1 E(GO —ag), . (2.60)
.0 1
Po = —ig-= ﬁ(ao + ag), (2.61)



where we put the o/ explicitly for later convenience. Do same thing to the ghost fields

b, c as
+00 .
ct(o) = _Z cne™ = c(0) % imy(0), (2.62)
bi(o) = -Iiobneii’w = 7.(0) £ ib(0), (2.63)

where the modes c,, b, satisfy

{Cmbm} = 5n,—m, (2.64)

From these, we can write down the BRST operator

2 1 1
Qprst = D le-n(Ly + 5L + (L2, + 5 L) cal (2.65)
n=1

1
teo(Lg + 518" — 1),

where LZ, L3" are Virasoro algebra of matter fields and ghost fields respectively.

Now we can give the explicit forms for star-product and integration. Given a
string field ¥ as a functional of z(c),b(c), c(0) with ghost number one (recall that

the ghost number of ¢ is one and b, —1), we expand the field as
U[z(0),b(0), c(0)] = [¢(z) + Au(z)a”y + T (z)a”1a” | + ..]|Q) (2.66)

with
1) = ¢, |0)

and |0) is the SL(2, R) invariant vacuum. Then the integration is

/mp = (I|) (2.67)
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where (I| is the BPZ-conjugate of identity field |I) ® and can be expressed as

1 o n 1 n
I = b+(57r)b-(§fr>ezi=ﬂ<-> e-nb-n=3()ahanl e, |0)), (2.68)
Iy = E|o> , (2.69)
E = — Z O_pO_y + Z(—)"c_nb_n (2.70)
n>1 n>2
—2¢ Z( b—2n Cl — C- 1) Z(_)nb—Zn—l
n>1 n>1

In above we have written down two forms for the identity field. The first one is coming
from [17, 18] and the second is coming from [113]. In fact, it was showed [114] that
identity field belongs to a set of wedge states and can be written in the form that
only total Virasoro operator L, acting on the SL(2, R) invariant vacuum. We will
come back to this point later.

The star-product is defined by

(1] = (V3] [¥2) ® |¥3) (2.71)

where (U] is the BPZ-conjugate of |¥;). The matter part of three-string vertex is
given by [122, 125]

[Vi") = /d26p1d26P2d26p3526(1’1 + pg + p3)e ™0, p >193, (2.72)
1 SV
Fo = 1Y a0V Y manty Vet
rs;m,n>1 rs;n>1
1 T 14
+§ > NPy Voo Plry (2.73)

where a{")*! are non-zero oscillator modes with m > 1, and |0, p),,; = |p1) ®|p2) @ |p3).
This expression is in the moment representation and we can translate it into the pure

oscillator modes as did in [116, 125]. The ghost part can be found in [135, 175] as

3 M (s)
"/::}gh> = e_ Er,s:l Zn>1 ,m>0 —nX:”s"b—mC(l)Cgl) IO>1 ®

6The BPZ-conjugation is defined as ¢, — (—)"*"¢_, on the modes of fields ¢ with the conformal
weight h.
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e et 0), @ cfc” [0), (2.74)

where X7°  as well as V7, are Neumann coefficients which can be found in 17, 18].
Now we complete the definition of string field theory in the oscillator modes.
Using this formula, a lot of numerical works have been carried out to check Sen’s
three conjectures to very high accuracy.
Before we finish this section, it is worth to mention that except above oscillator
mode expression for string field theory, there is another form, i.e., the conformal

expression which was initiated in [173]. For a good review, see also [114, 118].
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Chapter 3

Mirror symmetry by O3-planes

3.1 Introduction

In [39], Intriligator and Seiberg found a new duality, the so-called “mirror symmetry”,
between two different N = 4 gauge theories in three dimensions. There exists such
a mirror duality in three dimensions due to several special properties. First, the
N = 4 theory has a global R-symmetry SO(4) which can be rewritten as SU(2) x -
SU(2)g, i.e., as the direct product of two independent SU(2) factors. This is one
crucial property for mirror symmetry because one action of the mirror duality is
to simply interchange these two SU(2) factors'. Under the global R-symmetry, the
vector multiplet is in the adjoint of SU(2), and is invariant under SU(2)g while the
hypermultiplet is in the adjoint of SU(2)g and is invariant under SU(2), (notice that
both multiplets have four scalars if we dualize the gauge field A, in three dimensions to
a scalar). Furthermore, the mass parameter transforms as (3,1) of SU(2) x SU(2)r
and the Fl-parameter as (1,3). So after mirror duality, the Coulomb branch and
mass parameter of one theory change to the Higgs branch and FI-parameter of the
other and vice versa. Such mapping has an immediate application: because the Higgs

branch is not renormalized by quantum effects [51], we can get the exact result about

'When we discuss the mirror duality of N = 2 theory in three dimensions, we must enhance the
explicit U(1) global R-symmetry to two U(1)’s, i.e., U(1) x U(1). Otherwise there is no good way
to define the mirror theory. For details see [24, 64].
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the Coulomb branch of one theory which is corrected by quantum effects by studying
the Higgs branch of the mirror theory which can be studied at the classical level.
Because of this and other good applications of mirror duality (for details, see [39]), a
lot of work [52, 53, 10, 54, 56, 57, 58, 59, 67] has been done in this topic to try and
find new mirror pairs.

There are several ways to construct the mirror pairs. The first way is to use the
arguments coming from field theory [39, 52]. This method gives a lot of details how
fields and parameters map to each other under the mirror duality. However, this
method requires a lot of results which are not easy to get in field theory, so it is hard
to use it to construct general mirror pairs. The second way is to use M-theory to
construct the mirror pairs as done by Porrati and Zaffaroni in [54]. The third way is to
use the geometric realization in [55]. The fourth way, which is also the most popular
way in the construction of mirror pairs, is given in [10] by using brane setups. The
brane setup has the good property of making many quantities in field theory more
visible. For example, the R-symmetry SU(2), x SU(2)g corresponds to rotations in
planes X34® and X™9. The Coulomb branch and Higgs branch become the positions
of D3-branes in NS-branes and D5-branes. The mass parameter and Fi—parameter
also have similar geometric correspondences. These geometric pictures give us some
intuition to understand the problem better (for more applications of brane setups,
see review [22]). The key observation in [10] is that the mirror duality is just the
S-duality in string theory. Using the known property of S-dual transformation of
various kinds of branes [10, 53, 56, 57] we can easily find the mirror pairs. In this
paper we will follow the last method.

Because we will use the brane setup to find the mirror theory, let us talk more
about the general idea [10] of the brane construction. Given a gauge theory with
gauge group and some matter contents, first we try to find a proper brane setup
which represents the gauge theory (usually it is the Coulomb branch given explicitly

in the brane setup). After that, we move to the Higgs branch? of the theory by split-

2Usually, we can break all gauge symmetries by Higgs mechanism. However, in some cases after
Higgsing there are still some massless gauge fields. We call the latter case “incomplete Higgsing
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ting the D3-branes between NS-branes and D5-branes. Then we make the S-duality
transformation (mirror transformation) which changes the NS-brane to D5-brane,
D5-brane to NS-brane and D3-brane to itself, while perform the electric-magnetic
duality in the world volume theory of D3-branes. When the brane setup involves an
orientifold or ON plane, we need to know the S-duality rule for them too. Finally,
we read out the corresponding gauge theory given by the S-dual brane setup—it is

the mirror theory which we want to find.

In applications, it is straight forward to use the above procedure to give the mirror
theory of U(n) gauge theory with some flavors or the product of U(n)’s with some
bifundamentals because the brane setup of those theories involve only NS5-branes,
D5-branes and D3-branes and we know how to deal with them. However, when we
try to find the mirror for a gauge group Sp(k) or SO(n), we must use an orientifold
plane in the brane setup. Now a problem arises because sometimes we do not know
how to read out the gauge theory of the S-dual brane setup of these orientifolds. The
orientifolds which are involved in the construction can be divided into two types: the
orientifold three plane (O3-plane) and the orientifold five plane (O5-plane). Sen has
given an answer about the gauge theory under the O N-projection, which is the S-dual
of the O5~ plane plus a physical D5-brane, in [60]. Using this result, we can get the
mirror theory for Sp(k) [56, 57] by using the orientifold five plane in the initial brane
setup. For SO(k), if we insist on using the orientifold five plane again in the brane
setup, we must know what is the gauge theory under the ON™* projection which is

the S-dual of O5" plane. It is still an open problem to read it out.

In the above paragraph, we mention that there is a difficulty to use orientifold five-
plane to construct the mirror theory of SO(n) gauge group. However, for constructing
the Sp(k) or SO(n) gauge theory we can use an O3-plane instead of the O5-plane.
Because under S-duality the O3-plane changes into another O3-plane, we know how
to read out the gauge theory (unlike the O5-plane which becomes ON plane under S-
duality). Motivated by this observation, in this paper we use O3-planes to investigate
the mirror theory of SO(n) and Sp(k) gauge groups. In particular, we get the mirror

theory for SO(n) gauge group which is a completely new result. Furthermore, our
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proposal for the construction of the mirror theory predicts a nontrivial strong coupling
limit of field theories with eight supercharges.

The contents of the paper are as follows. In section 2, we discuss some basic facts
on Op-planes which will set the stage for calculating the mirrors. These include the
four kinds of O3-planes and the s-configuration involving 1/2NS-brane and 1/2D5-
brane. In section 3 we discuss the splitting of physical D5-branes on O3-planes. It
is a crucial ingredient in our construction of mirror theory. By S-duality, we get
the rules for how a physical NS-brane can split into two 1/2NS-branes or conversely
how two 1/2NS-branes can combine into a physical NS-brane. The latter predicts a
nontrivial transition of strongly coupled field theories. After these preparations, we
give the mirror theory of a single gauge group with some flavors: Sp(k) in section 4,
Sp'(k) in section® 5, SO(2k) in section 6 and SO(2k + 1) in section 7. In sections
eight and nine we generalize the mirror construction to products of two gauge groups:
Sp(k) x SO(2m) in section 8 and Sp'(k) x SO(2m + 1) in section 9. Finally, we give

conclusions in section 10.

3.2 Some facts concerning O3-planes

In this section, we summarize some facts about the O3-plane which will be useful for

the mirror construction later.

3.2.1 The four kinds of O3-planes

There are four kinds of O3-planes which we will meet in this paper (for a more
detailed discussion, see [61]): 03+,03~,03+,03~. However, before entering the
specific discussion of O3-planes let us start from general Op-planes. When p < 5,
there exist four kinds of orientifolds Op*, Op~, O/;*', O/vp‘ Among these four we are
very familiar with Op™*, Op~, Op—. They can be described perturbatively as the fixed

planes of the orientifold projection §2 which acts on the world sheet as well as the

3There are two ways to get Sp(k) gauge group: by O3"-plane or é?’)q'-plane. We denote the
theory given by O3*-plane as Sp(k) and the theory given by O3+*-plane as Sp'(k).
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Chan-Paton factors. By different choices of the action €2 on the Chan-Paton factors
we get two kinds of projections which we denote as + projection. In the + case,
we can put only an even number of 1/2Dp-branes and the corresponding plane is
the Op™ plane. In the — case, we can put an even or odd number of 1/2Dp-branes
and the corresponding plane is Op~ for even number of 1/2Dp-branes and 0,5_ for
odd number of 1/2Dp-branes. For Op~, because there is an odd number of 1 /2Dp-
branes, one 1/2Dp-brane must be stuck on the orientifold plane so that sometimes
we consider the OT)— as the bound state of the Op™ and the 1/2Dp-brane (for more
detailed discussion, the reader is referred to [2]). The Op* is more complicated and is
discussed in detail by Witten in [61]. In that paper, Witten observes O3-planes from a
more unified point of view, namely discrete torsion (he deals with O3-planes. However
the discussion can be easily generalized to other Op-planes). We can distinguish Op-
planes by two Z, charges (b, c) with the definition b = [zp: Bys and ¢ = [pps—, C°7P
(the (b, ¢) is defined under modular two and the discussion presented here comes from
lecture [62] already given by one of the authors at ITP, Santa Barbara; see also [63]).
The second charge c exists only for p < 5. For p > 5, it can not be defined and
we are left only with two types of Op-planes (it is a little mysterious that O_vp— does
not exist for p > 5, some arguments can be found in [62, 63]). We summarize the
properties of these four Op-planes according the discrete torsions (b, c) in Table 3.2.1

(where S-duality is applied only to p = 3).

Table 3.1: The summary of the properties of the four Op-planes. The charge is in
units of physical Dp-brane.
(b,c) | notation | charge | Gauge group | (b,c) after S-duality(p = 3 only)

(0,0) O~ —2p5 SO(2n) (0,0) O~
(0,1) O~ 2 — 2772 SO(2n+1) (1,0) O*
(1,0) o+ 25 Sp(n) (0,1) O~
(1,1) O+ 2P—5 Sp'(n) (1,1) O+

These four kinds of O-planes are not unrelated to each other and in fact change to
each other when they pass through the 1/2NS-brane or 1/2D-brane [29, 57, 63]. The
change is shown in Figure 3-1: when Op‘(O’;—) passes through the 1/2NS-brane, it
changes to Op*(Op™*) and vice versa; when Op~(Op™) passes through the 1 /2D(p+2)
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-brane, it changes to O,;‘(é;"') and vice versa.

1/2NS 1/2NS
| ~ | o~ e~
+ - + + - o+
1/2D5 1/2D5
| ] ] I
t ] ] ]
I [} 1 I
1
I

+ 4+ 4+ - - -

Figure 3-1: The change of four kinds of O3-planes as they cross 1/2NS-branes and
1/2D5-branes. In our brane setup, D3-brane and O3-plane will extend along X°'%¢,
D5-brane, X %278 and NS-brane, X 123>, Henceforth, we use cyan (if the reader uses
colored postscript rendering) lines to denote the 1/2NS-brane, blue lines to denote the
1/2D5-brane, dotted horizontal (red) lines to denote the O3*-plane, dotted horizontal
(green) lines to denote the O3~ -plane, dotted horizontal (yellow) lines to denote the
O3* and finally dotted horizontal (pink) lines to denote the O3~. Furthermore, for
simplicity, we use —, +, =, F to denote O3~,03%,03~, 03+ respectively. '

After the discussion of general Op-planes, we focus on O3-planes which will be
used throughout this paper. For O3-planes, the charge of O3~ is —1/4 while the
charges of O3+,6§—,(5§+ are 1/4. The fact that the charges for the latter three
O3-planes are identical is not a coincidence and they are related to each other by the
SL(2, Z) duality symmetry in Type [IB. In particular, under S-duality O3* and 03-
transform to each other while O3+ transforms to itself. O3~ transforms to itself also
under S-duality because it is the only O3-plane with —1/4 charge. One immediate
application of the above S-duality property is that the change of O3-planes crossing
the 1/2NS-brane is exactly S-dual to the change of O3-planes crossing the 1/2D5-
brane. So our rule is consistent. The above discussions will be useful later in the

study of mirror symmetry.
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3.2.2 The supersymmetric configuration

In the procedures involved in mirror transformations, we need to break the D3-branes
between the NS-brane and D5-brane to avoid the so called s-rule [10]. Furthermore,
to read out the mirror theory from the brane setup it is convenient to move a 1/2NS-
brane along the X® direction (our notations and conventions for the brane setups
for all kinds of branes is given in the caption of Figure 3-1.) to pass through the
1/2D5-brane such that the D3-branes ending on the 1/2NS-branes are annihilated in
order to keep the linking number between 1/2NS-brane and 1/2D5-brane invariant.
All these actions require the understanding of supersymmetric configurations in the
presence of O3-planes. We summarize these results in this subsection. The tool in
our discussion of s-configuration is still the conservation of linking number between
1/2NS-brane and 1/2D5-brane. The formula of linking number for 1/2NS-brane and
1/2D5-brane [10] is

(Rps — Lps) + (Lps — Rp3)
(Rnvs — Lns) + (Lps — Rp3)

Lys =
(3.1)

N—= D=

Lps =

where Rps (Lps) is the D5-charge to the right (left) of NS-brane (1/2D5-brane has
1/2 charge) and similar definition to others. Because we have four kinds of O3-planes
we will have four kinds of supersymmetric configurations including one 1/2-NS brane
and one 1/2-D5 brane. These four different cases are:

1/2D5 — 1/2NS) or (1/2NS —1/2D5) O3+,
1/2D5 —1/2NS) or (1/2NS —1/2D5) O3-,
1/2D5 —1/2NS) or (1/2NS —1/2D5) 0O3*,
1/2D5 — 1/2NS) or (1/2NS — 1/2D5) 03,

(3.2)

w
SN N N St
w
|
—~ ~—~ — ~~

where the configuration 03~ (1/2D5 — 1/2NS) or (1/2NS —1/2D5) O3+ means
that the O3~ plane is at the left, O3+ at the right. In the middle we put 1/2NS-brane
and 1/2D5-brane according to the order 1/2D5-1/2NS from left to right (see part (a)
of Figure 3-2) or 1/2NS-1/2D5 (see part (b) of Figure 3-2).
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1/2D5 1/2NS 1/2NS 1/2D5

(a) (b)

Figure 3-2: Starting from any one (left or right figure) , we move the 1/2NS-brane
along X¢ direction to pass 1/2D5-brane and get the other (right or left). To allow such
a process, we must conserve the linking number with the condition that NV, N>0.In
this figure and henceforth, when NS-brane and D5-brane show at the same time in the
figure with proper two-dimensional coordinates (for example, here X = X% Y = X5),
for clarification we use a line to denote an extended brane in these coordinates and
use a cross to denote a point-like brane.

The general pattern for the above four supersymmetric configurations is shown in
Figure 3-2, where we assume the number of connected D3-branes (in physical units)
from the left 1/2D5-brane to the right 1/2NS-brane is N and from the left 1/2NS-
brane to the right 1/2 D5-brane is N. So a configuration to be supersymmetric is
equivalent to the solution of IV, N > 0 such that they conserve the linking number

after crossing.

The first case: 03~ — — — O3+

In this case we start from the brane setup (a) of Figure 3-2 with O3~ plane at the
left, 03- plane in the middle and 03+ plane at the right. The linking numbers are
Lijaps = 3(5-0)+[(=1) = (§+N)] = =N—g and Ly ovs = 3(0—3)+[(G+N) = (3)] =
N — 1. Now we move the 1/2D5 along X° direction to pass through 1/2NS and get
the (b) of Figure 3-2 with O3~ plane at the left, O3" plane in the middle and O3+
plane at the right. For the latter we have linking numbers as L;/ops = %(0 - %) +
(V43 = (D) = § =1 and Lyas = 3 = 0) +[(=}) ~ (VN + 3] = —N — &

Comparing these two linking numbers we get

N=-N (3.3)
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It is a highly constraining equation. For the supersymmetric configuration, the only
solution is N = N = 0. This means that when we break the D3-brane to go to the
Higgs branch, we can not put D3-brane between 1/2NS-brane and 1/2D5-brane in

this orientifold configuration.

The second case: 03+ — — — 03~

Starting from brane setup (a) of Figure 3-2 with O3 at the left, O3+ in the middle and
O3~ at the right, we find the linking numbers as Lijops = 3(3 -0)+[(3) -3+ N)] =
—N+1and Lijays = 30— 3) + [(} + N) = (3)] = N — L. Again by moving the
1/2D5-brane to pass through 1/2NS-brane we get the brane setup as (b) with the
middle O3-plane changed from O3* in (a) to O3~ in (b) (the left and right O3-plane
are invariant under the motion). The linking numbers for the latter are L, /2D5 =
50~ +[(V -3~ ()] = F~3 and Lujaws = §(3~0) +1(3) ~ (V- 1)) = -~ + 2.

From these relations we find the equation

~N+1=N. (3.4)

So for a consistent supersymmetric configuration there are three solutions: (N, N) =
(0,1); (3, 3); (1,0).

The third case: 03— — — — 03+

For the third case, we start from the brane setup (a) with O3~ at the left, O3~ in the
middle and O37 at the right. The linking numbers are Lyjps = $(3 — 0) + [(3) —
(—3+N)]=—-N+3%and Lijans = 5(0—3)+[(—1+N) = (3)] = N— 2. Now we move
the 1/2D5-brane to pass through 1/2NS-brane and get the brane setup (b) with O3+
in the middle. The linking numbers become Ly/5ps = 2(0—2)+[(N+1)-(})] = N-1
and Lijavs = 2(3—0)+[(3) = (N +1)] = —N + 1. By comparing these relations we

have

~N+1=AN. (3.5)
So again there are three solutions: (N, N) = (0,1); (3, 3); (1,0).
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The fourth case: 03+ — — — 03~

For the last case we start from the brane setup (a) with O3+ at the left, O3+ in the
middle and O3~ at the right. The linking numbers are Li/2ps = (3 —0)+[(3) — (3 +
N)]=—N+1and Lijovs = 2(0—-3) +[(3+N) — (—3)] = N+ ;. Now we move the
1/2D5-brane to pass through 1/2NS-brane and get the brane setup (b) with O3~ in
the middle. The linking numbers change to Ly /ops = (0—3)+[(N+1)—(-1)] = N+1
and Lyjons = 2(3 = 0) + [(3) — (N + })] = —N + 1. From these relations we have

~N=N. (3.6)

The only solution is (N, N) = (0,0) as in the first case.

Let us summarize the results in the last four subsections. When the charge of
O3-planes at the two sides are the same (case two and case three), the condition
is N+ N = 1, so there is annihilation or creation of D3-branes in crossing. When
the charge of O3-planes at the two sides are different (case one and case four), the
condition is N = N = 0, so there can not be any D3-branes between the 1/2NS-brane
and 1/2D5-brane.

3.3 The splitting of the physical brane

To construct the mirror theory by brane setups, we can follow the procedure given
in the introduction [10]. However, in the presence of the O3-plane, we need one
new input: how to split the physical D5-brane into two 1/2D5-branes on the O3-
plane. Initially, the physical D5-brane can be placed off the O3-plane in pairs of
1/2D5-branes (see Figure 3-3). We can move the pair of 1/2D5-branes to touch the
O3-plane. After touching the O3-plane, in principle every 1/2D5-brane can move
freely on the O3-plane. We call such an independent motion of the 1/2D5-brane as
“splitting” of the physical D5-brane. We want to emphasize that the splitting of a
physical D5-brane into two 1/2D5-branes is a nontrivial dynamical process in string

theory and can be applied to many situations. Here we need the splitting because in
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the mirror theory, the gauge theory is given by D3-branes ending on 1/2NS-branes
which are the S-dual of 1/2D5-branes in the original theory. In this paper, we give
only a preliminary discussion. We found some novel results: sometimes there is a
creation of one physical D3-brane between these two 1/2D5-branes; sometimes there
is an annihilation and sometimes, no creation and no annihilation. We found these
results by matching the Higgs branch moduli of the Sp or SO theory with the correct

dimension of moduli space.

X 1/2D5

Figure 3-3: Splitting of a D5-brane on the O3-planes. The left figure shows that
a pair of 1/2D5-branes moving to touch the O3-plane. The right figure shows that
when they touch the O3-plane they can split. The ? in the middle of these two
1/2D5-branes means there is nontrivial dynamics dependent on different situations.

3.3.1 The splitting of D5-branes without ending D3-branes

Before going to the general situation let us discuss the splitting of D5-branes which
do not have any D3-branes ending on them. First we discuss the case where there
is only one physical D5-brane and O3-plane (see Figure 3-3). Before splitting, every
1/2D5-brane has linking number zero. After splitting, there can be N physical D3-
branes between these two 1/2D5-branes (to keep supersymmetry, there can not be
anti-D3-branes between them; furthermore, because here we do not have any D3-
branes initially, there can not be annihilation either). Let us calculate the linking

number after splitting:
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O3 before splitting ALyt ALy ign

03+ —N N

03+ -N N (3.7)
03~ —5—N Ly N

03~ i~ N —i1+N

In BPS states, we have the tension of D5-branes proportional to their charge
(linking number). To have the minimum tension configuration, it is natural to have
N = 0 for the first three cases. However, for the last case, N = 0 and N =1 are
equally favorable just from the point view of tension. We will fix the ambiguity in
the next paragraph. However, before we end this paragraph, we want to emphasize

that no matter what case it is, the total change in linking number is always

AL=0 or AL = :I:% .

We can fix the ambiguity for the last case by considering Higgsing. Starting from
the SO(3) gauge theory with one flavor, we can Higgs it to SO(2) with one singlet
(there are 3 — 1 = 2 gauge fields which get mass, so we leave only 3 x1 -2 =1
singlet). In part (a) of Figure 3-4 we assume /N = 0 in the splitting process and go to
the Higgs branch. By moving 1/2D5-branes outside we find the final theory is SO(2)
without singlets in part (b). This means that our assumption is wrong. Choosing the
other assumption N = 1 in part (c), by moving 1/2D5-branes outside we get the final
theory is SO(2) with a singlet in part (d) which is exactly what we expect from the
field theory. This shows that, for matching the correct moduli dimensions of Higgs

branch, in last case of (3.7) there should be a D3-brane created in the splitting.

The discussion of the splitting of physical D5-branes becomes more complex if
there are more than one D5-brane to be split. The complexity manifests in the last two
cases in (3.7) because in these cases there is a change of linking number (AL = +1)
for every 1/2D5-brane. Before splitting, we have, for example, 2n 1/2D5-branes with

linking number zero. After splitting, we have n 1/2D5-branes with linking number %
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(c) (d)

Figure 3-4: The Higgs branch of SO(3) with one flavor. (a) We assume when the
splitting, there is no D3-brane generated. (b) By moving 1/2D5-branes outside, we
get SO(2) without singlet. (c) We assume when the splitting, there is a D3-brane
generated. (d) By moving 1/2D5-branes outside, we get SO(2) with one singlet given
by D3-brane ending on 1/2D5-brane.

and n, with linking number —%. The different order of linking number gives different
physical content, i.e., the order determines when there should be D3-branes created
and when there are no D3-branes created.

To illustrate our idea, let us see Figure 3-5. After splitting one D5-brane according
to the analysis in the last paragraph, we continue to split the second D5-brane.
However, in this case, we have two choices. In the first choice, the second D5-brane is
far away from the first D5-brane in X*® direction like part (a). So locally the splitting
should be the same as the first D5-brane and we get part (b). Notice that the order of
linking number of 1/2D5-branes is —%, +%, —%, +%. In the second choice, the second
D5-brane is in the middle of the pair of first 1/2D5-branes as part (c). Naively,
the second D5-brane will see the O3~ -plane (in fact, D5-brane will see more) so the
splitting looks like to go as part (d) with the order of linking number —%, —%, +3,+3.
However, part (d) is not consistent with the Higgs branch of SO(3) with two flavors.

73



Furthermore, because there are eight supercharges, the different positions of D5-
branes should not effect the physics. So we argue that from part (c) we should get
part (b) too. In part (c), the second D5-brane sees not only the O3~ -plane, but also
the one created D3-branes, 1/2D5-branes at left with A = —% and 1/2D5-branes at
right with A = +%. This more complete information determines that the second

D5-brane will split to part (b).

1/2D5

>¢< -12 +172 172 +172 <12 +172

- MmN
~ X . = ~ .z

()

(b)

-172 -112 +1/2 +1/2

N 7 N\ 7N\ 7

~ ~
— —

(d)

Figure 3-5: The splitting of the second D5-brane. (a) second D5-brane is far away
from the first D5-brane. (b) the splitting of second D5-brane from configuration in
part (a). (c). second Db5-brane is in the middle of first D5-brane. (d) the naive
splitting of second D5-brane which turns out to be wrong.

From the above observation, we propose that the correct order of linking number
should be —1,+1, -1 41 —1 41 (notice the alternating fashion of —% and +3).
We make such a suggestion because it is the only correct order which can produce
the consistent Higgs pattern for SO(K) gauge group with N flavors. It will be very
interesting if we can derive such a rule from string theory. Furthermore, this proposal
will give very interesting predictions which we will discuss later.

Let us pause a moment to summarize the results we have obtained above. Without
the D3-brane ending on D5-branes, (1) the change of linking number of 1/2D5-branes
is AL = 0 for O3+,03+ and AL = +3 for 037, O03-; (2) for the splitting of a bunch
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of D5-branes, the order of linking number is —%, +1 —%, +%, vy —

27 y 3

N =
N =

3.3.2 The splitting of D5-branes with ending D3-branes

After the discussion of the splitting of D5-branes without D3-branes ending on them,
we consider the case that there are N D3-branes ending on them. The results for
this latter case can be derived from the results in the last subsection. For example,
let us discuss the case of one D5-brane with one ending D3-brane in Figure 3-6. We
can add one 1/2NS-brane such that the D3-brane ending on it as part (a). Then we
can move D5-brane to the right of 1/2NS-brane and annihilate the D3-brane as part
(b). Now the part (b) is the case we discussed in the last subsection. We can split
the physical D5-brane and move two 1/2D5-branes to left of 1/2NS-brane by using
the result in section 2. By this loop, we finally get the splitting of D5-brane with
one ending D3-brane. For more D3-branes ending on D5-branes we can add more

1/2NS-brane and repeat the above procedure.

(b)

Figure 3-6: (a) One D3-brane ends on a physical D5-brane. We can add a 1/2NS-
brane at the right. It should not affect the discussion. (b) By moving D5-brane to
right of 1/2NS-brane we annihilate the ending D3-brane.

Although the above trick solves our problem completely, it is too tedious and
we need a more direct way to see it. Notice that the change of the linking number
of 1/2D5-branes happens only at splitting. So we can use the changing of linking
number as the rule to determine the splitting of D5-brane. In general there will be
N, D3-branes ending on D5-brane from the left and Ny D3-branes, from right. The
rule depends only on the absolute difference between Np, Ng, i.e., N = |Np — Npg|.

We summarize the rule in Table 3.3.2.
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Table 3.2: The rules of splitting of D5-brane, where N = |N;, — Ng| is the difference
of D3-branes ending on D5-brane from the left and the right.

03-plane N = even N = odd
o3+ AL=0 AL =+% inorder of —1,+%,—7,+%, ...
03+ AL =0 AL =1 in order of =1 +%,-1 41 ..
03~ AL ==7 in order of —2,+%,—%,+3, ... AL=0
03— | AL=+%inorder of -1, +1, -1 +1 .. AL=0

Table 3.3: The rules of splitting of NS-brane, where N = |Ny, — Ng| is the difference
of D3-branes ending on NS-brane from the left and the right.

03-plane N = even N = odd
03~ AL=0 AL =+1 in order of -1, +1 -1 +1 ..
03+ AL=0 AL =+1 inorder of —%,+24, -1 41 .
03~ AL = %1% in order of —%,+3,—%,+3, ... AL =0
03* AL =+3 inorder of —3,+3,—3,+3, AL=0

3.3.3 The splitting of NS-branes and novel predictions of
field theory in the strong coupling limit

Making S-duality, we can get the rules of splitting physical NS-branes into 1/2NS-
branes on O3-plane as Table 3.3.3.

From Table 3.3.3, we get two predictions of N = 4 three dimensional field theory
in the strong coupling limit (see Figure 3-7). In the first case (part (a) of Figure
3-7), the field theory is SO(2k) x Sp(k) x SO(2k) with two bifundamentals. From
the brane setup in part (a), we see that, by reversing the process of the splitting
of the NS-brane, we can move two middle 1/2NS-branes to meet together and leave
O3~ -plane. In field theory, moving two middle 1/2NS-branes together corresponds
to the strong coupling limit of Sp(2k) gauge theory, and moving NS-brane off the
O3~ -plane corresponds to turning on “FI-parameters” 4. So our brane configuration
predicts that, at the strong coupling limit of Sp(2k) and the turning of FI-parameter,
the original theory SO(2k) x Sp(k) x SO(2k) with two bifundamentals will flow to
SO(2k) without any flavor. The second case is given in part (b) of Figure 3-7. By
the similar arguments, we predict that at the strong coupling limit of SO(2k + 2) and
the turning of Fl-parameter, the field theory Sp(k) x SO(2k + 2) x Sp(k) with two

4In fact, it is a hidden “FI-parameters”. We will discuss it more in section 4.3
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bifundamentals will flow to Sp(k) without any flavor. It will be interesting to check

these two predictions from the field theory point of view.

1/2NS 1/2NS
k X k gk
k
K K k k+1 X

-+ - + - 4+
@ (b)

Figure 3-7: (a) SO(2k) x Sp(k) x SO(2k) gauge theory with two bifundamentals. (b)
Sp(k) x SO(2k + 2) x Sp(k) gauge theory with two bifundamentals.

3.4 The mirror of Sp(k) gauge theory

Now we start to construct mirror pairs using the above knowledge. First let us discuss
Sp(k) gauge theory with N fundamental flavors. In this case, the brane setup is as
follows: we put 2k 1/2D3-branes, i.e., branes and their images under the O-plane
(extended in X%?¢) ending on two 1/2NS branes (extended in X°2345) along X°©
while 2NV 1/2D5-branes (extended in X°*?78%) are put in the middle (see (a) of figure
3-8). Then O3-planes from the left to right read as 03=,03*,03~. This O3-plane
configuration reminds us of the special s-configuration discussed in the last section.
Because in the presence of O3-planes the s-configuration is a little different from the
known s-rule in [10], we will demonstrate the detailed steps for the mirror construction

for Sp(1) with three flavors. Thereafter we quickly go to the general Sp(k) case.

3.4.1 Sp(1l) with the 3 flavors

For the Sp(1) gauge theory with 3 flavors we have the following information about
the moduli space of the Higgs branch and the Coulomb branch as well as the FI-
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parameters and mass parameters:

d, = 1,

dy = 3x2-3=3,

7 (3.8)
#m = 3,

#C =0

After the mirror map, we should have a mirror theory which has d, = 3,dg = 1, #( =
3,#m = 0, i.e. the Coulomb branch and the Higgs branch are interchanged while
the mass parameters and FI-parameters are exchanged [39]. However, when we count
these parameters, sometimes we meet nontrivial situations, such as the “hidden FI-
term” explained in [56]. We will see later that these “hidden parameters” arise in our

construction and will discuss them in more detail later.

The details of the mirror construction are given in Figure 3-8. Let us go step by
step. Part (a) is just the brane setup for Sp(1) with three fundamental flavors. By
moving the physical D5-brane to touch the orientifold O3 plane, i.e., setting the
masses to zero, we can split them into 1/2D5-branes as in part (b). Now we go to
the Higgs branch by splitting the D3-branes between those 1/2NS-branes and 1/2D5-
branes. However, from (3.3) and (3.6), we must split these D3-branes as given by part
(c). The crucial point is that there is no D3-brane connected between the 1/2NS-
brane and its nearest 1/2D5-brane because it is prohibited by the supersymmetric
configuration discussed in section 2. Now we can use the rules (3.3) and (3.6) to
move the left 1/2NS-brane crossing the neighboring right 1/2D5-brane and the right
1/2NS-brane crossing the neighboring left 1/2D5-brane. The result is given by part
(d). Notice that in such a process, no D3-brane is created or annihilated. Applying
(3.4) and (3.5) to move the 1/2NS-brane across 1/2D5-brane, we reach part (e). In
this process, the physical D3-brane which connects the 1/2NS-brane and 1/2D5-brane
is annihilated. Now we can apply the mirror transformation to give the result shown
in part (f). However, it is a little hard to read out the final gauge theory because of
the O3~ and O3~ projections in the same interval. We can get rid of this ambiguity

by applying (3.3) and (3.6) again to reach the result in part (g).
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Now we have the brane setup for the mirror theory in part (g) of figure 3-8. We can
read out the theory directly from the brane setup according the standard rule: For 2k
1/2D3-brane stretching between two 1/2NS-branes with 03~, 03—, 03+, 03+ planes
we get SO(2k), SO(2k + 1), Sp(k), Sp'(k) gauge groups respectively. For one 1/2D5-
brane between two 1/2NS-branes it contributes one fundamental half-hypermultiplet
for that gauge group. For one physical D5-brane between two 1/2NS-branes it con-
tributes one fundamental hypermultiplet for the gauge group. For two gauge groups
which have a common 1/2NS-brane there is a bifundamental (in the presence of O3-
plane, such bifundamental is, more exactly, half-hypermultiplet). Applying the above
rules we immediately get the mirror theory as SO(2) x Sp(1) x SO(2) with two
bi-fundamentals and one fundamental for Sp(1). Here we want to emphasize that
in general we get only half fundamental hypermultiplets coming from the 1/2D5-
brane. The unusual point for this explicit example is that the two 1/2D5-branes are
in the same interval such that they can combine together and leave the orientifold
(see section 3). Now let us calculate the moduli spaces and parameters to see if
they are really mirror to each other. For the mirror theory in the part(h) of Figure
3-8, it is easy to get the dimensions of moduli spaces as d, = 1+ 1+ 1 = 3 and
dg = (2x2+2x2)/24+1x2—-(1+143)=6—5=1, so we see the results match
when comparing to 3.8. However, when we turn to calculate the mass parameters and
FI-parameters, a mismatch occurs. In the mirror theory, we have two bifundamentals
and one fundamental. For the two bifundamentals we do not know how to turn the
mass parameters so we get the #m = 1. Because there are no U(1) factors in the
mirror theory, it seems that we should get #( = 0. Now comparing with the original
theory, we find a mismatch in the mass parameters and FI-parameters. The solution
of the above mismatch is given by the concept of “hidden FI-term” which we will

discuss later [56].

3.4.2 Another method to go to the Higgs branch

In the above procedure, we split D5-branes first, then went to the Higgs branch by

splitting the D3-branes. However, we can go to the Higgs branch in another way by
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splitting the D3-brane first on the physical D5-brane and then splitting the D5-brane
on the O3-plane. The procedure of this second method is drawn in Figure 3-9. In
part (a) , we keep the D5-branes off the O3-plane and split the D3-branes to go the
Higgs branch (such splitting is very familiar to us already, see [10]). By moving the
physical D5-brane to cross the 1/2NS-brane, we can get rid of the D3-brane ending
one D5-brane and 1/2NS-brane. The result is shown in part (b). Now we move the
D5-brane to the O3-plane and split them. For consistency with the first method in the
last subsection we must require the splitting of D5-brane with one D3-brane ending
on it as the rule given in section 3.2. In fact, as we discussed above, we find all rules
in section 3.2 in this way. It is easy to check that in this example we should get the

same result as part (e) of Figure 3-8.

3.4.3 The “hidden FI-term”

We have met the mismatch of mass and FI parameters in the above mirror pair. It is
time for us to talk more about it in this subsection. In fact, such a mismatch of mass
and FI parameters in mirror pair is not new to us. Kapustin found this problein in
[56]. In that paper, he considers the mirror of Sp(k) with an antisymmetric tensor and
n fundamental flavors. He found that when n = 2,3 the quivers of the mirror theory
are in fact affine A; for n = 2 and affine A; for n = 3. However, it is a well-known
fact that a gauge theory given by an affine A, quiver has one mass parameter. On the
other hand, classically the original Sp(k) theory does not have any FI parameters.
Kapustin suggests the concept of “hidden FI term” to resolve the conflict. Such
a term arises as the deformation in the infrared limit and has the same quantum
number as a Fl-term. Because it is a quantum effect, these deformations need not
have a Lagrangian description in the ultraviolet. To count the number of hidden FI
deformation we simply count the mass parameters in the mirror theory. Now applying
Kapustin’s explanation to our example, we find there is one “hidden FI-term” for the
original theory and three “hidden FI-terms” for the mirror theory. This result is
consistent with Kapustin’s result. Notice that for £ = 1 the antisymmetric tensor of

Sp(k) does not exist, so his theory is in exact agreement with our original theory and
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we both find one “hidden FI-term”. Hereafter we do not discuss the matching of the
mass and FI parameters anymore, but we will mention the case when there exists a

“hidden FI-term” for the original theory.

The appearance of the “hidden FI term” indicates another important aspect of
the possible enhanced hidden global symmetry. In [39], the authors observed that
the fixed point can have global symmetries which are manifest in one description but
hidden in another (i.e., can be seen only quantum mechanically). For example, the
U(1) with two flavors is a self-mirror theory. On a classical level we have SU(2) x U (1)
global symmetry, where SU(2) is the flavor symmetry and U(1) is the global symmetry
connecting one Fl-parameter (FI-parameter can be considered as a component in the
background vector supermultiplet of U(1)). However, at the fixed point, the U(1)
global symmetry is enhanced to SU(2). This enhanced symmetry can be easily seen
in the brane setup of the mirror theory because in this special case (U(1) with two
flavors), the two D5-branes (the S-dual of two NS-branes in original symmetry) meet
in same interval. This is another advantage of brane setup because we can see a lot
of nontrivial phenomena pictorially. In later sections, when we find the case where

there is a “hidden FI term”, we will also discuss the enhanced global symmetry.

There is another interesting aspect which is worth mentioning. If our construction
is right, it seems that we have two different theories which are mirror to the same one
because in [56, 57] we can construct the mirror of Sp(k) gauge theory by using the
O5~ plane. This is also met by Kapustin in [56]. He noticed that two theories, (1)
the Sp(k) gauge theory with an antisymmetric tensor plus two or three fundamental
and (2) the U(k) gauge theory with an adjoint plus two or four fundamental flavors,
are mirror to the same affine A; or A3 quiver theory. Because mirror symmetry is
a property in the infrared limit of gauge theory, such a non-uniqueness is allowed.
Actually the brane picture provides a definition of the theory beyond the infrared
limit and the non-uniqueness can be seen in nature by having two different brane

representations of the same field theory.
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3.4.4 Sp(2) with 6 flavors

With the experience of Sp(1) gauge theory, we can deal with the Sp(2) with 6 flavors
very quickly. The moduli spaces for the original theory have d, = 2 and dy =
6 x 4—10 = 14 (as mentioned above, in the following discussion we do not discuss the
issue of mass parameters and FI-parameters). The steps for getting the mirror theory
is in Figure 3-10. From the brane setup (d) in Figure 3-10 we read out that the mirror
theory as SO(2) x Sp(1) x SO(4) x Sp(2) x SO(5) x Sp(2) x SO(4) x Sp(1) x SO(2) with
8 bifundamentals and two fundamental half-hypermultiplets one for each Sp(2) gauge
theory. By an easy calculation, we can check the moduli spaces as: d, =4x14+5%x2 =
ldanddy = (2x44+2x8+2x16+2x20+2x4)/2—(2+2%x3+2x6+3x10) =
52 =50 = 2.

3.4.5 The general case

Now we discuss the general case, i.e., Sp(k) with N fundamental flavors (to get the
complete Higgsing, we have to assume that N > 2k). The moduli space has d, = k
and dg = 2kN — k(2k + 1). The steps for getting the mirror theory are shown in
Figure 3-11. From it we can read out that the mirror theory are SO(2) x Sp(1) x
SO(4) x Sp(2) --- x Sp(k — 1) x SO(2k) x (Sp(k) x SO(2k + 1))*~%*~1 x Sp(k) x
SO(2k) x Sp(k — 1) -+ x Sp(1) x SO(2) with bifundamentals and one fundamental
half-hypermultiplet for each the first and the last Sp(k) gauge groups. For clarity,
the corresponding quiver diagram of the above mirror theory is also drawn in part

(c) of this figure. Now we can calculate the moduli spaces of the mirror as

k—1
dy = 4 n+ (2N —4k+ 1)k =2Nk — k(2k + 1),
n=1
1k 1
dg = [5 x 2> ((2n)* + 2n(2n+ 2)) + 5(2(216)2
n=1

+ (2N — 4k — 2)2k(2k + 1)) + 2k] — [22 (2n — 1) + n(2n + 1))
+ (2N — 4k — 1)k(2k + 1) + 2k(2k — 1)]
= k. (3.9)
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As mentioned above, for general N,k we get only half-hypermultiplets coming from
the 1/2D5-branes in the mirror theory. However, there are two degenerate cases where
one fundamental hypermultiplet does exist instead of two half-hypermultiplets. The
first case is when N = 2k. In this case, we do not need to move the 1/2NS brane
further from part (a) to part (b) in Figure 3-11. Instead, we can make the mirror
transformation directly from part(a). In the mirror theory, we get only one SO(2k)
gauge group but with one flavor for this SO(2k). As explained above, such a flavor
hints a “hidden FI-term” in the original theory. The second case is when N = 2k +1,
where we get only one Sp(k) gauge group in mirror theory, but also with one flavor of
the Sp(k) which also suggests a “hidden FI-term” in the original theory. For k =1,
the two cases where a “hidden FI-term” shows is given in [56]. For £ > 2 it is a new
result.

As we mentioned in section 4.3, in the case where a “hidden Fl-term” shows we
should consider the possible enhancement of global symmetry. In general the theory
has global SO(2N) flavor symmetry. When N = 2k, the global symmetry will be
enhanced to SO(2N) x Sp(1). The factor Sp(1) can be seen from the mirror theory,
where two 1/2D5-branes meet and give one flavor to the SO(2k) gauge group (notice
the flavor symmetry for Sp(k) gauge groups is SO(2N), for Sp'(k) gauge groups,
SO(2N + 1), for SO(2k) gauge groups, Sp(N) and for SO(2k + 1) gauge groups,
Sp'(N)). When N = 2k+1, the global symmetry will be enhanced to SO(2N)x SO(2)

because in this case, the one extra flavor in mirror theory belongs to the Sp(k) gauge

group.

3.5 The mirror of Sp'(k) gauge theory

We know that the O3+ and O3+ projections both give Sp(k) gauge theory. To
distinguish them, we denote the gauge theory given by O3* projection as Sp(k) and
that by O3+ as Sp'(k). After the discussion of the mirror of Sp(k) gauge group in the
last section, we now address the Sp’(k) case in this section. The brane setup of Sp’ is

just to replace the O3% in Sp(k) by O3% (for example, see figure 3-12). However, by
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such a replacement, the theory becomes Sp(k) gauge theory with n flavors plus two
half-hypermultiplets contributed from the O3~ at the two sides (notice that 03~ can
be considered as O3~ plus a 1/2D3-brane). We will start the discussion also from
a simple example, then go to the general case. Furthermore, we will compare the

mirror of Sp(k) and Sp'(k) and show that in fact they give the same mirror theory.

3.5.1 Sp/(1) with 3 fundamental flavors

In this example, the theory is Sp(1) gauge group with three hypermultiplets and two
half-hypermultiplets. The moduli space has d, =1 and dg =3 x2+2x%x2/2—-3=5.
The steps for finding the mirror theory are drawn in Figure 3-12. First we go to
the Higgs branch. Now equations (3.4) and (3.5) allow us the break the D3-branes
between the 1/2NS-branes and the neighboring 1/2D5-brane as part (a). Form part
(a) we move 1/2NS-brane inside to pass one 1/2D5-brane and get part (b). In this
step, the 1/2NS-branes get rid of the D3-brane ending on them already. However,
this brane setup does not readily give the correct mirror theory and we need go to the
next step, i.e., moving 1/2NS-brane one step further inside as in part (c). Finally, we
make the S-duality transformation and get the mirror theory in part (d). The mirror
theory is SO(2) x Sp(1) x SO(3) x Sp(1) x SO(2) with four bifundamentals and two
half-hypermultiplets one for each Sp(1) gauge group. We can check the moduli spaces
of the mirror theory as having d, =5 and dgy = (2x4+2x6+2x2)/2—(2+3%x3) =
12-11=1.

3.5.2 The general case

Now we discuss the general case, i.e., Sp/'(k) with n hypermultiplets and two half-
hypermultiplets. The moduli spaces have d, = k and dy = 2nk + 2k — k(2k + 1) =
2nk — k(2k — 1). The main steps to get the mirror theory are in Figure 3-13. We can

read out the mirror theory from the quiver diagram in part(b) and check the moduli

84



space as having

dy = 4YF t+k(2n—4k—1)=2nk—k(2k—1),
dp = [23F1((26)% + 2t(2t + 2)) + 2(2k)% + (2n — 4k)2k(2k + 1)

+ 2(2K)]/2 — 25k 1(t(2t — 1) + t(2t + 1)) (3.10)
+ 2k(2k — 1) + (2n — 4k + 1)k(2k + 1)]
= k

As the case of Sp gauge group when n = 2k, the mirror theory has only one Sp(k)
gauge group and the two half-hypermultiplets combine together to give one flavor for
Sp(k). It means that we have a “hidden FI-term” in the original theory. However, it
is not the end of the story. By careful observation, we find that when n = 2k — 1, the
mirror theory has only one SO(2k) gauge group and two half-hypermultiplets also
combine together to give one flavor for SO(2k) (this happens because in this case, we
do not need move 1/2NS-brane one further step as we did from part (b) to part (c)
in Figure 3-12). So we get a “hidden FI-term” in this case also. This is not expected
initially because it seems that for n = 2k — 1 we can not get the complete Higgs
branch, but this is not true. By studying the part (a) of Figure 3-12, we find that
for n =1 in Sp'(1) we indeed get complete Higgsing. Furthermore by the discussion
in the next subsection we will see more clearly the reason why n = 2k — 1 gives a

“hidden FI-term”.

Now let us discuss the global symmetry. The results are very similar to those at
the end of section 4. In the general case we have global SO(2N +1) flavor symmetry®.
When N = 2k — 1, the global symmetry goes to SO(2N +1) x Sp(1). When N = 2k,
the global symmetry goes to SO(2N + 1) x SO(2).

®From the discussion in the next subsection, the mirrors of single Sp’(k) with N flavors and single
Sp(k) with N + 1 flavors are identical. In the latter case, the flavor symmetry is SO(2N + 2), but in
the former case, we see only an obvious SO(2N + 1) flavor symmetry. However, in current situation
of product gauge theories the argument of section 5.3 can not be applied directly. There is true
distinguishing between Sp(k) and Sp'(k) gauge theories
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3.5.3 Comparing the mirror of Sp(k) and Sp'(k)

In the above, we have discussed the mirror of two kinds of Sp gauge groups, i.e.,
Sp(k) and Sp'(k). We want to ask ourselves whether there is any relation between
the mirrors of these two Sp gauge groups? By checking the two quivers in Figure
3-11 and Figure 3-13, we find that these two quivers are exactly the same, except that
N flavors in Sp/(k) should correspond to N + 1 flavors in Sp(k). This is reasonable
because for Sp'(k) with N flavors there are two half-hypermultiplets which give the
same degrees of freedom as one flavor. However, in principle there is a difference
between one flavor and two half-hypermultiplets: for the former we can involve one
mass parameter, but for the latter there is no such mass parameter. We will show,
in the case of Sp'(k), that the two half-hypermultiplets do combine to give one flavor
with the mass parameter. To see this, we move one 1/2D5-brane from infinity at
each side to pass the 1/2NS-brane. By using the s-configuration in section 2, we get
the brane setup of Sp(k) with an additional flavor. The whole discussion is shown
in figure 3-14. Furthermore, it is easily to show that the two cases where a “hidden

Fl-parameter” shows in Sp(k) and Sp'(k) exactly match each other.

3.6 The mirror of SO(2k) gauge theory

After the discussion of the mirror theories for Sp(k) gauge groups, we now discuss
SO(2k). There are no known results for the mirror of SO(2k) gauge groups and it is
the main motivation of this paper to calculate it using the O3 plane. As in the last
two sections, we first present the simple case of SO(2) with three flavors, then give

the general results for SO(2k) with N flavors.

3.6.1 SO(2) with 3 flavors

For SO(2) gauge theory with three flavors, the moduli spaces have d, = 1 and dg =
3 x 2 —1 = 5. The steps for the mirror transformation are given in Figure 3-15. In

part (a) , we break the D3-branes by preserving the supersymmetric configurations,
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then use (3.4) and (3.5) to move the 1/2NS-brane passing the 1/2D5-brane to get part
(b). Unlike the Sp case, part (b) is already convenient for the mirror transformation,
so we can make S-duality directly and get part (c) . From the brane setup in part
(c) we read out the mirror theory to be Sp(1) x SO(2) x Sp(1) x SO(2) x Sp(1)
with four bifundamentals and two half-hypermultiplets for the leftmost Sp(1) and
two half-hypermultiplets for the rightmost Sp(1). Here we want to emphasize that in
the two half-hypermultiplets for the leftmost Sp(1), one comes from the 1/2D5-brane
and the other from the O3~ projection (same for the rightmost Sp(1)). That the
half-hypermultiplets come from different sources is a general phenomenon in SO(2k).
However, for our simple example, we can combine these two half-hypermultiplets
together by moving the 1/2D5-brane in part (c) to go part (d). Now we have one
flavor of Sp(1) given by one physical D3-brane stuck between the 1/2NS-brane and
the 1/2D5-brane. We need to emphasize that because the physical D3-brane is stuck
between the 1/2NS-brane and the 1/2D5-brane, it does not contribute to the mass
parameter. It will be interesting to compare it with the discussion in section 4.3,
where we find that the two half-hypermultiplets of Sp’(k) can combine to give a
flavor with free mass parameter. Finally, we calculate the dimension of the moduli

spaces of mirror theory as d, = 5 and dg = (4x4/2+2x2)—(2+3x3) =12—-11 =1.

3.6.2 An exotic example: SO(2) with 2 flavors

In this subsection, we discuss the mirror of SO(2) with two flavors. This theory will
show one nontrivial phenomenon. The moduli are d, =1 and dg =2 x2—-1 = 3.
According to the standard procedure introduced in the last subsection we get the
Higgs branch as part (a) in Figure 3-16 and the mirror theory in part (b). The
dimensions of moduli spaces of the mirror theory in part (b) ared, =1+1+1=3
anddy =2x4/2+4x2/2—(3+3+1)=9—8=1.

However it seems we can get another possible Higgs branch in part (¢) by moving
the 1/2NS-brane one further step inside from part (a). If these two 1/2NS-branes do
not meet together, the brane setup is not convenient to perform S-duality to get the

mirror theory and we must go back to part (a). But in this special example, these
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two 1/2NS-branes do meet together. Now if these two 1/2NS-brane can combine to
leave the O3* plane, we do get another mirror theory like part (d). Let us assume
it is correct first and calculate the moduli spaces. In the part (d), the mirror theory
is Sp(1) x SO(3) x Sp(1) with two bifundamentals, two half-hypermultiplets for the
two Sp(1) and one fundamental for SO(3), so the moduli are d, = 3 and dyg =
2x6/2+2%x2/24+3—(3+3+3)=11-9 = 2. Therefore the results do not match.
There is another inconsistent result because in the mirror theory of part(d) we get

one “hidden FI-term” which does not exist in the mirror theory of part (b).

What is the resolution for the above inconsistency? Notice the combination of
two 1/2NS-branes on the O3% is S-dual to the combination of two 1/2D5-branes on
the O3~. We have discussed this configuration in section 3.1, where we showed, only
when there is an extra physical D3-brane between these two 1/2D5-branes (1/2NS-
branes) can they combine and leave the O3-plane. So the conclusion is that the two
1/2NS-branes in part (c) can not combine and leave the O3-plane. We are left with

only one correct mirror theory in part (b).

3.6.3 The general SO(2k) with N flavors

With the experience of the SO(2) case, we can now work on the general SO(2k) with
N flavors. The moduli for this theory are d, = k and dg = 2kN —k(2k—1). The steps
for the mirror theory are given in Figure 3-17. Again, we first break the D3-branes
according to the supersymmetric configuration, then move the 1/2NS-branes inside
to go to part(a). The brane setup in part(a) can be considered as the brane setup
of S-duality just by exchanging the roles of the 1/2NS-brane and the 1/2D5-brane
and putting in a proper O3-plane. For clarity, we draw the quiver diagram of the

mirror theory in part(b). Let us check the result again by calculating the moduli of
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the mirror theory as

dy = 4YFln+ k(2N — 4k +3) = 2kN — k(2k — 1),

dy = [ x252%32(n+1)(n+2)+ 14k*(2N — 4k + 2)
+ l@2k+2%+2+2)]-[4Tiin(2n+1) (3.11)
+ k(2k+ 1)(N — 2k 4+ 2) + k(2k — 1)(N — 2k + 1)]
= k.

By checking part (a) in Figure 3-17, we find that there is a “hidden FI-parameter”
in the original theory when N = 2k — 1 because two 1/2NS-branes will meet in same
interval of O3+ plane. For general N, k, the global symmetry is an Sp(N) flavor
symmetry, but in the case N = 2k — 1 it is enhanced to Sp(N) x SO(3). We want to
point out that there is only one case where “hidden FI-parameters” show in SO(2k)
while for Sp(k) and Sp'(k) there are two cases. This difference can be seen very
clearly in part (c) of Figure 3-16. In that case two 1/2NS-branes do meet in same
interval, but they can not combine and leave O3*-plane. So there is no “hidden

FI-parameters”.

3.7 The mirror of SO(2k + 1) gauge theory

In this section, we discuss the mirror theories of SO(2k + 1) to complete our study of
single gauge groups. We first present the simple example of SO(3) with two flavors,
then give the general results for SO(2k + 1) with N flavors.

3.7.1 SO(3) with 2 flavors

For SO(3) with two flavors, the dimensions of moduli space are d, = 1 and dy =
2 x 3 —3 = 3. The steps to get the mirror theory are shown in Figure 3-18. In part
(a) we split the physical D5-branes into the 1/2D5-branes according the rules given in
section two. In such a process we see the generation of two physical D3-branes which

is necessary to account for the correct Higgs branch. In part (b) we split the D3-brane
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between the 1/2D5-branes and 1/2NS-branes to go to the Higgs branch. Notice that
there is no D3-branes connecting 1/2NS-brane and the nearest 1/2D5-brane which
is required by s-rule. In part (c) we move the 1/2NS-branes inside to get rid of the
D3-branes ending on them. Now we can make S-duality to give the mirror theory in
part (d). However, in our example, there is a special property: two 1/2D5-branes can
combine together and leave the O’?‘-plane to give one flavor.

Now we can read out the mirror theory as SO(3) x Sp(1) x SO(3) with two
bifundamentals and one flavor for Sp(1). Let us calculate the dimension of moduli
space. For the Coulomb branch, we have d, = 1+ 1+ 1 = 3 which matches the
Higgs branch of the original theory. For the Higgs branch, naively we should have
dg = [3(6+46)+2] —[34+3+3] = —1. However, the dimension can never be negative.
The negative result means that our naive calculation is wrong. The reason is that in
our naive calculation we assumed that there is complete Higgsing. However, in our
example, there is no complete Higgsing in the mirror theory. After Higgsing, we still
keep two SO(2) gauge groups which give the correct dg = [8] —[9—2] = 1 and match
the Coulomb branch in the original theory. Furthermore, in our example, we have
one flavor in the mirror theory which means that there is a “hidden FI-term” in the

original theory.

3.7.2 The general case: SO(2k + 1) with N flavors

Now let us discuss the mirror of SO(2k+1) with N flavors. The dimensions of moduli
spaces are d, = k and dg = (2k+1)N —k(2k+1). The steps to get the mirror theory
are given in Figure 3-19. In part (a), we give the brane setup of the Higgs branch.
In fact, we can consider it as well as the brane setup of the mirror theory by just
changing the role of the vertical line and cross line (in Higgs branch, vertical lines
denote 1/2D5-branes and cross lines, 1/2NS-branes; in the mirror theory, vertical
lines denote 1/2NS-branes and cross lines, 1/2D5-branes). For convenience, we give
the quiver diagram of the mirror theory in part (b).

Let us calculate the dimensions of the moduli spaces of the mirror theory to

see if they match the dimensions of the moduli spaces of the original theory. The
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calculations are given as

dy = [’§4z']+k(N—2k+3) + (k+1)(N — 2k)

= (2k+1)N — k(2k +1)

4y = 22:[(2z+1 21(222+3) 2(2i + 1))

2KCEA2) (N ok 4 1)k(2k + 1)

2
- (N- 2k)(k+1)(2(k+1)—1)+2%+2_2k(2’;+1)

= [2k(k — 1)) + [-(N — 2k) — k(2k + 1)] + [2&] + [N]

+ (2N — 4k)

—2k(2k+1)+ N

=k (3.12)

Notice that we add N when we calculate dy because after the Higgsing, the mirror
theory still keep N SO(2) gauge group. Furthermore, from the part (a) in Figure 3-19
we see when N = 2k, two 1/2-branes can combine together and leave the orientifold
plane. This means that when N = 2k there is a “hidden FI-term” in the original
theory. This also means that in the special case, the original theory has an enhanced

global Sp'(N) x SO(3) symmetry instead of Sp'(NV) flavor symmetry in general.

3.7.3 Comparing the mirrors of SO(2k) and SO(2k + 1)

At the end of this section, let us compare the mirror theories of SO(2k) and SO(2k +
1). First we can start from the SO(2k + 1) with N + 1 flavors to go to SO(2k) with
N flavors by Higgsing one flavor. At the other side, by comparing the quivers in
Figure 3-17 and Figure 3-19, it is obvious that if we change the SO(d) gauge group
in Figure 3-19 to SO(d — 2) while keeping the Sp(d/2) gauge group we get exactly
the quiver in Figure 3-17. In particular, the two SO(3) gauge group in Figure 3-19
go to SO(1) and disappear as a gauge group but add two half-hypermultiplets to
two Sp(1) at the two ends of quiver in Figure 3-17. This pattern can also be found
if we higgs SO(2k) with N flavors to SO(2k — 1) with N — 1 flavors. In the latter
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case, we change the Sp(d/2) gauge group in Figure 3-17 to Sp(d/2 — 1) gauge group
while keeping SO(d) gauge group. After such a change, the quiver in Figure 3-17
becomes exactly the quiver in Figure 3-19 (the two nodes at the ends in Figure 3-17
disappear). Notice that the Higgsing in the original theory should correspond to the
reduction of the Coulomb branch in the mirror theory. The change of gauge group is
exactly the required reduction of the Coulomb branch in the mirror theory.

The above pattern passes another consistency check. Notice that for SO(2k + 1)
gauge theory with N + 1 flavors, it has an enhanced SO(3) global symmetry when
N + 1 = 2k. After Higgsing, we get SO(2k) with N flavors. For the latter, it has
an enhanced SO(3) global symmetry exactly when N = 2k — 1. We see such hidden
global symmetry is not broken by the Higgs mechanism as it should be.
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Figure 3-8: The detailed steps for getting the mirror of Sp(1) with three fundamental
flavors. (a) The brane setup. (b) Splitting of the physical D5-branes. (c) The
Higgs branch obtained by splitting the D3-brane. Notice the special splitting of thege
D3-branes. (d) Using the result of Supersymmetric configuration we can move 1/2NS-
brane one step inside. (e) Using again the rule of supersymmetric configuration we
move the 1/2NS-brane one further step inside. In this step, the D3-brane ending on
the 1/2NS-brane is annihilated. (f) S-dual of part (e). (g) However, we can not read
out the final gauge theory from the brane setup in (f). For avoiding the ambiguity, we
can move 1/2NS-brane one further step inside. (h) A special property of our example
is that we can combine two 1/2D5-branes in part (g) together and leave the O3+
plane.
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Figure 3-9: The other method to go to the Higgs branch: (a) The incomplete Higgs
branch when D5-branes are off the O3-plane. (b) By moving 1/2NS-brane one step
inside, we get rid of the D3-brane ending on 1/2NS-brane.
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Figure 3-10: (a) The Higgs branch of Sp(2) with 6 flavors. Notice how we split the
D3-branes according the supersymmetric configuration. (b) By moving 1/2NS-brane
across the 1/2D5-brane, we get rid of the D3-brane ending on 1/2NS-brane. (c)
However, to read out the correct mirror theory, we need to move the 1/2NS-brane
one step further inside. (d) By S-duality of part (c) we get the brane setup of the
mirror theory.
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Figure 3-11: The mirror of Sp(k) gauge theory with N flavors. Because of the
complexity, in this figure we do not keep track of the change of O3-plane anymore
and use dotted horizontal black line to express all O3-planes. However, we do keep
track of the intervals which give the Sp or SO group in the final mirror theory by
using the number above the O3-plane to denote the Sp group and below to denote
SO group. (a) The Higgs branch of Sp(k) with N flavors. Notice that the pattern of
the number of 1/2-D3 branes between two nearby 1/2D5-branes is, from left to right,
0,2,2,4,4,6,..2k — 2,2k2N~4%+1 ok _ 2 9k 2 . 4,4,2,20. (b) To read out the
mirror theory in general we need to move the 1/2NS-brane one step further inside.
However, we can consider (b) as the brane setup of the mirror theory too by just
thinking of the dotted vertical line as 1/2NS brane and the cross as 1/2D5-brane. (c)
For convenience, we draw the quiver diagram. We use red dots for SO groups and
blue dots for Sp groups. We also write the number above for an Sp group and under
for an SO group.
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Figure 3-12: (a) The Higgs branch of Sp/(1) with three flavors. Notice how we split
D3-branes to satisfy the supersymmetric configuration. (b) (c) Using the rule of
supersymmetric configuration, we reach the brane setup which is good for the mirror
transformation. (d) The brane setup of the mirror theory.
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Figure 3-13: (a) The Higgs branch of Sp'(k) with N flavors after moving the two
1/2NS-branes inside. As before, the numbers above and below mean the number of
1/2D3-branes which connect two neighboring 1/2D5-branes. We can also consider it
as the brane setup of the mirror theory just by considering the vertical line as 1/2NS-
brane instead of 1/2D5-brane and the crosses as 1/2D5-branes instead of 1/2NS-
branes. (b) The quiver diagram of the mirror theory. The numbers written above
the (blue) node denote the Sp gauge group and the numbers written under the (red)
node denote the SO gauge group.
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Figure 3-14: (a) We move one 1/2D5-brane from the left and right infinity. (b) By
using the s-configuration in section 2, we change the position of 1/2D5-branes inside.
(c) By combining the two 1/2D5-brane we get one physical D5-brane which can be
moved off the O3*-plane. From it we see that we change Sp'(k) to Sp(k) with one
additional flavor.
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Figure 3-15: (a) The Higgs branch of SO(2) with three flavors. Notice how we split
the D5-brane to satisfy the supersymmetric configurations. (b) Using the rule of
supersymmetric configuration, we move the 1/2NS-brane one step to reach the brane
setup which is convenient for the mirror transformation. (c) The brane setup of the
mirror theory. (d) By moving the 1/2D5-brane one step outside, we combine the two
half-hypermultiplets into one hypermultiplet.
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Figure 3-16: (a) The Higgs branch of SO(2) with two flavors. (b) By S-duality, we
get the mirror theory as Sp(1) x SO(2) x Sp(1) with two bifundamentals and four
half-hypermultiplets for the two Sp(1) gauge theories. (c) However, for this special
case, it seems we can get another mirror theory by moving the 1/2NS-brane one
further step inside from part (a) to part (c). In our case, now two 1/2NS-branes
are in same interval. If they can combine together and leave the 03" plane, we
can make the S-duality to get part (d). (d) The mirror theory got from part (c) is
Sp(1) x SO(3) x Sp(1) with two bifundamentals , two half-hypermultiplets for two
Sp(1) and one fundamental for SO(3).
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Figure 3-17: (a) The Higgs branch of SO(2k) with N flavors in the setup of the
D5-brane splitting. The numbers in the interval denote the number of 1/2D3-branes
connecting the two neighboring 1/2D5-branes. (b) The quiver diagram of the mirror
theory of SO(2k) with N flavors. Notice that the index above the node means Sp(n/2)
and index below the node means SO(n). The 1/2 means the half-fundamental.
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Figure 3-18: The mirror of SO(3) with two flavors. (a) Splitting of D5-branes accord-
ing the rules given above. Notice the generation of D3-branes between 1/2D5-branes.
(b) The Higgs branch of SO(3) theory. (c) By moving 1/2NS-branes inside we get
rid of D3-brane ending on 1/2NS-branes and ready to go to the mirror theory. (d)
The mirror theory. However, here we combine two 1/2D5-branes to give one physical
D5-brane.
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Figure 3-19: The mirror of SO(2k + 1) with N flavors. (a) The Higgs branch of the
original theory or the Coulomb branch of the mirror theory. (b) The quiver diagram
of the mirror theory.
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3.8 The mirror of Sp(k) x SO(2m)

We have discussed the mirror for a single Sp or SO group above. In this section,
we generalize the above construction to the case of the product of Sp and SO gauge
groups. Because after crossing the 1/2NS-brane 03+(03%) change to 03*((553:) and
vise versa, we get two series of products SO(2n;) x Sp(k1) x SO(2n2) x Sp(k,).. and
SO(2ny +1) x Sp'(k1) x SO(2ns + 1) x Sp'(ky)... In this section, we discuss the first
series and leave the second series to next section. For simplicity, we will discuss only
the product of two gauge groups, i.e., Sp(k) x SO(2m) (the case of more product
groups can be directly generalized). For this simple case, we still have two choices,
the so called “elliptic model” [25] (X direction is compactified) , or the “non-elliptic

model” (X° direction is not compactified). We discuss these two models one by one.

3.8.1 The non-elliptic model

For the non-elliptic model, there are N fundamentals for SO(2m), H fundamentals
for Sp(k) and one bifundamental (for simplicity we assume that N, H are sufficiently
large. For N, H too small, there are a lot of special cases which need to be discussed
individually and are tedious without providing too much new insight). The moduli
are d, = m+k and dg = 2mN +2kH +2mk —m(2m—1) — k(2k+1). In constructing
the mirror theory, we need to study three cases: m > k, m = k and m < k. Let
us start with the case of m > k. The mirror theory is given in Figure 3-20. When
we go to the Higgs branch, we can connect the D3-branes at the two sides of middle
1/2NS-brane. Because m > k, we can connect only k D3-branes such that they end
on the left and the right 1/2NS-branes. There are still m — k D3-branes ending on
the middle 1/2NS-brane from the right. To get rid of those D3-branes, we must move
the middle 1/2NS-brane to the right. The final Higgs branch after such a motion is
given in part (a) of Figure 3-20 and the quiver diagram of the mirror, in part (b).

The moduli of the mirror can be calculated as

p=k-1 m—1
dy = [ Y 20+ (2H-2k+1k+[2 Y p|
p=1 p=k+1
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Figure 3-20: (a) The Higgs branch of Sp(k) x SO(2m) with N fundamentals for
SO(2m), H fundamentals for Sp(k) and one bifundamental in the case of m > k. (b)
The quiver diagram of the mirror theory of part(a). Notice that the index n above the
node denotes Sp(n/2) and index n below the node denotes SO(n). The 1/2 means

()

half-hypermultiplets.

+ o+

p=m—1

(2N —dm+2k+3)m+[2 > p]
p=1

2mN + 2kH + 2mk — m(2m — 1) — k(2k + 1),

i=k—1

[0 (26 x 20+ 20 x (26 +2))/2 — i(2i — 1) — §(2i + 1)]
=1

[4k%/2 + (2H — 2k — 1)2k(2k + 1)/2
(H — k)2k(2k + 1) — k(2k — 1)]

[m_—fl(% 2 — 1)(2k + 20)/2 + (2k + 20) (2k + 20 + 1)/2

2(k + 1) (2k + 21 + 1)]

[2m(2m — 1)/2 + 4m?* (2N — 4m + 2k + 2)/2

—(N =2m+k+ 1)(m@2m — 1) + m2m + 1)) — m(2m + 1)]
["_f 2i(2 +1)/2 + (20 4 1) (26 + 2)/2 — 2i(2i + 1)]

[;1/2 +2m/2+2/2 + 2m/2]

[k(k — )]+ [<2&°] + [(=k = m)(m — k — 1)] + [-2m]

[m? — 1] + [k + 2m + 1]
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= k+m (3.13)

From part (a) of Figure 3-20, we see that when 2N — 4m + 2k + 2 = 0, the two
1/2NS-branes meet together which indicates a “hidden FI-parameter” in the original
theory.

After the discussion of the m > k case, we go to the m = k case. Here, by
connecting the D3-branes between the two sides of the middle 1/2NS-brane, we get
the Higgs branch looking like part (a) in Figure 3-21. From the quiver diagram part

(notice m=k)
] 1 1 1 1 1 1 ] 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o o121 a4 2k-2 |jkl [ 1 ik o 2moo 1 Am 114 20
T N ; P LU R YHRCHEE
03_ ] 1 2 1 1 4 ] 1 1 1 21$ | 1 1 1 1 | 1 2k| ?Iq 1 | 2IIlll2 1 4| 1 2 1 1 03+
2k+1 1/2D5 2H-(2k+1) 1/2D5 2N-2m+1 2m-1 1/2D5
I * J | (@2k+1) | S T |
Lt > ! > =1 < >
(@)
12 (oticem=k) /2 172 12
Sp(d/2)
2 4 %2k 2% 2%k 2k m  2m m  2m-2 4 P ~—
2 4 2k 2k+l  2k+l  2k+l 2k+1 2m  2m 2m-1 5 3 -—
2k-1 nodes 2H-2k-1 nodes 2N-2m+2 2m-2 nodes 50
| J e 2 < ;| | |
1 T I T I 1
®)

Figure 3-21: (a) The Higgs branch of Sp(k) x SO(2m) with N fundamentals for
SO(2m), H fundamentals for Sp(k) and one bifundamental in the case of m = k. (b)
The quiver diagram of the mirror theory of part(a). Notice that the index n above the
node denotes Sp(n/2) and index n below the node denotes SO(n). The 1/2 means
the half-hypermultiplet.

(b) we recalculate the moduli space as:

p=k-1 m—1
dy = [ > 2p]+(@QH—-2k—142N-2m+2+1k+[2 Y p|
p=l1 p=k+1

= 2kN +2kH — 2k*
= 2mN +2kH +2mk —m(2m — 1) — k(2k+1) when m =k,

dy = [i:‘fl(zi X 2+ 20 x (20 +2))/2 — i(2i — 1) — (20 + 1)]
+[4k2/2 + (2H — 2k — 2)2K(2k +1)/2 (3.14)
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— (2H — 2k — 1)k(2k + 1) — k(2k — 1)]

+ [2N = 2m+2)4m?/2 — (N — m + 1)(m(2m + 1) + m(2m — 1))]
+ [El 26(2i +1)/2 + (2i + 1)(2i + 2)/2 — 2i(2i + 1)]

+ [271/2 +2m/2 + 2/2 + 2m/2]

= [k(k = 1]+ [-2&"] + [0] + [m* — 1] + [k + 2m + 1]

= k+m. (3.15)

From the figure again, when 2H — 2k = 0 or 2N —2m + 2 = 0, the two 1/2NS-branes

meet together to give a “hidden FI-term” in the original theory.

Now we are left with only one case, i.e., m < k. In this last case, to get rid of the
D3-branes, the middle 1/2NS brane should move to the left direction. The result is

shown in Figure 3-22.

The moduli of the mirror theory are

p=k—1 k-1
d, = [ 2p|+(2H —4dk+2m+1)k+[2 Y p|
p=1 p=m-+1
p=m—1
+ N -2m+3)m+[2 D p]
p=1
= 2mN + 2kH + 2mk — m(2m — 1) — k(2k + 1),
i=k—1
dg = [ (20x2i+2ix (20+2))/2—14(2i — 1) — (2 + 1)]

i=1

+ [4k%/2 + (2H — 4k + 2m — 2)2k(2k + 1)/2 + 4k*/2
—(2H — 4k 4 2m — 1)k(2k + 1) — 2k(2k — 1)]

+ [ki_l 2(m +1)2(m +1)/2 + 2(m +4)2(m + 1 4+ 1) /2

—(m+§)(2(m +) — 1) — (m + ) (2(m + ) + 1)]
+ [2m(2m +2)/2 + 4m*(2N — 2m +2)/2
—(N —m+1)(m(2m — 1) + m(2m + 1)) — m(2m + 1)]

+ [D020(2i+1)/2+ (20 +1)(2i +2)/2 — 2(2 + 1))

1=1

+ [2k/2+2k/2+42/2+ 2m/2]
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[k(k — 1)) + [-2K® + k] + [(k + m)(k — m — 1)]

+ [m]+[m?—1]+[2k +m +1]

k+m (3.16)

There is also a possible “hidden FI-term” in original theory when 2H —4k+2m—2 =0

which can be explicitly seen in part(a) in Figure 3-22.
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Figure 3-22: (a) The Higgs branch of Sp(k) x SO(2m) with N fundamentals for
SO(2m), H fundamentals for Sp(k) and one bifundamental in the case of m < k. (b)
The quiver diagram of the mirror theory of part(a). Notice that the index n above the
node denotes Sp(n/2) and index n below the node denotes SO(n). The 1/2 denotes
the half-fundamental.

3.8.2 The elliptic model

In the elliptic model, the X°® direction is compactified such that for consistency, we
must have an even number of 1/2NS-branes and an even number of gauge groups
where half of them are Sp gauge groups and the other half, SO gauge groups. We
discuss the case of only two gauge groups, i.e., Sp(k) x SO(2m) with H fundamentals
for Sp(k), N fundamentals for SO(2m) and two bifundamentals. The moduli for this
theory are d, = k +m and dg = 2mN + 2kH + 4mk — m(2m — 1) — k(2k + 1). The
mirror theory for the elliptic model is similar to the non-elliptic model. The only
difference is that in the non-elliptic model we can connect the D3-branes only at the

middle 1/2NS-brane, but here in the elliptic model we can connect the D3-branes
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to all 1/2NS-branes (here two 1/2NS-branes). Again we divide into three cases to
discuss. The simple one is the case m = k. In this case, we can connect all D3-branes
such that no D3-brane is left to end on the 1/2NS-branes. The Higgs branch and the

quiver of the mirror are given in parts (a) (b) of Figure 3-23 and the moduli are:

d, = (2H+2N)k
= 2mN +2kH + 4mk —m(2m — 1) — k(2k + 1) when m =k,
dy = [(2H — 2)2k(2k +1)/2 — (H — 1)2k(2k + 1) — k(2k + 1)]

(3.17)
+ [(2N + 2)4k2/2 — N(k(2k + 1) + k(2k — 1)) — k(2k — 1)]
+ [2k/2+ 2k/2]
= [k@k+1)]+[2k2+ k] +[2k]=k+m
P SE S ST T I IRE
2k | 12k 2k a2k ek o
03 .L 2H 1/2D5 \J|O3- ! 2N 1/2D3 !
(@)
Sp(n/2)
2k 2k+1 2k+1 2k+1 2k 2k 2k 2k <S_
L 2H-1 nodes ’! ’|< 2N-1 nodes \! O(n)
)

Figure 3-23: (a) The Higgs branch of elliptic Sp(k) x SO(2m) with N fundamentals for
SO(2m), H fundamentals for Sp(k) and two bifundamentals in the case of m = k. The
number here denotes how many 1/2D3-branes are connected to neighboring 1/2D5-
branes. (b) The quiver diagram of the mirror theory of part(a). Notice that the index
n above the node denotes Sp(n/2) and index n below the node denotes SO(n). The
1/2 denotes the half hypermultiplets.

There is still one case where the “hidden FI-term” appears, namely when H = 1.
In this case, two 1/2NS-branes in part(a) of Figure 3-23 meet together.

Now we move to the case of k¥ > m. The Higgs branch looks like the superposition
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of the Higgs branch of the m = k case together with that of a single Sp(k — m)
gauge theory. We give the result in Figure 3-24. To check the result, we calculate the

moduli as

dy = XTIV (m+0)] + k(2H — 4(k — m) +1) + m(2N + 3)
= 2mN +2kH + 4mk — m(2m — 1) — k(2k + 1),
dy = 237 2(m + i)2(m +4) /2 + 2(m+19)2(m +i+1)/2
~(m+i)(2(m+ ) = 1) = (m +4)(2(m +4) + 1)]
+ 2 4k2/2+ (2H — 4(k — m) — 2)2k(2k + 1)/2
~(2H — 4(k — m) — 1)k(2k + 1) - 2k(2k — 1)] (3.18)
+ (2N +2)4m?/2 + 2 x 2m(2m + 2) /2
- (N+1)(m2m+1) +m(2m - 1))
= m2m+1)]+[2 x 2k/2
= [2(k* ~m? — k —m)] + [-2k2 + k] + [2m? + 3m] + [2k]
= k+m.

When 2H — 4(k —m) — 2 = 0, two 1 /2NS-branes will meet together in part(a) of
Figure 3-24. This is the condition that a “hidden FI-term” exists.

Now the remainder case is m > k. In this case, the Higgs branch looks like the
superposition of two Higgs branches: that of the m = k case and that of a single
SO(2(m — k)) theory. The result can be found in Figure 3-25. The moduli of the

mirror theory are

i=m—k—1
dy = [4 3 (k+14)]+k@2H+1) +m(2N — 4(m — k) + 3)
=1
= 2mN +2kH + 4mk — m(2m — 1) — k(2k + 1),

i=m—k—1

dg = [2 Z 2(k+14)(2k + 20+ 1) /2 + (2k + % + 1)(2k + 21+ 2)/2
—2(151 2)(2k + 24 + 1)]
+ [N —4(m — k) + 2)4m?/2 — (N — 2(m — k) +1)
(m(2m + 1) + m(2m — 1)) — m(2m + 1))

+ [2h2k(2k + 1) /2 + 2(2k + 1)(2k +2)/2 — (2H + 1)k(2k + 1)]
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Figure 3-24: (a) The Higgs branch of elliptic Sp(k) x SO(2m) with N fundamentals for
SO(2m), H fundamentals for Sp(k) and two bifundamentals in the case of m < k. The
number here denotes how many 1/2D3-branes are connected to neighboring 1/2D5-
branes. (b). The quiver diagram of the mirror theory of part(a). Notice that the
index n above the node denotes Sp(n/2) and index n below the node denotes SO(n).
The 1/2 denotes the half hypermultiplets.

+ [2 x2m/2]
= [2m? = 2(k + 1) + [-2m? — m] + [2Kk® + 5k + 2] + [2k]

= k+m (3.19)

When 2N — 4(m — k) + 2 = 0, there is a “hidden FI-term” in the original theory.

3.9 The mirror of Sp'(k) x SO(2m + 1)

For completion, we give one more example: the mirror theory of Sp'(k) x SO(2m+1).
We assume that there are H flavors for Sp’(k) gauge theory and N flavors for SO(2m+
1) gauge theory. Besides, there are one or two bifundamentals and half-hypermultiplet
for Sp/(k) depend on different situations. Again we divide our discussion into two

parts: non-elliptic model and elliptic model.
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Figure 3-25: (a).The Higgs branch of elliptic Sp(k) x SO(2m) with N fundamentals
for SO(2m), H fundamentals for Sp(k) and two bifundamentals in the case of m > k.
The number here means how many 1/2D3-branes are connected to neighboring 1/2D5-
branes. (b). The quiver diagram of the mirror theory of part(a). Notice that the
index n above the node denotes Sp(n/2) and index n below the node denotes SO(n).
The 1/2 denotes the half hypermultiplets.

3.9.1 The non-elliptic model

Let us start from the non-elliptic model. In this case, the dimensions of moduli spaces
ared, = k+mand dg = 2kH+ (2m+1)N+k(2m+1)+k—k(2k+1)—m(2m+1) =
2kH +(2m+1)N — 2k + k—2m?—m+2km (here again, for simplicity we assume N, H
are sufficiently large to avoid special cases). The mirror theory depends on whether
m >k ,m=korm < k. We first give the mirror of the case m = k because in this
particular case, we can combine the D3-branes at the two sides of middle 1/2NS-brane
such that there is no D3-branes ending on the middle 1/2NS-brane anymore. The

mirror theory is given in Figure 3-26.
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Notice k=m
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Figure 3-26: The mirror of Sp'(k) x SO(2m+ 1) with H flavors for Sp'(k) , N flavors
for SO(2m + 1), a half-hypermultiplet for Sp’(k) and one bifundamental in case of
m = k. (a) The Higgs branch of original theory or the Coulomb branch of the mirror
theory. (b) The quiver diagram of mirror theory.

Let us check it by calculating the dimensions of moduli spaces of the mirror theory:

dy = 255 lit QH -2k +2)k+ (N —k)(k+k+1)+k+255 0
= 2kH + (2k + 1)N — 2k?
dy = Yri[2Z4 _%QH_ZZ (26 — 1) — (20 + 1))
n Zi:l 2z+21)21 + 2%(2;+3) _ 27;(27; + 1)]
b D (9f  oky  (H — k)2k(2k + 1) 3.20)
+ HCRD (9N E) — (N — k) (k(2K + 1) + (k + 1)(2k + 1))
+ %Zh_ p(ok 4 1) — k(2k — 1) + 2 pop 1 1)
+ 3% 4+ N
= [k — K]+ [k2 = k] + [0] + [~ (N — k)] + [~2k?] + [3k + NV]
— 2%,

where when we calculate the dy we add the term N to account for the remaining
H SO(2) gauge groups after Higgsing (this happens for latter examples so we will
not mention it every time). When 2H — 2m = 0 there is a “hidden FI-term” in the

original theory.

Now we go to the case that £ > m. In this case, after connecting the D3-branes at
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the two sides of the middle 1/2NS-brane, we still have ¥ —m D3-brane ending on the
middle 1/2NS-brane from the left. The mirror theory is given in Figure 3-27. The

The case of k>m
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Figure 3-27: The mirror of Sp'(k) x SO(2m+1) with H flavors for Sp/(k) , N flavors
for SO(2m + 1), a half-hypermultiplet for Sp’(k) and one bifundamental in case of
k > m. (a) The Higgs branch of original theory or the Coulomb branch of the mirror
theory. (b) The quiver diagram of mirror theory.

dimensions of the moduli space of the mirror theory are

k-1 m—1
dy, = [222]+[2Zz]+ 2H — 4k + 2m + 3)k

k:m 1 -
+ [2 Zl (m+4)]+[(N—m+2)m+ (N —m)(m+ 1)]

= [k® — k] + [m® — m] + [2kH — 4k* + 2km + 3K]
+ [ —=m? —k—m]+[(2m+1)N — 2m? 4+ m]

= 2kH+ (2m+1)N —2k* —2m? + k — m + 2km
k—1 2. .
dy = Z[m’ "(21; 2) _ i(2 — 1) — i(2i + 1)]

22k22k N 2k(2l; +1)

(2H — 4k + 2m) — (2H — 4k + 2m + 1)k(2k + 1)

—(m+19)(2(m +S —1) = (m+14)(2(m +1) + 1)]
2m(2m + 2)
2
—(N=m)m(2(m+1) —1)+ Z[

=1

2N —2m+1) = (N — m + 1)m(2m + 1)

2z+1)2z 2i(2i + 3)
T

— 24(2i + 1)]
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m@mAl) _ omy1y 2 N
2 2 2
= [k — k] +[-2k2 + k] +[k* —m? — k —m]
+[=N +2m] + [m? — m] + [N + 2k + m]

= k+m. (3.21)

After the discussion of above two cases, we go to the last case: k¥ < m. In this
case, because k < m, after the combination of D3-branes at the two sides of middle
1/2NS-brane, we still leave m — &k D3-brane ending on it from the right. The mirror

theory is given in Figure 3-28. Let us calculate the dimensions of moduli spaces:

The case of k<m
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Figure 3-28: The mirror of Sp/(k) x SO(2m + 1) with H flavors for Sp'(k) , N flavors
for SO(2m + 1), a half-hypermultiplet for Sp’(k) and one bifundamental in case of
k < m. (a) The Higgs branch of the original theory or the Coulomb branch of the

mirror theory. (b) The quiver diagram of the mirror theory.
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dy, = X+ 2577t + (2H — 2k + 2)k

+ 27Nk +9) +m(N —2m+k+3)+ (m+ 1)(N — 2m + k)
= [k? — k] + [m? — m] + [2kH — 2k* + 2k] + [m? — k? — k — m)]
+ [(2m+1)N —4m? + m + k + 2km]
= 2kH+ (2m+1)N +2km — 2k*> = 2m? —m + k

dy = YIoM[EZ 4 BER) (05 1) —i(26 + 1)]
+ oy [(21-21)21 + 21(2;+3) — 2i(2i + 1)]
+ @7 2KCR) (9f _ok) — k(2k— 1) — (2H — 2k + 1)k(2k+1)  (3.22)
+oymke 1[(2k+2i+21)2(k+z') + g@+i)(22k+2z‘+3) —2(k +19)(2(k + i) +1)]
+ [2ZmEl) | 2mQmid) (9N — 4m 4+ 2k)

~(N=-2m+k+3)m(2m+1)— (N —2m+k)(m+ 1)(2m + 1))

+ HCHY 4 k4om 4 N

(k* — k] + [m? — m] + [-2k?] + [m? — k? — k — m]
+ [N —2m? +m — k] + [2k? + 4k + 2m + N]
m+ k.

3.9.2 The elliptic model

In this section, we discuss the mirror theory of Sp'(k) x SO(2m + 1) in the elliptic
model. Now because X is compact, the matter contents are H flavors for Sp'(k), N
flavors for SO(2m+ 1) and two bifundamentals. The dimensions of the moduli spaces
ared, = k+m and dg = 2kH + (2m+1)N +2k(2m+1) —k(2k + 1) —m(2m+1) =
2kH + (2m~+1)N +4km —2k? —2m? —m+k. Again, our investigation will be divided

into three cases k =m, k > m and k < m.

Let us start from the case £ = m. In this case, because we can combine all D3-
branes at the two sides of 1/2NS-branes, it makes the mirror theory very simple as

shown in Figure 3-29. Let us check the dimensions of moduli spaces:
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The case of k=m
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Figure 3-29: The mirror of Sp'(k) x SO(2m + 1) with H flavors for Sp'(k) , N flavors
for SO(2m + 1) and two bifundamentals in case of & = m. (a) The Higgs branch
of the original theory or the Coulomb branch of the mirror theory. (b) The quiver
diagram of the mirror theory.

d, = 2kH+Nk+N(k+1)=2kH + 2k +1)N
dy = [ZEHoH — 2Hk(2k + 1)) + [N] + [2%]

(3.23)
+ [E&E9N — Nk(2k+1) — N(k + 1)(2k + 1))

2k.

Now we go to the case of k > m. In this case, After combining the D3-branes, we
still leave k — m D3-branes in the interval of 63v+-plane. The mirror theory is given

in Figure 3-30. The dimensions of moduli spaces are
k—m—1
dy = 2 > 2(m+1)+k(2H —4k+4m+3)+m(N+1)+ (m+1)N
i=1
= [2k%—2m? — 2k — 2m] + [2kH + (2m + 1)N + 4km — 4k* + 3k + m]
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The case of k>m
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Figure 3-30: The mirror of Sp'(k) x SO(2m+ 1) with H flavors for Sp'(k) , N flavors
for SO(2m + 1) and two bifundamentals in case of ¥k > m. (a) The Higgs branch
of the original theory or the Coulomb branch of the mirror theory. (b) The quiver
diagram of the mirror theory.

= 2kH + (2m+1)N +4km — 2k* - 2m?> + k —m
4y = 2ki1 2(m+z)) +2(m+i)2(2m+i+1)
(m+z)(2m+22’—1)—(m+i)(2m+2z’+1)]
2(25)2 + 2k(2];+ 1)(2H — 4k +4m) — (2H — 4k +4m + 1)k(2k + 1)

—2k(2k — 1) + 2k + N

= [2k* —2m® — 2k — 2m] + [-2k? + k] + [~ N + 2m? 4 3m] + [N + 2k]

We are left only one more example, i.e., the case of K < m. For this case, after
the combination, we still have m — k D3-branes in the interval of @"-plane. The

mirror theory is given in Figure 3-31. The dimensions of moduli spaces are

m—k—1
dy = 2 ) 2(k+1)+kQ2H+1)+m(N —2m+ 2k +3)
=1

+(m + 1)(N — 2m + 2k)

= [2m? — 2k® — 2k — 2m] + [2kH + (2m + 1)N + 4km + m + 3k]
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The case of k<m
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Figure 3-31: The mirror of Sp'(k) x SO(2m+1) with H flavors for Sp'(k) , N flavors
for SO(2m + 1) and two bifundamentals in case of £ < m. (a) The Higgs branch
of the original theory or the Coulomb branch of the mirror theory. (b) The quiver
diagram of the mirror theory.

dp

nm + +

2kH + (2m + 1)N — 2m® — 2k* —m + k
mk-l(2k +20)(2k + 20 +1)  (2k + 2i)(2k + 2 + 3)

2 2| 2 ; )

—9(k + i) (2k + 2 + 1)] + [2 2m(2;” b, 2m(2'2” =2 (9n — dm + 4k)
—(N = 2m+ 2k +3)m(2m + 1) — (N — 2m + 2k)(m + 1)(2m + 1)]
%—1)(21&1) _QH 4 1Dk(2E+1)+ 2@

2m+ N

[2m? — 2k? — 2k — 2m] + [N — 2m? — 2k + m] + [2k® + 5k] + [2m + N]|
k+m. (3.25)

3.10 Conclusion

In this paper, we give the mirror theories of Sp(k) and SO(n) gauge theories. In

particular, for the first time the mirror of SO(n) gauge theory is given. In the

construction of the mirror, we have made an assumption about the splitting of D5-
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branes on O3-planes in the brane-plane system®. We want to emphasize that because
the splitting of D5-brane on O3-plane is a nontrivial dynamical process and we do
not fully understand it at this moment, we can not really prove our assumption
by calculation. However, although our discussions in this paper indicate that our
assumption is consistent, the other independent checks are favorable. This gives one
direction of further work as to prove our observation.

Furthermore, as we discussed in section three, our rules observed in this paper
about the splitting of physical brane predict some nontrivial strong coupling limit of
a particular field theory. It will be very interesting to use the Seiberg-Witten curve
[25, 26, 65] to show whether it is true.

There is another direction to pursue our investigation. By rotating one of the
1/2NS-branes [27, 28, 66, 24] we break the N = 4 theory in three dimensions to an
N = 2 theory. Then we can discuss the mirror of N = 2 in three dimension as we have
done in this paper. However, because there is less supersymmetry in the NV = 2 case,
things become more complex (for a detailed explanation of new features in N = 2,
see [24]). Indeed, we can even break the supersymmetry further to discuss the mirror

symmetry in the N = 1 case [68].

For more details about the brane-plane system see [63]
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Chapter 4

D-Brane Gauge Theories from
Toric Singularities and Toric

Duality

4.1 Introduction

The study of D-branes as probes of geometry and topology of space-time has by
now been of wide practice (cf. e.g. [49]). In particular, the analysis of the mod-
uli space of gauge theories, their matter content, superpotential and S-function, as
world-volume theories of D-branes sitting at geometrical singularities is still a widely
pursued topic. Since the pioneering work in [40], where the moduli and matter con-
tent of D-branes probing ALE spaces had been extensively investigated, much work
ensued. The primary focus on (Abelian) orbifold singularities of the type C?/Z,
was quickly generalised using McKay’s Correspondence, to arbitrary (non-Abelian)

orbifold singularities C?/(T" C SU(2)), i.e., to arbitrary ALE spaces, in [42].

Several directions followed. With the realisation [70, 71] that these singularities
provide various horizons, (40, 42] was quickly generalised to a treatment for arbitrary
finite subgroups I' C SU(N), i.e., to generic Gorenstein singularities, by [44]. The
case of SU(3) was then promptly studied in [45, 46, 72] using this technique and a
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generalised McKay-type Correspondence was proposed in [45, 73]. Meanwhile, via
T-duality transformations, certain orbifold singularities can be mapped to type II
brane-setups in the fashion of [10]. The relevant gauge theory data on the world
volume can thereby be conveniently read from configurations of NS-branes, D-brane
stacks as well as orientifold planes. For €? orbifolds, the A and D series have been
thus treated [10, 56], whereas for C* orbifolds, the Abelian case of Z; x Z; has been
solved by the brane box models [30, 31]. First examples of non-Abelian C* orbifolds

have been addressed in [74, 75] as well as recent works in [76, 77].

Thus rests the status of orbifold theories. What we note in particular is that once
we specify the properties of the orbifold in terms of the algebraic properties of the
finite group, the gauge theory information is easily extracted. Of course, orbifolds
are a small subclass of algebro-geometric singularities. This is where we move on to
toric varieties. Inspired by the linear o-model approach of [50], which provides a rich
structure of the moduli space, especially in connexion with various geometrical phases
of the theory, the programme of utilising toric methods to study the behaviour of the
gauge theory on D-branes which live on and hence resolve certain singularities was
initiated in [14]. In this light, toric methods provide a powerful tool for studying the
moduli space of the gauge theory. In treating the F-flatness and D-flatness conditions
for the SUSY vacuum in conjunction, these methods show how branches of the moduli
space and hence phases of the theory may be parametrised by the algebraic equations
of the toric variety. Recent developments in “brane diamonds,” as an extension of
the brane box rules, have been providing great insight to such a wider class of toric
singularities, especially the generalised conifold, via blown-up versions of the standard
brane setups [78]. Indeed, with toric techniques much information could be extracted

as we can actually analytically describe patches of the moduli space.

Now Abelian orbifolds have toric descriptions and the above methodolgy is thus
immediately applicable thereto. While bearing in mind that though non-Abelian
orbifolds have no toric descriptions, a single physical D-brane has been placed on
various general toric singularities. Partial resolutions of C*/(Zy x Z,), such as the

conifold and the suspended pinched point have been investigated in [79, 80] and brane
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setups giving the field theory contents are constructed by [81, 83, 82]. Groundwork
for the next family, coming from the toric orbifold €3/(Zs x Zs3), such as the del
Pezzo surfaces and the zeroth Hirzebruch, has been laid in [84]. Essentially, given the
gauge theory data on the D-brane world volume, the procedure of transforming this
information (F and D terms) into toric data which parametrises the classical moduli

space is by now well-established.

One task is therefore immediately apparent to us: how do we proceed in the
reverse direction, i.e., when we probe a toric singularity with a D-brane, how do we
know the gauge theory on its world-volume? We recall that in the case of orbifold
theories, [44] devised a general method to extract the gauge theory data (matter
content, superpotential etc.) from the geometry data (the characters of the finite
group T'), and wice versa given the geometry, brane-setups for example, conveniently
allow us to read out the gauge theory data. The same is not true for toric singularities,
and the second half of the above bi-directional convenience, namely, a general method
which allows us to treat the inverse problem of extracting gauge theory data from

toric data is yet pending, or at least not in circulation.

The reason for this shortcoming is, as we shall see later, that the problem is highly
non-unique. It is thus the purpose of this writing to address this inverse problem:
given the geometry data in terms of a toric diagram, how does one read out (at least
one) gauge theory data in terms of the matter content and superpotential? We here
present precisely this algorithm which takes the matrices encoding the singularity
to the matrices encoding a good gauge theory of the D-brane which probes the said
singularity.

The structure of this chapter is as follows. In Subsection 2.1, we demonstrate how
to extract the matter content and F-terms from the charge matrix of the toric singu-
larity. In Subsection 2.2, we exemplify our algorithm with the well-known suspended
pinched point before presenting in detail in Subsection 2.3, the general algorithm
of how to obtain the gauge theory information from the toric data by the method
of partial resolutions. In Subsection 2.4, we show how to integrate back to obtain

the actual superpotential once the F-flatness equations are extracted from the toric
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data. Section 3 is then devoted to the illustration of our algorithm by tabulating the
D-terms and F-terms of D-brane world volume theory on the toric del Pezzo surfaces
and Hirzebruch zero. We finally discuss in Section 4, the non-uniqueness of the in-
verse problem and provide, through the studying of two types of ambiguities, ample
examples of rather different gauge theories flowing to the same toric data. Discussions

and future prospects are dealt with in Section 5.

4.2 The Inverse Procedure: Extracting Gauge The-
ory Information from Toric Data

As outlined above we see that wherever possible, the gauge theory of a D-brane probe
on certain singularities such as Abelian orbifolds, conifolds, etc., can be conveniently
encoded into the matrix @), which essentially concatenates the information contained
in the D-terms and F-terms of the original gauge theory. The cokernel of this matrix
is then a list of vectors which prescribes the toric diagram corresponding to the
singularity. It is natural to question ourselves whether the converse could be done,
i.e., whether given an arbitrary singularity which affords a toric description, we could
obtain the gauge theory living on the D-brane which probes the said singularity. This

is the inverse problem we projected to solve in the introduction.

4.2.1 Quiver Diagrams and F-terms from Toric Diagrams

Our result must be two-fold: first, we must be able to extract the D-terms, or in
other words the quiver diagram which then gives the gauge group and matter content;
second, we must extract the F-terms, which we can subsequently integrate back to
give the superpotential. These two pieces of data then suffice to specify the gauge
theory. Essentially we wish to trace the arrows in the above flow-chart from G, back

to A and K. The general methodology seems straightforward:

1. Read the column-vectors describing the nodes of the given toric diagram, repeat

the appropriate columns to obtain G; and then set Q; = Coker(G}); ‘
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2. Separate the D-term (V - U) and F-term (Q;) portions from Q;;
3. From the definition of @, we obtain' T = ker(Q).

4. Farka’s Theorem [48] guarantees that the dual of a convex polytope remains
convex whence we could invert and have K = Dual(T"); Moreover the dual-
ity theorem gives that Dual(Dual(K)) = K, thereby facilitating the inverse

procedure.
5. Definitions U -T*=Idand V- K* = A = (V- U) - (T*- K*) = A.

We see therefore that once the appropriate Q; has been found, the relations
K = Dual(T"%) A=V-U)-(T" K" (4.1)

retrieve our desired K and A. The only setback of course is that the appropriate Q,
is NOT usually found. Two ambiguities are immediately apparent to us: (A) In step
1 above, there is really no way to know a priori which of the vectors we should repeat
when writing into the G; matrix; (B) In step 2, to separate the D-terms and the
F-terms, i.e., which rows constitute ¢ and which constitute V' - U within @Q;, seems
arbitrary. We shall in the last section discuss these ambiguities in more detail and
actually perceive it to be a matter of interest. Meanwhile, in light thereof, we must
find an alternative, to find a canonical method which avoids such ambiguities and
gives us a consistent gauge theory which has such well-behaved properties as having
only bi-fundamentals etc.; this is where we appeal to partial resolutions.

Another reason for this canonical method is compelling. The astute reader may
question as to how could we guarantee, in our mathematical excursion of performing
the inverse procedure, that the gauge theory we obtain at the end of the day is one
that still lives on the world-volume of a D-brane probe? Indeed, if we naively traced
back the arrows in the flow-chart, bearing in mind the said ambiguities, we have no a

fortiori guarantee that we have a brane theory at all. However, the method via partial

!As mentioned before we must ensure that such a 7' be chosen with a complete set of Z..-
independent generators;
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resolution of Abelian orbifolds (which are themselves toric) does give us assurance.
When we are careful in tuning the FIl-parametres so as to stay inside cone-partitions
of the space of these parametres (and avoid flop transitions) we do still have the
resulting theory being physical [84]. Essentially this means that with prudence we
tune the FI-parametres in the allowed domains from a parent orbifold theory, thereby
giving a subsector theory which still lives on the D-brane probe and is well-behaved.
Such tuning we shall practice in the following.

The virtues of this appeal to resolutions are thus twofold: not only do we avoid
ambiguities, we are further endowed with physical theories. Let us thereby present

this canonical mathod.

4.2.2 A Canonical Method: Partial Resolutions of Abelian
Orbifolds

Our programme is standard [84]: theories on the Abelian orbifold singularity of the
form C*/T for T'(k,n) = Zn X Zy, X ... 7%y, (k—1 times) are well studied. The complete
information (and in particular the full @; matrix) for I'(k, n) is well known: k = 2 is
the elliptic model, k¥ = 3, the Brane Box, etc. In the toric context, k¥ = 2 has been
analysed in great detail by [40], Kk = 3,n = 2 in e.g. [81, 83, 82], k = 3,n =3 in
[84]. Now we know that given any toric diagram of dimension k, we can embed it into
such a I'(k,n)-orbifold for some sufficiently large n; and we choose the smallest such
n which suffices. This embedding is always possible because the toric diagram for
the latter is the k-simplex of length n enclosing lattice points and any toric diagram,
being a collection of lattice points, can be obtained therefrom via deletions of a subset
of points. This procedure is known torically as partial resolutions of I'(k,n). The
crux of our algorithm is that the deletions in the toric diagram corresponds to the
turning-on of the Fl-parametres, and which in turn induces a method to determine a
Q; matrix for our original singularity from that of I'(n, k).

We shall first turn to an illustrative example of the suspended pinched point

singularity (SPP) and then move on to discuss generalities. The SPP and conifold
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D’ =Z2 X ZZ
5 b3 2 D =SPP

4,6 8,9 Resolving
6,7,9

7

Figure 4-1: The toric diagram showing the resolution of the C*/(Z, x Z,) singularity
to the suspended pinch point (SPP). The numbers i at the nodes refer to the i-
th column of the matrix GG; and physically correspond to the fields p; in the linear

o-model.

as resolutions of I'(3,2) = Z; x Z; have been extensively studied in [83]. The SPP,
given by zy = zw?, can be obtained from the I'(3,2) orbifold, zyz = w? by a
single IP! blow-up. This is shown torically in Figure 4-1. Without further ado let us

demonstrate our procedure.

1. Embedding into Zy x Z,: Given the toric diagram D of SPP, we recognise that

it can be embedded minimally into the diagram D’ of ZZy x ZZy. Now information

on D' is readily at hand [83], as presented in the previous section. Let us re-

capitulate:
(Pl P2 P3 P4 Ps Pe P7 P8 P9
0 0 0 1 -1 1 -1 0 0 0
0 1 0 0 0 0 1 -1 -1 0
Q=1 -1 1 0 -1 0 0o o o o],
1 -1 0 -1 0 0 0 0 1 ¢
-1 1 0 1 0 0 0 -1 0 ¢
-1 0 0 0 0 1 -1 1 0 (3)
and

Pi P2 P3 P4 Ps Ps P7 P8 P9

, , o 1 0 0 -1 0 1 1 1
G} = coker(Q}) = ’

11 1 0 1 0 -1 0 O

1 1 1 1 1 1 1 1 1

which is drawn in Figure 2-3. The fact that the last row of G; has the same
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number (i.e., these three-vectors are all co-planar) ensures that D’ is Calabi-
Yau [49]. Incidentally, it would be very helpful for one to catalogue the list
of @Q; matrices of I'(3,n) for n = 2,3... which would suffice for all local toric
singularities of Calabi-Yau threefolds.

In the above definition of @)} we have included an extra column (0,0, 0, (1, (2, (3)
so as to specify that the first three rows of @), are F-terms (and hence exactly
zero) while the last three rows are D-terms (and hence resolved by FI-parametres
C1,23)- We adhere to the notation in [83] and label the columns (linear o-model

fields) as p;...pe; this is shown in Figure 4-1.

. Determining the Fields to Resolve by Tuning ¢: We note that if we turn on a

single FI-parametre we would arrive at the SPP; this is the resolution of D’
to D. The subtlety is that one may need to eliminate more than merely
the 7th column as there is more than one field attributed to each node in
the toric diagram and eliminating column 7 some other columns correspond-
ing to the adjacent nodes (namely out of 4,6,8 and 9) may also be elimi-
nated. We need a judicious choice of ¢ for a consistent blowup. To do so
we must solve for fields p; ¢ and tune the (-parametres such that at least
p7 acquires non-zero VEV (and whereby resolved). Recalling that the D-
term equations are actually linear equations in the modulus-squared of the
fields, we shall henceforth define z; := |p;|? and consider linear-systems therein.

Therefore we perform Gaussian row-reduction on @’ and solve all fields in

terms of z7 to give: & = {1, 20,21 + (o + G, 2w1_$2+2z7_C1+<2,2x1 — 29+ G+

C 221 —22+T7+C+(2+2(3
3 2 )

To+T7—C1—C2 Z2+$7+C1+C2}
2 L 2 )

x7,
The nodes far away from p; are clearly unaffected by the resolution, thus the
fields corresponding thereto continue to have zero VEV. This means we solve the

above set of solutions & once again, setting x5 32 = 0, with (; 2 3 being the vari-

- z7+Gi+ z7—G1+
Ca,O, 7 gl Cs,x7, 7 C21 ¢

ables, giving upon back substitution, £ = {0, 0,0, ‘”7_421 )

M;ii} Now we have an arbitrary choice and we set (3 = 0 and z7y = (3 to

make ps and ps have zero VEV. This makes ps 79 our candidate for fields to be
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resolved and seems perfectly reasonable observing Figure 4-1. The constraint

on our choice is that all solutions must be > 0 (since the z;’s are VEV-squared).

. Solving for G;: We are now clear what the resolution requires of us: in order

to remove node p; from D' to give the SPP, we must also resolve 6, 7 and 9.
Therefore we immediately obtain G; by directly removing the said columns from

Gy

P1 P2 P3 P4 P5 Ps

0 1 0 0 -1 1
Gt = coker(Q:) = ,
1 1 1 0 1 0

1 1 1 1 1 1

the columns of which give the toric diagram D of the SPP, as shown in Figure 4-

1.

. Solving for Q;: Now we must perform linear combination on the rows of @} to

obtain @) so as to force columns 6, 7 and 9 zero. The following constraints must
be born in mind. Because G; has 6 columns and 3 rows and is in the null space
of Q;, which itself must have 9 — 3 columns (having eliminated pg79), we must
have 6 — 3 = 3 rows for );. Also, the row containing {; must be eliminated as
this is precisely our resolution chosen above (we recall that the FI-parametres
are such that (3 = 0 and are hence unresolved, while {; > 0 and must be
removed from the D-terms for SPP).

We systematically proceed. Let there be variables {a;=1, ¢} so that y :=
> a;row; (@) is a row of Q;. Then (a) the 6th, 7th and 9th columns of y
must be set to 0 and moreover (b) with these columns removed y must be in
the nullspace spanned by the rows of G;. We note of course that since Q) was
in the nullspace of G} initially, that the operation of row-combinations is closed
within a nullspace, and that the columns to be set to 0 in @} to give Q; are
precisely those removed in G} to give G, condition (a) automatically implies
(b). This condition (a) translates to the equations {a; +as = 0, —a; +ay — ag =

0, —az + a4 = 0} which afford the solution a; = —ag; as = a4 = 0. The fact that
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aqs = 0 is comforting, because it eliminates the row containing (;. We choose
a; = 1. Furthermore we must keep row 5 as (5 is yet unresolved (thereby setting
as = 1). This already gives two of the 3 anticipated rows of Q;: rows and row,
- rowg. The remaining row must corresponds to an F-term since we have ex-
hausted the D-terms, this we choose to be the only remaining variable: a3 = 1.

Consequently, we arrive at the matrix

P P2 Ps P4 Ps  Ps
1 -1 1 0 -1 0 0
-1 1 0 1 0 -1 ¢
-1 0 0 -1 1 1 (s

Qi =

. Obtaining K and A Matrices: The hard work is now done. We now recognise

from Q; that @ = (1,-1,1,0,—1,0), giving

0 0000 1 100000
1 000 10 001010
Tja =ker(@ =] 0 0 0 1 0 0|; Kt:=Dual(Th=[0 1 0 0 0 0
-1 0100 0 001100
1 10000 000101
Subsequently we obtain
0 00 0 1 1
0 001 01
0 01 1 0O
T K= ,
010 0 0 O
0 01 010
10 0 0 0O

which we do observe indeed to have every entry positive semi-definite. Further-

more we recognise from @) that

-11 0 1 0 -1
VU: 3
-1 0 0 -1 1 1
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Figure 4-2: The quiver diagram showing the matter content of a D-brane probing
the SPP singularity. We have not marked in the chargeless field ¢ (what in a non-
Abelian theory would become an adjoint) because thus far the toric techniques do
not yet know how to handle such adjoints.

whence we obtain at last, using (4.1),

X, X2 Xz X4 X5 Xs

1 1 01 -1 0 UMa|l-1 1 0 1 -1 o0
Ao - de 1a

e |1 -1 1 0 0 -1

Ule |0 0 -1 -1 1 1

giving us the quiver diagram (included in Figure 4-2 for reference), matter
content and gauge group of a D-brane probe on SPP in agreement with [83].
We shall show in the ensuing sections that the superpotential we extract has

similar accordance.

4.2.3 The General Algorithm for the Inverse Problem

Having indulged ourselves in this illustrative example of the SPP, we proceed to
outline the general methodology of obtaining the gauge theory data from the toric

diagram.

1. Embedding into C*/(Z,)¥~': We are given a toric diagram D describing an

algebraic variety of complex dimension & (usually we are concerned with local
Calabi-Yau singularities of k = 2, 3 so that branes living thereon give N’ = 2,1

gauge theories). We immediately observe that D could always be embedded
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into D', the toric diagram of the orbifold C* /(Z,)*~! for some sufficiently large
integer n. The matrices @} and G} for D' are standard. Moreover we know that
the matrix G, for our original variety D must be a submatrix of G}. Equipped
with @} and G} our task is to obtain ();; and as an additional check we could

verify that @; is indeed in the nullspace of G;.

2. Determining the Fields to Resolve by Tuning (: @} is a k x a matrix? (because
t

D' and D are dimension k) for some a; G}, being its nullspace, is thus (a—k) x a.
D is a partial resolution of D’. In the SPP example above, we performed a single
resolution by turning on one FI-parametre, generically however, we could turn
on as many (’s as the embedding permits. Therefore we let G; be (a—k) x (a—b)
for some b which depends on the number of resolutions. Subsequently the Q)
we need is (k — b) x (a — ). |

Now b is determined directly by examining D' and D; it is precisely the number
of fields p associated to those nodes in D’ we wish to eliminate to arrive at D.
Exactly which b columns are to be eliminated is determined thus: we perform
Gaussian row-reduction on )} so as to solve the k linear-equations in a variables
z; = |p;|?, with F-terms set to 0 and D-terms to FI-parametres. The a variables
are then expressed in terms of the (;’s and the set B of z;’s corresponding to
the nodes which we definitely know will disappear as we resolve D' — D. The
subtlety is that in eliminating B, some other fields may also acquire non zero
VEV and be eliminated; mathematically this means that Order(B) < b.

Now we make a judicious choice of which fields will remain and set them to
zero and impose this further on the solution z,—; , = z;({;; B) from above
until Order(B) = b, i.e., until we have found all the fields we need to eliminate.
We know this occurs and that our choice was correct when all z; > 0 with
those equaling 0 corresponding to fields we do not wish to eliminate as can be
observed from the toric diagram. If not, we modify our initial choice and repeat

until satisfaction. This procedure then determines the b columns which we wish

2We henceforth understand that there is an extra column of zeroes and (’s.
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to eliminate from Q.

. Solving for G; and Q;: Knowing the fields to eliminate, we must thus perform

linear combinations on the &k rows of @)} to obtain the k—b rows of Q; based upon
the two constraints that (1) the b columns must be all reduced to zero (and thus
the nodes can be removed) and that (2) the £ —b rows (with b columns removed)
are in the nullspace of G;. As mentioned in our SPP example, condition (1)
guarantees (2) automatically.

In other words, we need to solve for k variables {z;=;, x} such that

k
>z (Qy)i; =0  for j=pi,ps,...00 € B. (4.2)

i=1

Moreover, we immediately obtain G, by eliminating the b columns from Gj.

k

Indeed, as discussed earlier, (4.2) implies that >> > z; (Q})i; (Gt)m; = 0 for
i=1j#p1...p

m =1,...,a — k and hence guarantees that the (J; we obtain is in the nullspace

of Gt'

We could phrase equation (4.2) for z; in matrix notation and directly evaluate
Q: = NullSpace(W)* - Q, (4.3)

where QQ is @, with the appropriate columns (p;._) removed and W is the

matrix constructed from the deleted columns.

. Obtaining the K Matrix (F-term): Having obtained the (k —b) X (a — b) matrix

Q) for the original variety D, we proceed with ease. Reading from the extraneous
column of FI-parametres, we recognise matrices (corresponding to the rows
that have zero in the extraneous column) and V - U (corresponding to those
with combinations of the unresolved (’s in the last column). We let V - U be
¢ X (@ — b) whereby making @ of dimension (k — b — ¢) x (a — b). The number
c is easily read from the embedding of D into D’ as the number of unresolved
FI-parametres.

From @, we compute the kernel 7', a matrix of dimensions (a — b) — (k — b —
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c) x (@a—0b) = (a—k+c) x (a—b) as well as the matrix K* of dimensions
(a — k + ¢) x d describing the dual cone to that spanned by the columns of T'.
The integer d is uniquely determined from the dimensions of T in accordance
with the algorithm of finding dual cones presented in the Appendix. From these

two matrices we compute T* - K*, of dimension (a — b) X d.

5. Obtaining the A Matrix (D-term): Finally, we use (4.1) to compute (V - U) -

(T* - K*), arriving at our desired matrix A of dimensions ¢ x d, the incidence
matrix of our quiver diagram. The number of gauge groups we have is therefore
¢+ 1 and the number of bi-fundamentals, d.

Of course one may dispute that finding the kernel T of @ is highly non-unique
as any basis change in the null-space would give an equally valid 7. This is
indeed so. However we note that it is really the combination 7% - K* that we
need. This is a dot-product in disguise, and by the very definition of the dual
cone, this combination remains invariant under basis changes. Therefore this

step of obtaining the quiver A from the charge matrix ); is a unique procedure.

4.2.4 Obtaining the Superpotential

Having noticed that the matter content can be conveniently obtained, we proceed to
address the interactions, i.e., the F-terms, which require a little more care. The matrix
K which our algorithm extracts encodes the F-term equations and must at least be
such that they could be integrated back to a single function: the superpotential.
Reading the possible F-flatness equations from K is ipso facto straight-forward.
The subtlety exists in how to find the right candidate among many different linear
relations. As mentioned earlier, K has dimensions m x (r — 2) with m corresponding
- to the fields that will finally manifest in the superpotential, r — 2, the fields that solve
them according to (2.41) and (2.42); of course, m > r — 2. Therefore we have r — 2
vectors in Z™, giving generically m — r + 2 linear relations among them. Say we
have row; + rows — row; = 0, then we simply write down X; X3 = X, as one of the

candidate F-terms. In general, a relation 3 a;K;; = 0 with a; € Z implies an F-term
2
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[1X{" =1 in accordance with (2.41). Of course, to find all the linear relations, we

simply find the Z-nullspace of K* of dimension m — r + 2.

Here a great ambiguity exists, as in our previous calculations of nullspaces: any
linear combinations therewithin may suffice to give a new relation as a candidate F-
term3. Thus educated guesses are called for in order to find the set of linear relations
which may be most conveniently integrated back into the superpotential. Ideally, we
wish this back-integration procedure to involve no extraneous fields (i.e., integration
constants*) other than the m fields which appear in the K-matrix. Indeed, as we shall
see, this wish may not always be granted and sometimes we must include new fields.
In this case, the whole moduli space of the gauge theory will be larger than the one
encoded by our toric data and the new fields parametrise new branches of the moduli
in the theory.

Let us return to the SPP example to enlighten ourselves before generalising. We

X1 X2 X3 X4 X5 XS

mn|1 0 0 0 0 0
. 0 0 1 0 1 o0 .
recall from subsection 3.2, that x = | from which we
b

|0 1 0 o 0 o0
w| O 0 1 1 0 o0
vs| 0 0o o0 1 o0 1

can read out only one relation X3Xg — X4X5 = 0 using the rule described in the
paragraph above. Of course there can be only one relation because the nullspace of

Kt is of dimension 6 — 5 = 1.

Next we must calculate the charge under the gauge groups which this term carries.
We must ensure that the superpotential, being a term in a Lagrangian, be a gauge
invariant, i.e., carries no overall charge under A. From

| X1 X2 Xz X4 X5 Xs
U)a -1 1 0 1 -1 o0
UWs| 1 -1 1 0 o -1
U)e| 0 o -1 -1 1 1

d=

we find the charge of X3Xj to be (g4,45,9c) = (0+0,1+(-1),(=1)+1) = (0,0,0);

3Indeed each linear relation gives a possible candidate and we seek the correct ones. For the
sake of clarity we shall call candidates “relations” and reserve the term “F-term” for a successful
candidate.

4By constants we really mean functions since we are dealing with systems of partial differential
equations.
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of course by our very construction, X4X5 has the same charge. Now we have two
choices: (a) to try to write the superpotential using only the six fields; or (b) to
include some new field ¢ which also has charge (0,0, 0). For (a) we can try the ansatz
W = X1 X5(X35Xs — X4 X5) which does give our F-term upon partial derivative with
respect to X; or X,. However, we would also have a new F-term X;X,X3; = 0 by
aixs’ which is inconsistent with our K since columns 1, 2 and 3 certainly do not add
to 0.

This leaves us with option (b), i.e., W = ¢(X3Xs — X4 X5) say. In this case, when
¢ = 0 we not only obtain our F-term, we need not even correct the matter content A.
This branch of the moduli space is that of our original theory. However, when ¢ # 0,
we must have X3 = X3 = X5 = X = 0. Now the D-terms read | X1 |>— | X,|? = —¢ =
(2, so the moduli space is: {¢ € C, X; € C} such that {; + {, = 0 for otherwise there
would be no moduli at all. We see that we obtain another branch of moduli space. As
remarked before, this is a general phenomenon when we include new fields: the whole
moduli space will be larger than the one encoded by the toric data. As a check, we
see that our example is exactly that given in [83], after the identification with their
notation, Y10 — X¢, Xos = X3, Zo3 = X1, 230 — X5, Y34 = Xy, X13 = X5, 74 — ¢
and (X1 X2 — ¢) — ¢. We note that if we were studying a non-Abelian extension to
the toric theory, as by brane setups (e.g. [83]) or by stacks of probes (in progress
from [84]), the chargeless field ¢ would manifest as an adjoint field thereby modifying
our quiver diagram. Of course since the study of toric methods in physics is so far
restricted to product U(1l) gauge groups, such complexities do not arise. To avoid
confusion we shall henceforth mark only the bi-fundamentals in our quiver diagrams

but will write the chargeless fields explicit in the superpotential.

Our agreement with the results of [83] is very reassuring. It gives an excellent
example demonstrating that our canonical resolution technique and the inverse algo-
rithm do indeed, in response to what was posited earlier, give a theory living on a
D-brane probing the SPP (T-dual to the setup in [83]). However, there is a subtle
point we would like to mention. There exists an ambiguity in writing the superpoten-

tial when the chargeless field ¢ is involved. Our algorithm gives W = ¢(X3Xs— X4 X5)
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while [83] gives W = (X1 X2 — ¢)(X3Xs — X4X6). Even though they have identical
moduli, it is the latter which is used for the brane setup. Indeed, the toric methods
by definition (in defining A from a;;) do not handle chargeless fields and hence we

have ambiguities. Fortunately our later examples will not involve such fields.

The above example of the SPP was a naive one as we need only to accommodate a

single F-term. We move on to a more complicated example. Suppose we are now given
X1 X2 X3 X4 X5 Xe X7 Xg Xo Xio
X1 X2 X3 X4 X5 Xe X7 Xg Xo X0 0
-1 0 0 -1 0 0 0 1 0 1
1 -1 0 0o O -1 0o o0 1 0 and x =
1] (1] 1 0 1 o 1 -1 -1 -1

0 1 -1 1 -1 1 -1 0 0 0

baQwhx
© O © H O »
o = O = O
QO = O O = =
Q O ~ = O O
- O O O ©o
- O - © O O
- 0O 0O O =
o © O O - ©
o O - O O
- 0 O © O

0 0 1 0
We shall see in the next section, that these arise for the del Pezzo 1 surface. Now the

nullspace of K has dimension 10 —6 = 4, we could obtain a host of relations from vari-
ous linear combinations in this space. One relation is obvious: X, X7;—X3Xg = 0. The
charge it carries is (¢4, g8, ¢, gp) = (0+0,—-14+0,0+1,1+(-1)) = (0, —1, 1, 0) which
cancels that of X,. Hence Xo(X2X7 — X3X¢) could be a term in W. Now 3372 thereof
gives X7Xg and from K we see that X7X9 — X7 X5X10 = 0, therefore, —X; X2 X5X)
could be another term in W. We repeat this procedure, generating new terms as we
proceed and introducing new fields where necessary. We are fortunate that in this case
we can actually reproduce all F-terms without recourse to artificial insertions of new

fields: W = X2X7Xg — X3X6X9 — X4X8X7 — X1X2X5X10 + X3X4X10 + X1X5X6X8.

Enlightened by these examples, let us return to some remarks upon generalities.

Making all the exponents of the fields positive, the F-terms can then be written as
[1x# =TIX7, (4.4)
i J

with a;,b; € Z*. Indeed if we were to have another field Xj such that k ¢ {}, {5}
then the term X (H XH-11X Jl-’"), on the condition that X}, appears only this once,
must be an additiv:e term iri the superpotential W. This is because the F-flatness
condition % = 0 implies (4.4) immediately. Of course judicious observations are
called for to (A) find appropriate relations (4.4) and (B) find Xy among our m fields.

Indeed (B) may not even be possible and new fields may be forced to be introduced,
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whereby making the moduli space of the gauge theory larger than that encodable by
the toric data.

In addition, we must ensure that each term in W be chargeless under the product
gauge groups. What this means for us is that for each of the terms X, (H X =TI X;-’" )
we must have Charge,(X;) + ¥ a;Charge,(X;) = 0 for s = 1, ..,r indzexing tthough
our r gauge group factors (Wez note that by our very construction, for each gauge
group, the charges for [T X;** and for [] X ;-”' are equal). If X} in fact cannot be found
among our m fields, it ;nust be introd]uced as a new field ¢ with appropriate charge.
Therefore with each such relation (4.4) read from K, we iteratively perform this said

procedure, checking Ay, +3 a; Ay = 0 at each step, until a satisfactory superpotential
2

is reached. The right choices throughout demands constant vigilance and astuteness.

4.3 An Illustrative Example: the Toric del Pezzo
Surfaces

As the C*/(Zy x Z,) resolutions were studied in great detail in [83], we shall use the
data from [84] to demonstrate the algorithm of finding the gauge theory from toric
diagrams extensively presented in the previous section.

The toric diagram of the dual cone of the (parent) quotient singularity C*/(Zs x
7Z3) as well as those of its resolution to the three toric del Pezzo surface are presented
in Figure 4-3.

del Pezzo 1: Let us commence our analysis with the first toric del Pezzo surface’.
From its toric diagram, we see that the minimal 7, x 7Z, toric diagram into which

it embeds is n = 3. As a reference, the toric diagram for C*/(Z3 x 7Z3) is given in

SNow some may identify the toric diagram of del Pezzo 1 as given by nodes (using the no-
tation in Figure 4-3) (1,-1,1), (2,-1,0), (-1,1,1), (0,0,1) and (—1,0,2) instead of the one
we have chosen in the convention of [84], with nodes (0,-1,2), (0,0,1), (-1,1,1), (1,0,0) and
(0,1,0). But of course these two G; matrices describe the same algebraic variety. The for-
mer corresponds to Spec (C[XY'Z, X2?Y~!, X~'Y Z, Z,X~12%]) while the latter corresponds
to Spec (C[Y~122,Z,X~'YZ, X,Y]). The observation that (X2Y~!) = (X)(X~'YZ)"'(2),
(XY71Z) = (X)(Y)"1(2) and (X~122%) = (Y~1Z%)(Y)(X 1) for the generators of the polyno-
mial ring gives the equivalence. In other words, there is an SL(5,7) transformation between the 5
nodes of the two toric diagrams.
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Figure 4-3 and the quiver diagram, given later in the convenient brane-box form, in
Figure 4-4. Luckily, the matrices @} and G| for this Abelian quotient is given in [84].

Adding the extra column of FI-parametres we present these matrices below®:

P1 P2 P3 Pa Ps5 P6 P7 P8 P9 P10 P11 P12 P13 Pi4 P15 Pleé P17 P18 P19 P20 P21 P22 P23 P24

0o 0 o 1 0o 0 0 -1 -1 -1 -1 © ©0 o0 o 1 o0 ©o ©o0 0o o 0 1 0
0o 0o -1 o ©0 -1 0o o0 o0 -1 0 o0 -1 o

1 1 2 1 1 1 1

Gi = 0 0 -1 -1 0 0 1 o0 -1
1101 1 2 1 1 1 2 3 2
P37 P38 P39 P40 P4l
1 0o o o 1 1
1 1 0 o0

P32 P33 P34 P35 P36

P29 P30 P31
0 0 0 0 2

P25 P26 P27 P28

0 -1 -1 -1 -1 o0 o
0 o 1 1 2 o o 0 0o o 0 -1 0 1
1 1 1 1 1 o o0 o o 0 o0 o0

1 2 1 1 0 1

6In [84], a canonical ordering was used; for our purposes we need not belabour this point and use
their Q},,,, as Q;. This is perfectly legitimate as long as we label the columns carefully, which we

have done.
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and

P21 P22 P23 P24

P19 P20

P13 Pi4 P15 P16 P17 P18

P12

P2 P3 P4 P5 Pe P7r P8 P9 P10 P11

P1

[$1

¢2

3

Ca

¢s

¢6

¢7

s
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P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P30 P40 P4l P42

—

-1 o o o ©0 ©O0 ©0 © 0 1 -1 0 0 0 1 -1 -1 1 o0
-1 o © © © o o o0 1 ©0 -1 0 0 0 1 -1 -1 1 o
-1 o o 0 O0 O ©0 -1 2 ©0 -1 0 0 0 2 -2 -2 2 0
-1 0 o o0 o0 o0 ©0 -1 1 1 -1 0 0 0 2 -1 -2 1 0
-2 o0 © 0 O 0 O -1 2 1 -2 0 0 ©0 3 -2 -2 2 0
-2 o0 o o ©0o O0o O O 2 o0 -1 0 0 0 1 -1 -1 1 0
-2 0 0o 0o o0 0 O O0 1 1 -1 0 © 0 1 -1 -1 1 o0
-1 o 0 o © 0 0 ©6 1 0 0 ©0o 0 ©o0 0 -1 0 1 0
-1 o o o 0 o0 0 0 ©0 1 -1 0 0 ©0 1 -1 0o 1 o
-1 0 o o 0 0 0 -1 1 o0 -1 0 ©0 0 2 -1 -1 2 o0
-1 ¢ o o0 0 0 O -1 2 -1 0 0 0 O0 1 -1 -1 2 0
o6 o o o 0 o0 O -1 1 ©0 O0 0 ©O0 O 1 -1 -1 1 0
6 o o o O © o0 -1 06 0 ©0 0 0 O0 1 0 -1 1 0
1 o o O0 ©O0 o0 0 o0 -1 0o o o0 0 -1 1 1 -1 o
1 o0 o 0 0 O © O0 -1 -1 1 0 0 ©0 -1 2 0 -1 0
1 o o © ©0o o0 0 -1 0 -1 1 © ©0 ©0 -1 1 0 0 0
1 0 o © 0 © ©0 -1 0 0 0 O © ©0 0 O0 0 0 0
6o o o o o0 0 0 0 0 -1 1 0 © 0 -1 1 0 0 o
0 o 0 1] 0 0 0 0 0 -1 (4] 0 0 0 0] 1 0 0 4]
-1 0 o 0o o0 0o O0O O0 ©O0 1 -1 o ©o ©0 1 -1 0 0 o
-1 o 0 0o © o 0 ©0 1 © -1 06 0 0 1 0 -1 0 0
-1 0 o © O o O0 ©0 1 -1 0o ©O0 ©o © 0 0 0 ©0 0
o 1 o o0 0 ©0 O -1 0 ©0 -1 0 0 ©0 1 -1 0o 1 o
o o 1 o0 6 o0 0 -1 1 -1 0 0 ©0 0 0 -1 0 1 o
o o o0 1 0 0 O ©0 -1 1 -1 06 0 0 0 -1 1 0 0
o o 0o o 1 ©0 ©0O 0 O O O 0 ©0 0 -1 -1 1 0 0
6o o o o0 o0 1 0 -1 0 1 -1 0 0 ©0 1 -1 0 0 0
6 o o o 0 ©O0 1 -1 1 ©0 -1 0 ©0 0 1 -1 -1 1 0
o o o o o0 O O O ©O0 o0 ©0 1 0 0 0 1 -1 -1 0
o o o o0 0 o0 O ©OoO O ©o O ©o0 1 0 -1 1 0 -1 0
0 0 4] 0 0 0 0 0 0 4] ] 0 0 1 -1 0 1 -1 0
©6 o o o O O0 O O 0 ©0 0 0 0 0 0 0 0 0
06 o 0o o 0o 0 O O © ©0 ©0 0 ©0 O 0 ©0 0 0 (s
o o o 0 O © O0O 0 0 ©o0o O O ©O0 ©O0 0 O 0 0 (3
0o o o o O O0 ©0 0 0 © 0 ©0 0 0 0 0 0 0 (s
6 o 0o o © o0 o0 0 O 0 O O ©Oo ©0 ©0 O0 0 0 (s
0o o 0o 0 0 0 o0 o0 O 0 o 0 ©0 0 0 0 0 0 (s
6o o 0o O ©o o0 ©0 ©0o ©0oO O ©O0 O 0 O 0 0 0 0 (7
o 0 o o 0 © 0 0 0 0 0 0 0 © 06 0 0 0 (s

According to our algorithm, we must perform Gaussian row-reduction on @) to
solve for 42 variables z;. When this is done we find that we can in fact express all
variables in terms of 3 z;’s together with the 8 FI-parametres (;. We choose these
three z;’s to be z1929 36 corresponding to the 3 outer vertices which we know must be
resolved in going from C®/(Z;3 x Z3) to del Pezzo 1.

Next we select the fields which must be kept and set them to zero in order to
determine the range for ¢;. Bearing in mind the toric diagrams from Figure 4-3, these
fields we judiciously select to be: pi3g373s. Setting 1383738 = 0 gives us the solution

{6 = 05229 = (7 = (3 = (1 — (55710 = G+ G5 + (35736 = (7 — (g}, which upon

back-substitution to the solutions z; we obtained from @, gives zero for 1353738
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6,7,12, 14, 15, 18, 30

37 38
37
del Pezzo O del Pezzo 3
Resolving

Resolving
10, 13, 20, 11, 26, 16, 23

10, 36, 29, 38, 32
5,20,9,11, 26, 4, 16,23

:’7'222' a ;2' :"‘:“ o 27,28, 36, 41, 42, 39, 40,29
:1 7, 21412’513,0 31,33,34,35 1.2.3.17, 19,21, 2, 24,25
......... 31,32,33,34,35
0 a9
©.-1,2
Z,xZ,
5,13,20
(.-, 1) 001 (LY
4,16,23 ° 8,27,28
12.3,6,7,12,14, 15
17,18, 19,21, 22, 24,25
30,31,32,33,34,35
Resolvin,
. 1036 29 L2 10, 36,29 ¢
@10 37,41,42 38, 39, 40 1.2.0 5,20,9, 11,26, 4, 16,23
27,28, 41, 42,39, 40
1,00 © 1,0 1,2,3,6,12, 15,18, 19
21,22, 24,25, 30, 31, 33, 34,35
Resolving
10,5, 13,20, 21,11, 26
16,23, 27,28, 41, 42 3
38,39, 40,29, 1,2, 3
6,12,17, 19, 22, 24,25
20,31, 32,33, 34, 3536 .
Resolving
10, 5,13, 20, 11,26
16, 23,27, 28, 41, 42 g
38,39,40,29,1,2,3
9 6,12, 17, 19,22,24,25

20, 31,32, 33, 34,35

37 38

9 del Pezzo 1

7,12,14,15, 18

37
4 8
Hirzebruch 0 7,12, 14,15, 18,21
36 37
del Pezzo 2

Figure 4-3: The resolution of the Gorenstein singularity C*/(Zs x Z3) to the three
toric del Pezzo surfaces as well as the zeroth Hirzebruch surface. We have labelled
explicitly which columns (linear o-model fields) are to be associated to each node in
the toric diagrams and especially which columns are to be eliminated (fields acquiring
non-zero VEV) in the various resolutions. Also, we have labelled the nodes of the
parent toric diagram with the coordinates as given in the matrix G, for C*/(Zs x Zs).
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(which we have chosen by construction) as well as 27,14,17,32; for all others we obtain
positive values. This means precisely that all the other fields are to be eliminated
and these 8 columns { 13, 8, 37, 38, 7,14,17,32 } are to be kept while the remaining
42-8=34 are to be eliminated from @} upon row-reduction to give Q;. In other words,
we have found our set B to be {1,2,3,4,5,6,9,10,11,12,15,16,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,33,34,35,36,39,40,41,42} and thus according to (4.3) we immediately

obtain

P7 P8 P13 P14 P17 P32 P37 P38

1 0 0 0 0 -1 o0 0 C2+¢s

© 0 0 0 -1 1 0 0 G
“=1 00 0 1 0 0 0 0 Gacsics

o 0 1 -1 0 -1 0 1 0

11 1 -1 -1 0 1 0 0

We note of course that 5 out of the 8 Fl-parametres have been eliminated au-
tomatically; this is to be expected since in resolving C*/(Zs x Z3) to del Pezzo 1,
we remove precisely 5 nodes. Obtaining the D-terms and F-terms is now straight-
forward. Using (4.1) and re-inserting the last row we obtain the D-term equations

(incidence matrix) to be

X1 X2 X3 X4 X5 Xe Xv Xs Xo Xio
-1 0 0 -1 0 0 0 1 0 1
d= 1 -1 0 0 0 -1 0 0 1 0
0 0 1 0 1 0 1 -1 -1 -1
0 1 -1 1 -1 1 -1 O 0 0

From this matrix we immediately observe that there are 4 gauge groups, i.e., U(1)*
with 10 matter fields X; which we have labelled in the matrix above. In an equivalent
notation we rewrite d as the adjacency matrix of the quiver diagram (see Figure 4-4)

for the gauge theory:

aij =

- o = o
N O © O
o ©o = N
o w o o
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The K-matrix we obtain to be:

(X1 Xo Xz X4 X5 Xe X7 Xs Xo XlO\
0

Kt

S O O = O
o O ~ O = O
o R O O = -
o O = = O O
oS -2 O O O ©
-0 - O O O
- O O O
o O © O = O
o ©o O = o o

0
0
0
0
1

which indicates that the original 10 fields X; can be expressed in terms of 6.
This was actually addressed in the previous section and we rewrite that pleasant

superpotential here:

W = X2X7X9 - X3X6Xg — X4X3X7 - X1X2X5X10 + X3X4X10 + X1X5X6Xg.

del Pezzo 2: Having obtained the gauge theory for del Pezzo 1, we now repeat
the above analysis for del Pezzo 2. Now we have the FI-parametres restricted as
{pss = G2 = 0;{3 = C4; T29 = (4 + (6;T10 = (1 + (4}, making the set to be eliminated
asB={12,3,5,6, 10,11, 13, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 38, 39, 40, 41, 42 }. Whence, we obtain

P4 Ppr P8 Ps P12 P14 P15 P18 P21 P36 P37

0 1 0 0 O 0 0 0 -1 0 0 Ca+Ce+Gs

1 -1t 0 O -1 © 0 0 0 0 7

o -1 0 0 O 1 0 0 0 0 0 G+¢+¢Cs

Q=]-1 1 -1 0 0 1 -1 0 1 0 0 C2 ,

0o -1 0 1 0 0 -1 0 0 0 1 0

0 -1 1 1 0 -1 o0 0o -1 1 0 0

-1 1 -1 0 O 1 -1 1 0 0 0 0

-1 1 -1 0 1 0 0 0 0 0 0 0

and observe that 4 D-terms have been resolved, as 4 nodes have been eliminated

from C©3/(Zs3 x Z3). From this we easily extract (see Figure 4-4)
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X1 X2 Xz X4 X5 Xe¢ X7 Xz X9 Xio X1 X2 X3
-1 0 0O -1 0 -1 0 1 0 0 0 1 1

0 o -1 0 -1 1 0 0 0 1 0 0 0

4= 0 0 1 0 1 0 1 -1 -1 0 1 -1 -1 ;
1 -1 0 0 0 0 0 0 1 -1 0 0 0
0 1 0 1 0 0 -1 0 0 0 -1

moreover, we integrate the F-term matrices

\
fa
&
?5
X

o O = H O O =

Xs Xe X7 Xs Xo X0 X11 Xi2 Xls\
0 0 1 0

Kt

o O O O = = O
O = = O O = =
= O = = = O O
= = = O O O O
o O O = = O O
o = O O O O o
o O © O o o =
-~ o O O = O O
O = O O O =

1 0
0 0
0 0
0 0
0 0
0 1

o O O = O

to obtain the superpotential

W = X XoX11 — XoX3X10 — Xy Xs X11 — X1 X0 X7 X153 + X153 X3 X6
— X5 X19Xe + X1 X5X X190 + Xy X7 X10.

del Pezzo 3: Finally, we shall proceed to treat del Pezzo 3. Here we have the range
of the Fl-parametres to be {(; = (¢ = (s = 05220 = (3 = —(5; %10 = (a5 (2 = T36; (s =
—(y — (10}, which gives the set B as {1, 2, 3, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42}, and thus according to (4.3)

we immediately obtain

(m P5 Pe P7 P8 P9 P12 P4 Pis Pie P30 P37 P38
0 0 0 1 0 0 0 0 0 0 -1 0 0 C2+C+Cs
1 0 0 -1 1 0 0 -1 0 0 0 0 0 (7
-1 0 0 1 -1 0 0 1 -1 0 1 0 1] (s
0o 0 -1 0 0 0O O 1 ©O0O 0O 0 0 0 G+
Qt = 0 0 1 -1 0 0 0 0 0 0 0 0 (1
0 1 -1 0 0 0 0 0 0 0 -1 0 1 0
-1 1 -1 0 0 0 0 1 -1 0 0 1 0 0
-1 0 0 1 -1 0 0 1 -1 1 0 0 0 0
-1 0 0 1 -1 0 1 0 0 0 0 0 0
\ 1 -1 1 -1 0 1 0 -1 0 0 0 0 0 }



We note indeed that 3 out of the 8 FI-parametres have been automatically resolved,
as we have removed 3 nodes from the toric diagram for C*/(Zs x Zs3). The matter

content (see Figure 4-4) is encoded in

(Xl X2 X3 X4 X5 Xe¢ X7 Xs X9 X0 Xu X2 Xi3 X14\

-1 0 0 0 1 0 0 1 -1 0 0 1 -1 0
0 0 -1 1 0 -1 0 0 0 0 0 0 1 0
d= 1 -1 0 -1 0 0 0 0 0 0 0 0 0 1 ,
0 1 0 0 0 0 -1 0 -1 1 0 0 0
0 0 0 0 -1 1 1 0 0 1 0 -1 0 -1
0 1 0 0 0 0 -1 o0 1 0 -1 0 0 0 )

and from the F-terms

X1 Xo Xs X4 X5 Xe Xt Xs Xo Xio Xun X122 Xiz Xus
0 0 0 0 1 1 1 0 0 0 0 0

o O O O O = O =
o - o - Ll [l o o

1
0
1
1
0
0
0

O = = = O O O
o O O O = o O
o = O O O o o
— O = = O O
= O = O O O O
H O O O O O =
o © O O O O =
o O O O = = O
o = O © © ~ o

we integrate to obtain the superpotential

W = X3 X X13 — Xg XoX11 — X5 X6 X153 — X1 X5 X4 X10X12
+X7 X9 X1p + X1 X X5 X710 X11 + Xy Xe X4 — X0 X7 X4,

Note that we have a quintic term in W this is an interesting interaction indeed.

del Pezzo 0: Before proceeding further, let us attempt one more example, viz., the
degenerate case of the del Pezzo 0 as shown in Figure 4-3. This time we note that the
ranges for the Fl-parametres are {(s = —zo9 + (s — A; (6 = To9 — B; T99 = B+ C; (s =
—x36 + B;23s = B+ C + D; 2190 = A+ E} for some positive A, B,C, D and E, that
B={1,2345,6,9, 10, 11, 12, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42 } and whence the charge matrix is
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Pt D8 P13 P14 P17 P3r
1 0 0 0 -1 0 (2+4¢+(s

Qt=
-1 0 0 1 0 0 GQ+C+G
-1 1 1 -1 -1 1 0
X1 X2 X3 X4 X5 Xe X7 Xz Xo
. -1 0 -1 0 -1 0 1 1 1
We extract the matter content (see Figure 4-4) asda = 6 1 0 1 0 1 11l

1 -1 1 -1 1 -1 0 0 0
X1 X2 X3 X4 X5 Xe¢ X7 Xz Xo

1 1. 0 0 0 0 1 0 0
1 0 1 0 1 0 o0 0

and the F-terms as kt = , and from the latter we
o 1 0 1 0 1 0 0 O
0o 0 1 1 0 0 0 1 0
o 0 o 0 1 1 0 o0 1

integrate to obtain the superpotential
W = X1 X3 X9 — XuX5X7 — XoX3X9 — X1 XeXs + Xo X5 X5 + X3X6X7.

Of course we immediately recognise the matter content (which gives a triangular
quiver which we shall summarise below in Figure 4-4) as well as the superpotential
from equations (4.7-4.14) of [14]; it is simply the theory on the Abelian orbifold C*/Z;
with action (« € Z3) : (21, 22,23) — (6%121,62—3&22,6%,23). Is our del Pezzo 0 then
3 /23?7 We could easily check from the G; matrix (which we recall is obtained from

G! of C*/(Zs x Z3) by eliminating the columns corresponding to the set B):

0 -1 0 0 0 1
Gi=|0 1 -1 0 0 0].
1 1 2 1 10

These columns (up to repeat) correspond to monomials Z, X~ 'YZ Y122 X in
the polynomial ring C[X,Y,Z]. Therefore we need to find the spectrum (set of
maximal ideals) of the ring C[Z, XY Z,Y~*Z% X], which is given by the mini-
mal polynomial relation: (X~1YZ)-(Y~1Z?%) - X = (Z)3. This means, upon defining
p=X"1YZ,q=Y"12Z%r =X and s = Z, our del Pezzo 0 is described by pgr = s*
as an algebraic variety in C*(p, ¢, 7, s), which is precisely C*/ZZ;. Therefore we have

actually come through a full circle in resolving €C*/(Z3 x Z3) to C*/Zs3 and the va-
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lidity of our algorithm survives this consistency check beautifully. Moreover, since
we know that our gauge theory is exactly the one which lives on a D-brane probe
on C®/Zs, this gives a good check for physicality: that our careful tuning of FI-
parametres via canonical partial resolutions does give a physical D-brane theory at
the end. We tabulate the matter content a;; and the superpotential W for the del

Pezzo surfaces below, and the quiver diagrams, in Figure 4-4.

del Pezzo 1 del Pezzo 2 del Pezzo 3
0 1 1 01
01 0 11
0 0 2 0 0 0 01 1 0
0 0 2 0 O
1 01 0 01 0 0 01
a;; = 3 00 10
0 0 0 3 1 0 0010
01 0 0 1
1 2 0 O 2 01 0 00
0 0 2 0O
00 0 1 1 0
X2XoX11 — XoX3X10 X3XsX13 — X X9X11
XoX7X0 — X3 XgXo
—X1XsX11 — X1 X2X7X13 —X5X6X13 — X1 X3X4X10X12
W= —-X4XsX7—-X1X2X5X10
+X13X3Xs — X5X12 X6 +X7XoX12 + X1 X2X5X10X11
+X3X4X10 + X1 X5X6X3g
+X1X5XsX10 + X4 X7X12 +X4X6X14 — X2 X7X14

del Pezzo 0 = C3/Z3; | Hirzebruch 0= P! x P! := Fy = B

o N O
[T I

0 2
0 3 0 o 0

Matter aij 0 0 3 40
3 00 0

0 2 0
X1XsX10 — X3X7X10
—X2X8 X9 - X1 XeX12

+X3X6X11 + X4X7X9
+XoX5X12 — X4 X5X11

X1X4Xg — XuX5X7
Superpotential W —X2X3X9 — X1 X6Xs
+X2X5Xs + X3 X6 X7

Upon comparing Figure 4-3 and Figure 4-4, we notice that as we go from del Pezzo 0
to 3, the number of points in the toric diagram increases from 4 to 7, and the number
of gauge groups (nodes in the quiver) increases from 3 to 6. This is consistent with the
observation for N/ = 1 theories that the number of gauge groups equals the number
of perimetre points (e.g., for del Pezzo 1, the four nodes 13, 8, 37 and 38) in the toric
diagram. Moreover, as discussed in [36], the rank of the global symmetry group (E;
for del Pezzo i) which must exist for these theories equals the number of perimetre
point minus 3; it would be an intereting check indeed to see how such a symmetry

manifests itself in the quivers and superpotentials.
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A B

o ! °

7,8,9 1,3,5
8,10 2.6

B 2,4,6 C o= ®

C 3,5,7 D
del Pezzo 0
oG w0H tol del Pezzo 1

N

> > 0A

A E F oD

Parent Theory
ZyX Zy

del Pezzo 2

del Pezzo 3

Hirzebruch 0

Figure 4-4: The quiver diagrams for the matter content of the brane world-volume
gauge theory on the 4 toric del Pezzo singularities as well as the zeroth Hirzebruch
surface. We have specifically labelled the U(1) gauge groups (A, B, ..) and the bi-
fundamentals (1, 2, ..) in accordance with our conventions in presenting the various
matrices (J;, A and K. As a reference we have also included the quiver for the parent
23 x 73 theory.
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Hirzebruch 0: Let us indulge ourselves with one more example, namely the Oth
Hirzebruch surface, or simply IP! x P! := Fy := E). The toric diagram is drawn
in Figure 4-3. Now the FI-parametres are {C1 = —z99 — 35 — (5 — G — A ¢ =
—A = B; (7 = x19 + 229 + %36 + (8 — C;(s = —T19 — Tg9 ~Z3s+D;D =4+ B;C =
A+BiA=x210—E;310=FE+ F; 290 = B+ G} for positive A, B, C,D,E,F and G.
Moreover, B = {1, 2, 3, 5, 6, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42 }. We note that this can be obtained
directly by partial resolution of fields 21 and 36 from del Pezzo 2 as is consistent with

Figure 4-3. Therefrom we obtain the charge matrix

P4 P7 P8 P9 piz pi4 P15 Pis  P3r
(—1 2 710 0 1 -1 0 0 (a4Ci+(s+Cs
1 -1 1 0 0 =1 o 0 0 {7
Qe=]0 -1 0 0 0 1 0 o0 o G +{3+¢Cs )
0 -1 0 1 0 0 -1 o 1 0
-1 1 -1 0 0 1 -1 1 0 0
-1 1 -1 0 1 0 0 0 0 0 )

from which we have the matter content

X1 X2 Xa X4 X5 Xe Xr Xs Xo Xio X1 Xio
-1 0 -1 0 -1 o 1 1 -1 0 1 1
d= 0 -1 0 -1 1 0 0 0 1 0 0 0
0 1 0 1 0 1 -1 -1 o 1 -1 -1
1 0 1 0 0 -1 o0 0 0 -1 0 0

the quiver for which is presented in Figure 4-4. The F-terms are

X1 Xo X3 X4 Xs Xe X7 Xz Xo Xig X1 Xio
1 0 0 0 0 1 0 0 0 0

Kt

1 1
1 1 0
1 1 0
0 0 0
0 1 0
0 0 0

(=R N = =)

1
0
0
0
1

= o = ©o ©

0 0
0 0
0 0
0 1
1 1

©C o = o o

1 0
0 0
0 0
0 1
0 0

© O H = o

)

from which we obtain

W = XiXsX10— X3X7X10 — XoXs Xo — X1 X6X12 + X3 X6 X1,
+ X4 X7 Xo + X0 X5 X120 — X4 X5 X 11,
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a perfectly acceptable superpotential with only cubic interactions. We include these

results with our table above.

4.4 Uniqueness?

In our foregoing discussion we have constructed in detail an algorithm which calculates
the matter content encoded by A and superpotential encoded in K, given the toric
diagram of the singularity which the D-branes probe. As abovementioned, though this
algorithm gives one solution for the quiver and the K-matrix once the matrix Q; is
determined, the general inverse process of going from toric data to gauge theory data,
is highly non-unique and a classification of all possible theories having the same toric
description would be interesting’. Indeed, by the very structure of our algorithm, in
immediately appealing to the partial resolution of gauge theories on 7, x ZZ,, orbifolds
which are well-studied, we have granted ourselves enough extraneous information to
determine a unique @; and hence the ability to proceed with ease (this was the very
reason for our devising the algorithm).

However, generically we do not have any such luxury. At the end of subsection
3.1, we have already mentioned two types of ambiguities in the inverse problem. Let
us refresh our minds. They were (A) the F-D ambiguity which is the inability to
decide, simply by observing the toric diagram, which rows of the charge matrix Q)
are D-terms and which are F-terms and (B) the repetition ambiguity which is
the inability to decide which columns of G, to repeat once having read the vectors
from the toric diagram. Other ambiguities exist, such as in each time when we
compute nullspaces, but we shall here discuss to how ambiguities (A) and (B) manifest
themselves and provide examples of vastly different gauge theories having the same
toric description. There is another point which we wish to emphasise: as mentioned
at the end of subsection 3.1, the resolution method guarantees, upon careful tuning
of the Fl-parametres, that the resulting gauge theory does originate from the world-

volume of a D-brane probe. Now of course, by taking liberties with experimentation

"We thank R. Plesser for pointing this issue out to us.
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of these ambiguities we are no longer protected by physicality and in general the
theories no longer live on the D-brane. It would be a truly interesting exercise to
check which of these different theories do.

F-D Ambiguity: First, we demonstrate type (A) by returning to our old friend the

SPP whose charge matrix we had earlier presented. Now we write the same matrix

without specifying the FI-parametres:

We could apply the last steps of our algorithm to this matrix as follows.

(a) If we treat the first row as @) (the F-terms) and the second and third as V - U
(the D-terms) we obtain the gauge theory as discussed in subsection 3.3 and in

[83).

(b) If we treat the second row as @ and first with the third as V - U, we obtain

-1 0 1 -1 1 0
d= ( 1 00 1 -2 —1) which is an exotic theory indeed with a field (ps)

00 -1 0 1 1
charged under three gauge groups.

Let us digress a moment to address the stringency of the requirements upon
matter contents. By the very nature of finite group representations, any orb-
ifold theory must give rise to only adjoints and bi-fundamentals because its
matter content is encodable by an adjacency matrix due to tensors of repre-
sentations of finite groups. The corresponding incidence matrix d, has (a) only
0 and =£1 entries specifying the particular bi-fundamentals and (b) has each
column containing precisely one 1, one —1 and with the remaining entries 0.
However more exotic matter contents could arise from more generic toric singu-
larities, such as fields charged under 3 or more gauge group factors; these would
then have d matrices with conditions (a) and (b) relaxed®. Such exotic quivers

(if we could even call them quivers still) would give interesting enrichment to

8Note that we still require that each column sums to 0 so as to be able to factor out an overall
UQ).
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those well-classified families.

Moreover we must check the anomaly cancellation conditions. These could be
rather involved; even though for U(1) theories they are a little simpler, we still
need to check trace anomalies and cubic anomalies. In a trace-anomaly-free
theory, for each node in the quiver, the number of incoming arrows must equal
the number of outgoing (this is true for a U(1) theory which is what toric va-
rieties provide; for a discussion on this see e.g. [45]). In matrix language this
means that each row of d must sum to 0.

Now for a theory with only bi-fundamental matter with £1 charges, since
(£1)% = %1, the cubic is equal to the trace anamaly; therefore for these theo-
ries we need only check the above row-condition for d. For more exotic matter
content, which we shall meet later, we do need to perform an independent cubic-
anomaly check.

Now for the above d, the second row does not sum to zero and whence we
do unfortunately have a problematic anomalous theory. Let us push on to see

whether we have better luck in the following.

Treating row 3 as the F-terms and the other two as the D-terms gives

0 -1 1 -1 1 0
d= (0 1 0 1 -2 —1) which has the same anomaly problem as the one

0 0 -1 0 1 1
above.

Now let rows 1 and 2 as the F-terms and the 3rd, as the D-terms, we obtain
(x1 X X3 X4 Xs
d=

0o 1 1 -1 -1], which is a perfectly reasonable matter content. Inte-

0 -1 -1 1 1
10100

grating K = 2 (1) z 1 g gives the superpotential W = ¢(X1 X2 X5 — X3X4)
0010 1

for some field ¢ of charge (0,0) (which could be an adjoint for example; note
however that we can not use X, even though it has charge (0,0) for otherwise
the F-terms would be altered). This theory is perfectly legitimate. We compare
the quiver diagrams of theories (a) (which we recall from Figure 4-2) and this

present example in Figure 4-5. As a check, let us define the gauge invariant
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Theory (a) Theory (d)

Figure 4-5: The vastly different matter contents of theories (a) and (d), both anomaly
free and flow to the toric diagram of the suspended pinched point in the IR.

quantities: a = X2X4, b= X2X5, Cc = X3X4, d= X3X5 and e = Xl. Then we
have the algebraic relations ad = bc and eb = ¢, from which we immediately

obtain ad = eb?, precisely the equation for the SPP.

(e) As a permutation on the above, treating rows 1 and 3 as the F-terms gives a

theory equivalent thereto.

(f) Furthermore, we could let rows 2 and 3 be @ giving us d= <z 11 _11 _11 _11),

but this again gives an anomalous matter content.

(g) Finally, though we cannot treat all rows as F-terms, we can however treat
all of them as D-terms in which @, is simply A as remarked at the end of

Se(ition 2 Pefore the 0ﬂow chart. In this case we have the matter content 4 =

-1 1 0 1 0 -1
-1 0 0o -1 1

1 0o -1 0 0 0
adds to zero) and cubic-anomaly-free (the cube-sum of the each row is also

which clearly is both trace-anomaly free (each row

zero). The superpotential, by our very choice, is of course zero. Thus we have a
perfectly legitimate theory without superpotential but with an exotic field (the

first column) charged under 4 gauge groups.

We see therefore, from our list of examples above, that for the simple case of the

SPP we have 3 rather different theories (a,d,g) with contrasting matter content and
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superpotential which share the same toric description.

Repetition Ambiguity: As a further illustration, let us give one example of type

(B) ambiguity. First let us eliminate all repetitive columns from the G; of SPP, giving

100 -1 1
Gi=(1 10 1 0],
111 1 1

which is perfectly allowed and consistent with Figure 4-1. Of course many more

us:

possibilities for repeats are allowed and we could redo the following analyses for each
of them. As the nullspace of our present choice of G, we find @;, and we choose, in

light of the foregoing discussion, the first row to represent the D-term:
-1 1 -1 01
Qt = ( C) .
1 -2 0 100

Thus equipped, we immediately retrieve, using our algorithm,

1 0 0 0 O 0 0 0 0 1
X1 X2 X3 X4 Xs
00 2 01 -1 0 0 1 0
d=( 1 -1 1 -1 o0 Kt = T=
01 0 €0 0 0 01 0 O
-1 1 -1 1 o0
0 0 1 1 1 2 1 0 00

We see that d passes our anomaly test, with the same bi-fundamental matter content
as theory (d). The superpotential can be read easily from K (since there is only one
relation) as W = ¢(X2 — X3X4). As a check, let us define the gauge invariant
quantities: ¢ = X1X3, b = X1 X4, ¢ = X3Xs, d = X3X4 and e = X5. These
have among themselves the algebraic relations ad = bc and e = d, from which we
immediately obtain bc = ae?, the equation for the SPP. Hence we have yet another
interesting anomaly free theory, which together with our theories (a), (d) and (g)
above, shares the toric description of the SPP.

Finally, let us indulge in one more demonstration. Now let us treat both rows of
our ; as D-terms, whereby giving a theory with no superpotential and the exotic
matter content

-1 1 -1 0 1
d= ( 1 -2 0 1 0 ) with a field (column 2) charged under 3 gauge groups.

0 1 1 -1 -1
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Indeed though the rows sum to 0 and trace-anomaly is avoided, the cube-sum of the
second row gives 13 + 13 + (—2)® = —6 and we do have a cubic anomaly.

In summary, we have an interesting phenomenon indeed! Taking so immediate an
advantage of the ambiguities in the above has already produced quite a few examples
of vastly different gauge theories flowing in the IR to the same universality class by
having their moduli spaces identical. The vigilant reader may raise two issues. First,
as mentioned earlier, one may take the pains to check whether these theories do indeed
live on a D-brane. Necessary conditions such as that the theories may be obtained
from an A = 4 theory must be satisfied. Second, the matching of moduli spaces may
not seem so strong since they are on a classical level. However, since we are dealing
with product U(1) gauge groups (which is what toric geometry is capable to dealing
with so far), the classical moduli receive no quantum corrections®. Therefore the
matching of the moduli for these various theories do persist to the quantum regime,
which hints at some kind of “duality” in the field theory. We shall call such a duality
toric duality. It would be interesting to investigate how, with non-Abelian versions
of the theory (either by brane setups or stacks of D-brane probes), this toric duality

may be extended.

4.5 Conclusions and Prospects

The study of resolution of toric singularities by D-branes is by now standard. In the
concatenation of the F-terms and D-terms from the world volume gauge theory of a
single D-brane at the singularity, the moduli space could be captured by the algebraic
data of the toric variety. However, unlike the orbifold theories, the inverse problem
where specifying the structure of the singularity specifies the physical theory has not
yet been addressed in detail.

We recognise that in contrast with D-brane probing orbifolds, where knowing the
group structure and its space-time action uniquely dictates the matter content and

superpotential, such flexibility is not shared by generic toric varieties due to the highly

9We thank K. Intriligator for pointing this out.
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non-unique nature of the inverse problem. It has been the purpose and main content
of the current writing to device an algorithm which constructs the matter content
(the incidence matrix d) and the interaction (the F-term matrix K') of a well-behaved

gauge theory given the toric diagram D of the singularity at hand.

By embedding D into the Abelian orbifold C*/(Z,)*~! and performing the stan-
dard partial resolution techniques, we have investigated how the induced action upon
the charge matrices corresponding to the toric data of the latter gives us a convenient
charge matrix for D and have constructed a programmatic methodology to extract
the matter content and superpotential of one D-brane world volume gauge theory
probing D. The theory we construct, having its origin from an orbifold, is nicely
behaved in that it is anomaly free, with bi-fundamentals only and well-defined super-
potentials. As illustrations we have tabulated the results for all the toric del Pezzo

surfaces and the zeroth Hirzebruch surface.

Directions of further work are immediately clear to us. From the patterns emerging
from del Pezzo surfaces 0 to 3, we could speculate the physics of higher (non-toric)
del Pezzo cases. For example, we expect del Pezzo n to have n + 3 gauge groups.
Moreover, we could attempt to fathom how our resolution techniques translate as
Higgsing in brane setups, perhaps with recourse to diamonds, and realise the various

theories on toric varieties as brane configurations.

Indeed, as mentioned, the inverse problem is highly non-unique; we could presum-
ably attempt to classify all the different theories sharing the same toric singularity
as their moduli space. In light of this, we have addressed two types of ambiguity:
that in having multiple fields assigned to the same node in the toric diagram and
that of distinguishing the F-terms and D-terms in the charge matrix. In particular
we have turned this ambiguity to a matter of interest and have shown, using our
algorithm, how vastly different theories, some with quite exotic matter content, may
have the same toric description. This commonality would correspond to a duality
wherein different gauge theories flow to the same universality class in the IR. We call
this phenomenon toric duality. It would be interesting indeed how this duality may

manifest itself as motions of branes in the corresponding setups. Without further ado
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however, let us pause here awhile and leave such investigations to forthcoming work.

Appendix: Finding the Dual Cone

Let us be given a convex polytope C, with the edges specifying the faces of which
given by the matrix M whose columns are the vectors corresponding to these edges.

Our task is to find the dual cone C of C, or more precisely the matrix N such that
N-M>0 for all entries.

There is a standard algorithm, given in [48]. Let M be n x p, i.e., there are p n-
dimensional vectors spanning C. We note of course that p > n for convexity. Out
of the p vectors, we choose n — 1. This gives us an n x (n — 1) matrix of co-rank 1,
whence we can extract a 1-dimensional null-space (as indeed the initial p vectors are
all linearly independent) described by a single vector w.

Next we check the dot product of u with the remaining p — (n — 1) vectors. If all
the dot products are positive we keep u, and if all are negative, we keep —u, otherwise
we discard it.

We then select another n — 1 vectors and repeat the above until all combinations
are exhausted. The set of vectors we have kept, u’s or —u’s then form the columns
of N and span the dual cone C.

We note that this is a very computationally intensive algorithm, the number of

. p . .
steps of which depends on which grows exponentially.
n—1

A subtle point to remark. In light of what we discussed in a footnote in the paper
on the difference between M = M N o and M/, here we have computed the dual
of . We must ensure that 7ZZ,-independent lattice points inside the cones be not

missed.
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Chapter 5

Phase Structure of D-brane Gauge

Theories and Toric Duality

5.1 Introduction

The methods of toric geometry have been a crucial tool to the understanding of
many fundamental aspects of string theory on Calabi-Yau manifolds (cf. e.g. [49)]).
In particular, the connexions between toric singularities and the manufacturing of
various gauge theories as D-brane world-volume theories have been intimate.

Such connexions have been motivated by a myriad of sources. As far back as 1993,
Witten [50] had shown, via the so-called gauged linear sigma model, that the Fayet-
Illiopoulos parametre r in the D-term of an N’ = 2 supersymmetric field theory with
U(1) gauge groups can be tuned as an order-parametre which extrapolates between
the Landau-Ginzburg and Calabi-Yau phases of the theory, whereby giving a precise
viewpoint to the LG/CY-correspondence. What this means in the context of Abelian
gauge theories is that whereas for r < 0, we have a Landau-Ginzberg description
of the theory, by taking r > 0, the space of classical vacua obtained from D- and
F-flatness is described by a Calabi-Yau manifold, and in particular a toric variety.

With the advent of D-brane technologies, vast amount of work has been done to
study the dynamics of world-volume theories on D-branes probing various geometries.

Notably, in [40], D-branes have been used to probe Abelian singularities of the form
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C?/Z,. Methods of studying the moduli space of the SUSY theories describable by
quiver diagrams have been developed by the recognition of the Kronheimer-Nakajima,

ALE instanton construction, especially the moment maps used therein [42].

Much work followed [71, 70, 44]. A key advance was made in [14], where, exempli-
fying with Abelian C? orbifolds, a detailed method was developed for capturing the
various phases of the moduli space of the quiver gaﬁge theories as toric varieties. In
another vein, the huge factory built after the brane-setup approach to gauge theories
[10] has been continuing to elucidate the T-dual picture of branes probing singular-
ities (e.g. [30, 31, 45]). Brane setups for toric resolutions of Z, x Z,, including the
famous conifold, were addressed in [83, 79]. The general question of how to construct
the quiver gauge theory for an arbitrary toric singularity was still pertinent. With
the AdS/CFT correspondence emerging [71, 70], the pressing need for the question
arises again: given a toric singularity, how does one determine the quiver gauge theory
having the former as its moduli space?

The answer lies in “Partial Resolution of Abelian Orbifolds” and was introduced
and exemplified for the toric resolutions of the Z3 x Z3 orbifold [14, 84]. The method
was subsequently presented in an algorithmic and computationally feasible fashion in

[85] and was applied to a host of examples in [86].

One short-coming about the inverse procedure of going from the toric data to the
gauge theory data is that it is highly non-unique and in general, unless one starts
by partially resolving an orbifold singularity, one would not be guaranteed with a
physical world-volume theory at all! Though the non-uniqueness was harnessed in
[85] to construct families of quiver gauge theories with the same toric moduli space,
a phenomenon which was dubbed “toric duality,” the physicality issue remains to be
fully tackled.

The purpose of this writing is to analyse toric duality within the confinement of
the canonical method of partial resolutions. Now we are always guaranteed with a
world-volume theory at the end and this physicality is of great assurance to us. We
find indeed that with the restriction of physical theories, toric duality is still very

much at work and one can construct D-brane quiver theories that flow to the same
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moduli space.

We begin in §2 with a seeming paradox which initially motivated our work and
which ab initio appeared to present a challenge to the canonical method. In §3 we
resolve the paradox by introducing the well-known mathematical fact of toric isomor-
phisms. Then in §4, we present a detailed analysis, painstakingly tracing through
each step of the inverse procedure to see how much degree of freedom one is allowed
as one proceeds with the algorithm. We consequently arrive at a method of extract-
ing torically dual theories which are all physical; to these we refer as “phases.” As
applications of these ideas in §5 we re-analyse the examples in [85], viz., the toric del
Pezzo surfaces as well as the zeroth Hirzebruch surface and find the various phases
of the quiver gauge theories with them as moduli spaces. Finally in §6 we end with

conclusions and future prospects.

5.2 A Seeming Paradox

In [85] we noticed the emergence of the phenomenon of “Toric Duality” wherein the
moduli space of vast numbers of gauge theories could be parametrised by the same
toric variety. Of course, as we mentioned there, one needs to check extensively whether
these theories are all physical in the sense that they are world-volume theories of some
D-brane probing the toric singularity.

Here we shall discuss an issue of more immediate concern to the physical probe
theory. We recall that using the method of partial resolutions of Abelian orbifolds
[85, 14, 84, 83], we could always extract a canonical theory on the D-brane probing
the singularity of interest.

However, a discrepancy of results seems to have risen between [85] and [71] on
the precise world-volume theory of a D-brane probe sitting on the zeroth Hirzebruch

surface; let us compare and contrast the two results here.

e Results from [85]: The matter contents of the theory are given by (on the left we

present the quiver diagram and on the right, the incidence matrix that encodes
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the quiver):

D 6,10 C

(X Xo Xs X4 Xs Xo X7 Xs Xo Xio Xy Xip )
-1 0 -1 0 -1 0 1 1 -1 0 1 1
0O -1 0 -1 1 0 0 0 1 0 0 0
0 1 0 1 0 1 -1 -1 0 1 -1 -1
Dl 1 0 1 0 0 -1 O 0 0 -1 0 0

=9
Il
Q W -

and the superpotential is given by

W = X1 XgXio— X3X7 X0 — XoXsXg — X1 X6 X12 + X3X6X11
+ X4 X7 Xg + XoX5X10 — Xy X5 X011, (5.1)

o Results from [71]: The matter contents of the theory are given by (for ¢ = 1,2):

Yiu Y

Xiiz Xion Yinn Yo

. Al -1 0 1 0

X. D

¢ ' d=| B| 1 0 0 -1

c| 0 1 -1 0

D| 0 -1 0 1

and the superpotential is given by
W = €e9e" X; 15Y% 20X, 1Y 11- (5.2)
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Indeed, even though both these theories have arisen from the canonical partial
resolutions technique and hence are world volume theories of a brane probing a Hirze-
bruch singularity, we see clearly that they differ vastly in both matter content and
superpotential! Which is the “correct” physical theory?

In response to this seeming paradox, let us refer to Figure 5-1. Case 1 of course

{0.-1.2)

5,13,20

(-4 n

4,16,23
1,2.3,6.7.12,14. 15

17,18, 19,21.22,24.25
30.31,32.33,34,35

36 29

i1.2.0

Resolving @ra 37,41,42 38,39, 40
10, 5,13,20,21, 11,26
16,23,27,28, 41,42 i1,0,0 . 1,0 )
38,39,40,29,1,2,3 Resolving
6,12,17,19,22,24,25
""" 10,13,20,4,16,23
20, 31,32, 33, 34,3536 3 a1 12 394025
8,27,28, 11,26

12312, 14
17,18.19.21.22,24. 25
31,32.33,34.35

9 5

37 37 38
s, ~
Case 1 Case 2

Figure 5-1: Two alternative resolutions of C?/Z3; x Z3 to the Hirzebruch surface Fy:
Case 1 from [85] and Case 2 from [71].

was what had been analysed in [85] (q.v. ibid.) and presented in (5.1); let us now

consider case 2. Using the canonical algorithm of [84, 85], we obtain the matter

content (we have labelled the fields and gauge groups with some foresight)

[ |x Xl X, % % Y Y% Y
D|l0O 1 1 0 0 -1 0 -1
de=| Al-1 0 0 1 1 0 -1 0
Bi1 -1 -1 0 0 0 1 0
\C|l0 0 0 -1 -1 1 0 1
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and the dual cone matrix

X1 X1 XYY X,V

m|1 0 0 0 0 1 0 0

p2|0 1 0 1 0 0 0 0
Ki=|ps/1 0 0 0 0 0 1 0
4|0 1 1 0 0 0 0 0

ps|0 0 1 0 1 0 0 0
\»|0 0 0 0 0 1 0 1

which translates to the F-term equations
X1Y5 = pipsps = Y X0, X(Yo = popaps = V1 X5,

What we see of course, is that with the field redefinition X; <> X; 12, X! < Y} 2, Y; <
Y11 and Y] <> X o1 for « = 1,2, the above results are in exact agreement with the
results from [71] as presented in (5.2).

This is actually of no surprise to us because upon closer inspection of Figure 5-1,

we see that the toric diagram for Cases 1 and 2 respectively has the coordinate points

-1 1 1 0 -1 0 -1 1 00
Gi,=| 0 -1 0 0 1 Gx=|-1 0 01 0
2 1 01 1 2 2 0 01

Now since the algebraic equation of the toric variety is given by [48]
V(G) = Specaras ((D[Xf"v ”Za]) ,

we have checked that, using a reduced Grobner polynomial basis algorithm to compute
the variety [88], the equations are identical up to redefinition of variables.

Therefore we see that the two toric diagrams in Cases 1 and 2 of Figure 5-1 both
describe the zeroth Hirzebruch surface as they have the same equations (embedding

into C°). Yet due to the particular choice of the diagram, we end up with strikingly
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different gauge theories on the D-brane probe despite the identification of the moduli
space in the IR. This is indeed a curiously strong version of “toric duality.”

Bearing the above in mind, in this paper, we will analyse the degrees of freedom
in the Inverse Algorithm expounded upon in [85], i.e., for a given toric singularity,
how many different physical gauge theories (phase structures), resulting from various
partial resolutions can one have for a D-brane probing such a singularity? To answer
this question, first in §2 we present the concept of toric isomorphism and give the
conditions for different toric data to correspond to the same toric variety. Then in
§3 we follow the Forward Algorithm and give the freedom at each step from a given
set of gauge theory data all the way to the output of the toric data. Knowing these
freedoms, we can identify the sources that may give rise to different gauge theories in
the Inverse Algorithm starting from a prescribed toric data. In section 4, we apply
the above results and analyse the different phases for the partial resolutions of the
Z3 x Z3 orbifold singularity, in particular, we found that there are two inequivalent
phases of gauge theories respectively for the zeroth Hirzebruch surface and the second

del Pezzo surface. Finally, in section 5, we give discussions for further investigation.

5.3 Toric Isomorphisms

Extending this observation to generic toric singularities, we expect classes of inequiv-
alent toric diagrams corresponding to the same variety to give rise to inequivalent
gauge theories on the D-brane probing the said singularity. An immediate question
is naturally posed: “is there a classification of these different theories and is there a
transformation among them?”

To answer this question we resort to the following result. Given M-lattice cones
o and ¢’, let the linear span of o be linc = IR" and that of ¢’ be R™. Now each
cone gives rise to a semigroup which is the intersection of the dual cone ¢V with the
dual lattice M, i.e., S, := ¢V N M (likewise for ¢’). Finally the toric variety is given

as the maximal spectrum of the polynomial ring of C' adjoint the semigroup, i.e.,

X, := Specaraz (C[S,])-
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DEFINITION 5.3.1 We have these types of isomorphisms:

1. We call o and o' cone isomorphic, denoted o Zeone 0, if n = m and there is q
unimodular transformation I, - R™ = R" with L(0) = ¢;
2. we call S, and S,» monomial isomorphic, denoted o Zmon Ser, if there ezists

mutually inverse monomial homomorphisms between the two semigroups.

Thus equipped, we are endowed with the following

THEOREM 5.3.1 ([90], VI.2.11) The following conditions gre equivalent:
(@) 0 2 0’ < (0) Sy Xon S, <> () X, =X,

What this theorem means for us is simply that, for the n~-dimensional toric variety, an
SL(n; Z) transformation! on the original lattice cone amounts to merely codrdinate
transformations on the polynomial ring and results in the Same toric variety. This, is

precisely what we want: different toric diagrams giving the same variety.

‘The necessity and sufficiency of the condition in Theorem 5.3.1 is important. Let
us think of one example to illustrate. Let a cone be defined by (e1,€2), we know this

corresponds to C2. Now if we apply the transformation

2 0
(81, 82) = (261 — €3, 62)7
-1 1

which corresponds to the variety zy = 22 e, C?/Z,, which of course is not isomor-

unimodular.

!Strictly speaking, by unimodular we mean GL(n; Z) matrices with determinant +1; we shall
denote these loosely by SL(n; Z).
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5.4 Freedom and Ambiguity in the Algorithm

In this section, we wish to step back and address the issue in fuller generality. Recall
that the procedure of obtaining the moduli space encoded as toric data once given
the gauge theory data in terms of product U(1) gauge groups, D-terms from mat-
ter contents and F-terms from the superpotential, has been well developed [71, 14).
Such was called the forward algorithm in [85]. On the other hand the reverse
algorithm of obtaining the gauge theory data from the toric data has been discussed
extensively in [84, 85].

It was pointed in [85] that both the forward and reverse algorithm are highly non-
unique, a property which could actually be harnessed to provide large classes of gauge
theories having the same IR moduli space. In light of this so-named “toric duality”
it would be instructive for us to investigate how much freedom do we have at each
step in the algorithm. We will call two data related by such a freedom equivalent to
each other. Thence further we could see how freedoms at every step accumulate and
appear in the final toric data. Modulo such equivalences we believe that the data

should be uniquely determinable.

5.4.1 The Forward Algorithm

We begin with the forward algorithm of extracting toric data from gauge data. A brief
review is at hand. To specify the gauge theory, we require three pieces of information:
the number of U(1) gauge fields, the charges of matter fields and the superpotential.
The first two are summarised by the so-called charge matrix dj; where [ = 1,2, ..., L
with L the number of U(1) gauge fields and i = 1,2, ..., I with I the number of matter
fields. When using the forward algorithm to find the vacuum manifold (as a toric
variety), we need to solve the D-term and F-term flatness equations. The D-terms
are given by d;; matrix while the F-terms are encoded in a matrix K;; with4,1,2,...,1
and j = 1,2,...,J where J is the number of independent parameters needed to solve
the F-terms. By gauge data then we mean the matrices d (also called the incidence

matrix) and the K (essentially the dual cone); the forward algorithm takes these as
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input. Subsequently we trace a flow-chart:

D-Terms — d — A
!
F-Terms —» K V552 v
) |
T=Dual(k) 5" v - VU
] !
Q = [Ker(T)]¥ — Q= VQU — Gy = [Ker(Qy)]"

arriving at a final matrix G; whose columns are the vectors which prescribe the nodes
of the toric diagram:.

What we wish to investigate below is how much procedural freedom we have at
each arrow so as to ascertain the non-trivial toric dual theories. Hence, if A, is the
matrix whither one arrives from a certain arrow, then we would like to find the most
general transformation taking A; to another solution A, which would give rise to an
identical theory. It is to this transformation that we shall refer as “freedom” at the

particular step.

Superpotential: the matrices K and T

The solution of F-term equations gives rise to a dual cone K; = Kj;; defined by I
vectors in Z7. Of course, we can choose different parametres to solve the F-terms
and arrive at another dual cone K. Then, K; and K, being integral cones, are
equivalent if they are unimodularly related, i.e., K = A- K{ for A € GL(J, Z) such
that det(A) = +1. Furthermore, the order of the I vectors in Z” clearly does not
matter, so we can permute them by a matrix S; in the symmetric group S;. Thus

far we have two freedoms, multiplication by A and S:

K =A-KT.g, (5.3)
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and K o should give equivalent theories.
Now, from K;; we can find its dual matrix T}, (defining the cone T) where o =

1,2,...,c and c is the number of vectors of the cone T in Z”, as constrained by
K-T>0 (5.4)

and such that T also spans an integral cone. Notice that finding dual cones, as given
in a algorithm in [48], is actually unique up to permutation of the defining vectors.
Now considering the freedom of Kj;; as in (5.3), let T; be the dual of K and T; that
of K;, we have K, - Ty = ST - K; - AT - T, > 0, which means that

T, =AT Ty, S.. (5.5)

Note that here S, is the permutation of the ¢ vectors of the cone T in and not that

of the dual cone in (5.3).

The Charge Matrix @

The next step is to find the charge matrix Qo whereaa =1,2,...,cand k =1,2,...,c—
J. This matrix is defined by
T-Q" =0. (5.6)

In the same spirit as the above discussion, from (5.5) we have T} - QT = AT . T3 - S, -
T = 0. Because AT is a invertible matrix, this has a solution when and only when
Ts-S.-QF = 0. Of course this is equivalent to T3+ Sc- Qf - Bex = 0 for some invertible

(¢ = J) x (¢ — J) matrix Byg. So the freedom for matrix @ is
T =S5.-Q7 - B. (5.7)

We emphasize a difference from (5.4); there we required both matrices K and T to be
integer where here (5.6) does not possess such a constraint. Thus the only condition

for the matrix B is its invertibility.
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Matter Content: the Matrices d, V and U

Now we move onto the D-term and the integral di; matrix. The D-term equations are
d-|X|? = 0 for matter fields X. Obviously, any transformation on d by an invertible
matrix Cryz, does not change the D-terms. Furthermore, any permutation S of the
order the fields X, so long as it is consistent with the Sy in (5.3), is also game. In

other words, we have the freedom:
dzIC'dl'SI. (58)

We recall that a matrix V is then determined from A, which is d with a row deleted
due to the centre of mass degree of freedom. However, to not to spoil the above
freedom enjoyed by matrix d in (5.8), we will make a slight amendment and define
the matrix 17,]- by

V-KT =d. (5.9)

Therefore, whereas in [14, 85] where vV - KT = A was defined, we generalise V' to Vv
by (5.9). One obvious way to obtain V from V is to add one row such that the sum
of every column is zero. However, there is a caveat: when there exists a vector h such

that

we have the freedom to add h to any row of V. Thus finding the freedom of 17“
is a little more involved. From (5.3) we have d = Vo - KT =Vo-A-K{ - Sy and
dy=C-dy-Sr=0C- v - KT - S;. Because S; is an invertible square matrix, we
have (Vo - A— C - V) - KT = 0, which means V,-A—C -V, = CHg, for a matrix H
constructed by having the aforementioned vectors h as its columns. When K T has
maximal rank, H is zero and this is in fact the more frequently encountered situation.
However, when K7 is not maximal rank, so as to give non-trivial solutions of h, we

have that 171 and 172 are equivalent if

Vo=C-(Vi+Hg,) A" (5.10)
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Moving on to the matrix Uj, defined by
U-TT =1, (5.11)

we have from (5.5) Iy = U, - T¥ = Uy - ST - Tf - A, whence A~ = U, - ST - T¥ and
I=A U, ST -T]. This gives (A-U, - ST —U,) - T = 0 which has a solution
A-U,-ST — U, = Hr, where Hr, - T = 0 is precisely as defined in analogy of the H

above. Therefore the freedom on U is subsequently
Uy,=A- (U, — Hy,) - ST, (5.12)

where Hy, = A" Hrp,(ST)~! and Hy, - TT = (A7'Hr, (ST)"1)(ST-TF - A) = 0. Finally
using (5.10) and (5.12), we have

(Va-Us) = C-(Vi+Hg,)-A™V-A-(Uy— Hy,)-ST = C-(Vi+ Hy, ) (U1 — Hy,)- ST, (5.13)

determining the freedom of the relevant combination (V - U).

Let us pause for an important observation that in most cases Hg, = 0, as we shall
see in the examples later. From (5.6), which propounds the existence of a non-trivial
nullspace for T', we see that one can indeed obtain a non-trivial Hr, in terms of the

combinations of the rows of the charge matrix @, whereby simplifying (5.13) to
(Va-Uy) =C - (Vi - Uy + Hyy,) - ST, (5.14)

where every row of Hyy, is linear combination of rows of @; and the sum of its

columns is zero.
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Toric Data: the Matrices (); and G;

At last we come to @t, which is given by adjoining @ and V -U. The freedom is of

course, by combining all of our results above,

G| @ - BT QiS¢ _ -G st
R WA C-(h U+ Hyy,)- ST C-(Vi-Uh+Hyw) | °

(5.15)

Now Q; determines the nodes of the toric diagram (Gt)pa P=1,2,.,(c—(L—-1)=1J)
and « =1,2,...;c) by

Qi G{ =0; (5.16)

The columns of GG} then describes the toric diagram of the algebraic variety for the
vacuum moduli space and is the output of the algorithm. From (5.16) and (5.15)
we find that if (Q;); - (G)T =0, ie., @1 - (G)T =0 and V; - Uy - (G)T = 0, we
automatically have the freedom (Q;)s - (ST)~! - (G¢)T = 0. This means that at most

we can have

@ = (ST) - (@)F - D,  5am)

where D is a GL(c — (L — 1) — J, Z) matrix with det(D) = %1 which is exactly the

unimodular freedom for toric data as given by Theorem 5.3.1.

One immediate remark follows. From (5.16) we obtain the nullspace of Q; in Z°.
It seems that we can choose an arbitrary basis so that D is a GL(c— (L —1) — J, Z)
matrix with the only condition that det(D) # 0. However, this is not stringent
enough: in fact, when we find cokernel GG}, we need to find the integer basis for the
null space, i.e., we need to find the basis such that any integer null vector can be
decomposed into a linear combination of the columns of G;. If we insist upon such a

choice, the only remaining freedom? is that det(D) = +1, viz, unimodularity.

2We would like to express our gratitude to M. Douglas for clarifying this point to us.
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5.4.2 Freedom and Ambiguity in the Reverse Algorithm

Having analysed the equivalence conditions in last subsection, culminating in (5.15)
and (5.17), we now proceed in the opposite direction and address the ambiguities in

the reverse algorithm.

The Toric Data: G;

We note that the G; matrix produced by the forward algorithm is not minimal in
the sense that certain columns are repeated, which after deletion, constitute the
toric diagram. Therefore, in our reverse algorithm, we shall first encounter such an
ambiguity in deciding which columns to repeat when constructing G; from the nodes
of the toric diagram. This so-called repetition ambiguity was discussed in [85] and
different choices of repetition may indeed give rise to different gauge theories. It was
pointed out (loc. cit.) that arbitrary repetition of the columns certainly does not
guarantee physicality. By physicality we mean that the gauge theory arrived at the
end of the day should be physical in the sense of still being a D-brane world-volume
theory. What we shall focus here however, is the inherent symmetry in the toric
diagram, given by (5.17), that gives rise to the same theory. This is so that we could
find truly inequivalent physical gauge theories not related by such a transformation

as (5.17).

The Charge Matrix: from G; to @

From (5.16) we can solve for Q;. However, for a given Gy, in principle we can have

two solutions (Q;); and (Q;)2 related by

(Q1)2 = P(Q)1, (5.18)

where P is a p X p matrix with p the number of rows of @;. Notice that the set of
such transformations P is much larger than the counterpart in the forward algorithm

given in (5.15). This is a second source of ambiguity in the reverse algorithm. More
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explicitly, we have the freedom to arbitrarily divide the @), into two parts, viz., the D-
term part VU and the F-term part Q. Indeed one may find a matrix P such that (@i
and (Q:), satisfy (5.18) but not matrices B and C in order to satisfy (5.15). Hence
different choices of @); and different division therefrom into D and F-term parts give
rise to different gauge theories. This is what we called F'D Ambiguity in [85]. Again,
arbitrary division of the rows of ); was pointed out to not to ensure physicality. As
with the discussion on the repetition ambiguity above, what we shall pin down is the

freedom due to the linear algebra and not the choice of division.

The Dual Cone and Superpotential: from @ to K

The nullspace of @ is the matrix 7. The issue is the same as discussed at the paragraph
following (5.17) and one can uniquely determine 7' by imposing that its columns give
an integral span of the nullspace. Going further from 7' to its dual K, this is again
a unique procedure (while integrating back from K to obtain the superpotential is

certainly not). In summary then, these two steps give no sources for ambiguity.

The Matter Content: from VU to d matrix
The d matrix can be directly calculated as [85]
d=(VU)-T* - KT, (5.19)
Substituting the freedoms in (5.3), (5.5) and (5.13) we obtain
dy = (Vo-Up) - Tf - Ki =C-[(Vi-U)) + Hyu] - ST - (ST)7'-Tf - A7 - A KT - 5,

= C(VIUl)TlTK;TS]-FCHVUITITKTSI:C(ZISI,

which is exactly formula (5.8). This means that the matter matrices are equivalent

up to a transformation and there is no source for extra ambiguity.
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5.5 Application: Phases of Z3 x Z3 Resolutions

In [85] we developed an algorithmic outlook to the Inverse Procedure and applied
it to the construction of gauge theories on the toric singularities which are partial
resolutions of Z3 x Z3. The non-uniqueness of the method allowed one to obtain
many different gauge theories starting from the same toric variety, theories to which
we referred as being toric duals. The non-uniqueness mainly comes from three sources:
(i) the repetition of the vectors in the toric data G, (Repetition Ambiguity), (ii) the
different choice of the null space basis of @; and (iii) the different divisions of the
rows of Q; (F-D Ambiguity). Many of the possible choices in the above will generate
unphysical gauge theories, i.e., not world-volume theories of D-brane probes. We have

yet to catalogue the exact conditions which guarantee physicality.

However, Partial Resolution of Abelian orbifolds, which stays within subsectors of
the latter theory, does indeed constrain the theory to be physical. To these physical
theories we shall refer as phases of the partial resolution. As discussed in [85] any
k-dimensional toric diagram can be embedded into Z*~! for sufficiently large n, one
obvious starting point to obtain different phases of a D-brane gauge theory is to try
various values of n. We leave some relevances of general n to the Appendix. However,
because the algorithm of finding dual cones becomes prohibitively computationally

intensive even for n > 4, this approach may not be immediately fruitful.

Yet armed with Theorem 5.3.1 we have an alternative. We can certainly find all
possible unimodular transformations of the given toric diagram which still embeds
into the same Z*~! and then perform the inverse algorithm on these various a fortiori
equivalent toric data and observe what physical theories we obtain at the end of the
day. In our two examples in §1, we have essentially done so; in those cases we found
that two inequivalent gauge theory data corresponded to two unimodularly equivalent

toric data for the examples of Zs-orbifold and the zeroth Hirzebruch surface Fj.

The strategy lays itself before us. Let us illustrate with the same examples as was
analysed in [85], namely the partial resolutions of C3/(Z; x Z3), i.e., Fy and the toric
del Pezzo surfaces dPy123. We need to (i) find all SL(3; Z) transformations of the
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toric diagram G\ of these five singularities that still remain as sub-diagrams of that
of Z3 x Z3 and then perform the inverse algorithm; therefrom, we must (ii) select
theories not related by any of the freedoms we have discussed above and summarised

in (5.15).

5.5.1 Unimodular Transformations within 73 x Z3

We first remind the reader of the G; matrix of Z3 x Z3 given in Figure 5-1, its
columns are given by vectors: (0,0,1), (1,-1,1), (0,-1,2), (-1,1,1), (-1,0,2),
(-1,-1,3), (1,-1,1), (-1,2,0), (1,0,0), (0,1,0). Step (i) of our above strategy can
be immediately performed. Given the toric data of one of the resolutions G} with z
columns, we select z from the above 10 columns of G; and check whether any SL(3; 2)
transformation relates any permutation thereof unimodularly to G;. We shall at the

end find that there are three different cases for Fy, five for dP°, twelve for dP;, nine
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for dP, and only one for dP;. The (unrepeated) G, matrices are as follows:

(1,-1,1),(1,0,0),(0,1,0), (-1,0,2), (0,0, 1)

1,-1,1),(0,1,0),(=1,1,1),(-1,0,2), (0,0,1)

)

(Fo): |(0,0,1),(1,-1,1),(-1,1,1),(-1,0,2),(1,0,0)
(Fo)2 |(0,0,1),(0,-1,2),(0,1,0),(-1,0,2),(1,0,0)
(Fo)s |(0,0,1),(1,-1,1),(-1,1,1),(0,-1,2),(0,1,0)
(dPp), |(0,0,1),(1,0,0),(0,-1,2),(-1,1,1)
(dPy)2 | (0,0,1),(1,0,0),(-1,-1,3),(0,1,0)
(dPRy)s | (0,0,1),(-1,2,0),(1,-1,1),(0,-1,2)
(dPy)4 | (0,0,1),(0,1,0),(1,-1,1),(-1,0,2)
(dPy)s | (0,0,1),(2,-1,0),(-1,1,1),(-1,0,2)
(dpP,), | (1,0,0),(0,1,0),(-1,1,1),(0,-1,2),(0,0,1)
(dPy), | (-1,-1,3),(0,-1,2),(1,0,0),(0,1,0),(0,0,1)
(dP); | (0,-1,2),(1,-1,1),(1,0,0),(-1,1,1),(0,0,1)
(dPy), | (0,-1,2),(1,-1,1),(0,1,0),(-1,2,0),(0,0,1)
(dP)s | (0,-1,2),(1,-1,1),(0,1,0),(-1,0,2),(0,0,1)
(dPy)s | (0,-1,2),(1,-1,1),(-1,2,0),(-1,1,1),(0,0,1)
(dPy)7 | (0,-1,2),(1,0,0),(-1,1,1),(-1,0,2),(0,0,1)
(dpP)s | (1,-1,1),(2,-1,0),(-1,1,1),(-1,0,2),(0,0,1)
1,
(
(

(=
)
2,-1,0), (1,0,0), (-1,1,1),
);

(
1,0,2),(0,0,1)
1,-1,3),(1,0,0),(0,1,0 (

1,0,2),(0,0,1)

(

(=

), ),
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(1,0,0),(0,1,0), (~1,0,2),(0,0,1)
( )
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The reader is referred to Figure 5-2 to Figure 5-6 for the toric diagrams of the data
above. The vigilant would of course recognise (Fp); to be Case 1 and (Fp), as Case 2
of Figure 5-1 as discussed in §2 and furthermore (dPp23)1 to be the cases addressed

in [85].

5.5.2 Phases of Theories

The Inverse Algorithm can then be readily applied to the above toric data; of the
various unimodularly equivalent toric diagrams of the del Pezzo surfaces and the
zeroth Hirzebruch, the details of which fields remain massless at each node (in the

notation of [85]) are also presented in those figures immediately referred to above.

1.-1.3
L] * ®

.-l o LD
YN 7,12,14,15,1
. 37 e .

21,0 1,00 {0 1.0 1,20

4] @) )

Figure 5-2: The 3 equivalent representations of the toric diagram of the zeroth Hirze-
bruch surface as a resolution of Z3 x Z3. We see that (2) and (3) are related by a
reflection about the 45° line (a symmetry inherent in the parent Z3 x Z3 theory) and
we have the two giving equivalent gauge theories as expected.

Subsequently, we arrive at a number of D-brane gauge theories; among them,
all five cases for dP? are equivalent (which is in complete consistency with the fact
that dPY is simply C?/Z; and there is only one nontrivial theory for this orbifold,
corresponding to the decomposition 3 — 1 + 1+ 1). For dP,, all twelve cases give
back to same gauge theory (q.v. Figure 5 of [85]). For Fp, the three cases give

two inequivalent gauge theories as given in §2. Finally for dP,, the nine cases again
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ey @ 3
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Figure 5-3: The 5 equivalent representations of the toric diagram of the zeroth del
Pezzo surface as a resolution of Z3 x Z3. Again (1) and (4) (respectively (2) and (3))
are related by the 45° reflection, and hence give equivalent theories. In fact further
analysis shows that all 5 are equivalent.

give two different theories. For reference we tabulate the D-term matrix d and F-
term matrix KT below. If more than 1 theory are equivalent, then we select one
representative from the list, the matrices for the rest are given by transformations

(5.3) and (5.8).
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The matter content for these above theories are represented as quiver diagrams in

Figure 5-7 (multi-valence arrows are labelled with a number) and the superpotentials,

in the table below.

In all of the above discussions, we have restricted ourselves to the cases of U(1)
gauge groups, i.e., with only a single brane probe; this is because such is the only case
to which the toric technique can be applied. However, after we obtain the matter
contents and superpotential for U(1) gauge groups, we should have some idea for

multi-brane probes. One obvious generalization is to replace the U(1) with SU(N)
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gauge groups directly. For the matter content, the generalization is not so easy. A field
with charge (1, —1) under gauge groups U(1) 4 x U(1) g and zero for others generalised
to a bifundamental (N, N) of SU(N)4 x SU(N)g. However, for higher charges, e.g.,
charge 2, we simply do not know what should be the generalization in the multi-brane
case (for a discussion on generalised quivers cf. e.g. [89]). Furthermore, a field with
zero charge under all U(1) groups, generalises to an adjoint of one SU(N) gauge
group in the multi-brane case, though we do not know which one.

The generalization of the superpotential is also not so straight-forward. For ex-
ample, there is a quartic term in the conifold with nonabelian gauge group [83, 79,
but it disappears when we go to the U(1) case. The same phenomenon can happen
when treating the generic toric singularity.

For the examples we give in this paper however, we do not see any obvious obstruc-
tion in the matter contents and superpotential; they seem to be special enough to be
trivially generalized to the multi-brane case; they are all charge +1 under no more
than 2 groups. We simply replace U(1) with SU(N) and (1, —1) fields with bifun-
damentals while keeping the superpotential invariant. Generalisations to multi-brane

stack have also been discussed in [84].

5.6 Discussions and Prospects

It is well-known that in the study of the world-volume gauge theory living on a D-
brane probing an orbifold singularity C3/T", different choices of decomposition into
irreducibles of the space-time action of I' lead to different matter content and interac-
tion in the gauge theory and henceforth different moduli spaces (as different algebraic
varieties). This strong relation between the decomposition and algebraic variety has
been shown explicitly for Abelian orbifolds in [92]. It seems that there is only one
gauge theory for each given singularity.

A chief motivation and purpose of this paper is the realisation that the above
strong statement can not be generalised to arbitrary (non-orbifold) singularities and

in particular toric singularities. It is possible that there are several gauge theories
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on the D-brane probing the same singularity. The moduli space of these inequivalent
theories are indeed by construction the same, as dictated by the geometry of the
singularity.

In analogy to the freedom of decomposition into irreps of the group action in the
orbifold case, there too exists a freedom in toric singularities: any toric diagram is
defined only up to a unimodular transformation (Theorem 5.3.1). We harness this
toric isomorphism as a tool to create inequivalent gauge theories which live on the
D-brane probe and which, by construction, flow to the same (toric) moduli space in

the IR.

Indeed, these theories constitute another sub-class of examples of toric duality as
proposed in [85]. A key point to note is that unlike the general case of the duality
(such as F-D ambiguities and repetition ambiguities as discussed therein) of which we
have hitherto little control, these particular theories are all physical (i.e., guaranteed
to be world-volume theories) by virtue of their being obtainable from the canonical
method of partial resolution of Abelian orbifolds. We therefore refer to them as phases
of partial resolution.

As a further tool, we have re-examined the Forward and Inverse Algorithms de-
veloped in [84, 85, 14] of extracting the gauge theory data and toric moduli space
data from each other. In particular we have taken the pains to show what degree of
freedom can one have at each step of the Algorithm. This will serve to discriminate
whether or not two theories are physically equivalent given their respective matrices
at each step.

Thus equipped, we have re-studied the partial resolutions of the Abelian orbifold
C?/(Z3x Z3), namely the 4 toric del Pezzo surfaces dFy 1 2 3 and the zeroth Hirzebruch
surface F. We performed all possible SL(3; Z) transformation of these toric diagrams
which are up to permutation still embeddable in Z3 X Z3 and subsequently initiated
the Inverse Algorithm therewith. We found at the end of the day, in addition to the
physical theories for these examples presented in [85], an additional one for both Fj
and dP,. Further embedding can of course be done, viz., into Z, x Z, for n > 3; it

is expected that more phases would arise for these computationally prohibitive cases,
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for example for dP;.

A clear goal awaits us: because for the generic (non-orbifold) toric singularity
there is no concrete concept corresponding to the different decomposition of group
action, we do not know at this moment how to classify the phases of toric duality.
We certainly wish, given a toric singularity, to know (a) how many inequivalent
gauge theory are there and (b) what are the corresponding matter contents and

superpotential. It will be a very interesting direction for further investigation.

Many related questions also arise. For example, by the AdS/CFT correspondence,
we need to understand how to describe these different gauge theories on the super-
gravity side while the underline geometry is same. Furthermore the dP? theory can
be described in the brane setup by (p,¢)-5 brane webs [36], so we want to ask how
to understand these different phases in such brane setups. Understanding these will

help us to get the gauge theory in higher del Pezzo surface singularities.

Another very pertinent issue is to clarify the meaning of “toric duality.” So far
it is merely an equivalence of moduli spaces of gauge theories in the IR. It would be
very nice if we could make this statement stronger. For example, could we find the
explicit mappings between gauge invariant operators of various toric-dual theories?
Indeed, we believe that the study of toric duality and its phase structure is worth

further pursuit.

5.7 Appendix: Gauge Theory Data for Z, x Z,

For future reference we include here the gauge theory data for the Z, x Z,, orbifold, so
that, as mentioned in [85], any 3-dimensional toric singularity may exist as a partial

resolution thereof.

We have 3n? fields denoted as X;j,Yi;, Zi; and choose the decomposition 3 —
(1,0) + (0,1) + (—1,—1). The matter content (and thus the d matrix) is well-known

from standard brane box constructions, hence we here focus on the superpotential
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[91] (and thus the K matrix):

XY ZarnG+1) — Yii X415 Z(i+1)G+1)5

from which the F-terms are

[é] . —
at YignZanGry = ZiganYeon,
o ZirXi-n = Xarn;Zarni+) (5.20)
oW . —
arnoin - XijYigry = YiXar;-

Now let us solve (5.20). First we have Yj; 1) = Y3;X(;41);/Xi;. Thus if we take

Yio and X;; as the independent variables, we have

IT_ X
Yigen) = —p—2 ;Z;”’Ym. (5.21)
=0 il

There is of course the periodicity which gives
n—1 n—1
Yin = Yio = [ Xty = [ Xu- (5.22)
1=0 1=0

Next we use Xij to solve the Zi]' as Zi(j+1) = Zin(i—l)(j—l)/Xij, whence

o Xa-0-1)

Zij+1) = X, Zip. (5.23)
As above,
n—1 n—1
Zin = Zin = [[ Xe-ve-1 = [[ Xa- (5.24)
1=0 1=0

Putting the solution of Y, Z into the first equation of (5.20) we get

IT_o X IT—o X(iy— TT—o X(i-1)a- Iy X,
l ;) Gty ljo Ui I)Z(z‘+1)0 = - 0]-( DD 7 j_llo : Yi-1o,
Hz:o Xil leo X(i+1)l 1=0 Xi leo X(i—l)l

which can be 51mp11ﬁed as YiOZ(i+1)0Xi(n—l) = Zioyv(i_l)oX(,;_l)(n_l), or Xi(n——l) =
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X(i—1)(n-1) Yl)oﬁ From this we solve

Xitn—1) = Xo(n-1) ﬁ S Zen (5.25)
i=o0 Y(+1)0 Z+2)0
The periodicity gives
n—1 VA
Yo Zaro _ (5.26)

i—o Y(+1)0 Z@+2)0
Now we have the independent variables Yiq Z; and X;; for j # n—1 and X¢(,—1), plus
three constraints (5.22) (5.24) (5.26). In fact, considering the periodic condition for X,
(5.22) is equivalent to (5.24). Furthermore considering the periodic conditions for Z;
and Yjo, (5.26) is trivial. So we have only one constraint. Putting the expression (5.25)

: n—2 Yio (:+1)o —
mto (5'22) we get Hl:o H'1)1}’(+1)0 Z(i+2)0 H Xl = Hl =0 X(H'l)l Y(1+1)0Z(1+2)o

n—2 1
=0 Xil YioZ(i+1)0”

From this we can solve the X;(,_;) for i # 0 as

1 Z, i _
Xin-2) = HX)OMWH&DP (5.27)
YE)OZIO 1=0

The periodic condition does not give new constraints.

Now we have finished solving the F-term and can summarise the results into the
K-matrix. We use the following independent variables: Z;, Y;o for i =0,1,...,n — 1;
X fori=10,1,..,n—175=0,1,..,n — 3 and Xopn_2 Xomn-1), so the total number
of variables is 2n + n(n — 2) + 2 = n? + 2. This is usually too large to calculate.
For example, even when n = 4, the K matrix is 48 x 18. The standard method to
find the dual cone T from K needs to analyse some 48!/(17!31!) vectors, which is

computationally prohibitive.
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Figure 5-4: The 12 equivalent representations of the toric diagram of the first del
Pezzo surface as a resolution of Z3 x Z3. The pairs (1,5); (2,4); (3,9); (6,12); (7,10)
and (8,11) are each reflected by the 45° line and give mutually equivalent gauge
theories indeed. Further analysis shows that all 12 are equivalent.
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Figure 5-5: The 9 equivalent representations of the toric diagram of the second del
Pezzo surface as a resolution of Z3 x Zs. The pairs (2,6); (3,4); (5,9) and (7,8) are
related by 45° reflection while (1) is self-reflexive and are hence give pairwise equiva-
lent theories. Further analysis shows that there are two phases given respectively by

(1,5,9) and (2,3,4,6,7,8).
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Figure 5-6: The unique representations of the toric diagram of the third del Pezzo
surface as a resolution of Z5 x Z;.
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Figure 5-7: The quiver diagrams for the various phases of the gauge theory for the
del Pezzo surfaces and the zeroth Hirzebruch surface.
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Chapter 6

Toric Duality as Seiberg Duality

and Brane Diamonds

6.1 Introduction

Witten’s gauge linear sigma approach [50] to A/ = 2 super-conformal theories has
provided deep insight not only to the study of the phases of the field theory but also
to the understanding of the mathematics of Geometric Invariant Theory quotients in
toric geometry. Thereafter, the method was readily applied to the study of the A" =1
supersymmetric gauge theories on D-branes at singularities [14, 71, 83, 84]. Indeed
the classical moduli space of the gauge theory corresponds precisely to the spacetime
which the D-brane probes transversely. In light of this therefore, toric geometry has
been widely used in the study of the moduli space of vacua of the gauge theory living
on D-brane probes.

The method of encoding the gauge theory data into the moduli data, or more
specifically, the F-term and D-term information into the toric diagram of the alge-
braic variety describing the moduli space, has been well-established [14, 71]. The
reverse, of determining the SUSY gauge theory data in terms of a given toric sin-
gularity upon which the D-brane probes, has also been addressed using the method
partial resolutions of abelian quotient singularities. Namely, a general non-orbifold

singularity is regarded as a partial resolution of a worse, but orbifold, singularity.
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This “Inverse Procedure” was formalised into a linear optimisation algorithm, easily
implementable on computer, by [85], and was subsequently checked extensively in
[86].

One feature of the Inverse Algorithm is its non-uniqueness, viz., that for a given
toric singularity, one could in theory construct countless gauge theorieé. This means
that there are classes of gauge theories which have identical toric moduli space in the
IR. Such a salient feature was dubbed in [85] as toric duality. Indeed in a follow-up
work, [93] attempted to analyse this duality in detail, concentrating in particular on
a method of fabricating dual theories which are physical, in the sense that they can
be realised as world-volume theories on D-branes. Henceforth, we shall adhere to this

more restricted meaning of toric duality.

Because the details of this method will be clear in later examples we shall not delve
into the specifics here, nor shall we devote too much space reviewing the algorithm.
Let us highlight the key points. The gauge theory data of D-branes probing Abelian
orbifolds is well-known (see e.g. the appendix of [93]); also any toric diagram can
be embedded into that of such an orbifold (in particular any toric local Calabi-Yau
threefold D can be embedded into C3/(Z, x Z,) for sufficiently large n. We can then
obtain the subsector of orbifold theory that corresponds the gauge theory constructed

for D. This is the method of “Partial Resolution.”

A key point of [93] was the application of the well-known mathematical fact that
the toric diagram D of any toric variety has an inherent ambiguity in its definition:
namely any unimodular transformation on the lattice on which D is defined must
leave D invariant. In other words, for threefolds defined in the standard lattice Z3,
any SL(3;C) transformation on the vector endpoints of the defining toric diagram
gives the same toric variety. Their embedding into the diagram of a fixed Abelian
orbifold on the other hand, certainly is different. Ergo, the gauge theory data one
obtains in general are vastly different, even though per constructio, they have the
same toric moduli space.

What then is this “toric duality”? How clearly it is defined mathematically and

yet how illusive it is as a physical phenomenon. The purpose of the present writing
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is to make the first leap toward answering this question. In particular, we shall show,
using brane setups, and especially brane diamonds, that known cases for toric duality
are actually interesting realisations of Seiberg Duality. Therefore the mathematical
equivalence of moduli spaces for different quiver gauge theories is related to a real

physical equivalence of the gauge theories in the far infrared.

The paper is organised as follows. In Section 2, we begin with an illustrative
example of two torically dual cases of a generalised conifold. These are well-known
to be Seiberg dual theories as seen from brane setups. Thereby we are motivated to
conjecture in Section 3 that toric duality is Seiberg duality. We proceed to check this
proposal in Section 4 with all the known cases of torically dual theories and have suc-
cessfully shown that the phases of the partial resolutions of C?/(Z; x Z3) constructed
in [85] are indeed Seiberg dual from a field theory analysis. Then in Section 6 we
re-analyse these examples from the perspective of brane diamond configurations and
once again obtain strong support of the statement. From rules used in the diamond
dualisation, we extracted a so-called “quiver duality” which explicits Seiberg duality
as a transformation on the matter adjacency matrices. Using these rules we are able
to extract more phases of theories not yet obtained from the Inverse Algorithm. In a
more geometrical vein, in Section 7, we remark the connection between Seiberg du-
ality and Picard-Lefschetz and point out cases where the two phenomena may differ.

Finally we finish with conclusions and prospects in Section 8.

While this manuscript is about to be released, we became aware of the nice work

[108], which discusses similar issues.

6.2 An Illustrative Example

We begin with an illustrative example that will demonstrate how Seiberg Duality is

realised as toric duality.
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6.2.1 The Brane Setup

The example is the well-known generalized conifold described as the hypersurface
zy = z%w? in C*, and which can be obtained as a Z, quotient of the famous conifold
xy = zw by the action z = —z,w — —w. The gauge theory on the D-brane sitting
at such a singularity can be established by orbifolding the conifold gauge theory in
[87], as in [99]. Also, it can be derived by another method alternative to the Inverse
Algorithm, namely performing a T-duality to a brane setup with NS-branes and D4-
branes [99, 100]. Therefore this theory serves as an excellent check on our methods.

The setup involves stretching D4 branes (spanning 01236) between 2 pairs of NS
and NS’ branes (spanning 012345 and 012389, respectively), with z® parameterizing
a circle. These configurations are analogous to those in [27]. There are in fact two

inequivalent brane setups (a) and (b) (see Figure 6-1), differing in the way the NS-

and NS'-branes are ordered in the circle coordinate. Using standard rules [10, 27],

NS NS NS
o
C
A B
NS’ NS’ NS’ NS
(a) (b)

Figure 6-1: The two possible brane setups for the generalized conifold zy =
z2w?. They are related to each other passing one NS-brane through an NS’-brane.
A;, B;, C;, D; i = 1,2 are bifundamentals while ¢, ¢o are two adjoint fields.

we see from the figure that there are 4 product gauge groups (in the Abelian case,
it is simply U(1)%. As for the matter content, theory (a) has 8 bi-fundamental chiral
multiplets A;, B;, C;, D; i = 1,2 (with charge (+1, —1) and (—1, +1) with respect to
adjacent U(1) factors) and 2 adjoint chiral multiplets ¢; 5 as indicated. On the other

hand (b) has only 8 bi-fundamentals, with charges as above. The superpotentials are
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respectively [66, 99

(a) W, = —A1A3B1By + BBy — C1Co¢y + C1C3 D1 Dy — D1 Dy + A1 Az,
(b) Wb = AlAgBle hd Bleclcz + Clchng - D1D2A1A2

With some foresight, for comparison with the results later, we rewrite them as

W, = (B1By — C1C2)(¢2 — A1Az) + (A1As — D1D5) (¢ — C1C5) (6.1)

Wb == (A]_A.‘z - C]_C?)(B]_Bz — D1D2) (62)

6.2.2 Partial Resolution

Let us see whether we can reproduce these field theories with the Inverse Algorithm.

2w? is given in the very left of Figure 6-2. Of course,

The toric diagram for zy = 2
the hypersurface is three complex-dimensional so there is actually an undrawn apex
for the toric diagram, and each of the nodes is in fact a three-vector in Z3. Indeed
the fact that it is locally Calabi-Yau that guarantees all the nodes to be coplanar.
The next step is the realisation that it can be embedded into the well-known toric
diagram for the Abelian orbifold C3/(Z5; x Z3) consisting of 10 lattice points. The
reader is referred to [85, 93] for the actual codrdinates of the points, a detail which,
though crucial, we shall not belabour here.

The important point is that there are six ways to embed our toric diagram into the
orbifold one, all related by SL(3;C) transformations. This is indicated in parts (a)-
(f) of Figure 6-2. We emphasise that these six diagrams, drawn in red, are equivalent
descriptions of zy = z?w? by virtue of their being unimodularly related; therefore
they are all candidates for toric duality.

Now we use our Inverse Algorithm, by partially resolving C3/(Z3 x Z3), to obtain
the gauge theory data for the D-brane probing zy = 2?w?. In summary, after explor-
ing the six possible partial resolutions, we find that cases (a) and (b) give identical

results, while (c,d,e,f) give the same result which is inequivalent from (a,b). There-
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(a) (b) (©
Xy=ZW
(d (e) ®

Figure 6-2: The standard toric diagram for the generalized conifold zy = uv = 22
(far left). To the right are six SL(3; C) transformations (a)-(f) thereof (drawn in red)
and hence are equivalent toric diagrams for the variety. We embed these six diagrams
into the Abelian orbifold C3/(Z3 x Z3) in order to perform partial resolution and thus
the gauge theory data.

fore we conclude that cases (a) and (c) are inequivalent torically dual theories for
zy = z’w?. In the following we detail the data for these two contrasting cases. We

refer the reader to [85, 93] for details and notation.

e
5 8
7116 1| |4 3|14 5112
2 6
I
C D B ' D
Case (a) Case (c)

Figure 6-3: The quiver diagram encoding the matter content of Cases (a) and (c) of
Figure 6-2.

192



6.2.3 Case (a) from Partial Resolution

For case (a), the matter content is encoded the d-matrix which indicates the charges
of the 8 bi-fundamentals under the 4 gauge groups. This is the incidence matrix for

the quiver diagram drawn in part (a) of Figure 6-3.

( Xi X2 X5 Xo X5 Xo Xo Xa)
Ma 0 0 0 0 1 -1 1 -1
ULy 1 0 0 -1 -1 0 0 1
Me 0 -1 1 0 0 1 -1 0
Mp =1 1 -1 1 0 0 0 0)

On the other hand, the F-terms are encoded in the K-matrix

(Xl Xy X3 X4 X5 Xe¢ Xq Xg\
1 0 1 0 0o 0 0 o0

0
0
0
0
0

oS = o= O O

0
0
0
1
1

o o o = =
o o o = O
o © = O O
= O O o o

1
0
0
0

\ 0

From K we get two relations XsXg = XgX7 and X;X; = X,X3 (these are the
relations one must impose on the quiver to obtain the final variety; equivalently, they
correspond to the F-term constraints arising from the superpotential). Notice that
here each term is chargeless under all 4 gauge groups, so when we integrate back to

get the superpotential, we should multiply by chargeless quantities also!.

The relations must come from the F-flatness aix,-w = 0 and thus we can use

these relations to integrate back to the superpotential W. However we meet some

!In more general situations the left- and right-hand sides may not be singlets, but transform in
the same gauge representation.
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ambiguities 2. In principle we can have two different choices:

(Z) W, = (X5X8 — X6X7) (X1X4 — X2X3)
(41) Wo = 1 (XsXs — X6 X7) + o X1 Xy — X2 X3)

where for now 1; are simply chargeless fields.

We shall evoke physical arguments to determine which is correct. Expanding
(i) gives W) = X5 X X1 Xy — Xe X7 X1Xy — X5 XsXoX3 + XeX7X2X3. Notice the
term XgX7X1X4: there is no common gauge group under which there four fields are
charged, i.e. these 4 arrows (q. v. Figure 6-3) do not intersect at a single node. This
makes (i) very unnatural and exclude it.

Case (ii) does not have the above problem and indeed all four fields X5, X3, X, X7
are charged under the U(1) 4 gauge group, so considering ¢; to be an adjoint of U(1) 4,
we do obtain a physically meaningful interaction. Similarly s will be the adjoint of
U(1)p, interacting with X, X4, Xo, X;.

However, we are not finish yet. From Figure 6-3 we see that X5, X3, X1, X, are
all charged under U(1)p, while X, X7, X, X3 are all charged under U(1)¢. From a |
physical point of view, there should be some interaction terms between these fields.
Possibilities are X5 Xg XX, and XsX7X2X3. To add these terms into W, is very
easy, we simply perform the following replacement:® v; — ¢, — X, X4, Yo —>
¥y — X¢X7. Putting everything together, we finally obtain that Case (a) has matter

content as described in Figure 6-3 and the superpotential
W - (’(ﬁl - X1X4)(X5X8 - X6X7) =+ (’lﬁz - X6X7) (X1X4 —_ Xng) (63)

This is precisely the theory (a) from the brane setup in the last section! Comparing

2The ambiguities arise because in the abelian case (toric language) the adjoints are chargeless.
In fact, no ambiguity arises if one performs the Higgsing associated to the partial resolution in
the non-abelian case. We have performed this exercise in cases (a) and (c), and verified the result
obtained by the different argument offered in the text.

3Here we choose the sign purposefully for later convenience. However, we do need, for the
cancellation of the unnatural interaction term X; X4 X X7, that they both have the same sign.
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(6.3) with (6.1), we see that they are exact same under the following redefinition of

variables:
B, By = X5, X3 C1,C = Xs, X7 Dy, Dy <= X5, X3
A Ay = X1, Xy ¢2 = Y O = P

In conclusion, case (a) of our Inverse Algorithm reproduces the results of case (a)

of the brane setup.

6.2.4 Case (c) from Partial Resolution

For case (c), the matter content is given by the quiver in Figure 6-3, which has the

charge matrix d equal to

( Xi X2 X5 Xa X5 Xo X7 X\
Ul)y -1 0 -1 1 0 0 0 1
Mg 0 0 1 -1 0 -1 1 0
Ul)e 1 -1 0 0 1 0 0 -1
\U) 0 1 0 0 -1 1 -1 0/

This is precisely the matter content of case (b) of the brane setup. The F-terms are

given by
X1 Xo Xz Xy X5 Xe X7 X))
o 1 0 1 0 0 0 0
1 0 0 0 O 0 1 0
K=(1 0 0 0 O 1 0 ©O0
o 1 1 0 0 0 0 o0
o o 1 0 1 0 0 O
o 0 0o o0 0 1 o0 1

From it we can read out the relations X; X3 = XsX7 and X, X5 = X3X,. Again there

are two ways to write down the superpotential

(i)  Wi= (X1Xs— XeX7)(X3Xs — X2 X5)
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L

(1) Wy = (X1 Xs — X6 X7) + %2(X3X4 — XoX5)

In this case, because X;, X5, X, X7 are not charged under any common gauge
group, it is impossible to include any adjoint field ) to give a physically meaningful
interaction and so (ii) is unnatural. We are left the superpotential W;. Indeed,

comparing with (6.2), we see they are identical under the redefinitions

A, Ay = X1, X3 By, By <= X3, X,
01,02<:;>X6,X7 Dl,D2 <:>X2,X5

Therefore we have reproduced case (b) of the brane setup.

What have we achieved? We have shown that toric duality due to inequivalent
embeddings of unimodularly related toric diagrams for the generalized conifold zy =
z?w? gives two inequivalent physical world-volume theories on the D-brane probe,
exemplified by cases (a) and (c). On the other hand, there are two T-dual brane
setups for this singularity, also giving two inequivalent field theories (a) and (b). Upon
comparison, case (a) (resp. (c)) from the Inverse Algorithm beautifully corresponds
to case (a) (resp. (b)) from the brane setup. Somehow, a seemingly harmless trick in

mathematics relates inequivalent brane setups. In fact we can say much more.

6.3 Seiberg Duality versus Toric Duality

As follows from [27], the two theories from the brane setups are actually related by
Seiberg Duality [94], as pointed out in [99] (see also [81, 101]. Let us first review the
main features of this famous duality, for unitary gauge groups.

Seiberg duality is a non-trivial infrared equivalence of N' = 1 supersymmetric
field theories, which are different in the ultraviolet, but flow the the same interacting
fixed point in the infrared. In particular, the very low energy features of the different
theories, like their moduli space, chiral ring, global symmetries, agree for Seiberg dual
theories. Given that toric dual theories, by definition, have identical moduli spaces,

etc , it is natural to propose a connection between both phenomena.
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The prototypical example of Seiberg duality is N/ = 1 SU(N,) gauge theory
with Ny vector-like fundamental flavours, and no superpotential. The global chiral

symmetry is SU(N¢)r x SU(Ny)r, so the matter content quantum numbers are

SU(N.) SU(Ny)L SU(Ny)r
Q O 0 1

Q' g 1 &

In the conformal window, 3N./2 < Ny < 3N, the theory flows to an interacting
infrared fixed point. The dual theory, flowing to the same fixed point is given N =1
SU(Ny — N,.) gauge theory with Ny fundamental flavours, namely

SU(Ny— N,) SU(N§)L SU(Ng)r

q a ] 1
q ] 1 O
M 1 O O

and superpotential W = Mgqq'. From the matching of chiral rings, the ‘mesons’ M

can be thought of as composites Q@' of the original quarks.

It is well established [27], that in an N' = 1 (ITA) brane setup for the four di-
mensional theory such as Figure 6-1, Seiberg duality is realised as the crossing of 2
non-parallel NS-NS’ branes. In other words, as pointed out in [99], cases (a) and (b)
are in fact a Seiberg dual pair. Therefore it seems that the results from the previous
section suggest that toric duality is a guise of Seiberg duality, for theories with moduli
space admitting a toric descriptions. It is therefore the intent of the remainder of this

paper to examine and support

CONJECTURE 6.3.1 Toric duality is Seiberg duality for N = 1 theories with

toric moduli spaces.
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6.4 Partial Resolutions of C°/(Z3 x Z3) and Seiberg
duality

Let us proceed to check more examples. So far the other known examples of torically
dual theories are from various partial resolutions of C3/(Z3 x Z3). In particular it
was found in [93] that the (complex) cones over the zeroth Hirzebruch surface as well

as the second del Pezzo surface each has two toric dual pairs. We remind the reader

of these theories.

6.4.1 Hirzebruch Zero

There are two torically dual theories for the cone over the zeroth Hirzebruch surface
Fy. The toric and quiver diagrams are given in Figure 6-4, the matter content and

interactions are

Matter Content d Superpotential
1 2 3 4 5 6 7 8 9 10 11 12
A|l-1 o -1 0 -1 o0 1 1 -1 o 1 1 X1X8X10 — X3X7X10 — X2XgXo
I B|lo -1 0o -1 1 0 0 0 1 0 0 0 —X1XgX12 + X3XeX11 + X4X7Xo
C o] 1 0 1 0 1 -1 -1 o 1 -1 -1 +XoX5X12 — X4X5X11
D 1 0 1 0 0 -1 0 0 0 -1 0 0
X112 Yigz Y22 Yiin Yair Xi21 X212 Xooi
A -1 0 0 1 1 0 -1 ]
11 B 1 -1 -1 0 0 1] 1 0 €Tkl X; 127 22X 211 11
(o] 0 0 0 -1 -1 1 0 1
D 0 1 1 0 0 -1 0 -1
(6.4)
.
) AOLOB A.#' B
.
Casel <-\ 13 7.8 M 12 2.4 Case Il Yiu Yin
/ @. e O
. L D 6,10 c . c Xin b
Toric Diagram Quiver Diagram Toric Diagram Quiver Diagram

Figure 6-4: The quiver and toric diagrams of the 2 torically dual theories correspond-
ing to the cone over the zeroth Hirzebruch surface Fg.

Let us use the field theory rules from Section 3 on Seiberg Duality to examine these

two cases in detail. The charges of the matter content for case II, upon promotion
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from U(1) to SU(N) * (for instance, following the partial resolution in the non-
abelian case, as in 71, 83]), can be re-written as (redefining fields (X;, Y;, Z;,, W;) :=
(X; 12, Yi 22, Xi 21, Y 11) with 4 = 1,2 and gauge groups (a, b, ¢, d) := (A4, C, B, D) for

convenience):
SU(N)a SU(N), SU(N), SU(N),
Xi O g
Y; o O
Z; g
W; 0 O

The superpotential is then

Wi = XiY1 2. Wy — X0 Yo ZoWy — XoY1 2\ Wy + XoYoZ, Wi,

Let us dualise with respect to the a gauge group. This is a SU(N) theory with
N, = N and Ny = 2N (as there are two X;’s). The chiral symmetry is however
broken from SU(2N)g x SU(2N)g to SU(N) x SU(N)g, which moreover is gauged
as SU(N), x SU(N)gy. Ignoring the superpotential Wy;, the dual theory would be:

SU(N)y SU(N), SU(N). SU(N)q
gi a O
Y; O g
(6.5)
Z; d
g 0 g
M;; d a

We note that there are M,; giving 4 bi-fundamentals for bd. They arise from the
Seiberg mesons in the bi-fundamental of the enhanced chiral symmetry SU(2N) x

SU(2N), once decomposed with respect to the unbroken chiral symmetry group. The

4Concerning the U(1) factors, these are in fact generically absent, since they are anomalous in the
original Z3 x Z3 singularity, and the Green-Schwarz mechanism canceling their anomaly makes them
massive [102] (see [103, 40, 104] for an analogous 6d phenomenon). However, there is a well-defined
sense in which one can use the abelian case to study the toric moduli space [71].
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superpotential is

W' = Mig1qy — Mi2gaqy — Mo1qi1qh + Maogags.

The choice of signs in W’ will be explained shortly.

Of course, Wiy is not zero and so give rise to a deformation in the original the-
ory, analogous to those studied in e.g. [66]. In the dual theory, this deformation
simply corresponds to Wi, rewritten in terms of mesons, which can be thought of as

composites of the original quarks, i.e., M;; = W;X;. Therefore we have
Wit = MaY1Zy — MnYaZy — MoypY1Zy + MioYoZ4

which is written in the new variables. The rule for the signs is that e.g. the field My,
appears with positive sign in Wyy, hence it should appear with negative sign in W',
and analogously for others. Putting them together we get the superpotential of the
dual theory

Wil = Wi+ W' = Muqiq; — Mi2g2q;

—Mo1qigh + Maogagh + Moy Y125 — M11YaZo — MoY1 23 + M12Yo 2,
(6.6)

Upon the field redefinitions

My = X7 My — X3 My — X1 My — X
@ — Xy g2 — Xo qr — Xo gy — X5
Y1—>X6 Y—2—>X10 Zl—>X1 Zz—>X3

we have the field content (6.5) and superpotential (6.6) matching precisely with case
Iin (6.4). We conclude therefore that the two torically dual cases I and II obtained

from partial resolutions are indeed Seiberg duals!
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6.4.2 del Pezzo 2

Encouraged by the results above, let us proceed with the cone over the second del
Pezzo surface, which also have 2 torically dual theories. The toric and quiver diagrams

are given in Figure 6-5.

Matter Content d Superpotential
1 2 3 4 5 6 7 8 9 10 11 12 13
A -1 0 0 -1 0 -1 0 1 0 0 0 1 1 YaYe¥i1 — YoY3Yio — YaYa¥i1
I i o —too o ° ° ! ° 0 -Y1Y2Y7Y13 + Y13Y3Ys — Y5Y12Y6
C 0 0 1 0 1 0 1 -1 -1 0 -1 -1 +Y1YsYaYio + YaYrYi2
D 1 -1 0 0 0 0 0 o 1 -1 0 0 0
E 0 1 0 1 0 0 -1 0 0 0 -1 0 0
1 2 3 4 5 6 4 8 9 10 11
A -1 0 -1 0 0 0 1 1] 0 0 1
1 B 1 -1 0 0 -1 0 0 0 1 0 0 X5XgXeXg +X1X2X10X7 + X11X3X4
clo o 1 -1 o0 1 0 6 -1 o0 o —X4X10X6 — X2XgX7X3Xg — X11X1 X5
D 0 0 0 0 0 -1 -1 1 0 1 0
E 0 1 0 1 1 0 0 -1 0 -1 -1
(6.7)

Again we start with Case II. Working analogously, upon dualisation on node D

Casel . Case II

Toric Diagram Quiver Diagram Toric Diagram Quiver Diagram

Figure 6-5: The quiver and toric diagrams of the 2 torically dual theories correspond-
ing to the cone over the second del Pezzo surface.
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neglecting the superpotential, the matter content of II undergoes the following change:

A B C D F
Xe (O DO
A B C D FE X5 ] O
X, |0 O X3 g O
X, O O X, |O O
Xs O a X4 gd O
X3 | O O X10 O O
X4 O o dual on D {13 g a (6.8)
Xy o d Xs 0o a
Xu | O O X; |0 O
Xe o X g o
X; |O O X10 0 o
X o O Mga,y | O O
X10 o O Mgap | O g
MEgc) O O
MEgc, O 0

Let us explain the notations in (6.8). Before Seiberg duality we have 11 fields X; ;3.
After the dualisation on gauge group D, the we obtain dual quarks (corresponding
to bi-fundamentals conjugate to the original quark Xs, X7, X3, X19) which we denote
XVG, 3(2, fg, flo. Furthermore we have added meson fields Mga 1, Mga 2, MEc1, MEc,2,

which are Seiberg mesons decomposed with respect to the unbroken chiral symmetry

group.

As before, one should incorporate the interactions as a deformation of this duality.
Naively we have 15 fields in the dual theory, but as we will show below, the resulting
superpotential provides a mass term for the fields X, and Mgc 2, which transform in

conjugate representations. Integrating them out, we will be left with 13 fields, the
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number of fields in Case I. In fact, with the mapping
dval of 1| X | X | X5 | Xo | X0 | X |00 | R | 0| X | X
Case1 | Y | Y5 | Y5 | Vi [massive | Yio | Yis | Y2 | ¥i | ¥ | 15

and
dual of II ‘ Mga, ’ Mgaz ' Mgca I MEgc2

Case | I Ys ‘ Yie ‘ Y, Imassive

we conclude that the matter content of the Case II dualised on gauge group D is

identical to Case I!

Let us finally check the superpotentials, and also verify the claim that X, and
Mgc2 become massive. Rewriting the superpotential of II from (6.7) in terms of the
dual variables (matching the mesons as composites Mga1 = X3 X7, Mg a2 = X10X7,

Mgcy = X5 X6, Mpc2 = X10X6), we have

Wit = XsMgci1Xe+ X1 XoMgao+ X11X3Xy
—XyMEgcp — XoMpa1X3Xe — X11: X1 X5.

As is with the previous subsection, to the above we must add the meson interaction

terms coming from Seiberg duality, namely
Wineson = Mpa1X7Xg — MpasX7X10 — Mpe, XeXg + Mg X6 X0,
(notice again the choice of sign in Wie50n). Adding this two together we have

Wil = XyMpc1Xe + X1 XoMpaa + X1 X3 X,
~XsMgcy — XoMpa1X3Xe — X1:. X1 X5
+MEA,1)?7)?8 - MEA,2Y7XVIO ~ Mg, XeXs + MEC,2Y6YN-

Now it is very clear that both X4 and Mgc, are massive and should be integrated
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out:

Xy = XeX10, Mpoy= X11Xs.

Upon substitution we finally have

Wit = XsMpeiXe + X1 XoMpao + X1 X3X6X10 — XoMgpa1X3X,
X1 X1 Xs + MEA,IXF’)?S - MEA,2X7XV10 - MEC,IYSXV&

which with the replacement rules given above we obtain

Wit = YsYaYip + Ys¥5Yis + VisV1V2Y7 — YVsY1VioYe
—Y13YeY3 + YaVaY1 — Y12ViY7 — YoYo Yy,

This we instantly recognise, by referring to (6.7), as the superpotential of Case I.
In conclusion therefore, with the matching of matter content and superpotential,
the two torically dual cases I and II of the cone over the second del Pezzo surface are

also Seiberg duals.

6.5 Brane Diamonds and Seiberg Duality

Having seen the above arguments from field theory, let us support that toric duality is
Seiberg duality from yet another perspective, namely, through brane setups. The use
of this T-dual picture for D3-branes at singularities will turn out to be quite helpful
in showing that toric duality reproduces Seiberg duality.

What we have learnt from the examples where a brane interval picture is available
(i.e. NS- and D4-branes in the manner of [10]) is that the standard Seiberg duality by
brane crossing reproduces the different gauge theories obtained from toric arguments
(different partial resolutions of a given singularity). Notice that the brane crossing
corresponds, under T-duality, to a change of the B field in the singularity picture,
rather than a change in the singularity geometry [99, 81]. Hence, the two theories

arise on the world-volume of D-branes probing the same singularity.
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Unfortunately, brane intervals are rather limited, in that they can be used to
study Seiberg duality for generalized conifold singularities, zy = w*w!. Although
this is a large class of models, not many examples arise in the partial resolutions of
C3/(Z5 x Z3). Hence the relation to toric duality from partial resolutions cannot be

checked for most examples.

Therefore it would be useful to find other singularities for which a nice T-dual
brane picture is available. Nice in the sense that there is a motivated proposal to
realize Seiberg duality in the corresponding brane setup. A good candidate for such

a brane setup is brane diamonds, studied in [78].

Reference [30] (see also [91, 31]) introduced brane box configurations of intersect-
ing NS- and NS’-branes (spanning 012345 and 012367, respectively), with D5-branes
(spanning 012346) suspended among them. Brane diamonds [78] generalized (and
refined) this setup by considering situations where the NS- and the NS’-branes re-
combine and span a smooth holomorphic curve in the 4567 directions, in whose holes
D5-branes can be suspended as soap bubbles. Typical brane diamond pictures are as

in figures in the remainder of the paper.

Brane diamonds are related by T-duality along 46 to a large set of D-branes at sin-
gularities. With the set of rules to read off the matter content and interactions in [78],
they provide a useful pictorial representation of these D-brane gauge field theories.
In particular, they correspond to singularities obtained as the abelian orbifolds of the
conifold studied in Section 5 of [99], and partial resolutions thereof. Concerning this
last point, brane diamond configurations admit two kinds of deformations: motions
of diamond walls in the directions 57, and motions of diamond walls in the directions
46. The former T-dualize to geometric sizes of the collapse cycles, hence trigger par-
tial resolutions of the singularity (notice that when a diamond wall moves in 57, the
suspended D5-branes snap back and two gauge factors recombine, leading to a Higgs
mechanism, triggered by FI terms). The later do not modify the T-dual singularity

geometry, and correspond to changes in the B-fields in the collapsed cycles.

The last statement motivates the proposal made in [78] for Seiberg duality in this

setup. It corresponds to closing a diamond, while keeping it in the 46 plane, and
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reopening it with the opposite orientation. The orientation of a diamond determines
the chiral multiplets and interactions arising from the picture. The effect of this is

shown in fig 7 of [78]: The rules are

1. When the orientation of a diamond is flipped, the arrows going in or out of it

change orientation;

2. one has to include/remove additional arrows to ensure a good ‘arrow flow’ (ul-

timately connected to anomalies, and to Seiberg mesons)

3. Interactions correspond to closed loops of arrows in the brane diamond picture.

4. In addition to these rules, and based in our experience with Seiberg duality, we
propose that when in the final picture some mesons appear in gauge represen-

tations conjugate to some of the original field, the conjugate pair gets massive.

(ID

Figure 6-6: Seiberg duality from the brane diamond construction for the generalized
conifold zy = z2w?. Part (I) corresponds to the brane interval picture with alternating
ordering of NS- and NS'-branes, whereas part (II) matches the other ordering.

These rules reproduce Seiberg duality by brane crossing in cases where a brane
interval picture exists. In fact, one can reproduce our previous discussion of the
zy = z?w? in this language, as shown in figure Figure 6-6. Notice that in analogy
with the brane interval case the diamond transition proposed to reproduce Seiberg
duality does not involve changes in the T-dual singularity geometry, hence ensuring

that the two gauge theories will have the same moduli space.

Let us re-examine our aforementioned examples.
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6.5.1 Brane diamonds for D3-branes at the cone over Fj

Now let us show that diamond Seiberg duality indeed relates the two gauge theories
arising on D3-branes at the singularity which is a complex cone over Fy. The toric
diagram of Fj is similar to that of the conifold, only that it has an additional point
(ray) in the middle of the square. Hence, it can be obtained from the conifold diagram
by simply refining the lattice (by a vector (1/2,1/2) if the conifold lattice is generated
by (1,0), (0,1)). This implies [92]) that the space can be obtained as a Z, quotient
of the conmifold, specifically modding zy = zw by the action that flips all coordinates.

Performing two T-dualities in the conifold one reaches the brane diamond picture
described in [78] (fig. 5), which is composed by two-diamond cell with sides identified,

see Part (I) of Figure 6-7. However, we are interested not in the conifold but on a

Z Quotienl

(I) Conifoldxy=z w “

(1II) Cone over FO

(hxy=% W

Figure 6-7: (I) Brane diamond for the conifold. Identifications in the infinite periodic
array of boxes leads to a two-diamond unit cell, whose sides are identified in the
obvious manner. From (I) we have 2 types of Z» quotients: (II) Brane diamond for
the Z, quotient of the conifold zy = 2?w?, which is a case of the so-called generalised
conifold. The identifications of sides are trivial, not tilting. The final spectrum is the
familiar non-chiral spectrum for a brane interval with two NS and two NS’ branes (in
the alternate configuration); (III) Brane diamond for the Z, quotient of the conifold
yielding the complex cone over Fy. The identifications of sides are shifted, a fact
related to the specific ‘tilted’ refinement of the toric lattice.

Z, quotient thereof. Quotienting a singularity amounts to including more diamonds
in the unit cell, i.e. picking a larger unit cell in the periodic array. There are two

possible ways to do so, corresponding to two different Z, quotients of the conifold.
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One corresponds to the generalized conifold zy = 2%2w? encountered above, and whose
diamond picture is given in Part (II) of Figure 6-7 for completeness. The second
possibility is shown in Part (III) of Figure 6-7 and does correspond to the T-dual of
the complex cone over Fy, so we shall henceforth concentrate on this case. Notice
that the identifications of sides of the unit cell are shifted. The final spectrum agrees
with the quiver before eq (2.2) in [85]. Moreover, following [78], these fields have
quartic interactions, associated to squares in the diamond picture, with signs given
by the orientation of the arrow flow. They match the ones in case II in (6.4).

Now let us perform the diamond duality in the box labeled 2. Following the
diamond duality rules above, we obtain the result shown in Figure 6-8. Careful
comparison with the spectrum and interactions of case I in (6.4), and also with the
Seiberg dual computed in Section 4.1 shows that the new diamond picture reproduces
the toric dual / Seiberg dual of the initial one. Hence, brane diamond configurations

provide a new geometric picture for this duality.

Dual

@ an

Figure 6-8: Brane diamond for the two cases of the cone over Fy. (I) is as in Fig-
ure 6-7 and (II) is the result after the diamond duality. The resulting spectrum and
interactions are those of the toric dual (and also Seiberg dual) of the initial theory

(I).

6.5.2 Brane diamonds for D3-branes at the cone over dP

The toric diagram for d P, shows it cannot be constructed as a quotient of the conifold.
However, it is a partial resolution of the orbifolded conifold described as zy = v?, uv =
2% in C5 (we refer the reader to Figure 6-9. This is a Z, X Z, quotient of the conifold

whose brane diamond, shown in Part (I) of Figure 6-10, contains 8 diamonds in its
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unit cell.  Partial resolutions in the brane diamond language correspond to partial

del Pezzo 2 XY=UV=22

Figure 6-9: Embedding the toric diagram of dP2 into the orbifolded conifold described
as Ty = v?, wv = 22.

(1) Orbifolded Conifold (IT) del Pezzo 3 (IIT) del Pezzo 2
xy=uv=z2

Figure 6-10: (I) Brane diamond for a Z, x Z, orbifold of the conifold, namely zy =

z%;uv = 22, From this we can partial resolve to (IT) the cone over dP3 and thenceforth

again to (IIT) the cone over dP,, which we shall discuss in the context of Seiberg
duality.

Higgsing, namely recombination of certain diamonds. As usual, the difficult part is
to identify which diamond recombination corresponds to which partial resolution. A

systematic way proceed would be®:
1. Pick a diamond recombination;
2. Compute the final gauge theory;

3. Compute its moduli space, which should be the partially resolved singularity.

®As an aside, let us remark that the use of brane diamonds to follow partial resolutions of
singularities may provide an alternative to the standard method of partial resolutions of orbifold
singularities [71, 85]. The existence of a brane picture for partial resolutions of orbifolded conifolds
may turn out to be a useful advantage in this respect.
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However, instead of being systematic, we prefer a shortcut and simply match the
spectrum of recombined diamond pictures with known results of partial resolutions.
In order to check we pick the right resolutions, it is useful to discuss the brane diamond
picture for some intermediate step in the resolution to dP,. A good intermediate point,
for which the field theory spectrum is known is the complex cone over dP;.

By trial and error matching, the diamond recombination which reproduces the
world-volume spectrum for D3-branes at the cone over dP; (see [85, 93]), is shown in
Part (II) of Figure 6-10. Performing a further resolution, chosen so as to match known
results, one reaches the brane diamond picture for D3-branes on the cone over dP;,
shown in Part (III) of Figure 6-10. More specifically, the spectrum and interactions
in the brane diamond configuration agrees with those of case I in (6.7).

This brane box diamond, obtained in a somewhat roundabout way, is our starting
point to discuss possible dual realizations. In fact, recall that there is a toric dual
field theory for dP,, given as case II in (6.7). After some inspection, the desired
effect is obtained by applying diamond Seiberg duality to the diamond labeled B.
The corresponding process and the resulting diamond picture are shown in Figure 6-
11. Two comments are in order: notice that in applying diamond duality using the
rules above, some vector-like pairs of fields have to be removed from the final picture;
in fact one can check by field theory Seiberg duality that the superpotential makes
them massive. Second, notice that in this case we are applying duality in the direction
opposite to that followed in the field theory analysis in Section 4.2; it is not difficult
to check that the field theory analysis works in this direction as well, namely the
dual of the dual is the original theory. Therefore this new example provides again a

geometrical realization of Seiberg duality, and allows to connect it with Toric Duality.

We conclude this Section with some remarks. The brane diamond picture pre-
sumably provides other Seiberg dual pairs by picking different gauge factors. All
such models should have the same singularities as moduli space, and should be toric
duals in a broad sense, even though all such toric duals may not be obtainable by
partial resolutions of C2/(Z3 x Z3). From this viewpoint we learn that Seiberg duality

can provide us with new field theories and toric duals beyond the reach of present
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computational tools. This is further explored in Section 7.

A second comment along the same lines is that Seiberg duality on nodes for
which Ny # 2N, will lead to dual theories where some gauge factors have different
rank. Taking the theory back to the ‘abelian’ case, some gauge’ factors turn out to
be non-abelian. Hence, in these cases, even though Seiberg duality ensures the final
theory has the same singularity as moduli space, the computation of the corresponding
symplectic quotient is beyond the standard tools of toric geometry. Therefore, Seiberg

duality can provide (‘non-toric’) gauge theories with toric moduli space.

6.6 A Quiver Duality from Seiberg Duality

If we are not too concerned with the superpotential, when we make the Seiberg
duality transformation, we can obtain the matter content very easily at the level of
the quiver diagram. What we obtain are rules for a so-called “quiver duality” which
is a rephrasing of the Seiberg duality transformations in field (brane diamond) theory
in the language of quivers. Denote (IV;); the number of colors at the i** node, and a;;
the number of arrows from the node 7 to the j (the adjacency matrix) The rules on

the quiver to obtain Seiberg dual theories are

1. Pick the dualisation node #y. Define the following sets of nodes: I, := nodes
having arrows going into %p; I,,; := those having arrow coming from i3 and
I, := those unconnected with 79. The node iy should not be included in this

classification.

2. Change the rank of the node ¢ from N, to Ny — N, where N; is the number of

vector-like flavours, Ny = 3 a0 = Y a4,
iel'in ielout

3. Reverse all arrows going in or out of 7, therefore

dual

a;;"" = aj if either ¢, 5 = 19

4. Only arrows linking I;,, to I,,; will be changed and all others remain unaffected.
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5. For every pair of nodes A, B, A € I,,;, and B € I;;, change the number of

arrows a4p to

dual __
a%s’ = aap — QiyAGBi, for A€ l,;, BE€I;,.

dual

If this quantity is negative, we simply take it to mean —a““* arrow go from B

to A.

These rules follow from applying Seiberg duality at the field theory level, and therefore
are consistent with anomaly cancellation. In particular, notice the for any node
i € I;n, we have replaced a;;,N. fundamental chiral multiplets by —a; ;,(Ns — N.) +
Y jelpus Gii0io,; Which equals —a; ;o (Ng — Ne) +a; 50Ny = a;4,N,, and ensures anomaly

cancellation in the final theory. Similarly for nodes j € I ;.

It is straightforward to apply these rules to the quivers in the by now familiar

examples in previous sections.

In general, we can choose an arbitrary node to perform the above Seiberg duality
rules. However, not every node is suitable for a toric description. The reason is
that, if we start from a quiver whose every node has the same rank N, after the
transformation it is possible that this no longer holds. We of course wish so because
due to the very definition of the C* action for toric varieties, toric descriptions are
possible iff all nodes are U(1), or in the non-Abelian version, SU(N). If for instance
we choose to Seiberg dualize a node with 3NV flavours, the dual node will have rank
3N — N = 2N while the others will remain with rank N, and our description would
no longer be toric. For this reason we must choose nodes with only 2Ny flavors, if we

are to remain within toric descriptions.

One natural question arises: if we Seiberg-dualise every possible allowed node,
how many different theories will we get? Moreover how many of these are torically

dual? Let we re-analyse the examples we have thus far encountered.

212



6.6.1 Hirzebruch Zero

Starting from case (II) of Fy (recall Figure 6.4) all of four nodes are qualified to
yield toric Seiberg duals (they each have 2 incoming and 2 outgoing arrows and hence
N; = 2N). Dualising any one will give to case (I) of F;. On the other hand, from
(I) of Fp, we see that only nodes B, D are qualified to be dualized. Choosing either,
we get back to the case (IT) of Fy. In another word, cases (I) and (II) are closed
under the Seiberg-duality transformation. In fact, this is a very strong evidence that
there are only two toric phases for Fy no matter how we embed the diagram into
higher Z, x Zj, singularities. This also solves the old question [85, 93] that the Inverse
Algorithm does not in principle tell us how many phases we could have. Now by
the closeness of Seiberg-duality transformations, we do have a way to calculate the
number of possible phases. Notice, on the other hand, the existence of non-toric

phases.

6.6.2 del Pezzo 0,1,2

Continuing our above calculation to del Pezzo singularities, we see that for dP; no
node is qualified, so there is only one toric phase which is consistent with the standard
result [93] as a resolution Op2(—1) — C®/Z;. For dP;, nodes A, B are qualified (all
notations coming from [93]), but the dualization gives back to same theory, so it too

has only one phase.

For our example dP, studied earlier (recall Figure 6.7), there are four points
A, B,C, D which are qualified in case (II). Nodes A, C give back to case (II) while
nodes B, D give rise to case (I) of dP,. On the other hand, for case (I), three nodes
B, D, E are qualified. Here nodes B, E give case (II) while node D give case (I).
In other words, cases (I) and (II) are also closed under the Seiberg-duality trans-
formation, so we conclude that there too are only two phases for dP,, as presented

earlier.
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6.6.3 The Four Phases of dP;

Things become more complex when we discuss the phases of dP;. As we remarked
before, due to the running-time limitations of the Inverse Algorithm, only one phase
was obtained in [93]. However, one may expect this case to have more than just
one phase, and in fact a recent paper has given another phase [98]. Here, using the
closeness argument we give evidence that there are four (toric) phases for dP;. We
will give only one phase in detail. Others are similarly obtained. Starting from case
(I) given in [93] and dualizing node B, (we refer the reader to Figure 6-12) we get the

charge (incidence) matrix d as

a1 g 4 ¢ X1 X2 X7 Xo Xio Xuu My X Mz Xg M} X5 X1z M

A 0o 1 0o 0 -1 0 0 -1 0 0 ©0 ©0 O0 1 -1 1 1 -1

B -1 -11 1 0 0 o0 0 o0 ©0 0 0 0 0 0O 0 0 0

c 1 0 0 0 1 -1 0 0 0 O -1 1 -1 0 0 0 0 0

D o 0 -1 0 0 0 0 0 -1 1 1 o0 0 -1 1 0 0 0

E o 0 o -1 0 0 1 0 1 ©0 0 -1 1 0 0 -1 -1 1

F 0 0 0o 0o 1 -1 1 o0 -1 0 0 0 0 0 0 0 0
where

My = Xy X3, My=XyXs, M{=Xi3X3, M;,=X13Xe

are the added mesons. Notice that X4 and M, have opposite charge. In fact, both

are massive and will be integrate out. Same for pairs (Xg, M7) and (X5, M3).

Let us derive the superpotential. Before dual transformation, the superpotential

is [85]

Wr = X3XgXi3 — XegXoXi1 — X5 X X153 — X1 X3 Xy X0 X012
X7XoX19 + Xy XeXg + X1 X0 X5 X10X11 — Xo X7 X4

After dualization, superpotential is rewritten as

WI = M{Xg — X3X9X11 - X5Mé - X1M1X10X12
X7 XoXi2 + Mo Xq4 + X1 Xo X5 X10X11 — X2 X7 X4,
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It is very clear that fields X3, M], X, Mé,XM, M, are all massive. Furthermore, we

need to add the meson part
Wmeson = Mlq’l(h - M2qlq; - M{Qi‘h + Méqéqz

where we determine the sign as follows: since the term M]Xg in W' in positive, we
need term Mjqig> to be negative. After integration all massive fields, we get the

superpotential as

Wi = —q¢1g2XeX11 — XiM1 X10X12 + X7 X X2

+X1 X050 X10X11 — XoX7q1g5 + Miqiaqa.

The charge matrix now becomes

( a ¢ ¢ ¢ Xi Xo X7 X9 X Xu M Xlz\

A 0 1 0 0 -1 0 0 -1 0 0 0 1
B -1 -11 1 0 0 0 0 0 0 0 0
c 1 0 0 0 1 -1 0 0 0 0 -1 0
D o0 0 -1 0 0 0 0 0 -1 1 1 0
E 0 0 0 -1 0 0 1 0 1 0 0 -1
\F 0 0 0 0 0 1 -1 1 0 -1 0 0/

This is in precise agreement with [98]; very re-assuring indeed!

Without further ado let us present the remaining cases. The charge matrix for
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L}
the third one (dualising node C of (I)) is

[ @ & 6 ¢ Xs X X5 Xs Xo My X Xu Xz M,

A 1 0 0 0 1 1 0 1 -1 -1 0 0 -1 -1
B 0 0 -1 0 0 0O -1 0 0 O 0 0 1 1
c -1 1 1 -1 0 0 0o 0 0 0 0 0 0 0
b o0 o0 0 0 O 0 1 -1 0 0 -1 1 0 0
F o0 o0 o0 1 -1 -1 0 O O0 O 1 0 0 0
F 0 -1 0 0 O 0 0 0 1 1 0 -1 0 0/

with superpotential
Wit = X3XsXi3 — XsXoX11 — X5¢205X13 — MaX3X10X12
+q2q1 Xoz12 + M1 X5 X10X11 — Miqaq) + Maqugs.

Finally the fourth case (dualising node F of (III)) has the charge matrix

@ Wi Wz qf gy, Xz Xs W[ W) Xo My X1 Xi13 Mz p1 p} ph p2

A 1 1 1 0 0 0 1 1 1 -1 -1 0 -1 -1 0 -1 -1 0
B 0 0 0 0O -1 -1 © 0 0 0 0 0 1 1 0 0 0 0
¢ -1 -1 -1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
D o0 0 0 0 0 1 -1 -1 -1 0 0 1 0 0 0 0 0 1
E 0 0 0 0 0 0 0 [ 0 0 0 0 0 0 -1 1 1 -1
F 0 0 0 -1 0 0 o] 0 0 1 1 -1 0 0 0 0 0 0

with superpotential

Wiy = X3XeXi3 — XeXoX11 — Wigh X3 — Mo X3 Wi + qi XoWo + My W[ Xy

—Myqiq) + Magigy + Wipipy — Wapipy — Wipap) + Wapap

6.7 Conclusions

In [85, 93] a mysterious duality between classes of gauge theories on D-branes probing
toric singularities was observed. Such a Toric Duality identifies the infrared moduli
space of very different theories which are candidates for the world-volume theory on

D3-branes at threefold singularities. On the other hand, [99, 81] have recognised
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certain brane-moves for brane configurations of certain toric singularities as Seiberg
duality.

In this paper we take a unified view to the above. Indeed we have provided
a physical interpretation for toric duality. The fact that the gauge theories share
by definition the same moduli space motivates the proposal that they are indeed
physically equivalent in the infrared. In fact, we have shown in detail that toric dual
gauge theories are connected by Seiberg duality.

This task has been facilitated by the use of T-dual configurations of NS and D-
branes, in particular brane intervals and brane diamonds [78]. These constructions
show that the Seiberg duality corresponds in the singularity picture to a change of
B-fields in the collapsed cycles. Hence, the specific gauge theory arising on D3-branes
at a given singularity, depends not only on the geometry of the singularity, but also
on the B-field data. Seiberg duality and brane diamonds provide us with the tools to
move around this more difficult piece of the singular moduli space, and probe different
phases.

This viewpoint is nicely connected with that in [85, 93], where toric duals were
obtained as different partial resolutions of a given‘ orbifold singularity, C®/(Z3 x Z3),
leading to equivalent geometries (with toric diagrams equivalent up to unimodular
transformations). Specifically, the original orbifold singularity has a specific assign-
ments of B-fields on its collapsed cycles. Different partial resolutions amount to
choosing a subset of such cycles, and blowing up the rest. Hence, in general different
partial resolutions leading to the same geometric singularity end up with different as-
signments of B-fields. This explains why different gauge theories, related by Seiberg
duality, arise by different partial resolutions.

In particular we have examined in detail the toric dual theories for the generalised
conifold zy = z?w?, the partial resolutions of C?/(Z3 x Z3) exemplified by the complex
cones over the zeroth Hirzebruch surface as well as the second del Pezzo surface. We
have shown how these theories are equivalent under the above scheme by explicitly

having
1. unimodularly equivalent toric data;
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2. the matter content and Superpotential related by Seiberg duality;
3. the T-dual brane setups related by brane-crossing and diamond duality.

The point d’appui of this work is to show that the above three phenomena are the
same.

As a nice bonus, the physical understanding of toric duality has allowed us to
construct new toric duals in cases where the partial resolution technique provided only
one phase. Indeed the exponential running-time of the Inverse Algorithm currently
prohibits larger embeddings and partial resolutions. Our new perspective greatly
facilitates the calculation of new phases. As an example we have constructed three
new phases for the cone over del Pezzo three one of which ig in reassuring agreement
with a recent work [98] obtained from completely different methods.

Another important direction is to understand the physical meaning of Picard-
Lefschetz transformations. As we have pointed out in Section 7, PL transformation
and Seiberg duality are really two different concepts even though they coincide for
certain restricted classes of theories. We have provided examples of two theories which
are related by one but not the other. Indeed we must pause to question ourselves.
For those which are Seiberg dual but not PL related, what geometrical action does
correspond to the field theory transformation. On the other hand, perhaps more
importantly, for those related to each other by PL transformation but not by Seiberg
duality, what kind of duality is realized in the dynamics of field theory? Does there

exists a new kind of dynamical duality not yet uncovered??
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Diamond (Seiberg)

Dual

D [010)

Figure 6-11: The brane diamond setup for the Seiberg dual configurations of the
cone over dP,. (I) is as in Figure 6-10 and (II) is the results after Seiberg (diamond)
duality and gives the spectrum for the toric dual theory. The added meson fields are
drawn in dashed blue lines. Notice that applying the diamond dual rules carelessly
one gets some additional vectorlike pairs, shown in the picture within dotted lines.
Such multiplets presumably get massive in the Seiberg dualization, hence we do not
consider them in the quiver.

E X10

(III)

av)

Figure 6-12: The four Seiberg dual phases of the cone over dPs.
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Chapter 7

The Identity String Field and the

Tachyon Vacuum

7.1 Introduction

Regarding the fate of the tachyon in various systems such as brane-antibrane pairs in
Type II theories as well as the D25-brane in the bosonic string theory, Sen proposed
his famous three conjectures in [20, 126]. These state that (i) The difference in
energy between the perturbative and the tachyon vacuum exactly cancels the tension
of the corresponding D-brane system; (ii) After the tachyon condenses, all open string
degrees of freedom disappear, leaving us with the closed string vacuum; and (iii) Non-
trivial field configurations correspond to lower-dimensional D-branes.

Because tachyon condensation is an off-shell process!, we must use the formalism
of string field theory. Both Witten’s cubic open string field theory [15] and his
background independent open string field theory [15, 128, 129, 130] seem to be good
candidates. Indeed, in the last two years, there has been a host of works aimed to
understand Sen’s three conjectures by using the above two string field theories as well
as the non-linear sigma-model (Born-Infeld action) [131]. Thus far, Sen’s first and

third conjectures have been shown to be true to a very high level of accuracy ([132]

'For some early works concerning tachyon condensation please consult [127].
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- [149)); they have also been proven analytically in Boundary String Field Theory
([150] - [152]). The second conjecture however, is still puzzling.

Let us clarify the meaning of this conjecture. From a physical point of view, after
the tachyon condenses to the vacuum, the corresponding D-brane system disappears
and there is no place for open strings to end on. Therefore at least all perturbative
conventional open string excitations (of ghost number 1) should decouple from the
theory. There has been a lot of work to check this statement, for example ([153]-
[164]). In particular, using level truncation, [165] verifies that the scalar excitations

at even levels (the @ closed scalar fields) are also QQ-exact to very high accuracy.

However, as proposed in [115, 116] there is a little stronger version for the second
conjecture. There, Rastelli, Sen and Zwiebach suggest that after a field redefinition,
the new BRST operator may be taken? to be simply cy, or more generally a linear
combination of operators of the form (¢, + (—)"c_,). For such a new BRST operator,
not only should the conventional excitations of ghost number 1 disappear, but more
precisely the full cohomology of any ghost number of the new BRST operator around
the tachyon vacuum vanishes®. Hence these authors propose that Sen’s second con-
jecture should hold in such a stronger level. In fact, Sen’s second conjecture suggests
also that around the tachyon vacuum, there should be only closed string dynamics.
However, we will not touch upon the issue of closed strings in our paper and leave

the reader to the references [162, 7, 168, 172].

Considering the standing of the second conjecture, it is the aim of this paper to
address to what degree does it hold, i.e., whether the cohomology of Qy, is trivial only
for ghost number 1 fields or for fields of any ghost number. We will give evidence which
shows that the second conjecture holds in the strong sense, and is hence consistent

with the proposal in [115, 116].

Our discussion relies heavily upon the existence of a string field Z of ghost number

2The first String Field Theory action with pure ghost kinetic operator was written down in [167].
3An evidence for the triviality of a subset of the discrete ghost number one cohomology was
presented recently in [166] which complemented [165].
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0 which is the identity of the x-product. It satisfies

Ixp=pxT =1

for any state* ¢. The state Z was first constructed in the oscillator basis in [17, 18].
Then a recent work [114] gave a recursive way of constructing the identity in the
(background independent) total-Virasoro basis which shows its universal property in
string field theory. As a by-product of our analysis, we have found a new and elegant

analytic expression for Z without recourse to the complicated recursions.

Ignoring anomalies, the fact that QJg, is a derivation of the x-algebra implies that
7 is Qu, closed and the problem is to determine whether it is also Qy, exact, i.e.,
if there exists a ghost number —1 field A, such that Z = Qy,A. If so, then for an

arbitrary Qy, closed state ¢ we would have

Quy(Axd) = (Qu,A)*xd— Ax(Quy9)
= Ix¢

= ¢

where in the second step, we used the fact that ¢ is Qy,-closed, and in the last step,
that 7 acts as the identity on ¢. This means that any Qg,-closed field ¢ is also

(QQw,-exact, in other words, the entire cohomology of Qy, is trivial.

Therefore we have translated the problem of the triviality of the cohomology of
Qy, into the issue of the exactness of the identity Z. In this paper, we will use
the level truncation method to show that the state A indeed exists for the tachyon

vacuum ¥, up to an accuracy of 3.2%.

The paper is structured as follows. In Section 2, we explain the above idea of the

exactness of Z in detail. In Section 3, we use two different methods to find the state

“There are some mysteries regarding of the identity. For example, in [114] the authors showed
that this identity string field is subject to anomalies, with consequences that 7 may be the identity
of the x-algebra only on a subspace of the whole Hilbert space. In the following, we will first assume
that Z behaves well on the whole Hilbert space, and postpone some discussions thereupon to Section
4.

223



A: one without gauge fixing and the other, in the Feynman-Siegel gauge. They give
the results up to an accuracy of 2.4% and 3.2% respectively. In Section 4, we discuss
the behaviour of Z under level truncation and perform a few consistency checks on our
approximations. Finally, in Section 5 we make some concluding remarks and address
some further problems and directions.

A few words on nomenclature before we proceed. By |0) we mean the SL(2,R)-
invariant vacuum and |2) := ¢; |0). We consider [§2) to be level 0 and hence |0) is
level 1. Furthermore, in this paper we expand our fields in the universal basis (matter

Virasoro and ghost oscillator modes).

7.2 The Proposal

To reflect the trivial cohomology of the BRST operator at the stable vacuum, Rastelli,
Sen and Zwiebach [116] proposed that after a field redefinition, the new BRST oper-
ator (e, may be taken to be simply ¢y, or more generally a linear combination of
operators of the form (¢, + (—)"c_,). For such operators, there is an important fact:

there is an operator A such that

{A, Qnew} = I;

where I is the identity operator. For example, if Q e, = ¢, + (—)"c_n, We can choose
A = 3(b_n + (—)"bs) because {5(b—n + (=)"bp), Quew} = {5(b—n + (=)"bn),cn +
(—=)*c_n} = 1. Therefore, if the state ® is closed, i.e., Qne,wy® = 0, then we have

¢ = {A, Qnew}@ = AQnew(I) + Qnequ)
= Qnew(AP)

(7.1)

which means that ® is also exact. Thus the existence of such an A guarantees that
the cohomology of Qe is trivial.
In fact the converse is true. Given a ¢, which has vanishing cohomology we can

always construct an A such that {4, Quew} = I. Suppose that we denote the string
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Hilbert space at ghost level g by V;. Define the subspace Vf as the set of all closed
elements of V;. We can then pick a complement, VgN , to this subspace® satisfying
V, = VE @ V}N. Note that it consist of vectors which are not killed by Qpe,. This
subspace VgN , 18 not gauge invariant but any specific choice will do. The important
point is that because we have assumed that Qe has no cohomology, the restriction
of Qnew to V¥ given by

(o]
—> V;H-l:

Qnew

has no kernel and is surjective® on Vg +1- Thus it has an inverse which we denote A

A Qnow

N
vC ‘/g+1_>‘/g .

C
v, g+1

9+1

This insures that on the space Vgc, {A, Qnew} = I holds since if @ is Qpey-closed,

{Aa Qnew}q) = AQnew® + Qrew AP = Qner;lewq) = Q.

The above discussion only defines the action of 4 on V;C, what remains is to define
its action on the complement VgN . Here there is quite a bit of freedom since one can

choose any map that takes V" into V¥ ;. Assuming this, we have that for ® € vy,

{A, Qnew}® = AQnew® + QnrewA® = QruyyQnew® + Qo x = @,

where by assumption A® is Qpey-closed (because it is in Vgc_l) and thus equals Qe X
for some x € V;]‘_’ - In general one can insist that A satisfies more properties. For
example if we set A|VgN = 0 we get that A2 = 0. We summarize the above discussion

as

PROPOSITION 7.2.1 The cohomology of Qnew is trivial iff there exists an opera-
tor A such that {A, Qnew} = I.

5More precisely, the space V, could be split as Ve = VC ® (V, /VC) where (V, /VC) is a vector
space of equivalence classes under the addition of exact states VN should be considered as a space
of representative elements in (V,/V,°).

6As remarked in the previous footnote if we use (Vg/ VC) instead of VN the mapping is an
isomorphism of vector spaces.
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The basic hypothesis of this paper is that not only does such an operator A exist
for Qy,, but also for special choices of A, the action of A can be ezpressed as the
left multiplication by the ghost number —1 string field which we denote as Ax. Thus
we are now interested in satisfying the equation {Ax, Qnew} = I. Writing this out

explicitly we have

{A*5 anew}(D = Ax (Qnew(p) + Qnew (A * (I))
= Ax Qne'w (<b) + (QnewA) *P — Ax (Qnewq))
= (QnewA) x®.

In order for the last line to equal ® for all & we need that
QnewA = I; (72)

where Z is the identity of the x-algebra.

For the case of interest, we wish to study the physics around the minimum of the
tachyon potential. We recall that for a state ®, the new BRST operator around the
solution 9 of the EOM is given by

Qu® = Qp(®) + Y% (B) — (=)*(®) * ¢ (7.3)

Using this expression for the BRST operator we can rewrite the basic equation (7.2)
as QuA = Qp(A) +1* (A) + (A) 9 = I. For general vacua 1, such a string field A
will not exist. For example in the perturbative vacuum, ¢ = 0, Q) is simply Qp. It
is easy to show here that there is no solution for A because the (Jp action preserves
levels while Z has a component at level one (namely |0)), but the minimum level of
a ghost number —1 state A is 3. Indeed, for a more general solution ¢ # 0 (such as
the tachyon vacuum), the star product will not preserve the level and so it may be

possible to find A. Our endeavor will be to use the level truncation scheme to find A
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for the tachyon vacuum ¥y, i.e., to find a solution A to the equation
Qu,A=1T. (7.4)
Note that this equation is invariant under
A— A+ QB

for some B of ghost number —2, thereby giving A a gauge freedom. This is an
important property to which we shall turn in the next section.

Having expounded upon the properties of A, our next task is clear. In the following
section, we show that for the tachyon vacuum ¥y, we can find the state A satisfying

(7.4) in the approximation of the level truncation scheme.

7.3 Finding The State A

Let us now solve (7.4) by level truncation. To do so, let us proceed in two ways. We
recall from the previous section that A is well-defined up to the gauge transformation
A — A+Qy,B where B is a state of ghost number —2. Because in the level truncation
scheme, this gauge invariance is broken, we first try to find the best fit results without
fixing the gauge of A. The fitting procedure is analogous to that used in [166] and
we shall not delve too much into the details. We shall see below that at level 9, the
result is accurate to 2.4%. However, when we check the behaviour of the numerical
coefficients of A as we increase the accuracy from level 3 to 9, we found that they do
not seem to converge. We shall explain this phenomenon as the consequence of the
gauge freedom in the definition of A; we shall then redo the fitting in the Feynman-
Siegel gauge. With this second method, we shall find that the coefficients do converge
and the best fit at level 9 is to 3.2% accuracy. These results support strongly the
existence of a state A in (7.4) and hence the statement that the cohomology around
the tachyon vacuum is indeed trivial. In the following subsections let us present our

methods and results in detail.
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7.3.1 The Fitting without Gauge Fixing A

To solve the condition (7.4), we first need an explicit expression of the identity Z. Such
an expression has been presented in [17] and [114], differing by a mere normalization

factor —4i. In this paper, we will follow the conventions of [114] which has”

|I> — eL-2—%L-4+%L—6_%L—s+%l/—lo+... |0> (7.5)
1
= 10)+L510) + 5(L2, — L) 0)

1 1 1 1
4 (-Li Y A Y A —L_G) 10)

62 1 1 5
1 1 1 7
+ <ﬁL“_ s+ (Loalog+ Ll g)+ T2 = L
1
— (2Lt Loaloglog + LI 2)) 10) (7.6)

where L, = L™ + LY, the sum of the ghost (L?) and matter (L") parts, is the total
Virasoro operator. For later usage we have expanded the exponential up to level 9.
Furthermore, we split L, into matter and ghost parts and expand the latter into b,, ¢,
operators as

LS = %% (2m —n) : bpCm—n : —0Omo. In other words, we write the states in the

n=—0o0
so-called “Universal Basis” [114].

As a by-product, we have found an elegant expression for Z which avoids the
recursions® needed to generate the coefficients in the exponent. In fact, one can
show that only L_,, for m being a power of 2 survive in the final expression, thus

significantly reducing the complexity of the computation of level-truncation for Z:

0 = (Mew{-giw})ep

2 2
= ..exp(—ﬁL_zs) exp(—ﬁL_zz) exp(L_z) |0), (7.7)

"With the normalization {c,c1,c1) = 3 that we are using, we should scale this expression by a
factor of K3/3, where K = 3v/3/4. However, as the normalization of the identity will not change our
analysis, we will use this right normalization only in Section 4, where we are dealing with expressions
like Z x ®.

8Indeed the expression given in [18] has no recursion either, however their oscillator expansion is
not normal-ordered due to ghost insertions at the string mid-point.
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where we emphasize that the Virasoro’s of higher index stack to the left ad infinitum.

We leave the proof of this fact to the Appendix.

It is worth noticing that in the expansion of Z only odd levels have nonzero
coefficients. This means that we can constrain the solution A of (7.4), if it exists, to
have only odd levels in its expansion. The reason for this is as follows. Equation (7.4)
states that QpA + Vg x A+ Ax ¥y = Z, moreover we recall that (cf. e.g. Appendix
A.4 of [166]) the coefficient k,; in the expansion of the star product zxy = ; keitbe

K

is kp; = (@,i, z,y) for the orthogonal basis ¥ to 1. Now the triple correlator has the
symmetry (z,y,z) = (—)H9@IWHEHW+) (4 2 o)) where g(z) and £(z) are the
ghost number and level of the field x respectively. Whence, one can see that the even
levels of ¥y x A+ A% ¥, will be zero because the tachyon vacuum ¥, has only even
levels and A is constrained to odd levels. Furthermore, Qp = > ¢, L™, + %(m —n):
CmCnb_m_n : —co preserves level. Therefore, in order that both t1111e left and right hand

sides of (7.4) have only odd levels, A must also have only odd level fields.

Now the procedure is clear. We expand A into odd levels of ghost number —1 with
coefficients as parameters and calculate Qg,A. Indeed as with [166], all the states
will be written as Euclidean vectors whose basis is prescribed by the fields at a given
level; the components of the vectors are thus the expansion coefficients in each level.
Then we compare Qy,A with Z up to the same level and determine the coefficients

of A by minimizing the quantity

_ |Q‘I’0A _I|
E=—7"
|Z|

which we of course wish to be as close to zero as possible. We refer to this as the
“fitting of the coefficients”. The norm |.| is the Euclidean norm (for our basis, see
the Appendix) . As observed in [165], different normalizations do not significantly
change the values from the fitting procedure, so for simplicity we use the Euclidean
norm to define the above measure of proximity e. The minimum level of the ghost
number —1 field A is 3, so we start our fitting from this level and continue to up to

level 9 (higher levels will become computationally prohibitive).
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First we list the number of components of odd levels for the fields A and Z up to

given levels:

level 3 | level 5 | level 7 | level 9
Number of Components of A 1 4 14 43
Number of Components of Z 4 14 43 118

From this table, we see that at level 3, we have only one parameter to fit 4 components.
At level 5, we have 4 parameters to fit 14 components. As the level is increased the
number of components to be fitted increases faster that the number of free parameters.

Therefore it is not a trivial fitting at all.

A up to level 3

At level 3 the identity is:
I3 = |0)+L_5|0)

= |0> — b_361 |0> —b2b_200 |0> + LT’Z |0>

and we find the best fit of A (recall that at level 3 we have only 1 degree of freedom)
to be
A3z =1.12237b_510),

with an € of 17.1%.

A up to level 5

Continuing to level 5, we have

Is = [0)+L-2]0)+3(L%; — L_4)|0)
= |0) = b_ger [0) — 2b_co [0) + L™, |0) + b_ser [0) — b_sc_s [0)
+b_3c_1 |0) + 2b_3b_scpc |0) + 2b_4co [0) — FL™, |0)
—b_ger L™, [0) — 2b_scoL™, |0) + LL™, L™, |0) .
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To this level we have determined the best-fit A to be

As =1.01893b_5]0) + 0.50921 b_3b_sc; [0) — 0.518516 b_4 |0) + 0.504193b_,L™, |0),

with an € of 11.8%.

The detailed data of the field A to levels 7 and 9 are given in table 7.9 of the

Appendix. Here we just summarize the results of the best-fit measure e:

level 3 level 5 level 7 level 9
2, A-Z|

e=|Q—?I|— 0.171484 | 0.117676 | 0.0453748 | 0.0243515

This indicates that up to an accuracy of 2.4% at level 9, there exists an A that satisfies
(7.4); moreover the accuracy clearly gets better with increasing levels. This is truly

an encouraging result.

7.3.2 The Stability of Fitting

There is a problem however. Looking carefully at the coefficients of A given in the
table 7.9, especially the fitting coefficients between levels 7 and 9, we see that these
two groups of data have a large difference. Naively it means that our solution for A

does not converge as we increase level. How do we solve this puzzle?

We recall that A is well-defined only up to the gauge freedom
A— A+ Q\I}OB .

It means that the solutions of (7.4) should consist of a family of gauge equivalent A.
However, because Q?I,o # 0 under the level truncation approximation, the family (or
the moduli space) is broken into isolated pieces. Similar phenomena were found in
[165] where the momentum-dependent closed states were given by points instead of a
continuous family. Using this fact, our explanation is that the fitting of levels 7 and

9 are related by Qy,B for some field B of ghost number —2. To show this, we solve
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a new A up to level 9 that minimizes

[(A)7 — A " |Qu,A — Ty
| A7 |Zy|

where A7 is the known fitting data at level seven, Zy is the identity up to level nine and
(A); refers to the first 14 components (i.e., the components up to level seven) of the
level 9 expansion of A. By minimizing this above quantity, we balance the stability of
fitting from level 7 to 9. The data is given in the last column of 7.9. Though having
gained stability, the fitting for level 9 is a little worse, with € increasing from 2.44%

to 3.56%.

The next thing is to check whether A-— Ay is an exact state Qy,B. We find that
this is indeed true and we find a state B such that

(A~ 49) ~ Qu, B|

ks = 0.28%.
|A — A

7.3.3 Fitting A in the Feynman-Siegel Gauge

Alternatively, by gauge-fixing, we can also avoid the instability of the fit. If we require
the state A to be in the Feynman-Siegel gauge, A will not have the gauge freedom
anymore and the fitting result should converge as we do not have isolated points
in the gauge moduli space to jump to. We have done so and do find much greater

stability of the coefficients.

Notice that in the Feynman-Siegel gauge, A has the same field bases in levels
3 and 5, so the fitting at these two levels is the same as in Subsections 3.1.1 and
3.1.2. However, in this gauge it has one parameter less at level 7 and 5 less in level 9.
Performing the fit with these parameters we have reached an accuracy of e = 4.8% at
level 7 and € = 3.2% at level 9, which is still a good result. The details are presented
in Table 7.10 in the Appendix.
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7.4 Some Subtleties of the Identity

As pointed out in the Introduction, there are some mysterious and anomalous features
of the identity Z. For example, Z is not a normalizable state [169], moreover, co,
contrary to expectation, does not annihilate Z even though it is a derivation [114].
We shall show in the following that with a slight modification of the level truncation
scheme, this unnormalizability does not effect the results and furthermore that in our

approximation QQy,Z indeed vanishes as it must for consistency.

Let us first show how problems may arise in a naive attempt at level truncation.
Consider the quantity Z, x |2) — |2), where Z, denotes the identity truncated to level
¢ and [Q) := ¢1|0). We of course expect this to approach 0 as we increase £. Using
the methods of the previous section, we shall define the measure of proximity

|Ze % |2) - 19) |
K )

= [Zex Q) = 1) |,

where |.| is our usual norm. We list 7 to levels 3, 5, 7, and 9 in the following Table:

level ¢ 3 5 7 9
n=|Tex|Q) — Q)] | 2.06852 | 2.87917 | 3.56054 | 3.9452

Our 7 obviously does not converge to zero, hence star products involving Z do not
converge in the usual sense of level truncation. It is however not yet necessary to

despair, as weak convergence will come to our rescue®.

Indeed, instead of truncating the result to level £, let us use a slightly different
scheme. We truncate Z, x |Q2) to a fixed level m < £ and observe how the coefficients
of the fields up to level m converge as we increase £. In the following table we list the

values of the coefficients coeff(z) of the basis for m = 2 (i.e., fields z of level 0, 1 and

9We thank B. Zwiebach for this suggestion.
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2) for the expression Z; x |€2).

Ty % |Q) | coeff(|2)) | coeff(b_1co |€2)) | coeff(b_1c_1|Q)) | coeff(b_aco |Q)) | coeff(L™, |2))
(=3 0.6875 0.505181 -0.905093 -0.930556 0.465278
£=5 1.16898 -0.278874 0.38846 0.520748 -0.260374
L=17 0.911094 0.16252 -0.197833 -0.296607 0.148304
£=9 1.05767 -0.0971502 0.0902728 0.163579 -0.0817895

We see that the |Q2) component converges to 1 while the others converge to 0, as
was hoped. We note however that this (oscillating) convergence is rather slow and
we thus expect slow weak convergence for other calculations involving the identity.

Having shown that as £ — oo we get a weak convergence Z, x |2) — [£2), we now
consider Qg,Z; as £ — oo, which should tend to zero. Since (Jp preserves level and
QsZ = 0, we have that @pZ = 0 in the level expansion; thus Qy,Z = ¥oxZ — I+ V,,

which should converge to zero.
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Figure 7-1: A plot of go1(¢) (solid curve), g»1(¢) (dotted curve) and g;3(¢) (dashed
curve) as functions of the level £ of the identity. £ goes from 3 to 17.

As the expression Qy,Z is linear in every component of ¥y, that 7 is QQy,-closed
will be established if we can show that for each component ¢ in Wy, pxZ—Tx¢p = [¢x, Z]
converges to zero as the level of Z is increased. We plot in Fig.7-1, the absolute

values of the coefficient of cg|0) in the expressions [(c; |0)),Zg], [(c-1]0))*,Z,] and
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[(L'_"2c1) |0) , Ig], which we denote by go,1(¢), g2,1(£) and ¢2,3(¢) respectively. It seems
clear that the coeflicients do converge to zero.

The weak convergence we have shown above can be interpreted in a more abstract
setting. Let us examine the quantity |Z, x ® — ®|. It was shown in [170] that the x-
algebra of the open bosonic string field theory is a C*-algebra. A well-known theorem
dictates that any C*-algebra M (with or without unit) has a so-called approzimate
identity which is a set of operators {Z;} in M indexed by i satisfying (i) ||Z;|| < 1 for
every ¢ and (ii) |Z;z — z|| — 0 and ||zZ; — z|| — O for all z € M with respect to the
(Banach) norm |).|| of M (cf. e.g. [171]).

The level £ in our level truncation scheme is suggestive of an index for Z. Further-
more the weak convergence we have found in this section is analogous to property (ii)
of the theorem (being of course a little cavalier about the distinction of the Banach
norm of the C*-algebra with the Euclidean norm used here). Barring this subtlety, it

is highly suggestive that our Z, is an approximate identity of the x-algebra indexed

by level £.

7.5 Conclusion and Discussions

According to a strong version of Sen’s Second Conjecture, there should be an absence
of any open string states around the perturbatively stable tachyon vacuum W¥,. This
disappearance of all states, not merely the physical ones of ghost number 1, means
that the cohomology of the new BRST operator Qy, should be completely trivial near
the vacuum. It is the key observation of this paper that this statement of triviality

is implied by the existence of a ghost number —1 field A satisfying
QuoA=QpA+Vygx A+ AxTy=1T.

That is to say that if the identity of the x-algebra 7 is a Qg, exact state, then the

cohomology of )y, would be trivial.

The level truncation scheme was subsequently applied to check our proposal. We
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have found that such a state A exists up to an accuracy of 3.2% at level 9. Although
these numerical results give a strong support to the proposal for the existence of A
and hence the triviality of QQy,-cohomology near the vacuum, an analytic expression
for A would be most welcome. However, to obtain such an analytic form of A, it
seems that we would require the analytic expression for the vacuum Wy, bringing us
back to an old problem. It is perhaps possible that by choosing different gauges other

than the Feynman-Siegel gauge we may find such a solution.

Our solution A satifies {A4,Q} = I. It would be nice to see whether we can
choose A cleverly to make A *x A = 0 (our Feynman-Siegel gauge fitting may not
satisfy this equation). We are interested with this case because for the proposal of
QB = ¢y + (—)"c_, made in [115, 116], one could find that A = (b_, + (—)"b,)
which does satisfy A? = 0. It would be interesting to mimic this nilpotency within
the x-algebra. Furthermore, it would be fascinating to see if we can make a field
redefinition to reduce A to a simple operator such as by, and at the same time reduce

Qvy, to a new BRST operator as suggested in [116], for example, co.

Last but not least, an interesting question is about the identity Z. In this paper we
have given an elegant analytic expression for Z which avoids the usage of complicated
recursion relations. Furthermore, we have suggested that though the x-algebra of
OSFT may be a non-unital C*-algebra, Z still may serve as a so-called approximate
identity. However, as we discussed before, anomalies related to the identity in the
String Field Theory make the calculation in level truncation converge very slowly. It

will be useful to understand more about Z.
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7.6 Appendix

7.6.1 The Perturbatively Stable Vacuum Solution at Level
(M,3M)

We tabulate the coefficient of the expansion of the stable vacuum solution ¥, at
various levels and interaction [135].

gh =1 field basis

I level (2, 6)

level (4,12)

level (6, 18)

level (8, 24)

]

| 192 I 0.3976548947184288 I 0.4007200390749924 | 0.4003790755638671 0.39973608190423154
b_1c_1|2) —0.1389738152295008 —0.1502869559917484 —0.15477497270540513 —0.15712091953765914
LT, Q) 0.0408931493261807 0.04159452148973691 0.04175525359702033 0.041806849347695574
b_q1c-3|9) 0.041073385934010505 0.041936906548529496 0.042358626301118626
b_oc_2 Q) 0.02419174563180113 0.02489022878379843 0.025301843897808124
b_3zc_1|?) 0.013691128644670262 0.013978968849509828 0.014119542100372846
L'—"tl 12) —0.003741923212578628 —0.0037331617302832193 —0.0037279001402683682
b_y1c_1L7, |) 0.005013189182427192 0.005410660944694899 0.005620705137023851
L™, L™, |Q) —0.00043064009114185083 —0.0004545462255696699 —0.0004654022166127481
b_yc_5|Q) —0.02193107815206234 —0.022161386573208323
b_oc_4|92) —0.013702048066242712 —0.01385275004340868
b_gc_3|?) —0.00834273227278023 —0.008359650003474304
b_4c_2|R) —0.0068510240331213544 —0.0069263750217043295
b_sc_1]9) —0.004386215630412471 —0.0044322773146416965
b_ob_j1c_2¢c_1|0) —0.005651485281802872 —0.00580655453652034
LT ) 0.0010658398347450269 0.0010617366766707361

b_1c_1L7, |2)

—0.0008498595740547494

—0.0008732233330861659

b_1c_2L7;|Q)

—0.000046769138331183204

—0.000052284121618944255

b_gc_1L™5|R)

—0.000023384569165591568

—0.000026142060809472097

LT3 LT3 1Q)

4,479437511126653 x 10~°

5.080488681869039 x 1076

b_1c_3LT, |2)

—0.002457790374962076

—0.002528657337188949

b_ge_3 L™, |0)

—0.0020680241879350277

—0.002125416342663475

b_zc_1 LTQ 122)

—0.0008192634583206926

—0.0008428857790629816

LT, LT, |)

0.00022330350231085353

0.00022500193649010967

b_1c_1LT,LT, |2)

—0.00011131535311028013

—0.00012817322136544294

LT LT LT, 192)

—7.241008154399294 x 10~°

—6.240064701718801 x 10~ °
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gh =1 field basis

[ level (2,6)

level (4,12) | level (6,18) |

level (8, 24)

b_1c_7|9) 0.014312021693536028
b_sc_g | 0.009158200585940239
b_gc_s5 |9 0.005674268936470511
b_sc_q|) 0.004838957768226669
b_gc_3 ) 0.0034045613618823045
b_gc_2|R) 0.0030527335286467446
b_gb_1c_3c_2|R) —0.0035422558218537676
b_7c_1 |0 0.0020445745276480116

b_ob_1c_4c_119)

0.0037527555019998804

b_gb_1c_3c—1|9)

0.0004302428004449616

b_gb_zc_zc_1(R)

—0.0011807519406179202

b_gb_j1c_2c_119)

0.0018763777509999383

LT 19)

—0.00041801038699211334

b_1c_1LT% )

0.00029329813765991303

b_1c-2L75 |Q)

6.281489731737461 x 10~°

b_gc_ LT |9)

3.140744865868727 x 10~6

b_1c_3LT, |)

0.000500528172313894

b_oc_2L™T, |Q)

0.00030379159554779373

b_gc_1 LT4 |©2)

0.00016684272410463048

LT,LT, |©)

—0.000021999720024591806

b_1c_alT410)

0.00003496149452657495

b_gc_3L™, Q)

—3.2753561169368668 x 10~ °

b_gc_2LT4|Q)

—2.1835707446245427 x 10~ 8

b_sc_1 LTa |£2)

8.74037363164371 x 10~0

LT5LT, |9)

—1.3196771313891132 x 10~ 8

b_1c_1 LTy L™ |Q)

1.2594432286572633 x 106

b_1c_5L7, |0)

0.001534533432927412

b_pc_4LT |Q)

0.0013556709245221895

b_gc_3LT, |)

0.0006166063072874846

b_ac LT, |0)

0.0006778354622610939

b_sc_1LT, |©2)

0.00030690668658548353

b_2b_j1c_2c.1LT, ()

0.0005782814358972997

LT LTy Q)

—0.00007624602726052426

b_yc L7, LT, |Q)

0.00006375616369006518

b—lc-2LT3LT2 12)

5.9626436110722614 x 10~°

b_2c_1L1_"3LT2 1£2)

2.9813218055361256 x 10~

LTgLT LT, Q)

—5.422796727699355 x 10~ 7

b_1c_3LT,LT, |2)

0.00004728162691342103

b—2c—2L'_n2L'_n2 1€2)

0.00010011937816215435

b_3c_1L'_"2L'_"2 1€2)

0.000015760542304474034

LT, LT, LT, )

—4.371565449219928 x 10~ °

boic1 LTy L™ L™, |Q)

—3.759766768481099 X 10~ 7

LT,LT, LT, LT |2)

7.259081254041818 x 10~7

(7.8)

7.6.2 Fitting of the Parameters of A

A up to Level 9 without Gauge Fixing

As A is of ghost number —1 and has only odd levels, we here tabulate such field basis
at levels 3, 5, 7 and 9. The best-fit numbers are the coefficients of A obtained by
Qe A-Z|

best-fit via minimizing € = T The stable fit at level 9 is constructed so as to
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control the convergence behaviour of the coefficients.

Field Basis | level 3 fit level 5 fit level 7 fit level 9 fit | stable leve! 9 fit
b_5|0) 1.12237 1.01893 0.948316 1.25995 0.931864
b_3b_3c1 |0) 0.50921 0.37306 0.660674 0.401547
b_4|0) —0.518516 | —0.753272 —0.25828 —0.753004
b_L™, |0) 0.504193 0.50695 0.400769 0.496562
b_gb_3c1]0) 0.698601 —0.10683 0.691255
b_gb_gey |0) 0.893251 —1.8453 0.888407
b_g |0) —0.531323 1.40819 —0.541737
—b_gb_gc_1 |0) —1.87167 3.14822 —1.86475
—b_4b_2c0 |0) —2.54254 3.2966 —2.54625
b_oL™, |0) 0.264611 —0.750856 0.255304
b_3L™;|0) 0.00193005 —0.0539165 —0.0191971
b_3zb_zc L™, |0) 0.358002 0.301463 0.338645
b_sL™, |0) —0.724095 0.163428 —0.744985
b_oL™,L™, |0) 0.166002 0.180328 0.169096
b_gb_gcy |0) 0.0796036 0.273844
b_gb_zey |0) —1.09893 —0.107261
b_rb_5cy|0) 0.847731 0.195816
b_g|0) —0.313743 —0.277211
b_gc_3b_3|0) —19.0376 —4.11409
—b_4b_gc_o|0) —0.147445 —0.626872
—b_4b_3c_1|0) 1.80597 —0.0745503
—b_gb_sc_10) —0.172462 —0.356920 (7.9)
b_4b_3b_sococy |0) 1.05994 —0.102556
—b_5b_3cq |0) 1.48397 —0.319450
—b_gb_2c0|0) —0.784562 0.0949989
b_oL™;0) 0.103719 —0.00879977
b_3 L™ |0) —0.530976 —0.0537990
b_3b_zc L™, |0) 0.428303 0.0633010
b_qL™, |0) 0.114766 0.111182
b_4b_gc1 L™, |0) 0.687831 0.200100
b_5L™, ]0) —0.165379 —0.134011
—b_3b_zcoL™; |0) —2.72288 —0.722198
b_o L™ L™, |0) 0.3427 0.0910701
b_sb_3c1L™, |0) —0.01845 0.304266
b_5b_gc1 L™, |0) —0.628564 —0.137309
b_gL™, |0) 0.39923 0.195490
—b_gb_gc_1L™, |0) —0.537685 —0.289167
~b_4b_2c0L™, |0) 0.951973 —0.288878
b_oL™,L™, |0) —0.237783 —0.0856879
b_3L™,L™, |0) —0.332135 —0.0868470
b_3zb_ge1 LTy L™, |0) 0.128844 0.126029
b_4L™,L™, |0) —0.00185911 —0.160345
b_pL™, L™, L™, |0) 0.0403381 0.0402361
| e=)QgaA — I|/|Z| | 0.171484 0.117676 0.0453748 0.0243515 o.ossezzﬂ

Fitting A in the Feynman-Siegel gauge

As A enjoys the gauge freedom A — A + Qg,B, we can fix it to be in the Feynman-
Siegel gauge. This is another way to control the convergence behaviour of the coeffi-
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cients.

fields level 3 fit level 5 fit level 7 fit level 9 fit

b_o |0} 1.12237 1.01893 1.12465 1.05322

b_3b_ncy |0) 0.50921 0.467 0.500266
b_4]0) —0.518516 —0.503772 —0.53228

b_zL'_"2 |0} 0.504193 0.476325 0.504269
b_ab_3c1 |0) 0.333428 0.326986
b_gsb_zcy |0) —0.330557 —0.328381

b_g |0) 0.346811 0.331188
—b_gb_gc_1]0) 0.325862 0.327997
—b_4b_2cq |0) 0 0
b_sL™, |0) —0.166799 —0.164306
b_3L™, |0) 0.00133026 0.000334022
b_gb_pc1L™, |0) 0.341592 0.328637
b_qaL™, |0) —0.332864 —0.327326
b_sL™,L™, |0) 0.1686 0.165931
b_gb_4cy |0) 0.245489
b_gb_gcy |0) —0.253014
b_7b_ocy |0) 0.250149

b_g |0) —0.257672
b_3c_3zb_x3|0) 0.249999
—b_4b_gc_o|0) —0.256812
—b_4b_gc_1]0) 0.246526
—b_gb_oc_110) —0.25213
b_4b_3b_gcocy |0) 0
—b_gb_3c0|0) o]
—b_gb_2co |0) o]
b_sL™ |0) 0.00104113
b_3LT5 |0) 0.0000151443
b_3b_2c1 L™, |0) —0.126025
b_sL™, |0) 0.12448
b_4b_pc1 L™, (0) —0.0004548
b_5L'_"3 |0) —0.000819122
—b_3b_gcoL™;|0) 0
b_o L™, L™, |0) 0.0000905036
b_4b_gc1 LT, |0) 0.250728
b_sb_acy LTz |0y —0.251499
b_gL™, [0) . 0.250865
—b_3b_gc_1L™,|0) 0.249179
—b_4b_2coLT, |0) 0
b_oL™,L™, |0) —0.123363
b_gL™;L™, |0) 0.000457948
b_gb_gc1 L7, L™, |0) 0.126358
b_gL™,L™, |0) —0.125248
b_pL™, L™, LT, |0) 0.0406385
| e=1Qu A —I|/IT| | 0.171484 0.117676 0.0480658 0.0320384
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Expansion of Z up to level 9

Immediately below the field basis at ghost number 0 and levels 1, 3, 5, 7 and 9 is
given the coefficient of the expansion of Z.

|0) b_3c1]0) —b_2cg |0) L™, |0) b_sc1 |0)
1 -1 2 1 1
—b_2c_2|0) —b_3c_110) b_3b_2cqcy |0) —b_4¢0 |0) L7, 10)
_ _ 1
1 1 2 2 -3
b_zc1L™5|0) b_3c1 LT, |0) —b_2coLT, |0) L™,L™, |0) b_7c1|0)
1
1] -1 2 3 -1
—b_gc_4/0) —b_3c_3[0) b_3b_sc_3c1(0) —b_4c_2|0) b_g4b_zc_1¢110)
1] -1 1 0 0
—b_sc_1/0) b_4b_3coc1 |0) b_5b_acocy |0) —b_gco |0) b_3b_zc_1¢0/0)
1 2 -2 2 2
LT 10) b_gc1LT [0) b_3zc1LT, |0) —b_2coLT, |0) b_gc1L™, |0)
0 0 1/2 -1 0
—b_gc_1L™, [0) —b_gcoL™, [0) L™, L™, |0) b_gc1L™, |0) —b_gc_oLT, |0)
0 0 0 1 1
_b—Sc—lLTz |0) b—3b—2‘30C1LT2 10) _b—4C0L1_"2 10) LTqLTz 10) b_2c1 LTsL'_nz 10)
1 2 —2 —1/2 0
b_zcy LTzLTz 10) _b—2CDL7_"2 LT_nz |0) LTzLTZLT2 10) b_gc1 |0) —b_2c_g[0)
—1/2 1 1/6 1 o
-b_3c_5|0) b_3b_pc_4c10) —b_4c_410) b_qb_zc_3cq |0) —b_5c_3|0)
0 (1] 1 L] (4]
b_4b_3c_zc1 |0) b_sb_2c_2c1(0) —b_gc_20) b_5b_gc_jc1]0) b_gb_2c_1c010)
0 -1 0 0 4]
—b_7¢_110) b_3b_zc_zc_1|0) b_g5b_4cocy |0) b_gb_3cocy |0) b_7b_3cpc1 [0)
-1 -1 2 -2 2
—b_gco |0) b_3b_2c_3co [0) b_4b_2c_2¢c0|0) b_4b_gc_1¢c010) b_5b_2c_1¢0/0)
-2 2 -2 2 -2
L™ 10) b_zc1L7,]0) b_3c1L7 |0) —b_2coL T (0) b_4c1L7; |0)
—1/4 0 0 0 0
—b_zc_1LT; |0) —b_acoLT; |0) b_sc1L™, |0) —b_zc_3L™,|0) —b_3c_1L™,|0)
0 0 —1/2 —1/2 1/2
b_3b_zcoc1 LT, |0) —b_4coLT, |0) L™, LT, 10) b_gc1LT, |0) —b_3c_3LT,0)
-1 1 1/8 0 0

—b_3c_2L™4|0)

b_3b_gec_1c1L™5]0)

~b_4qc_1L7;|0)

b_gb_3coc1 LT, |0)

—b_5¢coL7; |0)

0 [} 0 0 0
L™ L™, |0) b_ge1 LT, L™ |0) b_gc1 LT, L™, |0) —b_2c0(LT4)|0) b_zc1L™, |0)
0 [} 0 (4] -1

~b_zc_4LT, [0)

—b_gc_3L™, [0)

b_gb_2c_2c1L7, |0)

_b—4c—2LT2 |0)

b_4b_2c_1c1LT, |0)

1]

-1

1

0

0

—b_5c_1 LT, |0)

b_4b_3coc1 LT, |0)

b_5b_gcoci LT, |0)

“b—ECOLTQ |0)

b_3b_gc_1coL™, |0)

1 2 -2 2 2
L™ L™, |0) b_gc1 LT L™, [0) b_ge L™, L™, |0) | —b_scqL™, L™, (0) b_ac1 L™, L™, |0)
0 0 1/2 -1 0
—b_zc_1 LT, LT, |0) —b_3coL™3 L™, |0) (L™4)2L™, |0) b_sc1(L™,)? |0) —b_zc_2(L™,)?0)
0 0 0 1/2 1/2
—~b_3zc_1(L™;)210) | b_gb_pcoc1(L™,)?]0) —b_qco(LT,)? |0) L™ (L)% 0) | b_gc1L™5(L™,)2 |0)
—-1/2 1 -1 —1/4 0
b_zc1(L™,)3 |0) —b_zco(L™,)%|0) (L™,)* |0)
-1/6 1/3 1/24
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7.6.3 The Proof for the Simplified Expression for the Identity

In this section we wish to present the proof for the analytic expression for the identity

as given in (7.7). We remind the reader of the expression:

0 = (Moo {-2r-n}) )

2 2
= .. .exp(—2—3L_23) exp(—ﬁL_gz) exp(L_2) |0), (7.12)
or its BPZ conjugate form!°
(I = (0| UnUpUp Uy, . . -, (7.13)

where Uy, = e for n > 2 and Uy, = e . In [114], the identity is given by

(Z| = (0| Uy, where Uy, is the operator corresponding to the function

z
1— 22

fz(2)

Using the composition law Uy, Uy, = Uy, og,, what we need is to prove

Uth2Uf3Uf4 cee = Uh°f20f30... = Ufz

which is equivalent to proving

z
1— 22

Icl—l—gloh o fao...o fr(z) = fz(2) (7.14)

10PJease notice that, besides the replacement L,, — (—)"L_p, the orders under BPZ-conjugation
are also reversed. This is because we use L,, instead of the oscillators a,,, whose orders do not get
reversed under BPZ.
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For the operator U; = e/, the corresponding function f is given by [173]

f(z) = exp {az"“@z} z= ( z

1—anzn)l/n’

so we have
h’(z) = (1_2:2)1/2
fo(2) = e

A useful property of the f, is that f,(z) = (g(2?"))}/?" where

oz 1
T 1422 241/z

9(2)

Before writing down the general form, first let us do an example:

f2°f3°f4(z) = f2°f3[(9[7524])1/24]
= All((gl N7V
= fl(glg" [ N
= (al((glg"2l2 M) %))
= (glg"?[g XYV

— (gl/2[gl/z[gl/z[z24m)1/2_

Now it is easy to see that the general form is

ho fyofso...0 frui(z) =ho (g% o...og%(zzkﬂ))%.
k

Thus equation (7.14) is equivalent to showing that




The left hand side can be written as

2k+1

N=
w=

+1)7..)%)7)"L,

(2+@+...+2+1/227)5 . )2)0) 7 = 2((227+(22% +... (22

Thus (7.14) reduces to the verification of the equation

~—
N|=
Il
—
+
[\
N

N—
Nl

lim (222 + (22" +... (2257 +1)7...

k—o00

This can be done as follows. Consider first squaring both sides of the above equation

and canceling 222 from the two sides, we get

2k+l

1-1—223.

SN’
=
Il

N=

lim (222" +... (2257 +1)2..)

k—o0

Repeating the above operation k times, the left hand side gives 1 while the right hand
side gives 1 + 22*? Thus as long as z < 1, we get that the left and right hand sides

do converge to each other as £ — oo.
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The list of works

In this part, we will list all works we have done in this periods.

B. Feng, Y. H. He and N. Moeller, “Zeeman spectroscopy of the star algebra,”
arXiv:hep-th/0203175.

B. Feng, Y. H. He and N. Moeller, “The spectrum of the Neumann matrix with
zero modes,” arXiv:hep-th/0202176.

G. Bertoldi, B. Feng and A. Hanany, “The splitting of branes on orientifold
planes,” arXiv:hep-th/0202090.

I. Ellwood, B. Feng, Y. H. He and N. Moeller, “The identity string field and
the tachyon vacuum,” JHEP 0107, 016 (2001) [arXiv:hep-th/0105024].

B. Feng, Y. H. He, A. Karch and A. M. Uranga, “Orientifold dual for stuck NS5
branes,” JHEP 0106, 065 (2001) [arXiv:hep-th/0103177].

B. Feng, Y. H. He and N. Moeller, “Testing the uniqueness of the open bosonic
string field theory vacuum,” arXiv:hep-th/0103103.

B. Feng, A. Hanany, Y. H. He and A. M. Uranga, “Toric duality as Seiberg
duality and brane diamonds,” JHEP 0112, 035 (2001) [arXiv:hep-th/0109063].

B. Feng, A. Hanany and Y. H. He, “Phase structure of D-brane gauge theories
and toric duality,” JHEP 0108, 040 (2001) [arXiv:hep-th/0104259).
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e B. Feng, A. Hanany, Y. H. He and N. Prezas, “Stepwise projection: Toward
brane setups for generic orbifold singularities,” JHEP 0201, 040 (2002) [arXiv:hep-
th/0012078].

B. Feng, A. Hanany, Y. H. He and N. Prezas, “Discrete torsion, covering groups

and quiver diagrams,” JHEP 0104, 037 (2001) [arXiv:hep-th/0011192].

B. Feng, A. Hanany, Y. H. He and N. Prezas, “Discrete torsion, non-Abelian orb-
ifolds and the Schur multiplier,” JHEP 0101, 033 (2001) [arXiv:hep-th/0010023].

B. Feng and A. Hanany, “Mirror symmetry by O3-planes,” JHEP 0011, 033
(2000) [arXiv:hep-th/0004092].

e B. Feng, A. Hanany and Y. H. He, “D-brane gauge theories from toric singular-

ities and toric duality,” Nucl. Phys. B 595, 165 (2001) [arXiv:hep-th/0003085].

e B. Feng, A. Hanany and Y. H. He, “Z-D brane box models and non-chiral
dihedral quivers,” arXiv:hep-th/9909125.

e B. Feng, A. Hanany and Y. H. He, “The Z(k) x D(k’) brane box model,” JHEP
9909, 011 (1999) [arXiv:hep-th/9906031].
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