Constraining the Average Fill Densities of Mars’ Lowlands and Fluvial Erosion of Titan’s Polar Regions.

by

Yodit Tewelde

Submitted to the Department of Earth, Atmospheric and Planetary Sciences
in partial fulfillment of the requirements for the degree of
Masters of Science in Planetary Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

© Massachusetts Institute of Technology 2013. All rights reserved.
Constraining the Average Fill Densities of Mars’ Lowlands and Fluvial Erosion of Titan’s Polar Regions.

by

Yodit Tewelde

Submitted to the Department of Earth, Atmospheric and Planetary Sciences on August 26, 2013, in partial fulfillment of the requirements for the degree of Masters of Science in Planetary Science

Abstract

Other than Earth, Mars and Titan are the only bodies in our Solar System where we have observed widespread fluvial activity. In this thesis I present two approaches for constraining the extent of multiple resurfacing processes in order to gain insight into the early history of Mars and Titan. One of the most distinctive features of the Martian surface is the dichotomy between the heavily cratered southern highlands and the relatively smooth northern lowlands. The northern lowlands appear smooth because many of the craters in the north have been partially or completely buried beneath volcanic and sedimentary fill of unknown relative proportions. In Chapter 1, we use the Mars Orbiter Laser Altimeter (MOLA) topography data, the Mars Reconnaissance Orbiter (MRO) gravity model and a Wiener filter to map these buried craters and estimate minimum fill thickness and volume as well as maximum fill density. The overall trend observed for the northern lowlands is more sedimentation near the dichotomy and less sedimentation further north and near the Tharsis region, which is consistent with the geology of the region. Titan has few impact craters, suggesting that its surface is geologically young. In Chapter 2 we evaluate whether fluvial erosion has caused significant resurfacing by estimating the cumulative erosion around the margins of polar lakes. Images of drowned fluvial features around the lake margins, where elevated levels of hydrocarbon liquids appear to have partly flooded fluvial valleys, allow us to map topographic contours that trace the fluvially dissected topography. We then used a numerical landscape evolution model to calibrate a relationship between contour sinuosity, which reflects the extent of fluvial valley incision, and cumulative erosion. We find that cumulative fluvial erosion around the margins of Titan’s polar lakes, including Ligeia Mare, Kraken Mare, and Punga Mare in the north and Ontario Lacus in the south, ranges from 4% to 31% of the initial relief. Additional model simulations show that this amount of fluvial erosion does not render craters invisible at the resolution of currently available imagery, suggesting that fluvial erosion is not the only major resurfacing mechanism operating in Titan’s polar regions.
Thesis Supervisor: Maria T. Zuber
Title: Vice President for Research at MIT
Acknowledgments

I would like to thank my advisors Maria T. Zuber and J. Taylor Perron for all of their help and guidance with these projects, as well as my other committee member Richard P. Binzel and Lindy T. Elkins-Tanton. I would also like to thank my co-authors James Garvin, Junlun Li, Peter Ford, Scott Miller, and Benjamin Black. This work was supported by my Robert R. Shrock Graduate Fellowship and by NASA Cassini Data Analysis Program award NNX09AE73G to Peter Ford.
Contents

1 Determining the Average Fill Densities of Mars’ Lowlands. .. 9
 1.1 Introduction ... 9
 1.2 Data Sets ... 13
 1.2.1 Topography ... 13
 1.2.2 Gravity Model ... 14
 1.2.3 Crustal Density Estimate ... 14
 1.3 Methodology ... 15
 1.3.1 Estimating Fill Thickness .. 15
 1.3.2 Isolating the Gravity Anomaly Associated with the Fill Material .. 16
 1.3.3 Solving for Average Fill Densities ... 17
 1.4 Results and Discussion .. 19
 1.4.1 Minimum Fill Volume ... 19
 1.4.2 Wiener Filter Results .. 21
 1.4.3 Maximum Density Values .. 21
 1.4.4 Sensitivity to Fill Thickness and Crustal Density Estimates .. 29
 1.5 Conclusions .. 29

2 Estimates of Fluvial Erosion on Titan from Sinuosity of Lake Shorelines 31
 2.1 Introduction ... 31
 2.2 Titan’s polar lakes .. 34
 2.3 Landscape Evolution Model ... 37
 2.3.1 Fluvial Incision ... 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>Hillslope Erosion</td>
<td>38</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Initial Surface and Simulation Procedure</td>
<td>42</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Relating contour sinuosity to cumulative erosion</td>
<td>45</td>
</tr>
<tr>
<td>2.4</td>
<td>Testing the sinuosity-erosion relationship with terrestrial data</td>
<td>48</td>
</tr>
<tr>
<td>2.5</td>
<td>Application to Titan's Polar Regions</td>
<td>52</td>
</tr>
<tr>
<td>2.5.1</td>
<td>SAR data and study region</td>
<td>52</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Test of shoreline identification criterion</td>
<td>53</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Shoreline mapping and sinuosity calculation</td>
<td>55</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Comparison with model-derived erosion proxy</td>
<td>56</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Sensitivity to initial conditions and fluvial incision parameters</td>
<td>57</td>
</tr>
<tr>
<td>2.6</td>
<td>Discussion</td>
<td>60</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Comparison with previous erosion estimates</td>
<td>60</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Geographical trends</td>
<td>60</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Implications for erosional resurfacing on Titan</td>
<td>61</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Implications for polar sediment and volatile budgets</td>
<td>63</td>
</tr>
<tr>
<td>2.7</td>
<td>Conclusions</td>
<td>64</td>
</tr>
</tbody>
</table>
Chapter 1

Determining the Average Fill Densities of Mars’ Lowlands.

1.1 Introduction

Images from Mariner 9 and the Viking Orbiters in the 1970s revealed one of the most prominent features of the Martian surface, a near hemispherical dichotomy (Fig. 1-1) between the heavily-cratered southern highlands and the relatively smooth northern lowlands [33, 70, 17]. This 3-km difference between the two regions has been proposed to represent evidence of either a giant impact [117, 5] or degree-1 mantle convection causing preferential heating and crustal thinning of one hemisphere [119, 123]. Frey et al. [27] constrained the relative timing of formation of the dichotomy by generating cumulative frequency curves for the partially-buried impact craters or Quasi-Circular Depressions (QCDs) of the northern lowlands. The authors conclude that the size-frequency distribution of the QCDs implies that the basement crust beneath the fill material is as at least as old as the southern highlands, and therefore the dichotomy, which must predate the basement crust, is a primordial feature dating from Mars’ early Noachian epoch (4.1 – 3.7 Gyr).

Mariner 9 and the Viking Orbiters also revealed extensive volcanism [60], gradational and fretted terrain boundaries [76], tectonic ridges [18, 112] and seemingly water-worn outflow channels [17, 6], which changed the previous perception of Mars.
as a dry, cold and sterile planet. Parker et al. [76] proposed that the gradational and fretted terrain boundaries are indicative of ancient shorelines and that the northern lowlands may have contained a global ocean early in Mars’ history. But, with only surface images as a source of information, the mode, timing and long-term cycling of water on Mars could not be determined.

The Mars Orbiter Laser Altimeter (MOLA) [126] onboard the Mars Global Surveyor (MGS) spacecraft [4, 3] provided high-resolution topography of the Martian surface (Fig. 1-1) and provided detailed topography, slopes and roughness of the lowland plains [95, 94, 72]. The topographical data revealed the full extent of the many tectonic ridges [37], evidence of the flow of water far from the outflow channels [94] and the previously mentioned Quasi-Circular Depressions [27]. By examining the detailed features observed in the MOLA topography, Head et al. [37] were able to propose the following history of the northern lowlands from the Early Hesperian to the present day (refer to Fig. 1-2 for the estimated period timeline):

1. Early Hesperian-aged volcanic plains form throughout the lowlands

2. Volcanic plains contract and form extensive Tharsis-circumferential and basin related wrinkle ridges

3. Late Hesperian-aged outflow channels near Chryse Planitia deposit water and sediment into the northern lowlands

4. Loss of outflow channel water leads to residual sediments deposited on top of ridged plains (Vastitas Borealis Formation)

5. Amazonian volcanic plains are deposited

6. Late Amazonian polar and circumpolar deposits form

Our study excludes the polar region, so we are not concerned with step 6 in this sequence. In addition, the extensive denudation of Arabia Terra (Fig. 1-1) and regions along the dichotomy also suggest that sediments substantially contribute to
the resurfacing of the lowlands [41, 23], but the relative proportion of sediments to volcanic material and the total fill volume is still not well constrained.

Using the MOLA topographic data, it is possible to map these QCDs and measure crater diameters that can be used to estimate the original excavation depths of individual QCDs. These fresh crater depths can be extended to map fill depths and to estimate a minimum fill thickness for the northern plains as a whole. The approximated pre-fill surface acts as a layer of basal relief between the fill and the Martian crust. This boundary layer is used in combination with the MOLA topography data, the Mars Reconnaissance Orbiter (MRO) gravity model [49] and a Wiener filter [79, 51] to constrain an average fill density for the northern plains.
Figure 1-1: Map of the global topography of Mars from MOLA [94]. Craters included in study are circled in black. The dashed line represents the dichotomy boundary as mapped by Parker et al. [76]. Areas of interest are labeled.
1.2 Data Sets

To isolate the gravity anomaly associated with the fill material and estimate fill density, it is necessary to incorporate several data sets and make assumptions about Mars' internal structure. Here we combine the MOLA topography [95, 94], the MRO gravity model mro110b2 [49], and Martian meteorite studies.

1.2.1 Topography

The Mars Orbital Laser Altimeter (MOLA) was one of five instruments onboard the Mars Global Surveyor (MGS) spacecraft. The instrument collected over 671 million valid measures of the two-way range from MGS to the Martian surface. MOLA sampled the elevation every 300 meters along the spacecraft groundtrack with a surface laser spot size of 168 meters [95, 94, 127]. Along-track orbit errors were smaller than the size of the laser footprint; radial orbit errors were reduced by minimizing the altimetric crossover residuals so the accuracy is typically better than 1 m radially [72]. A spherical harmonic expansion of topography referenced to the geoid has been determined to degree and order 1152 [94]. Since we are limited by the resolution of the gravity field, we truncate the topographic field to degree and order 90.
1.2.2 Gravity Model

In 2006, the Mars Reconnaissance Orbiter (MRO) mission [128] began collecting data for the radio science gravity investigation and Radiometric Doppler data were used to determine the MRO orbit. To determine precise orbits, it is necessary to model the non-conservative forces that act on the spacecraft. The three forces with the largest impact on orbit determination are atmospheric drag, solar radiation pressure and angular momentum desaturations of the spacecraft’s momentum wheels (AMDs) [49]. A surface albedo model is also included along with corrections for Mars’ solid tide, factors that affect the DSN ground station positions, radio signal propagation through the troposphere and third-body perturbations from the sun, moon, all planets in the solar system, and the Martian moons. The GEODYN/SOLVE programs [78, 77] and DPODP program [68] are used respectively at NASA/GSFC and the Jet Propulsion Laboratory. Both programs use a Bayesian least-squares approach to determine the convergence of the spacecraft orbit segments [125]. Once precise orbits are determined, the gravity field can be computed.

Due to the lower altitude of the MRO spacecraft, 255-km periapse as opposed to the ~400 km altitude of MGS and Mars Odyssey, it was possible to determine higher-resolution gravity field models such as mro110b2 [49]. In this study we use gravity model mro110b2, which has been determined to degree and order 110, and because the sampling of gravity is non-uniform, we expand to degree 90 as recommended by Konopliv et al. [49].

1.2.3 Crustal Density Estimate

Sources of information concerning the densities of the Martian crust and mantle include orbital spectra [69], in situ spectral and chemical observations from the Viking and Pathfinder landers [63], and geochemical analyses of SNC (shergottite, nakhlite and chassigny) meteorites, which represent samples from the Martian surface [12, 42]. McGovern et al. [61] found that for much of the Martian surface, a crustal density value of 2900 kg m\(^{-3}\) best fit localized admittances, and this value of density that has
been adopted in several studies [127, 75, 116]. We utilize this crustal density value as well.

1.3 Methodology

1.3.1 Estimating Fill Thickness

We use the MOLA topography map (Fig. 1-1; [95, 94, 72]) to identify the location and diameter of 208 QCDs whose rims have been preserved. Garvin performed a study on the global scaling relationships for approximately 2000 non-degraded craters on Mars adequately resolved by MOLA and determined the following relations:

Simple craters: \(d = 0.25D^{0.65} (D < 7\text{km}) \) \hspace{1cm} (1.1)

Complex Craters: \(d = 0.33D^{0.53} (7 < D < 70\text{km}) \) \hspace{1cm} (1.2)

Basins: \(d = 3.5D^{0.017} (D > 70\text{km}) \) \hspace{1cm} (1.3)

where \(D \) is the rim crest diameter (in km) and \(d \) is the fresh crater depth from rim crest to floor (in km). Since our study excludes craters with a diameter under 20 km, only the equations for complex craters and basins were used to determine fresh crater depths. These relations do not apply to massive impact basins such as Utopia Planitia (Fig. 1-1), so we use the deepest portion of Hellas Planitia in the southern highlands to act as a proxy for the original excavation depth of Utopia Planitia. Based on the fresh crater depths, we linearly interpolate a prefill surface to estimate fill thickness throughout the northern plains region and treat this surface as a layer of basal relief.
1.3.2 Isolating the Gravity Anomaly Associated with the Fill Material

In order to utilize gravity and topography to map the northern plains fill, it is necessary to remove the gravitational signature of the underlying terrain. To do that we create a Wiener filter [79]. The filter is constructed by analyzing the residual gravity anomalies outside of the area of interest, the northern lowlands, which are likely to be from the crust or mantle. By characterizing the spectral nature of this outside region, we can filter out the residual gravity signature from the crust and mantle beneath the fill material in the northern lowlands and isolate the gravity anomaly associated with the fill material. A similar approach was used to map density anomalies in Mars' south polar layered terrain [51]. The outside region on Mars needs to have similar crustal properties as the basement crust under the northern plains but mostly devoid of fill material. The region that best fits this description is Arabia Terra (Fig. 1-1), which is along the dichotomy and has a crustal thickness between that of the northern lowlands and the southern highlands. Arabia Terra also has a comparable crater distribution as the QCDs of the northern lowlands [27].

This approach is based on two assumptions: (1) the gravitational anomalies of the fill material are spectrally different from those associated with the crust and mantle; and (2) the crust and mantle heterogeneities are generally similar in both Arabia Terra and in the northern lowlands. The optimal Wiener filter is found by minimizing the following term:

\[
< |g_s(x, y) - g(x, y)h(x, y)|^2 >
\]

where \(g_s \) is the desired anomaly from the region in Arabia Terra, \(g \) is the gravity observed in the northern lowlands, a combination of anomalies from crust and mantle heterogeneities as well as the fill material, and \(h \) is the optimum Wiener filter. The asterisk represents the spatial convolution. The optimal filter can be written in the wave number domain as:
\[
H(u, v) = \frac{\langle G_s(u, v)G^*(u, v) \rangle}{\langle G(u, v)G^*(u, v) \rangle}
\]

where the terms represent the Fourier transform of their lower case counter-part and here the asterisks indicate the complex conjugate of \(G \). If we also assume that the gravity signal and noise are stationary and ergodic, the filter can be simplified to:

\[
H(u, v) \approx \frac{|G_s(u, v)|^2}{|G(u, v)|^2}
\]

We test the success of the Wiener filter to recover the original signal by manufacturing a signal and adding red noise with values up to 40% of the original signal's strength. Using only the noisy signal (Fig. 1-3b) and the two signals combined (Fig. 1-3c), we are able to create the optimum Wiener filter and remove a majority of the surrounding noisy signal. We are able to recover a signal with a pattern and magnitudes that are similar to the original signal (Fig. 1-3d).

Figure 1-3: Demonstration of the application of the Wiener filter a. Manufactured original signal b. Randomly-generated red noise that acts as our surrounding signal (gs) c. The addition of a. and b. which acts as our observed signal (g) d. Recovered signal after applying the optimum Wiener filter, adequately recovering the original signal.

1.3.3 Solving for Average Fill Densities

With the estimated fill thickness and isolated gravity anomalies, it is possible to constrain the average fill density. For such a large region it is best to perform the gravity analysis in the spherical harmonic domain, since the Cartesian domain would result in large errors due to the curvature of Mars. With the estimation of basal relief and the
MRO gravity model, we can use potential theory equations [115, 43] to determine the density contrast required to produce the observed potential anomalies in the northern lowlands. Utilizing the orthogonal properties of the spherical harmonic functions in combination with Newton’s law of gravitation yields:

\[U(r, \theta, \phi) = \frac{GM}{r} \sum_{ilm} \left(\frac{D}{r} \right)^l C_{ilm}^+ Y_{ilm}(\theta, \phi) \]

where \(U \) is the gravitational potential, \(G \) is the universal gravitational constant, \(M \) is the mass of Mars, \(D \) is the interface depth, \(l \) and \(m \) are the degree and order of the field, and \(Y_{ilm} \) and are the spherical harmonic functions and coefficients. For all \(r = R_B + \max(B) \), the spherical harmonic coefficients can be expressed as follows:

\[C_{ilm}^+ = \frac{4\pi \Delta \rho D^3}{M(2l + 1)} \sum_{n=1}^{l+3} \frac{n h_{ilm} \prod_{j=1}^{n} (l + 4 - j)}{D^n n!} \]

where \(\Delta \rho \) is density contrast between the two layers of the interface and \(h_{ilm} \) are the spherical harmonic coefficients of topography. The height of the geoid (\(N \)) at the surface can be determined using Brun’s equation, which is a first-order Taylor series approximation over the radial coordinate \(r \):

\[U(\Omega, r + \delta r) = U(\Omega, r) + \frac{\partial U(\Omega, r)}{\partial r} N(\Omega) \]

The radial derivative of gravitational potential is the surface gravitational acceleration (\(g_r \)) which we assume is constant over the surface. We introduce a generic interface relief \(B(\Omega) \) with density contrast \(\Delta \rho_B \) at depth \(D_B \) to address the effect of the basal relief interface between the fill and the crust of the northern lowlands. By combining the Equations 1.6 and 1.7 with Brun’s equation (Equation 1.8), the coefficients of the gravitational equipotential surface for can be expressed as a function of radius:

\[N_{ilm}^B(r) = \frac{\delta U_{ilm}^B(r)}{g_r} = \frac{4\pi GR_B^2}{g_r(2l + 1)} \left(\frac{R_B}{r} \right)^{l+1} \sum_{n=1}^{l+3} \frac{n B_{ilm} \Delta \rho_B \prod_{j=1}^{n} (l + 4 - j)}{R_B^n n!} \]

18
where R is the planetary radius and $R_B = R - D_B$. The magnitude of each higher-order summation term falls off rapidly as n increases. When the depth of the interface relief is small, the summation terms for $n > 1$ are negligible and the geoid contribution for $R \geq R_B$ can be expressed as follows:

$$\text{linear} \delta N^B_{lm} = \left[\frac{4\pi R^3}{M(2l + 2)} \left(\frac{R_B}{R} \right)^{l+2} \right] \Delta \rho B_{lm}$$

(1.10)

In this study we assume $n > 1$ are negligible and use equation 1.10 to solve for the density contrast $\Delta \rho_B$ that best fits the estimated depth of the basal relief interface. We solve Equation 1.10 using a forward modeling approach over a wide range of $\Delta \rho_B$ values with an interval of 10 kg m$^{-3}$.

1.4 Results and Discussion

1.4.1 Minimum Fill Volume

While hundreds of QCD’s are visible in the MOLA topography, we appreciate that there is a significant population that has been completely buried and show no signs on the surface today. This is why we assume our thickness values to be a minimum fill thickness. The minimum fill thickness values (Fig. 1-4) were estimated by interpolating fresh crater depth values for QCDs in the northern lowlands. The minimum fill volume was estimated by integrating between the following two layers in the polar projection: the MOLA topography and the layer of basal relief estimated in this study. The average fill thickness in the northern plains is approximately 2 kilometers. We calculated a minimum fill volume of $8.3 \pm 3.0 \times 10^7$ km3, excluding Elysium Rise and the polar region. Johnson et al. [45] observe the extent of circumpolar deposits to be $70\pm$ degrees; we conservatively exclude the region above 60° N. If we were to assume an average fill thickness of 2 km for the polar region above 60° N, that would add $\sim 2 \times 10^7$ km3 to the minimum fill volume estimate. For reference, 8.3×10^7 km3, spread over the surface of Mars, would bury the entire planet ~ 0.4 km. The error bars here are based on the standard deviation associated with the fresh excavation
depths of the Garvin study mentioned in section (1.3.1).

Previous studies have made estimates of the volume of sediments and volcanic material deposited in the northern lowlands. Hynek and Phillips [41] examined inliers in Arabia Terra and by assuming that they are representative of the original surface elevation were able to estimate that 4.5×10^6 km3 of material has been deposited into the northern lowlands. Evans et al. [23] used gravity, topography and a flexural model to examine the same region and concluded that the maximum volume that could have been eroded from Arabia Terra is 3×10^7 km3. Based on the volume of large outflow channels and other fluvial features near Chryse Planitia, Carr et al. [16] estimated that 4.2×10^6 km3 of material had been deposited from that region. Head et al. [37] used flood models and geological indicators such as wrinkle ridges to estimate the volume of Hesperian-aged volcanic flows in the lowlands to be 3.3×10^7 km3. This brings the range fill material volumes to a total of approximately 7×10^7 km3. This rough estimate falls well within our estimated volume range and gives us additional confidence in our volume results.

Figure 1-4: Minimum fill thickness map in kilometers. Estimates are derived by interpolating a pre-fill surface from the fresh crater depths and subtracting this layer from the topography. The fresh depth of Utopia Planitia is scaled from Hellas Planitia, a basin of comparable size in the southern highlands. The Elysium volcanic rise and the polar region north of 60° latitude have been removed from the area of interest. The fill thickness values overlay the grayscale image of the topography data [72].
1.4.2 Wiener Filter Results

To isolate the gravity anomaly associated with the fill material, we must remove the anomaly associated with crust and mantle variations and heterogeneities. One way of doing this is to construct a Wiener filter using the gravity signature of a region with similar crustal and mantle variations. Arabia Terra is a region along the dichotomy that is mostly devoid of fill material and has an elevation closer to the northern lowlands than the southern highlands. It arguably provides the best approximation of what the crustal variations and underlying mantle look like beneath the fill material. Fig. 1-5(a-b) is a close up of the Arabia Terra topography and Bouguer anomaly with degrees 1-12 removed, which partially filters out the long-wavelength gravity signature that is likely to come from greater depths. We use a region within Arabia Terra to construct a Wiener filter for the northern lowlands, and the residual gravity anomaly associated with the fill material is mapped in Fig. 1.5c.

1.4.3 Maximum Density Values

With estimates of the thickness and the gravity anomaly of the fill, we use equation 11 to solve for the density contrast of the material and the crust. If we assume the average crustal density to be 2900 kg m\(^{-3}\), the resulting fill density values can be seen in Figure 1-6. Since our fill thickness estimate is a minimum, our density values are considered a maximum as a thicker layer of material would require a lower density contrast to produce the same gravity signature.

Density values can give insight into the relative proportion of sedimentary to volcanic material. It is difficult to discuss values in absolutes without specific density values of sediments and volcanic material on Mars' surface. While we do have the SNC meteorites to give some indication of density values, the specific surface locations of those samples are unknown. Instead we observe overall trends in density values and compare the results to the mapped geology of the region (Fig. 1-7). The values range from approximately 2500 - 3100 kg m\(^{-3}\). From the SNC meteorites we expect pore-free basalt density values to be as high as 3220 - 3390 kg m\(^{-3}\) or 3040 - 3220
Figure 1-5: a. Arabia Terra MOLA Topography b. Arabia Terra Bouguer anomaly with degrees 1-12 removed c. Northern lowlands Bouguer gravity anomaly with degrees 1-12 removed [49]. d. Northern lowlands residual gravity anomaly after applying the optimum Wiener filter. Both c. and d. overlay the grayscale image of MOLA topography [72]
kg m\(^{-3}\) if we assume 5% porosity [73], which agrees well with our maximum values.

Our first observation is that regions near the dichotomy, on average, have a lower density than regions further north. Arabia Terra and fluvial channels along the dichotomy have deposited sediments along the dichotomy, explaining the lower average density. As we might expect, Chryse Planitia (Fig. 1-1; the flood plain unit [Hchp] in Fig. 1-7) near the large outflow channels, has a lower density and thus a higher sediment volume than regions further north where we begin to see the effects of the Arcadian volcanic flows [Aa1]. Also note the higher density values of the region directly north of Alba Patera (Fig. 1-1). If we look at the geologic map in Fig. 1-7, we can see that the majority of this area is classified as the lower member flow of the Alba Patera Volcanic Formation [Hal]. These density values are consistent with volcanic flows. Another area of interest is Utopia Planitia (Fig. 1-1), which we have estimated to have a fill thickness of over 6 km. The geologic map has designated the majority of the region as a combination of Vastitas Borealis Formation [Hvg] and Elysium Formation [Ael3]. The Hesperian-aged Vastitas Borealis Formation is interpreted as a combination of degraded lava flows and sediment [37] and the Elysium Formation member as a volcanic flow unit. Our maximum density results for this region range between 2800 – 2900 kg m\(^{-3}\), which agrees with the suggestion that sediments have significantly contributed to the burial of the Utopia basin [124].
Figure 1-6: Average fill density map in kg m\(^{-3}\). Measurements are taken at a spacing of 2 degrees in the latitudinal and longitudinal directions. The density results overlay the grayscale image of the topography data [72].
Figure 1-7: Geologic map of Mars' northern lowlands [93] used to compare the results of our density study overlaying the grayscale image of the topography data [72].
<table>
<thead>
<tr>
<th>Unit Symbol</th>
<th>Unit Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa1</td>
<td>Arcadia Formation, member 1</td>
</tr>
<tr>
<td>Aa2</td>
<td>Arcadia Formation, member 2</td>
</tr>
<tr>
<td>Aa3</td>
<td>Arcadia Formation, member 3</td>
</tr>
<tr>
<td>Aa4</td>
<td>Arcadia Formation, member 4</td>
</tr>
<tr>
<td>Aa5</td>
<td>Arcadia Formation, member 5</td>
</tr>
<tr>
<td>Ach</td>
<td>younger channel material</td>
</tr>
<tr>
<td>Achp</td>
<td>younger flood-plain material</td>
</tr>
<tr>
<td>Achu</td>
<td>younger channel system material, undivided</td>
</tr>
<tr>
<td>Ae</td>
<td>eolian deposits</td>
</tr>
<tr>
<td>Ael1</td>
<td>Elysium Formation, member 1</td>
</tr>
<tr>
<td>Ael2</td>
<td>Elysium Formation, member 2</td>
</tr>
<tr>
<td>Ael3</td>
<td>Elysium Formation, member 3</td>
</tr>
<tr>
<td>Ael4</td>
<td>Elysium Formation, member 4</td>
</tr>
<tr>
<td>AHa</td>
<td>Apollinaris Patera Formation</td>
</tr>
<tr>
<td>AHat</td>
<td>Albor Tholus Formation</td>
</tr>
<tr>
<td>AHpe</td>
<td>etched plains material</td>
</tr>
<tr>
<td>AHt3</td>
<td>Tharsis Montes Formation, member 3</td>
</tr>
<tr>
<td>Aml</td>
<td>Medusae Fossae Formation, lower member</td>
</tr>
<tr>
<td>Amm</td>
<td>Medusae Fossae Formation, middle member</td>
</tr>
<tr>
<td>Amu</td>
<td>Medusae Fossae Formation, upper member</td>
</tr>
<tr>
<td>Aoa1</td>
<td>Olympus Mons Formation, aureole member 1</td>
</tr>
<tr>
<td>Aoa2</td>
<td>Olympus Mons Formation, aureole member 2</td>
</tr>
<tr>
<td>Aoa3</td>
<td>Olympus Mons Formation, aureole member 3</td>
</tr>
<tr>
<td>Aoa4</td>
<td>Olympus Mons Formation, aureole member 4</td>
</tr>
<tr>
<td>Aop</td>
<td>Olympus Mons Formation, plains member</td>
</tr>
<tr>
<td>Aos</td>
<td>Olympus Mons Formation, shield member</td>
</tr>
<tr>
<td>Apk</td>
<td>knobby plains material</td>
</tr>
<tr>
<td>Aps</td>
<td>smooth plains material</td>
</tr>
<tr>
<td>As</td>
<td>slide material</td>
</tr>
<tr>
<td>b</td>
<td>tear-drop shaped bar or island</td>
</tr>
<tr>
<td>Unit Symbol</td>
<td>Unit Name</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>cb</td>
<td>impact crater material, partly buried</td>
</tr>
<tr>
<td>cs</td>
<td>impact crater material, superposed</td>
</tr>
<tr>
<td>Hal</td>
<td>Alba Patera Formation, lower member</td>
</tr>
<tr>
<td>Hch</td>
<td>older channel material</td>
</tr>
<tr>
<td>Hchp</td>
<td>older flood-plain material</td>
</tr>
<tr>
<td>Hcht</td>
<td>older chaotic material</td>
</tr>
<tr>
<td>Hf</td>
<td>younger fractured material</td>
</tr>
<tr>
<td>Hhet</td>
<td>Hecates Tholus Formation</td>
</tr>
<tr>
<td>HNu</td>
<td>undivided material</td>
</tr>
<tr>
<td>Hpl3</td>
<td>plateau sequence, smooth unit</td>
</tr>
<tr>
<td>Hr</td>
<td>ridged plains material</td>
</tr>
<tr>
<td>Hs</td>
<td>Syrtis Major Formation</td>
</tr>
<tr>
<td>Htl1</td>
<td>Tempe Terra Formation, lower member</td>
</tr>
<tr>
<td>Htm</td>
<td>Tempe Terra Formation, middle member</td>
</tr>
<tr>
<td>Htu</td>
<td>Tempe Terra Formation, upper member</td>
</tr>
<tr>
<td>Hvg</td>
<td>Vastitas Borealis Formation, grooved member</td>
</tr>
<tr>
<td>Hvk</td>
<td>Vastitas Borealis Formation, knobby member</td>
</tr>
<tr>
<td>Hvm</td>
<td>Vastitas Borealis Formation, mottled member</td>
</tr>
<tr>
<td>Hvr</td>
<td>Vastitas Borealis Formation, ridged member</td>
</tr>
<tr>
<td>Nb</td>
<td>highly-deformed terrain materials, basement complex</td>
</tr>
<tr>
<td>Nf</td>
<td>highly-deformed terrain materials, older fractured material</td>
</tr>
<tr>
<td>Nm</td>
<td>mountainous material</td>
</tr>
<tr>
<td>Npl1</td>
<td>plateau sequence, cratered unit</td>
</tr>
<tr>
<td>Npl2</td>
<td>plateau sequence, subdued cratered unit</td>
</tr>
<tr>
<td>Npld</td>
<td>plateau sequence, dissected unit</td>
</tr>
<tr>
<td>Nple</td>
<td>plateau sequence, etched unit</td>
</tr>
<tr>
<td>Nplh</td>
<td>plateau sequence, hilly unit</td>
</tr>
<tr>
<td>Nplr</td>
<td>plateau sequence, ridged unit</td>
</tr>
<tr>
<td>s</td>
<td>impact crater material, smooth floor</td>
</tr>
<tr>
<td>v</td>
<td>volcano, relative age unknown</td>
</tr>
</tbody>
</table>
1.4.4 Sensitivity to Fill Thickness and Crustal Density Estimates

We test the sensitivity of our results to the fill thickness parameter. Using the same conditions that we used to constrain our volume estimate, we run our model at the fill thicknesses that are 0.43 km thicker and thinner than our estimate. This value comes from the standard deviation associated with complex craters in the Garvin study mentioned in section 1.3.1, which provide the most variability in fresh excavation depths. We find that changing our thickness values results in a maximum of ±70 kg m\(^{-3}\) change in our maximum density values. This leads us to conclude that our results are fairly insensitive to the range of depths we are examining and that the overall trend in density distribution, which is the focus of our study, remains consistent.

We also consider the effects of changes in the crustal density values. As mentioned in section 1.2.3, a crustal density of 2900 kg m\(^{-3}\) has been used in multiple studies. A more conservative range of values would be 2700 – 3100 kg m\(^{-3}\) [116]. Since the parameter that we test in equation 1.10 is the density contrast between the crust and fill, \(\Delta \rho_B\), varying the crustal density value would alter the results by the same amount. The linear relationship between crustal density and fill density would make it difficult to constrain a total sediment volume, which is why our observations are based on overall trends which are not affected.

1.5 Conclusions

We use MOLA topography data and the Quasi-Circular Depressions of the northern lowlands to estimate a minimum fill thickness for the region as a whole. With the use of a Wiener filter and the mro110b2 gravity model, we are able to isolate the residual gravity associated with the fill and calculate the maximum fill density of the northern plains. We see that regions near the dichotomy have a lower average fill density, which is consistent with more sedimentation in those areas. Regions further north and specifically near the Alba Patera volcanic region have a higher density value as is
expected by regions near large volcanic flows and further from outflow channels and regions like Arabia Terra that show evidence of extreme erosion. These results are consistent with the sequence of northern lowlands history that was proposed by Head et al. [37].
Chapter 2

Estimates of Fluvial Erosion on Titan from Sinuosity of Lake Shorelines

2.1 Introduction

Images from the Descent Imager/Spectral Radiometer (DISR) on the Huygens Probe and the Synthetic Aperture Radar (SAR) instrument on the Cassini spacecraft have revealed extensive fluvial networks in many regions on Titan [104, 97, 57, 14, 15, 50, 1], some of which drain into lakes near the north and south poles [66, 101]. Titan appears to be the only body in the Solar System other than Earth where rivers have recently flowed on the surface. Unlike Earth, however, Titan has rivers of liquid methane and ethane incising into a surface of water ice and organic sediments [32], and river valleys near the poles feed into lakes of methane, ethane and other hydrocarbons [101]. No river channels have been observed directly on Titan due to the coarse image resolution, but the observed landforms are interpreted to be fluvial valleys based on their morphology and context, which are similar to features on Earth that were formed mechanically by surface runoff [84, 1, 15]. In addition, methane comprises several percent of Titan’s atmosphere, and the surface conditions allow methane to
exist as a gas or a liquid [74]. All of this suggests that Titan has a methane cycle that is analogous to Earth's water cycle.

This high concentration of atmospheric methane presents a puzzle, because methane undergoes photochemical breakdown that limits its atmospheric lifetime to 10-100 Myr [74]. To sustain the observed methane concentration over billions of years, there must be a source of replenishment [122]. It is possible that a transfer of subsurface material to the surface and atmosphere could be responsible for the methane replenishment [58, 52].

However, the geological processes operating on Titan remain an outstanding problem, in part because of questions regarding the history of Titan's surface. Cassini observations have revealed only a few scattered impact craters, which indicate a relatively young surface that is estimated to be between a few hundred Myr and 1 Gyr old [56, 120, 71]. Several plausible resurfacing mechanisms could potentially help to explain this young surface, including cryovolcanism [99, 54, 52], tectonic deformation [88], organic aerosol deposition [62], dune migration and aeolian deposition [87], and widespread erosional denudation [11]. Determining which of these processes are significant is essential to understanding Titan's geologic history, and thus Titan's interior processes and hydrocarbon cycle.

The purpose of this paper is to assess the extent of resurfacing by fluvial erosion on Titan, particularly in the vicinity of the polar lakes. On Earth, rates and amounts of fluvial erosion can be estimated by a combination of three-dimensional topographic measurements, field observations, and geochronologic techniques that require field sampling [9, 11, 25]. On Titan, we are currently unable to directly measure rates or amounts of landscape change. The Cassini-Huygens mission was not designed to perform widespread topographic mapping, but a limited set of topographic measurements has been obtained from a combination of radar altimetry [22], stereogrammetry of overlapping SAR swaths [47, 46], and a technique known as SARTopo that uses the overlapping returns of the radar instruments multiple beams [100]. However, these basic digital elevation models (DEMs) are rare, covering a small fraction of Titan's surface. Although the acquisition of such data is an impressive
technical feat [88, 97, 100], the resolution, precision and coverage are generally not sufficient for measurements of the width, depth, or cross-sectional form of individual fluvial valleys or of the surrounding hillslopes. Moreover, precise measurements of the present topography would be insufficient to measure cumulative erosion without additional constraints on the initial topography. Thus, it is not clear whether Titan’s landscape is the result of steady, protracted, and significant exhumation of its crust (over perhaps billions of years), or only minimal, recent fluvial incision and hillslope adjustment.

In the absence of adequate knowledge of the initial and present topography of the fluvially dissected landscape, alternative approaches must be employed to estimate how much erosion has occurred. Black et al. [11] developed a procedure for estimating the spatially averaged cumulative erosion of a surface, as a fraction of the initial topographic relief, by measuring the map-view geometry of drainage networks. They studied fluvial networks in SAR images covering two north polar areas, one equatorial area, and one south polar area. Drainage networks in all four areas are consistent with minimum erosion of 0.4% of initial relief. Two of the regions yielded estimates of maximum erosion (9% for one of the north polar areas and 16% for the south polar area), but these upper bounds were less certain than the lower bounds, and the remaining two sites did not yield well-defined upper bounds. The study by Black et al. [11] implies that some areas of Titan’s surface have experienced relatively little erosion since the most recent resurfacing event, but it is not clear how extensive these areas are. To address some of these questions and extend our understanding of fluvial processes on Titan, we seek to obtain additional estimates of regional erosion using independent techniques. Despite the lack of topographic datasets that resolve individual fluvial valleys, there are some surface features on Titan that delineate fluvial topography and are visible in images. The polar lakes provide a two-dimensional imprint of Titan’s three-dimensional fluvial topography at a level of detail that is otherwise inaccessible with current data. SAR images reveal elevated levels of hydrocarbon liquids in some of the polar lakes, which have partly flooded fluvial valleys around the lake margins, similar to ria shorelines on Earth [101, 111]. If each lake level
is a surface of constant gravitational potential, the imaged shoreline is an elevation contour with a shape that reflects the dissection of the surrounding landscape.

Geomorphological studies on Earth (and even on Mars) typically make use of abundant topographic data, so there is no established procedure for estimating erosion from a single elevation contour. In this chapter, we describe such a procedure and use it to obtain estimates of cumulative erosion in the vicinity of Titan's polar lakes. In section 2.2, we provide an overview of current knowledge about Titan's polar lakes and the associated fluvial features. In section 2.3, we use a simple numerical landscape evolution model to calibrate a relationship between the sinuosity of an elevation contour surrounding a topographic depression and the average amount of cumulative fluvial erosion of the surrounding landscape. We test this relationship in section 2.4 by applying it to a terrestrial landscape, a partly dissected plateau where cumulative erosion and contour sinuosity can both be measured, and confirm that contour sinuosity provides useful estimates of erosion. In section 2.5, we map the shorelines around several polar lakes on Titan, measure the sinuosity of these shorelines, and use the model-derived relationship to estimate the cumulative fluvial erosion around the margins of Titan's polar lakes.

2.2 Titan's polar lakes

While Titan's current conditions allow for liquid methane anywhere on its surface, only the highest latitudes have relative humidity levels at which bodies of liquid methane are expected to persist without evaporating [101]. Stofan et al. [101] reported the first hydrocarbon lakes observed by Cassini RADAR, and as of this writing, with 55.4% of Titan's surface imaged by SAR, 655 lake features from $< 10\text{km}^2$ to $> 100,000\text{km}^2$ have been identified, all of which are poleward of 55° latitude, with most at high northern latitudes [1]. The formation processes of the original lake depressions are still unknown, but possible mechanisms include impact cratering [101], cryovolcanic caldera collapse [53], karst-like dissolution [54, 64], or tectonic opening of structural basins [110]. Alternatively, hydrocarbon liquids may have simply filled
local depressions on a rough surface. Three types of lake shorelines are observed [101, 35]. Lakes of the first type have sharply defined, rounded shorelines with no associated channel networks visible. These may be fed only by subsurface flow of hydrocarbons, though it is impossible to rule out the possibility that surface drainage networks are present, given the currently available image resolution [15]. Lakes of the second type have more distinctly polygonal shapes with rough shoreline geometries and appear to be fed by fluvial networks. Lakes of the third type are similar to the second type, in that they are clearly associated with fluvial networks, but portions of the lake margins where fluvial features terminate have a branching shape that suggests that rising lake levels have flooded river valleys that eroded when lake levels were lower [101, 35, 110, 1, 111]. This third class of lakes is the focus of our study.

A pronounced hemispherical asymmetry has been observed between the northern
polar region, where roughly 10% of the imaged surface area is covered by lakes [1], and southern polar region, which is largely devoid of lakes [2]. Aharonson et al. [2] suggest that this observation can be explained by a combination of Titan’s 29.5-year seasonal cycle and an asymmetry in the seasons due to Saturn’s axial obliquity and orbital eccentricity, somewhat similar to the effects of Earth’s Milankovitch cycles on Pleistocene glaciations. Currently, lake levels in the northern polar region appear to be rising, while observations of Ontario Lacus suggest that lake levels in the southern polar region are falling [7, 67, 110, 36, 109]. Since Cassini’s arrival in 2004, Titan has progressed from southern summer to early southern autumn and from northern winter to early northern spring [108]. Continued study may reveal whether, and by how much, lake levels vary over seasonal time scales [58], providing insight into Titan’s methane cycle.

Several previous studies have discussed the morphology of Titan’s lake shores and the processes that appear to be shaping them. Wall et al. [110] reported evidence of several processes modifying the margins of Ontario Lacus, including wave-driven erosion and sediment transport, river delta construction, and possibly regional tilting, but concluded that the overall form suggests a drowned coast that includes flooded fluvial valleys. Cornet et al. [21], drawing an analogy to lakes in semi-arid regions on Earth, additionally suggest that the margins of Ontario Lacus could have been modified by dissolution, though the solubility of Titan’s surface materials in hydrocarbons remains uncertain [55]. Sharma and Byrne [91, 92] compared lake shapes on Titan and Earth, as measured by fractal dimension, shoreline development index (the ratio of the shoreline perimeter to the circumference of a circle with the same area), and an elongation factor, in an effort to identify the geological processes that formed Titan’s lakes. Although they determined that certain formation mechanisms do produce statistically distinct shapes on Earth, they found that Titan’s distribution of lake shapes is consistent with multiple formation mechanisms.

Given the evidence that multiple processes may have modified the shorelines of some of Titan’s lakes, we focus our analysis on a small number of large, well resolved lakes with shoreline morphologies that appear to be dominated by flooded river valley.
leys. Before turning to measurements of lake shorelines on Titan, however, we seek a general relationship between the shape of a flooded lake shoreline and the extent of fluvial erosion that occurred along the lake margins prior to the rise in the lake level.

2.3 Landscape Evolution Model

The valley networks that surround Titan's polar lakes have formed by erosion into the icy surface [15] by two general processes: fluvial incision and hillslope erosion [11]. We use a simple model that incorporates these two processes [82, 83, 85], which has previously been applied to Titan [11], to investigate the relationship between erosion of a rough initial surface and the sinuosity of contour lines around the lake margins that define the landscape's base level.

2.3.1 Fluvial Incision

The governing equation for the model is based on the conservation of mass of the erodible substrate, conservation of mass of the fluid that runs off of the surface and flows through the channels, and expressions describing the rate of erosion of the land surface. Some tropical valleys on Titan appear to be broad and multithreaded, suggesting that they have dominantly alluvial river beds surrounded by floodplains that may store significant volumes of sediment [28, 15]. Topographic measurements show that other rivers have steep-sided, narrow-floored valleys inset into the surrounding terrain [104, 97, 44, 47, 46, 1, 15], which suggests that they have incised into the surface and transported the resulting sediment downstream. The characteristics of the polar networks studied here are consistent with the latter category [11, 15], and a previous study of finer-scale fluvial networks near the Huygens landing site found evidence that channel incision occurs through mechanical erosion driven by runoff [84]. We therefore assume that the rate of fluvial incision in the polar regions is limited by the rate at which the channelized flows can detach cohesive material from the channel bed, rather than the rate at which the flows can transport channel bed sediment and any sediment delivered to the channel from surrounding hillslopes. We also assume
that all eroded material is transported downstream and deposited in lakes, rather than aggrading in channels.

Theoretical analyses have demonstrated that, despite considerable differences in materials and physical parameters between Titan and Earth, the mechanisms that drive channel incision and sediment transport on Earth should also be effective on Titan [20, 13]. Following models for detachment-limited fluvial incision on Earth [38, 39, 40, 113] and supporting field observations [26], the rate of channel incision in our model is set to be linearly proportional to the rate of energy expenditure by the flow, or “stream power” [90, 39, 114]:

\[
\frac{\partial z}{\partial t} = -KA^m|\nabla z|
\]

where \(z\) is elevation, \(t\) is time, \(A\) is the drainage area, \(|\nabla z|\) is the magnitude of the topographic gradient (that is, the dimensionless surface slope), and \(K\) is a coefficient that depends on substrate erodibility, precipitation rates, channel cross-sectional geometry, and runoff efficiency. The exponent \(m\) describes how fluid discharge and channel geometry vary downstream, and therefore influences the concavity of longitudinal channel elevation profiles. This simple model of fluvial incision is similar to the approach used to describe river incision into bedrock in numerous other models of landscape evolution [39, 106, 80, 118, 105].

2.3.2 Hillslope Erosion

As channel beds lower, they steepen the adjacent hillslopes, driving erosion of the surrounding landscape. The response of hillslopes to this steepening depends on the nature of the surface material. Possible hillslope configurations include a “bedrock” surface that is mantled with regolith, a surface of exposed bedrock with no regolith cover, or a thick deposit of granular material. Images from the Huygens landing site show abundant, rounded granular material covering the ground surface [104], but it is unknown how thick this granular layer is or whether this is representative of Titan’s surface in other locations. These different hillslope types will respond differently to
channel incision, and could develop distinct topographic profiles. If the hillslopes are mantled with or consist entirely of cohesionless, granular material, slopes should be at the angle of repose or lower. If the hillslopes consist of exposed bedrock or some other material with significant cohesion, then slope angles may be steeper than the
Figure 2-3: Average hillslope profiles extracted from Huygens stereo topography at the locations shown in Fig. 2-2 for (a) Basin 1 and (b) Basin 2. Points are average elevations obtained by binning multiple adjacent hillslope profiles, with error bars denoting the standard error of the mean of each bin. (c) Histogram of individual slope measurements from all profiles. Negative slopes correspond to sections of profiles that slope in a direction opposite to that expected from the overall valley shape.
angle of repose.

In the absence of detailed observations of the hillslopes surrounding channel networks on Titan, we use the few available hillslope profiles near the Huygens landing site (HLS) to constrain the hillslope response to channel incision. The DISR instrument onboard the Huygens probe returned the highest-resolution images of Titan’s surface (< 20 m/pixel). A 50 m/pixel digital elevation model (DEM) and corresponding 12.5 m/pixel orthophotos covering an area of approximately 3 by 5 km were generated from six overlapping DISR stereo pairs [98] (Fig. 2-2). We identified valley bottoms as linear features that appear dark in the images and ridgelines as intervening topographic highs that lie between valley heads. We then extracted hillslope profiles in the two drainage basins where the mapped valleys correspond to topographic lows in the DEM and where valley side slopes were long enough for several elevation measurements to be taken between a drainage divide and valley bottom. Elevations were interpolated linearly from the four nearest points in the DEM. In order to extract representative hillslope shapes from the noisy DEM data, multiple adjacent profiles within each valley were binned to generate average hillslope profiles Fig. 2-3(a-b). The average profiles Fig. 2-3(a-b) and the distribution of all slope measurements Fig. 2-3c show that slopes are typically about 30° (median 31°, 95% confidence interval 17° to 51°) but vary widely, with several measurements steeper than 60°. Experiments indicate that static friction angles for sand and gravel under Titan gravity can be up to 5° higher than terrestrial values, and dynamic friction angles up to 10° lower [48], suggesting that friction angles for cohesionless material on Titan may lie between 20° and 36°. Although the small number of negative slopes in Fig. 2-3c suggests that there may be significant uncertainties in the DISR elevations, and hence slope estimates, the large number of steep slopes and the truncation of the distribution at approximately 60° are consistent with the hypothesis that many of the hillslopes in the DISR images equal or exceed the friction angles for cohesionless material. This observation suggests that hillslope surfaces near the Huygens landing site consist of either exposed bedrock or sediment at a critical angle, and that hillslope erosion keeps pace with fluvial incision through oversteepening that leads
to hillslope failure [10]. Given these measurements, we incorporate mass wasting as the dominant hillslope erosion mechanism in the model. This is implemented as a simple rule: when slopes surpass a threshold gradient of 0.6, failure occurs and material is eroded (and transported out of the system) until the gradient returns to the threshold value [107, 80]. At the spatial scales of interest (tens of km), neither the specific threshold gradient nor the hillslope erosion law in general has a strong effect on drainage network development [106].

2.3.3 Initial Surface and Simulation Procedure

The initial terrain is a random, autocorrelated surface punctuated by lakes Fig. 2-4a, intended to mimic Titan's polar landscape. It is generated by constructing a synthetic two-dimensional Fourier spectrum with a power-law relationship between Fourier amplitude F and radial frequency f, $F \propto f^{-\beta}$, adding random perturbations to the amplitude and phase, and taking the inverse Fourier transform [81]. The lowest 10% of elevations are designated as lakes, consistent with the approximate areal coverage of lakes in Titan's north polar region [1], and are assigned fixed elevations and treated as fluid and sediment mass sinks. Autocorrelation of the surface is controlled by varying β: a larger β gives a smoother surface with fewer local minima and maxima, while a smaller β creates a rough surface with many local minima and maxima. We use $\beta = 2.0$, which best reproduces the distribution of lakes in the north polar region and is consistent with the power spectral exponent estimated by Sharma and Byrne [91], but we also test the sensitivity of our results to this parameter (see Section 2.5.5).

The model landscape evolves by solving Equation 2.1 forward in time using an explicit finite difference method [82, 83, 85]. Drainage area A is calculated at each iteration with the $D\infty$ algorithm of [103], with local minima forced to "overflow", such that all points eventually drain into a lake. After each iteration, any slopes that exceed the threshold gradient are eroded until their gradients return to the threshold value. All the simulations analyzed in this paper were performed on a 50 x 50 km domain with periodic boundaries and a grid point spacing of 125 m in both the x
Figure 2-4: Shaded relief maps of topographic surfaces at four instants in a representative landscape evolution model simulation. Color indicates relative elevation. Normalized cumulative erosion amounts \(E/H_0 \) are (a) 0, (b) 0.10, (c) 0.20, and (d) 0.50.

and \(y \) directions. Initial relief, the difference between the maximum elevation and the lake level, was approximately 400 m. Each simulation was run for 1 Myr with an adaptive time step that ensured numerical stability and second-order accuracy. This time interval is not intended to match the actual duration of fluvial erosion on Titan, which is unknown, nor is the relief intended to match the actual topography of the polar regions. The initial relief, the run duration, and the magnitudes of \(K \) and \(m \) in equation 2.1 trade off in determining the amount of fluvial erosion that occurs over the course of a run. Neither the duration of fluvial erosion nor the values of \(K \) and \(m \) are known for Titan, so we focus our analysis on the amount of cumulative erosion relative to the initial relief rather than the absolute amount of erosion or the rate
Figure 2-5: Illustration of procedure for measuring shoreline sinuosity. Background image is a coarsened landscape evolution model solution with colors indicating relative elevations. White line is the elevation contour taken 20 m above lake level. Gray line is the contour after smoothing by averaging. Yellow points represent the decimated version of the smoothed contour, which is used as an estimate of the contour shape prior to fluvial incision.

at which it occurs, and simply choose a combination of run duration (1 Myr) and parameters \((K = 5 \times 10^{-6} \text{yr}^{-1}, m = 0.5) \) that produces extensive erosion of the initial topography over the course of a run. We set the value \(m = 0.5 \), which is consistent with typical values inferred from field observations on Earth [96, 86]. In section 2.5.5 we quantify the sensitivity of our results to the value of \(m \) and the statistical properties of the initial surface. As noted in section 2.3.2, the value of the threshold hillslope angle does not substantially influence the fluvial networks generated by the model.
In the early stages of each simulation, small incipient valleys with few tributaries form at the lake margins (Fig. 2-4b). As these valleys incise deeper, they propagate upslope and develop more extensive tributary networks (Fig. 2-4c). Eventually, fluvial valleys fill the entire landscape, and drainage divides that began as broad local maxima are intensely dissected (Fig. 2-4d). As fluvial incision produces a landscape of branching valleys interspersed with sharp ridgelines, elevation contours become progressively more sinuous. In section 2.3.4, we show how increasing contour sinuosity can be used as a proxy for cumulative erosion.

2.3.4 Relating contour sinuosity to cumulative erosion

As noted in section 2.3.3, neither the relief nor the erosion rates are precisely known for Titan’s polar regions, and therefore the model results are not intended to match a specific time interval, erosion rate, or spatial scale. Instead, we seek a general, dimensionless relationship between relative erosion and the shapes of topographic contours around the lake margins.

Several measures of contour shape correlate with the extent of fluvial erosion. In their comparison of lake shapes on Titan and Earth, Sharma and Byrne [92] use the shorelines’ fractal dimension [59] and the shoreline development index, the ratio of a shoreline’s length to the circumference of a circle with the same area. Both of these are useful general measures of lake shape that are influenced by the increase in local curvature as fluvial valleys dissect the lake margins (Fig. 2-4), but both have limitations when used as a proxy for erosion. For example, the shoreline development index is influenced by lake characteristics that are not related to fluvial processes, such as the overall non-circularity of the lake shape. We investigated the influence of fluvial erosion on the fractal dimensions of modeled shorelines and found the changes to be subtle relative to differences associated with initial topography, particularly when coarse spatial resolution makes it difficult to obtain a precise estimate of the spectral slope at short wavelengths. In contrast, we found that a simple measure of contour sinuosity, described below, is a more direct and reliable proxy for fluvial erosion.
Figure 2-6: Calibration curves relating sinuosity to spatially averaged cumulative erosion for different shorelines on Titan. Separate calibration curves are required for different shorelines because SAR image resolution, which varies among shorelines, influences the measured sinuosity. Spatial resolution (the average spacing between mapped points) in kilometers is (a) 0.71, (b) 0.62, (c) 0.48, (d) 0.54. In each panel, the solid curve represents the mean trend and dotted lines represent 95% confidence envelopes. Horizontal solid bars are placed at the measured sinuosity value of each shoreline. Intersections of the horizontal bars with the calibration curves and the dashed envelopes respectively represent the cumulative erosion estimates and the 95% confidence intervals. Confidence limits are estimated by binning the model data, calculating a 95% confidence ellipse for each bin to reflect uncertainty in both sinuosity and erosion, and fitting polynomial curves to the boundaries of the error ellipses.

We ran the landscape evolution model for 20 different initial surfaces to average over the random variability in the resulting final surfaces. The final topographic surfaces were resampled by linear interpolation to the same resolution as the image used to map each contour or shoreline (see sections 2.4 and 2.5). We selected a contour 20
meters above the lake level (5% of the total relief of the landscape) to simulate the flooded landscape of Titan, and calculated the total contour length. The lengths of contours 15 meters and 25 meters above the lake surface differed by approximately 4%, indicating that the results are not very sensitive to the sampled elevation. This contour was then smoothed by averaging the coordinates within a distance increment that is approximately equal to the width of the largest visible fluvial incision features around the lake margin. The smoothed contour is used as an estimate of the background shape of the lake. This smoothed contour is still artificially long because it contains the same number of points as the original unsmoothed contour, so the points are subsampled. We constructed the subsampled contour by retaining every 20th point, which we determined to be the minimum number of anchor points required to represent the shape of the smoothed contour. This procedure is illustrated in 2-5. The ratio of the mapped contour length to the length of the smoothed, downsampled contour is the contour sinuosity, S. This measure of sinuosity has the disadvantage of being resolution-dependent, but we account for this in our procedure, as described below.

The spatially averaged cumulative erosion, E, is calculated by taking the difference between the elevation field at any time during the simulation and the initial elevation field, and averaging over the grid. To obtain a dimensionless measure of erosion, we then divide E by the relief of the initial elevation field, H_0 [11]. We calculated the sinuosity S at 20 instants in each model run, which corresponded to 20 values of E/H_0, to calibrate the relationship between these two quantities. We interpolated the data into 20 evenly spaced bins according to E/H_0, and calculated the mean S and 95% confidence interval within each bin. The means define the calibrated relationship between sinuosity and E/H_0, and the boundaries of the confidence envelope denote the uncertainty in this relationship.

As noted above, a contour sinuosity measurement depends on the resolution of the data used to map the contour. This must be accounted for in our calibration, because the resolution of Cassini SAR images varies, and is not necessarily the same as the grid resolution of our model. We therefore constructed a separate model-derived sinuosity
vs. E/H_0 curve for each Titan lake shoreline Fig. 2-6 by downsampling the model topography to the corresponding SAR resolution. These coarsened model solutions are based on the average spacing of the measured points of each shoreline on Titan. The moderate differences among the curves in Fig. 2-6 illustrate the magnitude of this resolution dependence. In section 2.5.5, we test the sensitivity of the sinuosity-erosion relationship to the fluvial incision parameters and the characteristics of the initial topography.

2.4 Testing the sinuosity-erosion relationship with terrestrial data

To test our procedure for estimating cumulative erosion, we compared our model-calibrated relationship between contour sinuosity and cumulative erosion with a terrestrial landscape where both quantities can be measured. We sought a study site where fluvial incision has produced significant drainage network development, but the initial surface could easily be reconstructed. We selected an area surrounding the Minnesota River in southern Minnesota, USA, which experienced a sudden drop in base level roughly 13 ka when outburst floods from glacial Lake Agassiz caused tens of meters of incision in the Minnesota River valley [19]. This base level drop triggered a wave of incision that propagated up several tributaries, including the Le Sueur, Maple and Blue Earth Rivers, and into the surrounding plateau of glacial till and outwash (Fig. 2-7). Many of the tills are overconsolidated and display mechanical properties more typical of rock than of sediment, such as brittle fracturing and high cohesion [31]. The transiently incising channels show characteristics of detachment-limited fluvial incision, including propagation of a knickpoint roughly 40 km up the tributaries, which has created numerous strath terraces [8, 29, 31]. Gran et al. [31] considered the most appropriate model for describing the long-term incision, and found that a transport-limited model (in which erosion rate depends on the downstream divergence of sediment flux) cannot preserve the slope break associated with
Figure 2-7: Elevation map of the study area adjacent to the Minnesota River Valley (wide blue feature at top of map) in southern Minnesota, USA, based on laser altimetry acquired and processed by the National Center for Airborne Laser Mapping. The major tributaries are the Blue Earth River, Maple River, and Le Sueur River. Boxes indicate areas analyzed to generate the points plotted in Fig. 9. White box represents area shown in Fig. 8.

The nearly horizontal remnants of the plateau surface and the acquisition of a high-resolution laser altimetry map Fig. 2-7 make it possible to measure both the volume eroded by the wave of fluvial incision [30, 8, 29, 31] and the sinuosity of topographic contours through the knickpoint. These observations suggest that the main stage of fluvial incision can be described with the model presented in section 2.3.1.
Figure 2-8: Coarsened DEM of Minnesota River study area outlined with white box in Fig. 7, with colors indicating relative elevation. White line is the elevation contour 20 m above the lowest elevation in the area. Gray points represent the estimated original plateau margin shape reconstructed with the procedure described in Section 2.3.4

the dissected plateau, creating an opportunity to test the model-derived relationship between erosion and sinuosity.

We divided the margin of the plateau into five sections Fig. 2-7 and coarsened the topography in each section using the procedure described in section 2.3.4 to yield the same relative resolution (defined as the average horizontal spacing of elevation points divided by the length scale of the area of interest) as the SAR images of Titan's polar lakes. We used a relative resolution of 0.012, based on the values for the Titan study
sites (see Section 2.5). In each section, we measured the sinuosity of an elevation contour 20 meters above the minimum elevation of the section. These contours trace out the fluvially dissected topography Fig. 2-8. We then approximated the initial plateau surface with a horizontal plane at the highest elevation in each section and estimated the cumulative erosion by measuring the depth of the modern surface beneath this plane. We also made this measurement for the entire area shown in Fig. 2-7. In Figure 2-9, we compare these six paired measurements of contour sinuosity and erosion with the calibration curve generated from the landscape evolution model at the same relative resolution. All but one of the measurements fall within the 95%
confidence intervals, and the measurement for the site as a whole lies very close to
the mean trend. This comparison indicates that contour sinuosity is a useful proxy
for spatially averaged fluvial erosion.

2.5 Application to Titan’s Polar Regions

The general relationship presented in section 2.3.4 provides a framework for estimat-
ing cumulative fluvial erosion in Titan’s north polar landscape based on topographic
contours from fluvially dissected lake margins. Since there are currently no digital
elevation models with sufficient spatial coverage, resolution or precision to make de-
tailed measurements of the fluvially dissected topography around the polar lakes, we
use SAR images to map lake shorelines that trace contours through drowned fluvial
features.

2.5.1 SAR data and study region

The RADAR onboard the Cassini spacecraft operates at a wavelength of 2.17 cm and
collects surface data on each Titan flyby while orbiting Saturn [22]. The RADAR
has four operational modes, of which Synthetic Aperture Radar (SAR) produces
the highest resolution images (300-1500 m/pixel). SAR brightness depends on the
roughness, topographic slope, dielectric constant and subsurface scattering of the
terrain [102, 24]. In general, elevated terrain that is rough at the scale of the RADAR
wavelength or contains surfaces with sub-resolution elements that face toward and
away from the spacecraft appears radar bright, whereas smooth, nearly horizontal lake
surfaces appear radar dark, making SAR images suitable for mapping lake shorelines.
Strip-shaped SAR images, or swaths, taken during flybys have captured partial or
complete shorelines of several large hydrocarbon lakes in the polar regions: Ligeia
Mare, Kraken Mare, and Punga Mare in the north and Ontario Lacus in the south
(Figures 2-10 and 2-11).
2.5.2 Test of shoreline identification criterion

Elevated levels of liquid hydrocarbons appear to have partially flooded valleys around the margins of these four large polar lakes [101, 110, 1]. Assuming that each raised
lake level defines a surface of constant gravitational potential, these elevated shorelines trace out contours through the fluvially dissected topography. We test the assumption that the bright-dark contrast visible in SAR images represents a fluid shoreline by examining altimetry profiles across lakes. One of the other Cassini RADAR modes is altimetry, which cannot operate at the same time as SAR, but one altimetry track does pass over Ontario Lacus and crosses the apparent shoreline at multiple points.
We extracted the two nearest elevation points on either side of the first and last locations where the altimetry profile crosses the shoreline (Fig. 2-11). The two groups of four points have mean elevations and standard deviations of 2574082 ± 1 m and 2574085 ± 4 m, and further analysis of the altimeter signal revealed a smooth surface with an RMS height variation of less than 3 mm across each 100 m coherent resolution cell [121]. These very consistent elevations, combined with the generally level altimetry profile across Ontario Lacus, suggests that the bright-dark border visible in SAR images does represent an elevation contour.

2.5.3 Shoreline mapping and sinuosity calculation

Lake shorelines (Figs. 2-10 and 2-11) were mapped manually in SAR images in a polar stereographic projection by digitizing points along the sharp boundary between light and dark areas. The spacing between adjacent points was typically 500 m, comparable to but slightly larger than the SAR image pixel size, but was wider in areas where the boundary was not as clear. In those areas, we placed shoreline points only where we were confident of the shoreline location, which required wider point spacing. We also compared our mapping with adjacent SAR swaths in which the contact was more sharply resolved, and compared multiple overlapping swaths where they were available. Table 2.1 lists the average resolution at which each shoreline was mapped. In the north polar region, we restricted our analysis to the maria (Fig. 2-10). We mapped a single path around Ligeia Mare and the imaged section of Punga Mare. A closed contour of Kraken Mare has not yet been imaged at the time of this writing, so we mapped the three imaged sections of the main body of the lake (Fig. 2-10) and analyzed these three contour segments separately. The section of Kraken Mare to the east of the section labeled 3 in Fig. 2-10 was not analyzed because its shape appears to be so significantly influenced by fluvial topography that it is difficult to estimate a background shape.

We calculated each shoreline's sinuosity in the same manner as described in section 2.3.4 for the landscape evolution model. Table 2.1 lists the resulting values. The sinuosity is between 2 and 3 for all the northern lakes, whereas Ontario Lacus in the
south is considerably less sinuous, with $S = 1.77$.

2.5.4 Comparison with model-derived erosion proxy

Using the measured sinuosity values S of the Titan shorelines Table 2.1 and the model-generated calibration curves Figure 2-6, we estimated the cumulative fluvial erosion in the areas surrounding the Titan shorelines. In Figure 2-6, we plot a horizontal bar corresponding to each measured Titan shoreline sinuosity. The intersection of each bar with the calibration curve for the corresponding spatial resolution yields an estimate of E/H_0, and the intersection of the bar with the 95% confidence bounds defines the confidence interval for the cumulative erosion estimate. The E/H_0 estimates and 95% confidence intervals are summarized in Table 2.1. In the north, we estimate that fluvial networks around Ligeia Mare, Punga Mare, and section 3 of Kraken Mare have eroded through roughly 30% of the initial relief, with a 95% confidence interval of roughly 20% to < 50%. The shorter sections of Kraken Mare's shoreline yield somewhat smaller estimates of E/H_0: 17% (9% - 33%) for Kraken Mare 1 and 20% (12% - 33%) for Kraken Mare 2. In the south polar region, the less sinuous shoreline of Ontario Lacus implies an E/H_0 of only 4% (0% - 14%). Thus, for the shorelines examined in this study, the best estimate of spatially averaged cumulative erosion falls between 17% and 31% for the north polar region but is only 4% for the one lake analyzed in the south polar region.

<table>
<thead>
<tr>
<th>Shoreline</th>
<th>Sinuosity</th>
<th>E/H_0</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraken 1</td>
<td>2.28</td>
<td>0.17$^{+0.08}_{-0.04}$</td>
<td>0.54</td>
</tr>
<tr>
<td>Kraken 2</td>
<td>2.54</td>
<td>0.20$^{+0.06}_{-0.06}$</td>
<td>0.48</td>
</tr>
<tr>
<td>Kraken 3</td>
<td>2.99</td>
<td>0.31$^{+0.13}_{-0.08}$</td>
<td>0.54</td>
</tr>
<tr>
<td>Ontario</td>
<td>1.77</td>
<td>0.04$^{+0.05}_{-0.04}$</td>
<td>0.48</td>
</tr>
<tr>
<td>Ligeia</td>
<td>2.79</td>
<td>0.31$^{+0.14}_{-0.09}$</td>
<td>0.62</td>
</tr>
<tr>
<td>Punga</td>
<td>2.16</td>
<td>0.30$^{+0.09}_{-0.08}$</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Table 2.1: Sinuosity and cumulative erosion estimates for all shorelines in the study. **The average spacing between mapped points and the value used to coarsen the landscape evolution model output.
2.5.5 Sensitivity to initial conditions and fluvial incision parameters

As noted in section 2.3.3, the β value (the negative slope of the synthetic Fourier spectrum) used to generate the initial topographic surface controls the relative smoothness of the surface, and therefore the distribution of local minima. The distribution of minima in turn determines the size distribution of lakes in the simulation. All the model calculations presented above used $\beta = 2.0$. We tested the sensitivity of our results to initial conditions by constructing sinuosity-erosion calibration curves for $\beta = 1.7$ and 2.5, the extremes of the range of β values that produce a distribution of minima comparable to the size distribution of lakes on Titan. β values below 1.7 produce many small, irregularly shaped topographic minima scattered throughout the landscape, whereas values of β higher than 2.5 produce very smooth terrain with a single large, roughly circular sink, neither of which is consistent with the intermediate-sized, moderately irregularly shaped lakes that cover roughly 10% of the land area in Titan's north polar region [35, 1] (e.g., Figure 2-10). The results of this sensitivity test are presented in Figure 2-12. While the slope of the mean trend and the extent of the 95% confidence envelope do show some sensitivity to β, the mean trend is very consistent for $E/H_0 \approx 0.3$, the value estimated for most of the northern lakes analyzed here. The larger range of sinuosity for small values of E/H_0 implies that our estimate of the magnitude of erosion around Ontario Lacus is somewhat less certain, but either of the extreme values of β imply an E/H_0 of less than about 12%, which is still much smaller than the value for the northern lakes. We therefore conclude that these results (the magnitude of erosion in the north and the different extents of erosion between north and south) are relatively insensitive to the choice of initial topography.

We also tested the sensitivity of our results to the parameter m in Equation 2.1, which describes how fluid discharge and channel geometry vary downstream, and which is the only tunable parameter in the fluvial incision model. For our study we set $m = 0.5$, a typical value for detachment-limited terrestrial channels [96, 114]. We
Figure 2-12: Sensitivity of the sinuosity-erosion calibration curve to β, the negative slope of the synthetic Fourier spectrum used to generate the random initial topography, at the resolution of Kraken Mare 1 and Ontario Lacus. Lines represent mean sinuosities at different values of β. Uncertainties are of comparable magnitude to those in Fig. 2-6.

repeated our analysis with $m = 0.4$ and $m = 0.6$. A larger value of m indicates that flow discharge increases more rapidly with increasing drainage area or that channel width increases less rapidly with increasing discharge. Larger values of m produce more concave river longitudinal profiles. Comparison of the calibration curves and confidence envelopes for the three values of m (Figure 2-12) shows close agreement between $m = 0.4$ and $m = 0.5$, but somewhat higher values of E/H_0 for large contour sinuosity with $m = 0.6$. The mean trends for $E/H_0 < 0.2$, on the other hand, are very similar for all three values of m. The maximum sinuosity we measured is approximately 3 (for Kraken Mare section 3), which corresponds to $E/H_0 \approx 0.3$.
Figure 2-13: Sensitivity of the sinuosity-erosion calibration curve to m, the exponent on drainage area, A, in the fluvial incision term, at the resolution of Kraken Mare 1 and Ontario Lacus. Lines represent mean sinuosities at different values of m. Uncertainties are of comparable magnitude to those in Fig. 2-6.

for $m = 0.4$ and $m = 0.5$, compared with $E/H_0 \approx 0.38$ for $m = 0.6$. We therefore conclude that our results are only moderately sensitive to m. This assumes that m on Titan falls in the typical range of terrestrial values, which is likely if fluvial erosion on Titan is driven by open-channel flow fed by runoff [84, 1, 15].
2.6 Discussion

2.6.1 Comparison with previous erosion estimates

The range of E/H_0 values estimated here for the northern lakes is somewhat larger than a previous estimate for the average fluvial erosion over a larger area in the north polar region. Black et al. [11] used a relationship between fluvial network geometry and cumulative erosion to estimate E/H_0 for two north polar areas. They based their approach on the same landscape evolution model used here, so any differences between their erosion estimates and ours are not due to different assumed erosion laws. Black et al. [11] estimated $0.4% < E/H_0 < 9\%$ for fluvial networks south of Ligeia Mare and $> 0.6\%$ (with no reliable upper bound) for fluvial networks between Ligeia Mare and Kraken Mare. Our measurement approach, which provides a localized estimate of erosion in areas immediately surrounding the lakes, complements the approach of [11], who estimated erosion from planform drainage network shapes covering larger areas in the north polar region. The difference between the two estimates suggests that fluvial dissection in Titan's north polar region is more extensive near the lake margins than in areas farther from the lakes, which is consistent with the interpretation that drainage networks have propagated upslope from the lake margins as fluvial erosion has acted on a rough initial surface. This is the expected sequence for transient, detachment-limited fluvial incision (Fig. 2-4). Our estimate for cumulative erosion around Ontario Lacus is also consistent with a previous estimate of $0.5% < E/H_0 < 16\%$ in a nearby region imaged in the T39 swath [11].

2.6.2 Geographical trends

There is a clear difference between the amounts of estimated erosion around the northern lakes compared with Ontario Lacus in the south polar region (Figure 2-11, Table 2.1). We estimate that rivers in the north have eroded through 17% - 31% of the initial landscape, whereas the estimate for Ontario Lacus is only 4%. This estimate is consistent with the visual impression that the fluvial features near Ontario are less
developed and fewer in number, such that the shoreline appears significantly smoother than the north polar lakes. However, it is also possible that this north-south difference is partly a consequence of less extensive flooding of fluvial topography in the south: Cassini has performed multiple flybys over Ontario Lacus and has observed receding lake levels [7, 67, 110, 36, 109], which raises the possibility that more extensive fluvial dissection exists around the Ontario margin, but is less apparent because the more dissected topography is not currently flooded.

Within the northern polar region, the lakes analyzed here have similar estimated erosional values. Ligeia Mare, Punga Mare and Kraken Mare 3 have E/H_0 values of 31%, 30% and 31% respectively, while Kraken Mare 1 (17%) and Kraken Mare 2 (20%) are somewhat lower. It is not clear if this is an artifact of the analysis on shorter sections of shoreline, or if different parts of the Kraken margin have experienced different amounts of erosion. Even if there are systematic errors in the magnitudes of our erosion estimates, the relative differences in shoreline sinuosity should still provide an estimate of relative fluvial erosion. We therefore expect that the observation of similar overall extents of fluvial erosion around different major lakes in the north polar region is a robust result.

2.6.3 Implications for erosional resurfacing on Titan

Most of the polar fluvial features terminate at lake margins, implying that most of the sediment produced by fluvial erosion is eventually deposited in the lakes. If the lake levels are set by the height of a regional subsurface hydrocarbon reservoir [35, 65], sediment accumulation in the lakes should have a minimal long-term effect on lake levels. If, on the other hand, lake levels are controlled by direct exchange of hydrocarbons between the surface and atmosphere, and if the sediment is insoluble in the liquid that fills the lakes [55], the fluid displacement that occurs when sediment is deposited in the lakes would raise lake levels. The magnitude of the effect depends on the amount of erosion that has occurred and the ratio of the lakes area to its drainage basin area. For example, if the erosion has occurred over a basin about the same size as the lake itself, all eroded sediment was deposited in a steep-sided lake, and the
topography had an initial relief of a few hundred meters, our erosion estimates of $E/H_0 \approx 0.2$ to 0.3 would imply that the lake level has risen approximately 100 m.

Figure 2-14: Landscape evolution model simulation of an eroding surface with three impact craters 50, 100, and 150 km in diameter. Elevation is shown as (a-c) color, with warmer colors representing higher elevations, and (d-f) shaded relief at a resolution of 1500 m/pixel, roughly equivalent to the coarsest Cassini SAR resolution. All panels are 400 x 400 km. Initial elevation range is 400 m. Topography is shown at normalized cumulative erosion values, E/H_0, of (a,d) 0, (b,e) 0.31, and (c,f) 0.60.

If this effect is as significant as we estimate, it provides a possible non-climatic explanation for the apparent rise in lake levels that has flooded fluvial topography in both the north and south polar regions. Estimates of lake volume changes based on observed lake level changes would need to take sediment displacement into account. Thus, fluvial erosion has implications for volatile exchange between Titan’s surface, subsurface and atmosphere that extend beyond signatures of atmospheric precipitation. This progressive rise in lake levels would be superimposed on any fluctuations associated with orbital variability [2].

It is interesting to note that Ontario Lacus, where we estimate the least fluvial erosion has occurred, is observed to be experiencing a drop in lake level, whereas the north polar lakes where more erosion is inferred appear to have experienced more
flooding around the lake margins. One possible interpretation is that more rapid and extensive fluvial erosion and lacustrine sediment deposition in the north polar region have raised lake levels faster than in the south, where slower erosion and sediment displacement have not kept pace with other factors that are slowly draining Ontario Lacus. However, the extent of flooding of lake margins may influence our erosion estimates by producing more sinuous shorelines when lake levels are higher, making it difficult to disentangle cause and effect. Thus, another possible interpretation of the hemispheric difference in shoreline sinuosities is that orbital variations [2] have lowered Ontario’s surface to a level where it inundates a less incised and more alluviated portion of the lake margin, whereas higher levels in north polar lakes have flooded more incised valleys in which little aggradation has occurred.

2.6.4 Implications for polar sediment and volatile budgets

One of our objectives in estimating the cumulative fluvial erosion of Titan’s surface is to determine whether fluvial erosion might have been extensive enough to explain Titan’s young surface age. Determining whether a topographic feature will be obscured by fluvial erosion is not as simple as comparing our spatially averaged estimates of \(E/H_0 \) with the relief of the feature, because erosion is concentrated in valleys and can also vary in the downstream direction. More detailed numerical experiments are therefore required.

As a qualitative indicator of the potential for fluvial resurfacing, we performed a set of additional landscape evolution simulations in which the otherwise random initial surfaces included several impact craters with a range of diameters. We incorporate craters from the surface of Mars, mapped by the Mars Orbiter Laser Altimeter [95, 94, 72], and scale them to the depths of similarly sized craters on Ganymede. Ganymede is a good proxy for fresh craters on Titan because both moons have similar gravity and surface composition, but since Ganymede does not have a thick atmosphere the craters are relatively well preserved [89, 71]. We then examined the degree to which the craters remained visually recognizable after different amounts of cumulative erosion. Our estimates of fluvial resurfacing of these synthetic landscapes should be
considered somewhat conservative: no sediment aggradation occurs in the model, so features such as craters are erased only by eroding them away, not by filling them in.

Figure 2-14 shows the model elevations (Fig. 2-14(a-c)) as well as shaded relief maps based on model topography that has been coarsened to the approximate resolution of SAR images (Fig. 2-14(d-f)), for different stages in a representative simulation. We use shaded relief maps as a rough approximation for the appearance of topography in a SAR image [11, 15], because incidence angle is a major control on SAR backscatter. At $E/H_0 = 0.31$, the largest average amount of cumulative erosion inferred from our study of the polar lakes (Table 2.1), all three craters are still clearly visible even in the coarsened shaded relief (Fig. 2-14e). Only once E/H_0 exceeds approximately 0.60 do smaller craters become difficult to recognize in the coarsened data (Fig. 2-14f). Again, we emphasize that sediment aggradation on crater floors or in other closed depressions could make craters more difficult to recognize than Fig. 2-14 suggests. Nonetheless, the observation that crater rims are far from being obliterated after the amount of erosion we have estimated around Titan’s polar lakes leads us to suggest that fluvial erosion alone may not have been sufficient to create Titan’s geologically young surface, at least in the polar regions studied here.

2.7 Conclusions

We estimated the cumulative fluvial erosion around several lake margins in the polar regions of Titan by comparing the sinuosity of topographic contours defined by flooded landscapes surrounding Titan’s polar lakes to contours produced by a simple landscape evolution model. We find that the north polar lakes in our analysis have eroded through approximately 17% to 31% of the initial relief of the landscape, whereas the single south polar lake in our analysis has eroded through approximately 4% of the initial relief. These estimates complement previous studies of erosion over larger areas in the north polar region, and suggest that the headward propagation of drainage networks has left lake margins more extensively dissected than highlands further away from the lakes. These erosion estimates also provide a basis for assessing
whether fluvial erosion of topographic features such as impact craters could explain the young apparent age of Titan's surface. Synthetic impact craters in landscape evolution simulations are still visible at SAR resolution even after 30% of the initial relief has been eroded, suggesting that, while fluvial erosion has clearly modified Titan's surface, additional erosional and depositional processes may be required to explain the extent of resurfacing on Titan.
Bibliography

