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Abstract 
 

 
Free space optical systems provide an attractive solution to communication needs that require 

inexpensive, easily deployable links capable of high data rate transmissions.  A major challenge of free 

space optical communication is ensuring the integrity and confidentiality of the transmitted information.  

In an optical wireless network with close-in users, communication between two users could interfere with 

another link in the network.  Such systems are also susceptible to eavesdropping, especially inside the 

main lobe of the transmitted beam. 

 

In this thesis, we propose a method of controlling the direction of energy propagation from an optical 

transmitter to maximize the power received by the remote terminal of a link while limiting the power 

received in a broadly defined region within the main lobe of the transmission.  We consider specifically 

an optical transmitter comprised of an array of apertures with controllable amplitudes and phases, and we 

approximate the intended suppression region with a finite number of points.  We assume the total 

transmitted power is held fixed.  Via iterative numerical methods, we solve a nonlinear optimization 

problem for the weight vector that maximizes the intensity at the receiver while limiting the intensity at 

the specified suppression points to below some fraction of the intensity at the receiver. 

 

For a linear aperture array, we show that without overly limiting the power to the intended receiver, it is 

possible to suppress the signal intensity in a 1 beamwidth region located 0.2 beamwidths from the 

intended user down to one tenth of the intensity at the intended receiver.  For a two dimensional array, we 

show that we can similarly suppress a !!!!! beamwidth region as close as 0.2333 beamwidths to the 

intended receiver.  We further show that by increasing the number of suppression points used to 

approximate the suppression region, we can suppress a region much closer to the receiver, but at the cost 

of significantly lowering the intensity at the receiver.  We also observe a tradeoff between the size of the 

suppression region and our ability to limit the signal intensity throughout the entire region.  We show that 

our ability to successfully suppress power to the required region is limited by both our available transmit 

power and our uncertainty of the position of the eavesdropper or network user. 
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Chapter 1 

 

Introduction 
 

Free-space optical communication systems offer several advantages over other 

communication systems.  Without the bandwidth constraints of licensed microwave channels and 

without the need to deploy fiber, free-space optical systems can transmit at high data rates and 

can provide cheap, easily deployable solutions for both short-term and long-term communication 

needs [1].  These systems have several potential applications in future space-terrestrial networks 

(Figure 1.1) that include communication between buildings, ships, aircrafts, and satellites [7]. 

Figure 1.1 Potential future space-terrestrial free space optical communication network. 

 

For ground-to-ground or ground-to-air applications, the first major challenge of free-

space optical communication is maintaining a high data rate over a turbulent atmospheric 

channel.  Atmospheric temperature fluctuations lead to changes in the index of refraction of the 

channel and can cause fading and corruption of the signal at the receiver [4].  Diversity is one 

technique that can reduce this effect.  Spatial diversity can be achieved through a sparse aperture 
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system, comprised of multiple transmit and receive apertures.  Using feedback from the receiver 

to determine the turbulence state of the channel, the amplitude and phase at each transmit sub-

aperture can be controlled to send power through the spatial modes with minimum loss [1].  If 

the turbulence state is not known, the sparse aperture system with identical amplitude and phase 

at each transmitter still reduces the effect of turbulence-induced fading [6], though with less 

performance gain. 

In this thesis, we address a second major challenge of free-space optical communication: 

ensuring the integrity and confidentiality of the transmitted information.  We propose to limit 

both interference and unintended reception by controlling the direction of energy propagation 

from the optical transmitter.  Despite the high directionality of free space optical communication 

in comparison to systems with longer wavelengths (e.g. RF communication), there is still 

significant spreading of the signal energy in the vicinity of the receiver, particularly if the 

receiver is in the far-field of the transmission.  The divergence of the beam is in some cases 

necessary to allow the receiver some flexibility in position and to prevent the need for an 

expensive beam-tracking system. 

However, in an optical wireless network such as that of Figure 1.2, a transmission with a 

diverging beam along one link can interfere with the receiver of another link.  Each transmitter 

therefore must prevent excess energy from corrupting another user’s transmission.  In doing so, 

the transmitter would also be able to simultaneously send different transmissions to different 

users.  Additionally, free space optical systems are susceptible to eavesdropping, especially 

inside the main lobe of the transmitted beam, as in Figure 1.3, or in high intensity grating lobes.  

In an urban environment, this susceptibility can be particularly pronounced, and limiting energy 

propagation in a certain direction would increase the confidentiality of the transmission. 
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Figure 1.2 If users in a free space optical network are too close to one another, transmissions 

intended for one user can interfere with transmission to another user. 

 

 

Figure 1.3  If a free space optical transmission to an intended user is overly divergent, an 

eavesdropper could potentially access the signal. 
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To prevent interference and interception, the user should be able to maximize the signal 

power transmitted to the intended receiver and simultaneously limit the power transmitted in the 

direction of the other user or eavesdropper.  This is particularly difficult if the users in an optical 

network are close to one another, or if a potential eavesdropper can access the signal from inside 

the main lobe of the transmitted beam.  Additionally, if users are mobile and/or their exact 

positions are unknown, it may be necessary to limit power to an entire region where another user 

or eavesdropper may be.  (See Figure 1.4.)  Further complicating matters, the sparse aperture 

system described above that reduces the effects of atmospheric turbulence is more difficult to 

secure than a filled aperture transmitter because the far-field radiation pattern created by the 

multiple sub-apertures has grating lobes with higher power than the side lobes of a filled aperture 

radiation pattern.  These grating lobes extend through the area of the main lobe of an individual 

sub-aperture – which is substantially wider than the main lobe of the encompassing transmitter 

array. 

 

 

Figure 1.4 Position of neighboring user or eavesdropper is unknown.  Power must be suppressed 

to defined suppression region (white). 

!
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1.1 Problem Statement 
 

In this thesis, we propose a method of controlling the direction of energy propagation 

from an optical transmitter to maximize the power received by the remote terminal of a link 

while limiting the power received in a broadly defined region within the main lobe of the 

transmission.!!The goal of this scheme is threefold: 

a) As in Figure 1.5, if the link is part of a multiple-user network in which a neighboring 

user’s position is variable within a defined area, the transmitted signal to that area 

should be suppressed.  The extent of the suppression should be such that the 

transmitted signal will minimally interfere with signals intended for the neighboring 

user. 

b) If the communication link is susceptible to an eavesdropper whose position within a 

defined area is unknown, the transmitted signal to that area should again be optimally 

suppressed.  Here, the extent of the suppression should be such that the ability of an 

eavesdropper to obtain the signal is significantly reduced.
1
  

c) In both cases, the optimal scheme requires that the intended receiver be maximally 

able to successfully receive the transmitted information while the constraint on the 

suppression region is met. 

In order to take advantage of previous work in mitigating the effects of atmospheric turbulence 

on free-space optical communications, we focus on performing the necessary beam-forming on 

the sparse aperture system.  However, we also devote some attention to different transmit 

architectures, particularly filled aperture systems. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1
 For example, we can decide to suppress the desired region to -10 dB of the power received by the user.  If the 

user’s receiver is near the quantum optimum, the eavesdropper will be denied. 
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Figure 1.5 Radiation pattern in far-field after suppression, for linear array.  The suppression 

region is marked in red. 

 

 

1.2 Previous Work 
 

Steering the output beam of a sparse aperture array is similar to the well-studied problem 

of steering an RF phased array.  The physics of the two systems are different due to their vastly 

different operational wavelengths, but the mathematical formulation is similar.  An interference 

nulling algorithm for an RF array antenna that completely cancels the signal received from a 

particular direction is treated in [5].  This formulation can be reversed to maximize the 

transmitted signal power to the intended receiver while cancelling the signal transmitted to 

another point.  The placement of multiple nulls to cancel the signal received from a wideband 

jammer is studied in [8].  This is shown to result in the non-complete suppression of the signal 

from an angular sector.  The optimum antenna gain pattern to place a single null at a particular 

user in a multiple-user satellite network is formulated in [2].  Putting a complete null at a given 

point (i.e. transmitting zero power to that location) is shown in [2] to significantly attenuate the 

power sent to the intended user and is not the optimum strategy.  The power at the receiver can 
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be optimized by limiting the signal power at the nulling location to some acceptable nonzero 

threshold. The optimum nulling strategy for a single known eavesdropper of a sparse aperture 

system in atmospheric turbulence is developed in [1]. 

In this thesis, we use some of the same techniques used for RF phased arrays as in [5], 

but extend them to suppress power to a continuous region within a defined region.  Using insight 

from [2], we do not place complete nulls at points in this region, but rather suppress the power in 

the region to either some specified power threshold or some specified fraction of the power at the 

intended receiver.  We also neglect the effects of turbulence:  the effect of turbulence will not 

significantly compromise the signal suppression in the denied area, but the user may require 

slightly more link margin, especially if the transmit array consists of a small number of 

apertures. 

 

 

1.3 Thesis Organization 
  

 In Chapters 2 through 4, we develop the theoretical basis of this thesis.  In Chapter 2, we 

develop an idealized model of a full aperture transmitter, and discuss methods of optimizing the 

transmittance function of this aperture.  We discuss in depth the sparse aperture model that is 

analyzed throughout the rest of this thesis, and we present the nonlinear optimization problem 

that is the basis of our proposed suppression scheme.  In Chapter 3, we solve a toy example to 

analytically predict the significance of various system parameters.  In Chapter 4, we discuss the 

numerical methods used to solve the optimization problem and specify the system parameters 

used in our analysis. 

 In Chapter 5, we present results for a linear aperture array.  We observe the effect of 

changing various system parameters on both the achievable signal-to-suppression-region power 
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ratio and on the decrease in power at the receiver after suppression.  In Chapter 6, we present 

results for a two-dimensional aperture array.  We consider a fixed transmit power and again 

observe the effects of variation in system parameters on the signal-to-suppression-region power 

ratio and the intensity at the receiver. 

 In Chapter 7, we summarize the functional relationship between system parameters and 

the signal-to-suppression-region power ratio and receive power for the two-dimensional array 

case.  We consider the effect of these relationships on the design of secure free space optical 

systems.  We summarize our findings and suggest potential modifications to our suppression 

scheme in Chapter 8. 
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Chapter 2 

Characteristics of System Model 

 The communication system we consider in this thesis consists of an optical transmitter 

comprised of one or more apertures transmitting to a remote terminal at least 100 meters away.  

For receivers within a closer range, a more elaborate propagation model with a near field 

description of significant fidelity is required.  Nonetheless, the process to be followed to solve 

the problem will largely be the same, albeit with more mathematical (as in numerical) 

complexity. In this chapter, we provide the theoretical background necessary to analyze this 

system, and we state the assumptions that we make in our analysis. 

 

2.1 Theoretical Background 

 Figure 2.1 diagrams our generalized system setup.  We label the coordinates of the 

transmit plane !! !  and the coordinates of the receive plane !!! .  !  and !  are the 

wavenumber and wavelength respectively of the transmitted light, where ! !
!!

!
.  Throughout 

this thesis, we take !  to be 10
-6

 meters and thus consider specifically near-infrared 

communication.  The receive plane is a distance ! (in meters) away from the transmitter.  We 

consider an aperture in the transmit plane with an input transmittance function !! !! !  defined 

in the aperture region !!. 
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Figure 2.1 Diagram of near-infrared communication link analyzed in this thesis. 

 

 

 

A detailed survey of scalar diffraction theory can be found in, e.g., Goodman [3].  We 

now briefly summarize the significant results.  The propagation of a wave beyond an aperture 

with transmittance function !! !! !  is described by the Fresnel-Kirchhoff diffraction formula 

and through a separate formulation by the Rayleigh-Sommerfeld diffraction formula.  These 

formulas both justify the Huygens-Fresnel principle, which represents the output radiation 

pattern !! !!!  in the receive plane as the superposition of spherical wavefronts derived from 

point sources at each point in the aperture. 

Via appropriate approximations, these complicated formulas can be reduced to the much 

simpler Fresnel and Fraunhofer diffraction formulas.  The Fresnel formula approximates the 

spherical wavefronts derived from the Huygens-Fresnel principle as parabolic wavefronts.  The 

output radiation pattern under this approximation is given by 

!! !!! !
!
!"#
!
!
!

!!
!!!!!!!

!"#
!!!!! !!!

!
!

!!
!!!!!!!

!!

!
!!
!!

!"
!!"!!"!

!"!# 
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The Fresnel diffraction formula is sufficiently accurate when 

!
!
!

!

!!
!"# ! ! ! !

! ! ! ! ! ! 

!! !! ! !!"!!"#!!"#$%&'!!!"#$%&$#!!"#!!!!"#$%&$'! !!! ! 

 

The Fraunhofer diffraction formula further simplifies the expression for the output radiation 

pattern, but requires a more stringent accuracy condition: 

! ! !"#
! !! ! !!!

!
 

!! !! ! !!"!!"#!!"#$%&'!!!"#$%&$#! 

 

In the Fraunhofer limit, corresponding output radiation pattern !! !!!  in the far-field receive 

plane is then defined by 

!! !!! !
!
!"#
!
!
!

!!
!!!!!!!

!"#
!!!

!!

!! !!!
!!
!!

!"
!!"!!"!

!"!# 

 

The intensity in the receive plane is then defined by  

!! !!! !

!!!!!
!! !!!

!!
!!

!"
!!"!!"!

!"!#
!

!!!!
 

 

If the receiver is located at !!! ! !!!!!, the intensity at the receiver is 

!! !!! !

!!!!!
!! !!!"!#

!

!!!!
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 Given an optical aperture with a 1-centimeter diameter transmitting at a wavelength of 1 

micron, the Fraunhofer diffraction pattern is valid for distances ! ! !!""!meters.  The “antenna 

designer’s formula” loosens this constraint and requires instead that  

! !
!!

!

!
! 

where ! is the diameter of the aperture [3].  Using this formula, we can use the Fraunhofer 

diffraction formula for any ! ! !!"" meters.  The largest diameter aperture we consider in this 

thesis is 6 centimeters.  For this aperture, we can use the Fraunhofer diffraction formula for 

! ! !!"## meters. 

 

2.2 Idealized Filled Aperture Model 

We now assume that we can control the transmittance function of an optical aperture with 

area !!.  Our goal is to find the optimum filled aperture transmittance function !! !! !  that 

delivers maximum power to the intended receiver while suppressing the power delivered to a 

defined region in the receive plane.  We therefore formulate the optimization problem that 

maximizes the intensity at the receiver !! !!!  subject to !! !!! ! !!  for all !!! !in the 

suppression region !
!

!"##
.  !! is the threshold to which the power in the suppression region must 

be limited.  The input transmittance function is subject to a power constraint such that 

!! !! !
! !"!# ! !. 
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The optimization problem can be constructed in two ways: 

Maximize   !!!!! !!!"!!!!

!

 

Subject to  

(1)   !!!!!
!! !!!

!!
!!

!"
!"!!"

!"!#
!

! !!!
!
!
!! !! !!! !!"!!

!

!"##
 

or  !"#
!!! !!"!!

!

!"## !!!!!
!! !!!

!!
!!

!"
!"!!"

!"!# ! !!!
!
!
!  

 

(2)   !! !! !
!

!!
!"!# ! ! 

Finding the optimum filled aperture transmittance function !!!!"# !! !  that maximizes the 

power at the receiver while constraining the power to the entire suppression region to under 

some threshold is difficult: the problem either contains an infinite number of nonlinear inequality 

constraints (one for each point in !
!

!"##
) or a single inequality constraint of the form of a 

nontrivial maximum function (i.e. constraining the maximum intensity of the set of points in 

!
!

!"##
). 

To simplify this problem, we only suppress power to a finite number of points (!) in the 

suppression region.  If the set of ! points in the desired suppression region is dense enough , we 

should be able to effectively limit the power to the entire region without actively constraining the 

power at each point.  We show in Chapters 5 and 6 that the required density is dependent on the 

distance of the suppression region from the intended user.  Let !! represent the receiver intensity 

we want to maximize: 

!! ! !! !! ! !"!#

!!

!!
! !! ! !"!#

!!
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Let !! represent the intensity at a desired suppression point !! !!!  for ! ! ! ! !: 

!! ! !!!

!!

!! !!!
!!
!!

!"
!!!!!!! !"!# !!

!!

!!

!! !!!
!
!!

!"
!!!!!!! !"!# !!!!

!
!
! 

 

Let ! be the input power, normalized to 1. 

! ! !! !! ! !!
! !! !

!!

!"!# ! ! 

 

If the operator ! denotes the variation of a functional, and !! and ! are multipliers, then the 

necessary Karush-Kuhn-Tucker conditions for the optimization problem require that 

!" ! ! !!!!!

!

!!!

! !"# ! !!!!!!!!!!!!!!!!!!!!

!

!! !! !!!!
!
!
!
! !! !!! ! ! ! !

!

!! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ! !

!

!! !!!!
!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ! !

!

! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!
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These conditions are shown in Appendix A to be equivalent to the following set of equations: 

! ! !! !! ! !"!#

!!

! !!!
!
!!

!"
!!!!!!!

!!!

!!

!! !!!
!!
!!

!"
!!!!!!! !"!#

!
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Even with only a finite number of constrained points in the suppression region, this large 

set of equations would be computationally very expensive to solve.  Instead, a more practical 

solution may be to pre-determine a satisfactory output radiation pattern in the receive plane that 

satisfies the output constraints, and then find a corresponding input transmittance function that 

satisfies the input constraints and most closely approximates the desired output. 

This reverse formulation of the problem could be approached in two ways.  One, the 

suppression region of the output radiation pattern could be specified to some desired threshold 

!!, or two, some amount of power could be subtracted from the maximum output radiation 

pattern in the suppression region.  In both cases, the fact that the output radiation pattern is being 

changed means that the intensity at the receiver must decrease; whatever input function most 

closely results in such a pattern will not be the globally best function for maximizing the power 
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at the receiver.  However, an input transmittance function that best approximates these output 

patterns given the input constraints could provide a reasonably high power at the receiver and 

acceptably low power in the suppression region. 

Suppose !!!!"#!!! !! is the transmittance function that leads to the maximum power at 

the receiver, located at !!! ! !!!!!.  If the input aperture area is !!, then !!!!"# !! ! ! !
!

!!

 

for !! !  in !
!

!"#$
.  The Cauchy-Schwarz Theorem implies that this is the optimal solution for 

maximizing power to the receiver under the input power constraint, !! !! !
! !"!" ! !. 

We assume the transmit aperture has shape ! !! ! , where  

! !! ! ! !
!!!!!!!!!!"!!"#$%&$#!!!"#!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#!$%!&!
 

 

The suppression region has shape ! !!!  where 

! !!! ! !
!!!!!!!!!"!!"##$%!!&'(!!"#$%&!!

!

!"##

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#!$%!&!
 

 

The output radiation pattern which maximizes power at the receiver while satisfying input power 

constraints is 

!!!!"#!!!!! !
!
!"#
!

!"
!!
!!!!!!!

!"#

!

!!

!!! !! ! !!
!!!

!

!"
!!!!

!

!"

 

 

!!!!"#! !!!  describes an output pattern that is has a uniform intensity of !! in the null region 

and zero elsewhere.  Let !!!!"## !!!  be defined by: 

!!!!"## !!! !
!
!"#
!

!"
!!
!!!!!!!

!"#
!" !!!!!!!!! 
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Ideally, the output radiation pattern !!!!"# !!!  will be !!!!"## !!!  inside the null region and 

!!!!"#!!!!! every where else, including at the receiver. 

!!!!"# !!! !
!!!!"# !!! ! !"#! !!! !!!!

!

!"##

!!!!"## !!! ! !"#! !!! !!!!
!

!"## 

 

! !!!!"## !!! ! !! ! !!! !!!!"# !!!  

 

Taking the inverse Fourier Transform to find the corresponding input transmittance function, we 

obtain 

!!!!"# !! ! ! !!" !!!
!!

! !!! ! !
!

!!

!! !! ! ! !
!

!!

! !! ! ! !!! ! !!!  

 

This function is of infinite extent in the transmit plane, so it cannot be perfectly represented in 

the transmit aperture.  However, before addressing this issue, we first show that the overall 

power used to generate the new output function is no more than the maximum power available, 

that is, !!!!"# !! !
!

!"!# ! !. 

!!!!"# !! !
!

!"!# ! ! 

 

! !!!!"# !! !
!

!"!# ! ! !!!!"# !! !
!

!"!# 

 

! !!!!"# !!!
!

!"!# ! ! !!!!"# !!!
!

!"!# 
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We expand the left term of the inequality and note that the cross terms in the square product 

cancel. 

!!!!"# !!!
!

!"!# ! !!!!"## !!! ! !! ! !!! !!!!"# !!!
!

!"!# 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!"## !!!
!

! !! ! !!! !!!!"# !!!
!

!"!# 

 

We know from the power constraint that 

!!!!"## !!!
!

! !! ! !!! !!!!"# !!!
!

!"!# ! ! !!!!"# !! !
!

!"!# 

 

This power constraint reduces to 

!!!!"## !!!
!

!"!# ! ! !!! !!!!"# !!!
!

!"!#! 

 

A physical justification of this constraint follows.  The output pattern that maximizes the power 

at the receiver uses all the available input power; in order for the new pattern to be physically 

viable, the power in the suppression region must have decreased.  This constraint is therefore 

easy to satisfy because most desired output functions will have on average less power in the 

suppression region.  Possible exceptions might occur if !!!!"# !!!  is very oscillatory in the 

suppression region, and the spatially averaged power in the region before suppression is less than 

the desired intensity threshold. 
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 To minimize the squared error of the input transmittance function, the desired input 

function will be truncated such that  

!! !! ! ! ! !! ! !!!"# !! !  

 

!! !! ! ! ! !! ! !" !!!
!!

! !!! ! !
!

!!

!! !! ! ! !
!

!!

! !! ! ! !!! ! !!!  

 

We want the power in both the first and third terms to be concentrated inside ! !! ! ! to preserve 

as much information as possible before transmission.  This is dependent on ! !!! .  If ! !!!  

has a gradual roll-off as opposed to sharp cutoff from 1 to 0 at the boundary of the suppression 

region, !!! ! !!!  will have more power inside ! !! ! .  This would result in, e.g., an upward 

sloping acceptable threshold at the edges of the suppression region.  After the truncation, the 

output radiation power will have changed slightly, and the power at the receiver will decrease, 

since the new input transmittance function is sub-optimum.  The output radiation pattern will be 

!! !!! ! ! !!! ! !!!!"# !!!  

where ! !!! ! ! !! !! ! .  This expression makes clear that increasing the size of the input 

aperture significantly improves the optimality of the suppression. 

 Practically, we cannot arbitrarily increase the size of the transmit aperture, nor can we 

exactly specify its transmittance function.  We therefore need to discretize the aperture into sub-

apertures of controllable amplitude and phase.  In doing so, we can decrease the system cost by 

lowering the fill factor to form a sparse aperture array.  This has the additional benefit of 

increasing the spatial diversity of the system and thus mitigating the effects of turbulence, 
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although it also creates grating lobes that may need to be suppressed.  We devote the rest of this 

chapter to developing the sparse aperture transmitter model. 

 

2.3 Sparse Aperture Model 

The sparse aperture system as described in [1] is comprised of an array of !!" rectangular 

apertures in the transmit plane transmitting a signal to an array of !!" detectors in the receive 

plane.  The power from a single laser source is divided via an optical power splitter among the 

!!" transmitters.  This optical power splitter controls the amplitude of the optical wave emitted 

by each transmitter.  The phase of each wave is adjusted by a phase modulator connected to each 

aperture.  The amplitude and phase are assumed constant over each aperture.  The sparse 

aperture transmitter is diagrammed in Figure 2.2. 

 

Figure 2.2  Light from a single laser source is divided by a variable optical power splitter and 

coupled into an array of apertures, each modulated by an independent phase modulator. 
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The scalar field of the optical wave emitted from each transmitter can be described in the 

far-field by the Fraunhofer diffraction pattern of a rectangular aperture.  The radiation pattern 

from the entire sparse aperture transmitter is the sum of the scalar fields resulting from each of 

the !!" apertures.  The intensity at each point in the receive plane is proportional to the squared 

value of this sum. 

Assuming we can control the amplitude and phase of each transmit aperture in the sparse 

aperture array, we can adjust these values to cause constructive or destructive interference at 

specific points in the receive plane.  Specifically, we desire destructive interference in our 

desired suppression region and constructive interference at our intended receiver.  Atmospheric 

turbulence randomizes this far-field radiation pattern.  Statistical models describing the effects of 

atmospheric turbulence on laser beam propagation are presented in [4].  The optical beam 

emitted from the transmit apertures travels through an atmospheric channel with a time-varying 

index of refraction that affects the constructive and destructive interference in the receive plane.  

In this thesis, we neglect the effects of turbulence on the output. The effects of turbulence on the 

user’s signal will be mostly mitigated by transmitter and receiver diversity; the signal in the 

suppression region may see some energy spikes, but they will not be of long enough duration to 

increase detectability significantly.  We thus assume that adjusting the amplitudes and phases at 

each transmit aperture can to a considerable extent deterministically control the time-average of 

the far-field radiation pattern. 

Adjusting the amplitudes and phases of each aperture in the transmit array can be treated 

similarly to the antenna gain patterning problem for RF phased arrays.  The amplitude and 

relative phase of each aperture form the components of an !!"-dimensional input vector !.  A 

corresponding !!"-dimensional vector ! can be formed where each component is the scalar field 
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in the receive plane resulting from a unit-amplitude signal from the corresponding aperture.  The 

inner product of these two vectors is the scalar field resulting from the superposition of all !!" 

apertures.  In the RF case, each component of the second vector is a phase shift that is a function 

of position in the receive plane.  For the optical apertures, each component is the Fraunhofer 

diffraction pattern for rectangular apertures shifted according to the corresponding aperture 

position. 
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Table 2.1 summarizes some parameters and functions we use in our analysis of the sparse 

aperture system model.  We use this definitions for the remainder of the chapter. 

 

!!" ! Scalar. 

The scalar field at location ! in the receive plane that is derived from a unit-

amplitude, zero-phase input from aperture ! in the transmit plane.!

!! Scalar. 

The number of apertures in the transmit array.!

!! Scalar. 

The number of points used to define the suppression region. 

The number of points to which power is constrained.!

!! N-dimensional column vector. 

!! ! !!!
!!! is the amplitude and phase of aperture !. 

! ! !

!!

!!

!

!!

 

 

!
!!!

N-dimensional row vector. 

The n
th

 component !!" is the unit-amplitude, zero-phase contribution of the n
th

 

aperture to the field at point !. 

!! ! !!! !!! ! !!" !

!! !!!
Scalar. 

The total field at point ! in receive plane. 

!! !! ! !!"!!

!

!!!

!

!! !!
!

!
Scalar. 

The intensity at point !. 

!

Table 2.1: Summary of Relevant Functions and Parameters 
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2.3.1 Effects of Sparse Aperture Transmitter In Receive Plane 

 

Assuming we can control the amplitude and phase of each transmit aperture in the sparse 

aperture array, we can adjust these values to constructively interfere at the receiver to direct 

maximum power to that location.  For maximum power at the receiver, the input vector ! must 

be parallel to the scalar field vector evaluated at the intended receiver.  Figure 2.3 shows an 

example radiation pattern from a linear aperture array when ! is chosen to maximize the 

intensity at ! ! !.  In order to create a complete null at a given point, ! must instead be 

orthogonal to the scalar field vector evaluated at the desired null.  In [5], it is shown that the 

optimum input vector for complete cancellation at one or more nulls is found by projecting the 

scalar field vector evaluated at the intended receiver onto the nullspace of the subspace spanned 

by the scalar field vectors evaluated at the desired nulls.  Figure 2.4 shows the output radiation 

pattern when ! is chosen to maximize power at ! ! ! while completely nulling the signal at 

! ! !!! beamwidths. 
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Figure 2.3 Example radiation pattern in receive plane with maximum power at the receiver. 

 

 

 

Figure 2.4 Example radiation pattern in receive plane with complete null at ! ! !!! beamwidths. 

 

 

We now derive the optimum weight vector to maximize power to a single receiver and 

completely null multiple specified suppression points.  Let !!" be the scalar field at the receiver.  
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The power at the receiver is proportional to the square of !!".  We constrain the value of the  

scalar field !!"#!! !at each suppression point to zero. 

Each component of ! is the amplitude and phase at a particular transmit aperture.  ! is 

normalized such that !!!
!!!

!

! ! !. 

! !

!!!
!!!

!!!
!!!

!

 

 

We define a matrix  

! !

!!! !!" !!" !

!!" !!! !!" !

! !

 

 of which each component !!" is the scalar field from aperture ! at location ! in the receive 

plane.  Each !!" is scaled by !!!
!!!, the amplitude and phase at aperture k.  The sum of !!" over 

all apertures ! is the scalar field at location !.  The first row of ! contains the scalar field from 

each aperture at the receiver in location ! ! !; the subsequent rows contain the scalar fields at 

the desired suppression points.  Thus we need to find ! that satisfies the following equation and 

maximizes !!". 

!!"

!

!

!

!

!!! !!" !!" !

!!" !!! !!" !

! !

!!!
!!!

!!!
!!!

!
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To solve this, we define a matrix  

!! ! !

!!" !!! !!" !

!!" !!" !!! !

! !

 

 

Then !!! ! !! 

The optimum value of ! maximizes  

!! !! ! !!!" 

under the suppression constraint 

!!! ! ! 

and the normalization condition 

!!!
!!!

!

!

! ! 

 

If there is only a single desired null to constrain, the above reduces to: 

 

!!"

!

!

!!! !!" !!" !

!!" !!! !!" !

!!!
!!!

!!!
!!!

!!!
!!!

!

 

If !! !! ! !  and !!!
!!!

!

! ! ! , then !! !!   is maximized by finding the normalized 

projection of !! onto the nullspace of !! (or !! in multiple null case). 
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The projection matrix ! ! ! !
!
!

!!
!
! is given by 
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!!!
!
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!
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! !!"
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!!!!!!" !!!"!!" !!!"!!" ! !!!!!!"
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The projection ! of !! onto ! is given by 

! ! !! !
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We normalize ! to find !. 

!!"## !
!

!
 

 

Recalling that 

!!"# ! !
!!

!!

 

 

we can calculate the fraction of power remaining at the receiver after completely nulling a single 

suppression point. 
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!!! ! !!"##!

!
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In Figure 2.4 we see that the power at the receiver has somewhat decreased after the 

signal has been suppressed at the desired null.  The decrease in power at the receiver should be a 

function of the distance of the null from the receiver and also the number of such nulls.  If the 

desired null is very close to the receiver, in order to suppress power to that point, the power 

directed to the receiver will be correspondingly small.  If the desired null is very far away from 

the receiver, the receiver should receive the same amount of power as if there were no 



! $"!

constrained suppress point.  The more points that are deliberately nulled, the lower we expect the 

power at the receiver to be. 

In practice, it is unnecessary to place complete nulls at points within the suppression 

region.  Instead, we can limit the power at these points to some fraction of the power at the 

receiver and then scale the transmit power such that the intended receiver can detect the signal.  

This could successfully prevent interference in an optical wireless network where all the users 

had similar receivers.  If another user were in the suppression region, a signal intended for it 

would be significantly greater and could be distinguished from the interfering signal. 

It is harder to prevent interception than friendly interference, since an eavesdropper could 

increase his receive aperture size to counter the effects of the signal suppression.  However, 

suppressing the power to a potential eavesdropper to some fraction of the power at the receiver 

would make it much more difficult for the eavesdropper to intercept the signal.  The more the 

signal is suppressed, the more expensive interception will be for the eavesdropper, and the more 

secure the transmission will be.  In general, ensuring confidential transmission would require 

multiple anti-eavesdropping strategies, such as, e.g., transmitting a high-amplitude noise signal 

in the direction of the eavesdropper in addition to suppressing the signal in that direction (this is 

briefly treated in Chapter 8). 

 

2.3.2 Optimization Problem Setup 

We now formulate the nonlinear optimization problem whose solution is the optimum 

input vector !.  The optimum ! will maximize the power at the receiver while maintaining an 

upper limit on the power ratio between each suppression point and the receiver.  We label the 
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receiver’s position !, and the ! suppression points are labeled !!!!!!! !!!.  The desired signal-

to-suppression power ratio is !
!

.  The optimization problem is then constructed as follows. 

 

Maximize !! !!
!   

subject to   

 

 

!

 

 

 

The following is an expansion of the objective function. 

!! ! ! !!!
!
! !

!
!!

!
!!! 

 

We user Wirtinger derivatives to calculate the gradient of the objective function with respect to 

!, so we can construct the Karush-Kuhn-Tucker conditions using standard differential calculus.  

(See [10] for a treatment of Wirtinger calculus; a similar analysis is presented in [5] as the 

method of complex gradients).  The gradient of the objective function is then defined as below. 

!!!

!!!
! !!

!
!!! 

 

There are ! inequality constraints, one for each suppression point, defined as follows. 

!! ! !
!!!

!
!

!!!
!
! ! !

!
!
!!!

!
!!!

!

!!!!
!
!!!

! ! ! ! 

 

 

(1) 
!!!

!
!

!!!
!
! !! !!!! ! ! ! ! 

 

 

(2) !
!
! ! 



! $$!

Again using Wirtinger derivatives, we calculate the gradient of the inequality constraints. 

!!!

!!!
!

!
!
!!

!
!!! !!!

!
!!!

! ! !
!
!!!

!
!!!

! !!
!
!!!

!!!!
!
!!!

!
 

 

Lastly, we require that the input vector the be normalized such that its 2-norm is equal to 1. 

! ! ! !
!
! ! ! !

!
!! ! ! ! 

 

The gradient of this equality constraint is as follows. 

!!

!!!
! ! 

 

Although this normalization seems on the surface equivalent to the power constraint 

required in the filled aperture problem formulation, that equivalence only holds if the area of 

each aperture is kept constant.  Since we may be varying the total number of apertures and the 

size of apertures as we consider different fill factors, the weight constraint we employ will not 

result in equal transmit power from every system even if the total array area stays the same.  In 

order to compare the intensity in the receive plane between different aperture configurations, we 

will need to divide the intensity by the area of a single aperture within the array.  This will 

effectively normalize each output radiation pattern to the same transmit power. 

It can also be of interest to instead normalize each output radiation pattern by the 

maximum achievable intensity at the intended receiver.  If we do this, we can compare the 

relative decrease in power at the intended receiver for different aperture configurations with 

varying suppression constraints.  This will allow us to note which aperture configurations are 

most sensitive to various parameters. 
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The Karush-Kuhn-Tucker necessary conditions for the optimization problem follow. 
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The optimization problem is formulated such that we seek to maximize instead of 

minimize a convex function.  The objective function is monotonically non-decreasing from 

! ! ! .  Further, it is monotonically increasing along the direction of !! .  Since the 

normalization constraint on the weight vector is a hollow N-dimensional sphere, the optimum 

input vector in the absence of a designated suppression region lies at the intersection of this 

sphere and !!! for some !.  (! must be 
!

!!

 if the 2-norm of ! ! !.)  As the normalized ! 

approaches !!, the value of the objective function increases.  Thus the optimum input vector is 

the vector ! that is closest to !! while still satisfying all inequality constraints.  Determining the 

input vectors that satisfy the inequality constraints is less straightforward.  The inequality 

constraints are rational functions, the ratio of two quadratic expressions.  The closer (in the 

Euclidean metric space) that !! is to the space spanned by suppression vectors !!! (!!! ! ! !

!), the smaller the set of input vectors that satisfy all the inequality constraints.  
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Although the objective function is a simple quadratic expression, the inequality and 

equality constraints are not affine functions, and therefore we cannot obtain an analytical 

solution using quadratic programming techniques.  Further complicating matters, the vectors !! 

and !!! do not have a simple relationship with many of the system parameters of interest.  Thus 

there is no simple method of converging to a global optimum nor an easily obtained analytical 

formula that can exactly describe the effect of various system parameters on the achievability of 

different suppression constraints. 

Therefore, the optimum weight vector for any particular system must be obtained 

numerically.  In the next chapter, we analyze a toy example to predict the effect of various 

system parameters on the intensity at the receiver after suppression and the achievable signal-to-

suppression-region power ratio.  We later compare these predictions with our numerical results.  

In Chapters 5-6, we solve several numerical examples with varying system parameters to shed 

light on the issues involved in using this method to suppress a desired area.  In Chapter 7, we 

generalize the trends we observe and discuss the design considerations they reveal. 
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Chapter 3 

Analysis of Toy Example 

We consider a transmitter with two square apertures and one suppression point.  We 

constrain the input vector such that ! !! !!! and similarly constrain the receiver and suppression 

vectors to the real domain.  We now define the major parameters for this example. 

!! !
! !"# !

! !"# !
 

!! ! !
! !"#!

! !"#!
 

! ! !
!

!
 

!"#!! ! !!!"#!! ! ! 

As we discussed in Chapter 2, the objective function we want to maximize is !! !!
!.  Figure 

3.1 depicts an example objective function. 
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Figure 3.1 An example objective function where !! !
!"

!
. 

 

The inequality constraint restricts the power sent in the direction of !!, and can be expanded as 

follows: 

!! !!
!

!! !!
!
! ! 

!!" !"#! ! !" !"#!!!

!!" !"# ! ! !" !"# !!!
! ! 

!!" !"#! ! !" !"#!!! ! !!!" !"# ! ! !" !"# !!! 

 

Figure 3.2 shows a rational function of the intensity at the suppression point divided by 

the intensity at the receiver for varying !.   The figure also shows four dotted lines representing 

possible weight vectors.  The purple line shows weight vectors that would be parallel to !!, i.e. 
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weight vectors that maximize power towards the receiver.  The red line shows weight vectors 

that are perpendicular to !! and thus completely cancel power to the receiver.  The yellow line 

marks weight vectors that would be parallel to !! and would therefore maximize power to the 

desired suppression point; the green line marks weight vectors that are orthogonal to !! and 

cancel power to the desired suppression point. 

 

 

Figure 3.2 The ratio of the intensity at the suppression point to the intensity at the receiver.  The 

inequality constraint is satisfied when this function is less than some ! ! !.  In this example, 

!! !
!"

!
 and !! !

! !"#
!

!

! !"#
!

!

.   

 



! %+!

Without loss of generality, we let ! ! ! such that!! ! ! !!!!!! .  As before, we 

normalize ! so !! ! !! ! !.  We can then write ! ! ! !"#! and ! ! !"#!.  The feasible region 

becomes all values of ! that satisfy the following equations. 

!!" !"#! ! !" !"#!!! ! !!!"!! 

 

!! !"#! !"#! ! ! !"#! !"#!!! ! !!! !"#!!! 

 

!
!
!"#

! !! !

!!!
! !"#

!!  

 

Figure 3.3 plots the feasible region of the optimization problem for three different values of 

!! ! ! !!!!!! .  We slightly modify the weight constraint to !! ! !! ! !.  As !!approaches 
!

!
, 

the range of possible feasible values of ! increases and ! approaches 0 (recall ! ! !.)   In each 

of the plots in Figure 3.3, the yellow line marks the weight vectors that are parallel to !!, and the 

red line marks the weight vectors that are parallel to !!.  It is clear that as the angle ! between 

these two lines increases, the angle ! between the feasible weight vectors and !! decreases.  

This indicates that the power at the receiver after suppression increases as ! increases. 
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!  

Figure 3.3a Feasible region for ! ! !! ! ! !"!! !
!

!
. 



! %"!

 

Figure 3.3b Feasible region for ! ! !! ! ! !"!! !
!

!
. 
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Figure 3.3c Feasible region for ! ! !! ! ! !"!! !
!

!
. 
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In order to determine which point in the feasible region maximizes the objective function, we 

turn to the complementary slackness condition of the KKT conditions.  This condition requires 

that one of the following conditions be satisfied. 

 

1.) In Case 1, the inequality constraint is satisfied when maximum power is directed at 

receiver, so no suppression is necessary.  Since the objective function !! !!
!
! !!

! is 

monotonically increasing along exactly one dimension, we find the solution to the 

optimization problem by following the objective function along this increasing dimension 

until it intersects the weight constraint !! ! !! ! !. 

 

2.) In Case 2, the inequality constraint is not satisfied when maximum power directed at 

receiver.  Suppression is necessary.  The solution lies at the boundary of the inequality 

constraint and the weight constraint, along the increasing dimension of the objective 

function. 
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CASE 1: 

If the equality constraint satisfied, !! ! !! ! !.  To maximize !!!, 

! ! !!!!! ! ! 

! !
!!

!
! !! ! ! 

 

The inequality constraint is satisfied in this case if 

!
!
!"# !

!!!
! ! 

 

Given !! !
!

!
, we want to know for what !! is the solution in case 1. 

!
!
!"#

!
! ! !

!
! 

!!
!
!"#

!
! ! !!

!
! 

 

!"#
!
! !

!!
!

!!
!
! 

 

This is always true if 

!!
!

!!
!
!
!

!
! !!!!"#$%"! 

 

which occurs if the ratio of the receiver intensity to the suppression point intensity before 

suppression is greater than the desired signal-to-suppression-region power ratio, independent of 

the angle between the two vectors.  In other words, Case 1 holds if the suppression point is 

sufficiently far away from the intended receiver. 
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Case 1 is also true if 

! ! ! ! !! 

 

! ! !"#
!!!

!!

!!
!! 

 

!
!
! !! ! ! 

 

This expression bounds the angle ! between!!! and !! to a region around 
!

!
 , whose size is 

dependent on the desired signal-to-suppression region power ratio and the pre-suppression ratio 

between the receiver and the suppression point.  In reality, of course, we cannot separate ! and 

the amplitudes of !! .  However, in this example, we consider them separately under the 

assumption that b represents the envelope of !!  that generally decreases as the suppression 

point moves further away from the receiver, while ! represents the oscillations – maxima and 

nulls – within that envelope. 
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CASE 2: 

Again, the equality constraint satisfied, and!!! ! !! ! !.  This time the inequality constraint is 

satisfied with equality, such that 

!
!
!"#

! ! ! !

!!!
! !"#

! ! 

 

Let !!!! ! !"#
! !. 

!
!

!!!
! ! ! ! ! !!!! 

 

! ! ! ! ! ! 

 

! ! !
!
!

!!!
! ! ! ! !

!
!

!!!
 

 

! ! ! !!!! !
!
!

!!!
 

 

!
!

!!!
!

!!
!

!!
!
!
!

!
 

 

!
!

!!
! !!!!"#!!"##$%!!&'( !

!
!

!!
!
!

!
!

!!!!"#$%"!

!!!!"#!!"##$%!!&'(
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If 
!
!

!!!
! !, the condition in Case 1 would be satisfied, no suppression would be necessary.  The 

solution to the maximum !!!
! would be as in Case 1.  Therefore, for the solution in Case 2 to 

be valid,!
!
!

!!!
! !, and therefore: 

!!!!"#$%"! ! !!!!"#!!"##$%!!&'( 

 

However, since the inequality constraint is satisfied with equality and ! ! ! !, 

!
!

!!!
! ! ! ! ! ! 

 

! ! ! ! !
!
!

!!!
!
!!!!"#!!"##$%!!&'(

!!!!"!"#$%

 

 

The solution to 
!
!
!"#

! !!!

!!!
! !"#

! ! in Case 2 therefore occurs when ! ! ! ! !
!
!

!!!
. 

 

Figure 3.4 shows an example region in which this condition is true.  This region is 

symmetric about!! !
!

!
 and shrinks in size as 

!!!!"#!!"##$%!!&'(

!!!!"#$%"!

 decreases, which happens as the 

suppression point moves closer to the receiver, and/or when the desired signal-to-suppression 

region power ratio increases.  This suggests that ! must be “more orthogonal” to !! as the pre-

suppression ratio decreases or as the desired post-suppression ratio increases. 
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Figure 3.4 The region where ! ! ! ! !
!
!

!!!
 is marked in black.  This region is symmetric about 

! ! !.  The solutions to 
!
!
!"#

! !!!

!!!
! !"#

! ! are marked with X’s.  As 
!
!

!"!
 increases, these 

solutions move closer to ! ! !. 

 

 

To simplify the numerical calculations, we want to relax the weight constraint to an 

inequality constraint !! ! !! ! !.  If we do so, we have to consider a third case in which the 

signal-to-suppression region power ratio constraint is satisfied with equality but the weight 

constraint were slack.  We now show that there is no solution that could lie in this region without 

satisfying the weight constraint with equality.  In other words, the solution to Case 3 is the same 

solution as for Case 2. 
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CASE 3: 

We now relax the weight constraint to an inequality and review the implication of such a 

change.  For many practical numerical algorithms, inequality and equality constraints must be 

handled separately, so relaxing the equality constraint could improve numerical performance. 

Let ! ! !! !"#! and ! ! ! !"#!, for ! ! !.  The inequality constraint with a relaxed weight 

constraint is 

!
!
!
!
!"#

! ! ! !

!!!
! !

!
!"#

! ! 

 

The value of ! here is the same as in Case 2, so the objective function !!! ! !!
!
!"#

! ! is 

maximized at ! ! !, which is when the equality constraint is exactly satisfied.  Figure 3.5 shows 

both a contour plot and a 3D plot of an example feasible region that confirms our conclusions in 

Case 2 and Case 3. 
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Figure 3.5a This is the same feasible region as in Figure 3.3a, with  ! ! !! ! ! !"!! !
!

!
.  The 

lighter colors indicate higher objective function values.  The two highest values occur in the 

bottom right and top left corners.  These two locations have the exact same function value, and 

the two weight vectors are related by a constant phase difference of exactly ! radians. 
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Figure 3.5b This is the same feasible region as in Figure 3.3a, with ! ! !! ! ! !"!! !
!

!
.  The 

overall shape of the objective function in the feasible region is more evident here.  The two peaks 

have the height. 

 

 

We now derive an expression for the change in the intensity at the receiver caused by a change in 

angle between !! and !.  We first show how ! change as ! changes, i.e. how the angle between 

!! and ! changes with the angle between !! and !!.  Although we cannot solve the suppression 

constraint exactly for ! in terms of !, we can find the derivative 
!"

!"
.  We use this result to find 

!"

!"
, where ! denotes the intensity at the receiver. 
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Let ! represent the intensity at the receiver. 

! ! !!!
!
! !

!
!
!
! !

!
!"#

! ! 
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!"
! !!

!
!"#! !"#! !!

!"#!

!"#!!! ! !!
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!"
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!
!

!
!"# !! !!

!"#!

!"#!!! ! !!
 

 

For this expression to be useful to us, we must show that, at least in this example, ! has an 

approximately linear relationship with the distance ! between the receiver and the eavesdropper.  

We cannot directly compute 
!"

!"
, but we can use  

!"

!"
 to analyze 

!"

!"
 . 

We now expand the components of !! and !! using the Fraunhofer diffraction pattern of 

square apertures.  ! is the half-width of the apertures; the receiver is a distance ! away from the 

transmitter array. 
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where !!!!!  and !!!!!  represent the positions of the two apertures and !!!!!  represent the 

suppression point position.  Let !! ! !, !! ! !, and !! ! !.  If !! and !! were both in !!, we 

could use the following expression to find the angle between the two vectors. 

!"#! !
!! ! !!

!! !!
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Instead, we consider the dot product of the two vectors as a measurement of their parallelism. 
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Let !! ! !!! so the two apertures are equidistant around the origin along the x-axis and thus 

also centered with respect to the receiver.  Let ! ! !! ! !!. 
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Within a certain range of the receiver (i.e. within the main lobe), the dot product of !! 

and !! decreases with increasing distance ! between the receiver and the suppression point.  The 

arccosine of the absolute value of this dot product increases linearly within that range.  (See 

Figure 3.6 for example plots of these relationships.)  This indicates the analysis in terms of ! in 

our toy example is probably a good approximation of the behavior of a physical system as ! 

increases. 
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Figure 3.6a Plot of 
!!!!!

!! !!

 versus ! for ! ! !""""!!!! ! !!!"!!! !! ! !!!"!!! !! ! !!!!". 

 

 

 

Figure 3.6b Plot of !"#!!
!!!!!

!! !!

 versus !  for the same parameters.  The relationship is 

approximately linear. 
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Returning to our toy example, we can use our calculated 
!"

!"
! !

!
!

!
!"# !! !!

!"#!

!"# !!!!
, 

where 
!
!
!"#

! !!!

!!!
! !"#

! ! to get a general idea of how ! varies with !.  As expected, 
!"

!"
! ! in 

Case 1 when ! ! !.  Increasing ! in this case does not change the power at the receiver.  Figure 

3.7 shows how the intensity at the receiver varies with the angle !!  Figure 3.8 plots 
!"

!"
 versus !. 

 

 

Figure 3.7 Plot of the intensity at the receiver as the angle !  between !! !
!"!!

!"#!
 and 

!! !
!

!
, for 

!

!
! !". 

 

 

 



! '*!

 

Figure 3.8 Plot of  
!"

!"
 between !! !

!"#!

!"#!
 and !! !

!

!
, for 

!

!
! !".  From this plot, we 

observe that the intensity at the receiver shows quadratic growth with !  for small !  and 

approximately linear growth as ! approaches 
!

!
. 

 

 

We now show how the signal-to-suppression region power ratio behaves in the region 

directly around the desired suppression point.  We also show how this behavior changes with 

increasing angle !!  Suppose ! !
!!!!

!

!!!!
!
 is the signal to suppression ratio at point !.  Let 

! !
!!!!

!

!!!!
!
 be the signal to suppression ratio at a point ! near !. 

  



! '"!

 

! !
!! ! !

!

!! ! !
!
!

!
!
!
!

! !"#! !"# ! ! ! ! ! !"#! !"# ! ! !
 

 

!
!
!
!"#

! !

!! !"#! ! ! ! ! !
 

 

!!

!!
! !

!!
!

!!

!"#
! ! !"# ! ! ! ! !

!"#! ! ! ! ! !
 

 

!
!
!

!!!"
! !

!!!
!
!"#

! ! !!! !"# ! ! ! ! ! !

!! !"#! ! ! ! ! !
 

 

 

As ! increases, the variation in the signal-to-suppression region power ratio at ! ! ! decreases, 

and thus the minimum suppression ratio in the suppression region increases as well.  Thus we 

generally expect to be able to achieve the same suppression ratio with fewer suppression points if 

the suppression region is further away from the receiver.  This is supported by the example plots 

in Figure 3.9. 
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Figure 3.9 As in previous example, !! !
!"#!

!"#!
, !! !

!

!
, and 

!

!
! !".  Each plot shows the 

value of the signal-to-suppression-region power ratio at a point ! ! ! as ! increases.  The 

suppression ratio at ! is exactly 10 in each case. 

 

 

The expressions for 
!!

!!
 and 

!
!
!

!!!"
 suggest a relationship between our lowest achievable 

signal-to-suppression-region power ratio within a suppression region and both the width and 

number of suppression points in the suppression region.  Figure 3.10 shows plots of these 

relationships.  In general, the maximum ! we must consider when determining the minimum 

signal-to-suppression-region power ratio increases with the distance between two successive 

suppression points.  As the width of the suppression region increases, this distance increases, and 

the value of ! at which we must evaluate the suppression ratio increases.  Thus we expect the 

achievable suppression ratio to decrease with suppression region width.  As ! approaches 0, the 

suppression ratio changes more rapidly with !, so smaller changes in overall suppression width 

are likely to have a much greater impact on the suppression ratio.   Increasing the number of 



! '$!

suppression points has the opposite effect.  This results in a smaller maximum !, and thus we 

would expect the achievable suppression ratio to increase.  However, increasing the number of 

suppression points is countered by the additional constraints placed on the objective function.  

Because there will be fewer degrees of freedom with which to maximize the intensity at the 

receiver, increasing the number of suppression points will tend to decrease the suppression ratio. 

 

 

Figure 3.10 As in Figure 3.9, !! !
!"#!

!!"!
, !! !

!

!
, and 

!

!
! !".  Each plot on the left shows 

the value of 
!!

!!
 at a point ! ! ! as ! increases.  Each plot on the right shows the value of 

!
!
!

!!!"
 at 

a point ! ! ! as ! increases.  The signal-to-suppression-region power ratio at ! is exactly 10 in 

each case. 
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Finally, we show how the receive power varies with the fill factor pre-suppression.  In 

Chapter 7, we will compare this to the relationship between receive power and fill factor after 

suppression.  Let the fill factor of an N-aperture linear array be !. 

The maximum intensity at receiver is 
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If ! is the half-width of an aperture, ! !
!"

!!
, where ! is the length of the array. 
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We substitute this expression into 
!

! !
!"
!
!!"

!

!!!

!

!"
!!"
!
!!"

!

!!!  and find that 
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For ! ! ! ! !, 
!

!"
!
!"

!
!!"

!

!!!
 is approximately linear, suggesting that the maximum 

intensity at the receiver !
!"

!
!!"

!

!!!
 shows approximately quadratic growth with increasing fill 

factor.  Indeed, in this example !
!"

!
!!"

!

!!!
!

!

! !
!! !"#$

!

!
.  As N increases, the quadratic 

approximation of the increase in receiver intensity will be more accurate. 

!

 

!
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Chapter 4 

Numerical Methods 

The nonlinear optimization problem defined in Chapter 2 was solved numerically using 

NLopt, a software package containing open-source implementations of nonlinear optimization 

algorithms [9].  We used an implementation of an evolutionary global optimization algorithm 

(ISRES) and an implementation of a sequential quadratic programming local optimization 

algorithm (SLSQP).  Since the goal of this thesis was to analyze the physical potential for 

suppressing power to a defined region, the algorithms we chose may not have the optimum run 

time for our specific problem.  We briefly summarize the two algorithms that we used and our 

reasons for choosing them below. 

 

4.1 Improved Stochastic Ranking Evolution Strategy 

Because the problem is a non-convex global optimization problem with disjoint feasible 

regions (due to a singularity at ! ! !) and nonlinear inequality constraints, we used the 

stochastic evolutionary algorithm described in [10].  It is referred to in [9] as the Improved 

Stochastic Ranking Evolution Strategy (ISRES).  ISRES stochastically ranks a population of 

potential solutions and mutates the best of these to locate the best solution.  We used the NLopt 

default for the population size, resulting in a population of !"!!! ! !! individuals, for an !-

aperture array [9].  The stochastic ranking is the “bubble-sort-like procedure” described in [12], 

which with some probability !!  compares two potential solutions based on their objective 

function values and with probability !! !! compares them according to a penalty function that 
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accounts for the inequality constraints.  The top-ranked individuals are each mutated multiple 

times through the evolution strategy described in [10] to form a new population.  The step size 

for each mutation is determined through a log-normal update rule on the parent step size; random 

fluctuations from this expected median are reduced via exponential smoothing of previous step 

sizes in the same lineage.  Each parent has one mutation generated by a step towards the 

individual ranked immediately below the parent. 

ISRES is not guaranteed to converge, but it can potentially escape non-optimum local 

maxima.  The time the algorithm takes to reach an acceptable solution is dependent on the 

problem dimension and the number of constraints (i.e. the number of apertures and the number 

of suppression points, respectively), as well as on the distance of the suppression region from the 

receiver.  The time to convergence generally increases with additional apertures and suppression 

points and generally decreases as the suppression region moves further away.  The latter 

dependence could be more accurately attributed to the pre-suppression SSR for a particular 

suppression region, which tends to decrease with increasing suppression region. 

There is no clear heuristic for determining that the algorithm has converged; the 

documentation in [9] suggests that the algorithm should be run for as long as possible in order to 

achieve the best practical result.  One issue with this algorithm for our problem is that if all of the 

local optima have the same objective function value, the algorithm would waste computation 

time by searching through multiple feasible regions to find effectively the same solution as in all 

the other feasible regions. 
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4.2 Sequential Least Squares Quadratic Programming 

The local optimization algorithm we used was the sequential quadratic programming 

algorithm detailed in [13] and summarized below.  This algorithm uses an iterative search 

algorithm, where the start vector !! is successively updated by steps !!!! at each step !.  The 

search direction !! at each step is determined by solving the quadratic programming problem: 

!"#
!!!!

!

!
!
!
!!!! !! !! !  

subject to 

!!! !! !! !! !! ! ! 

where !! !  for ! ! ! ! !  are the inequality constraints (including the relaxed weight 

constraint).  !! is the Hessian matrix of the Lagrange function 

! !! ! ! ! ! ! !!!!!!!

!

!!!

 

Instead of evaluating each !! at each step !, the algorithm uses the Wilson-Han-Powell 

Method (a treatment of this method is found in [14]) to approximate the Hessian matrix using 

only first order information and to determine the step size !! .  !!  is approximated using 

Broyden-Fletcher-Goldfarb-Shanno updates, which, according to [15], can be used to 

approximate the Hessian for “general nonquadratic function of modest dimensions.”  It is 

suggested in [13] that the problem dimension be less than 200; the documentation in [9] suggests 

that up to a few thousand parameters would be feasible.  In this thesis, we do not consider any 

aperture arrays (or suppression point arrays) of greater than ! ! !"". 

 We ran this algorithm using MATLAB until it was unable to continue due to roundoff 

errors.  We then considered the algorithm to have converged to a solution if the resultant weight 



! ("!

vector caused the inequality constraints to be within a !"!!"  relative tolerance (that is, 

!! ! ! !"
!!" for convergence). 

 

4.3 Comparison of Algorithms 

Because we did not prove that each local optimum of the problem had an equal objective 

function value, we first employed the global algorithm to find numerical solutions.  However, 

because of the stochastic nature of the global algorithm, convergence was not guaranteed.  

Additionally, the time to convergence required by the global algorithm was several orders of 

magnitude greater than the time to convergence required by the local algorithm (hours versus 

seconds).  It is unclear that the benefits of using the global algorithm outweighed the costs, 

especially since symmetry of the problem suggested that the local optima were equivalent.  

When we compared the results of running the global algorithm with running the local algorithm 

with random start vectors on the same systems, we found that provided we specified appropriate 

termination criteria and constraint tolerances for the local algorithm, we were able to get as good 

or better results from SLSQP as from ISRES on the linear aperture array. The weight vectors we 

obtained from SLSQP with varying start vectors were different from each other, but they differed 

by constant phase factors, and were therefore functionally equivalent. 

We therefore chose to use only the local algorithm for the two-dimensional case.  The 

run-time was much faster, the trends seen were comparable to those seen in the linear case with 

the global algorithm, and the suppression constraints were successfully met. 
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4.4 Simulated System Specifications 

Before we present our numerical results in the following chapters, we make precise the 

details of the systems we analyze. 

4.4.1 Linear Aperture Array 

In Chapter 5, we analyze a linear aperture array.  Due to the complexity of solving the 

nonlinear optimization problem – especially with the global algorithm – for a large number of 

apertures, we consider first the case of a linear transmit array to shed light on the issues involved 

in using the general problem formulation to suppress power to a desired area.  Parameters such 

as fill factor or number of suppression points in the linear aperture formulation can be varied 

independently of many other parameters.  The trends we observe in the linear case may be 

generalizable to more complex models.  We conduct most of our analysis on the linear array 

system with the global optimization algorithm ISRES.  This algorithm takes too long to converge 

when we extend our consideration to the 2D array in Chapter 6, but we use it with the linear 

apertures and show that the local optimization algorithm SLSQP converges to a weight vector 

within the same equivalence class. 

Our system model, shown in a generalized form in Figure 4.1, comprises a 0.48 meter by 

0.01 meter linear aperture array centered at ! ! ! in the transmit plane. The height of each 

aperture in the array is constrained to 0.01 meters, but the width can vary with the desired fill 

factor.  The fill factor is defined as the total summed widths of the apertures in the array divided 

by 0.48 meters, the total width of the array.  The optical wavelength is 10
-6

 meters and the 

receive plane is a distance of 10000 meters from the transmitter.  The position of intended 

receiver is taken to be at ! ! !. 

 



! ($!

 

Figure 4.1  Linear aperture array with variable parameters labeled.  In our numerical examples in 

Chapter 5, ! ! !!!"!!!!"#!! ! !!!"!!!!!! and ! vary with the number of apertures and the 

specified fill factor. 

 

 

The desired SSR at each suppression point is 10.  We define the suppression region by a 

sequence of suppression points equally spaced on a line in the receive plane.  The first and last 

suppression points mark the edges of our desired suppression region.  The distance of the 

suppression region from the receiver is measured by the distance along the x-axis from the 

receiver to the closest suppression point.  Figure 4.2 shows a desired suppression region for a 

linear aperture array. 
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Figure 4.2 One dimensional suppression region with equally spaced suppression points.  The 

receiver is at the origin. 

 

 

 

We measure distance along the x axis in approximate beam widths of 0.0208 meters, 

calculated from the total array length of 0.48 meters.  We begin by analyzing the system with a 

filled aperture array: we vary the number of abutted apertures that fill the 0.48 meters array.  The 

apertures all have the same height, but their width varies in order to maintain the overall 

dimensionality of the array.  Later, we decrease the fill factor and accordingly decrease the 

aperture widths. 

 

4.4.2 Two-Dimensional Aperture Array 

In Chapter 6, we present results for the two-dimensional aperture array.  This is a more 

complex model, and therefore we choose to perform our numerical calculations with the local 

optimization algorithm SLSQP to speed up computation.  We use a square transmit aperture 

array centered at the origin and suppress a square region in the receive plane.  We populate the 
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array with a perfect square number of apertures, such that each corner of the array contains an 

aperture.  The suppression region is likewise comprised of a perfect square of suppression points, 

centered around the x-axis.  The distance of the suppression region from the receiver is measured 

by the distance along the x-axis from the receiver to the closest suppression point.  Figure 4.3 

shows the two-dimensional aperture array, and Figure 4.4 shows the two-dimensional 

suppression region. 

 

 

Figure 4.3 2D aperture array with parameters labeled.  In our calculations in Chapter 6, we take 

! ! !"" and define ! based on the number of apertures ! and the fill factor. 
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Figure 4.4 Two-dimensional suppression region.  The suppression points are equally spaced in 

the x- and y- directions such that they form a square pattern.  The receiver is located at the 

origin. 

 

Our transmitter model comprises a 0.1 meter by 0.1 meter square aperture array centered 

at !!! !! ! !!!!! in the transmit plane.  The width of each square aperture varies with the 

specified number of apertures and the fill factor.  The fill factor is defined as the total summed 

area of the apertures in the array divided by 0.01 square meters, the total area of the array.  The 

optical wavelength is still 10
-6

 meters and the receive plane is a distance of 10000 meters from 

the transmitter.  The position of intended receiver is taken to be at !!!!! ! !!!!!. 

The desired SSR at each suppression point is 10.  We define the suppression region by a 

square array of suppression points equally spaced in the x- and y- directions in the receive plane.  

The suppression points at the corners of the square array mark the edges of our desired 

suppression region.  The distance of the suppression region from the receiver is measured by the 

distance along the x-axis from the receiver to the closest suppression point.  The width between 
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suppression points, i.e. the separation between adjacent points along the x-axis is determined by 

the specified number of suppression points and the size of the suppression region. 

We measure distance along the x- and y- axes in approximate beam widths of 0.1 meters, 

calculated from the total array size of 0.1 by 0.1 meters. 

 

4.4.3 Adjustable Parameters 

In all of our calculations, we keep the wavelength fixed at 10
-6

 meters and the distance 

between the transmit plane and the receive plane at 10000 meters.  The total size of the linear 

aperture array is kept constant at 0.48 meters; the total size of the square aperture array is kept 

constant at 0.1 by 0.1 meters.  The number of apertures and the number of fill factors is specified 

for each calculation; these parameters determine the size of the apertures.  The size of the 

suppression region and the number of suppression points used to approximate it can also be 

specified for each calculation; these parameters determine the spacing between the suppression 

points.  Lastly, the distance of the suppression region from the receiver (along the x-axis) and the 

desired signal to suppression ratio can be specified. 

If the number of suppression points exceeds the number of apertures, the problem is over-

constrained and the optimization algorithm may have no solution to converge to – except in 

special cases, e.g. if some of the suppression points are in a region smaller than one null width.  

Additionally, the number of parameters affects the amount of time the algorithms take to 

converge; since the global algorithm takes significantly longer than the local algorithm to find a 

solution, the aggregate number of apertures and suppression points is very relevant in choosing 

the type of algorithm to use.  This is why we choose to use the global algorithm only for the 

linear aperture array case, which is computationally simpler to solve. 
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Chapter 5 

Suppression Via Linear Aperture Array 

As described in Chapter 4 (Section 4.4.1), our example linear array system model 

comprises a 0.48 meter by 0.01 meter linear aperture array centered at ! ! ! in the transmit 

plane.  The height of each aperture in the array is constrained to 0.01 meters, but the width can 

vary with the desired fill factor.  The fill factor is defined as the total summed widths of the 

apertures in the array divided by 0.48 meters, the total width of the array.  The optical 

wavelength is 10
-6

 meters and the receive plane is a distance of 10000 meters from the 

transmitter.  The position of the intended receiver is at ! ! ! in the receive plane.  The desired 

signal-to-suppression-region power ratio (defined as the signal power at the user divided by the 

maximum power in the suppression region) is 10. 

We measure distance along the !-axis in approximate beamwidths of 0.0208 meters, 

calculated from the total array length of 0.48 meters.  This is the approximate half-width of the 

main lobe of the transmission at the receiving plane.  Figure 5.1a demarcates this beamwidth in a 

plot of the output radiation pattern for a filled array with 24 apertures, with maximum possible 

power transmitted to the receiver.  For sparse arrays, i.e. those with small fill factors, the sub-

apertures within the array define an envelope of grating lobes, but the width of the total array 

defines the width of each of these grating lobes and the width of the main lobe of the 

transmission.  The approximate half-width of these lobes is our 0.0208 meter beamwidth 

approximation.  The significant grating lobes that we may want to suppress power to occur 

within the main lobe of the sub-aperture envelope, i.e. the main lobe of the transmission of a 
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single aperture within the array.  Figure 5.1b shows a plot of the output radiation pattern for a 

sparse array with 24 apertures, with maximum possible power transmitted to the receiver. 

 

 

 
Figure 5.1a Radiation pattern in receive plane from a filled 24-aperture linear array, with 

maximum intensity at the receiver.   
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Figure 5.1b Radiation pattern in receive plane from a 24-aperture sparse linear array of fill factor 

= 0.1, with maximum intensity at the receiver.   

 

 

 In our analysis below, we consider two different normalizations of the intensity in the 

receive plane.  First, we consider how much the intensity at the receiver decreases after 

suppression; this term is calculated as the fraction of the maximum possible intensity at the 

intended user that remains after suppression.  This is a useful statistic because it indicates the 

extent to which different parameters affect the signal at the user after suppression.  We also 

consider the intensity at the receive power assuming the total transmitted power !! !!
!!

!!!  is 

normalized to 1, where ! is the number of apertures, !! is the area of aperture !, and !! is the 

weight of that aperture.  This value allows us to better see the tradeoff between certain 

parameters, whereby changing one parameter could increase the absolute power at the receiver at 

the cost of making the system more sensitive to changes in other parameters. 
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5.1 Comparison of ISRES and SLSQP for Linear Aperture Array 

We use both ISRES and SLSQP in our analysis of the linear aperture array.  As discussed 

in Chapter 4, neither of these algorithms is guaranteed to converge to the global optimum weight 

vector.  However, our results suggest that ISRES does find a reasonable solution after no more 

than a few million iterations, and SLSQP converges to a similar solution regardless of the choice 

of start vector.  Figure 5.2 shows an example plot for which ISRES and SLSQP both converge to 

equivalent weight vectors. 

 

 
Figure 5.2 The signal to suppression region power ratio versus the distance of the suppression 

region from the receiver for an example aperture configuration.  ISRES and SLSQP both 

converge to the same values. 

 

Since we did not prove that a local optimization algorithm would be sufficient to solve 

this problem, using ISRES or another global algorithm would be preferable to SLSQP – although 

even ISRES is not ideal (discussed in the documentation of [9]) because it has no satisfactory 

termination criterion.  To get a rough estimate of the time to convergence of ISRES, we chose a 

maximum number of iterations of 4 million and determined the algorithm had “converged” 
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sooner, i.e. at l iterations, if the SSR for greater than l iterations was within 2% of the SSR at 4 

million iterations, and if the corresponding decrease in receive power was within 5% of the 

decrease at 4 million iterations. 

The time for convergence of ISRES, approximately proportional to the number of 

iterations required, was heavily dependent on number of apertures.  Running on a dual core 3.07 

GHz Intel processor, and optimizing for 12 apertures, 2 suppression points, and a suppression 

region 0.2 beamwidths away from the intended receiver, the algorithm took approximately 1.2 

minutes to converge.  The same setup with 24 apertures took approximately 4.6 minutes to 

converge.  For a specific set of system parameters, the time to converge remained nearly constant 

as the suppression region moved further than 0.2 beamwidths away.  However, as the 

suppression region moved closer to the intended receiver, the time to convergence increased 

dramatically; a system with 24 apertures and a suppression region 0.1 beamwidths away took 

approximately 11.0 minutes to converge. 

Running SLSQP was dramatically faster, as is evident in Figure 5.3, which compares the 

run time of SLSQP under two different start vectors to the run time of ISRES under 8 million 

iterations.  For suppression region distances as close as 0.0333 beamwidths to the receiver, such 

a high number of iterations may be necessary for convergence.  SLSQP was run until roundoff 

errors prevented the algorithm from continuing.  From Figure 5.3, we see that the SLSQP run 

time remains fairly constant for differing suppression region distances and is on the order of 

seconds.   
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Figure 5.3 The run time for ISRES at 8 million iterations is three or four orders of magnitude the 

run time of SLSQP. 

 

While most of the data in the analysis below was found using ISRES, we chose to use SLSQP to 

speed up calculation for plots with more data points or systems with more dimensions.  Figure 

5.2, and other similar test cases, suggest that SLSQP finds as good or better results as ISRES. 

 

5.2 Transmit Array Characteristics 

5.2.1 Number of Apertures 

We begin by analyzing the system with a filled aperture array: we vary the number of 

abutted apertures that fill the 0.48 meters array.  The apertures all have the same height, but their 

width varies in order to maintain the overall dimensionality of the array.  Figure 5.4 shows how 

the post-to-pre-suppression receiver power ratio varies with the number of apertures comprising 

a full array.  As the number of apertures increases, the power at the receiver is less affected by 

suppressing power to a region 0.1667 beamwidths away.  Since the number of suppression points 

is kept constant in this example, increasing the number of apertures provides the system with 
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more degrees of freedom with which to maximize the receive power after suppressing the desired 

suppression points.  This plot asymptotically approaches the performance of the continuous filled 

aperture- where we can adjust the amplitude and phase of each point in the array.   

 

 
Figure 5.4 Fraction of maximum user power received after suppression versus number of 

apertures. 

 

 

5.2.2 Fill Factor 

Our analysis of the effect of the array fill factor on system performance is complicated by 

the effects of other system parameters – namely the width and distance between apertures – on 

the signal in the receive plane.  The post-suppression power at the intended user is generally 

proportional to the pre-suppression signal to suppression region power ratio.  If the signal power 

at the receiver is much higher than the power in the suppression region before the input weight 

vector is optimized, the fraction of the maximum received power sent to the intended user after 

optimization is higher than if the original power received by the user were closer to the original 

suppression region power.  Since that original power ratio is directly related to the transmit 



! )&!

aperture parameters, it follows that the power received by the user after suppression is also 

affected by the geometry of the transmit apertures.  As the width of the apertures decreases, the 

pre-suppression power distribution widens, and thus the pre-suppression power ratio decreases.  

As the distance between the apertures decreases, the pre-suppression power distribution also 

widens, and thus the pre-suppression power ratio decreases as well. 

In Figure 5.5, we observe two counterintuitive trends regarding the post-suppression 

power at the receiver that we explain by analyzing the aperture geometry of the transmit array.  

However, we first must emphasize that Figure 5.5 shows the relative decrease in power at the 

receiver after suppression, not the absolute power at the receiver (see Figure 5.6 to compare the 

post-suppression power at the receiver given a fixed transmitter power.)  We assume that for 

each array configuration, the amount of transmitter power is scaled such that the power at the 

receiver before suppression is constant.  We then plot the fraction of this power that remains at 

the receiver after suppression of a 1/9 beamwidth suppression region 5/30 beamwidths away 

from the receiver. The first trend we observe is that the fraction of the pre-suppression maximum 

user power received by the intended user after suppression  decreases with increasing fill factor.  

The effect is much more pronounced for smaller number of apertures.  Second, for smaller fill 

factors, the post-to-pre-suppression receiver power ratio appears to decrease as the number of 

apertures increase, which contradicts what we observe for a filled aperture array.  

Both of our observations are a direct result of keeping the overall array dimensions 

constant while varying the internal parameters.  Decreasing the fill factor requires decreasing the 

width of each aperture and simultaneously increasing the distance between the apertures.  Since 

the distance between apertures affects the modulation of the radiation pattern whereas the width 

of the aperture affects the external envelope, the distance between apertures is the dominant 
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parameter within the main lobe.  Here, as the distance between apertures increases for smaller fill 

factors, the pre-suppression signal-to-suppression-region power ratio increases, and the receiver 

power ratio likewise increases.  For a constant fill factor, increasing the number of apertures 

decreases both the width of the apertures and the distance between them.  This should decrease 

the pre-suppression signal-to-suppression-region power ratio, and therefore decrease the post-to-

pre-suppression receiver power ratio.  However, this decrease is countered by the added 

optimization control of having more apertures.  For larger fill factors, this last parameter 

dominates and the receiver power ratio increases with more apertures.  For smaller fill factors, 

where the area of the apertures is very small, increasing the number of apertures does not 

counteract the effects of decreasing the width of and distance between the apertures. 

 

 
Figure 5.5 Fraction of maximum user power received after suppression versus number of 

apertures, for varying fill factors. 
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The data shown in Figure 5.6 is similar to that of Figure 5.5, although with almost twice 

as many data points.  In Figure 5.6, however, the intensity after suppression is normalized such 

that each point corresponds to a system with the same transmit power.  The curves in this plot 

can be used to compare the absolute intensity at the receiver after suppression for different 

aperture and fill factor combinations.  Here, the effect of increasing the number of apertures for a 

constant fill factor appears less dramatic. 

 

 
Figure 5.6  Intensity at the receiver after suppression versus number of apertures, for varying fill 

factors.  The intensity is normalized such that the transmit power !! !!
!!

!!! ! !, where ! is 

the number of apertures, !! is the area of aperture !, and !! is the weight of that aperture. 

 

 

The best results are obtained with large fill factors and many apertures, but the fill factor 

appears to have a more significant impact on receiver power than the number of apertures.  This 

is especially clear in Figure 5.7, where the intensity versus fill factor curves for 16, 24 and 36 

apertures are not easily distinguishable until the fill factor is greater than 0.5.  Although for 

smaller fill factors, the receiver intensity does decrease with increased number of apertures, the 
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added optimization control almost entirely counters that effect and the resulting intensity is 

approximately the same regardless of the number of apertures.  For small fill factors, arrays with 

fewer apertures are in fact doubly desirable, since these systems require less computational effort 

for suppression and are less physically expensive. 

 

 
Figure 5.7  Intensity at the receiver after suppression versus fill factor, for varying apertures.  

The intensity is normalized such that the transmit power !! !!
!!

!!! ! !, where ! is the 

number of apertures, !! is the area of aperture !, and !! is the weight of that aperture. 

 

 

In order to take advantage of spatial diversity to mitigate turbulence, we desire arrays 

with smaller fill factors and a greater number of apertures.  Figures 5.6 and 5.7 reveal the 

tradeoffs that must be considered when choosing these transmitter parameters. 
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5.3 Suppression Region Characteristics 

 We now turn to the characteristics of the suppression region that impact the success of 

suppressing a desired region to a specified ratio. 

 

5.3.1 Separation of Suppression Points 

The separation of suppression points is a significant parameter when the length of the 

suppression region grows large.  If the suppression points used to approximate the suppression 

region are too far from each other, there might be energy spikes in the suppression region 

between the suppression points, thus decreasing the overall signal-to-suppression-region power 

ratio.  We calculate this ratio based on the maximum intensity in the suppression region, so the 

further apart the suppression points are, the smaller the ratio will be.  Using a larger number of 

suppression points to approximate the suppression region may result in a better signal-to-

suppression-region ratio but requires more time to converge to a solution and could require more 

apertures.  In Figures 5.8-5.10, we show that the required separation between the suppression 

points varies based on the distance of the suppression region from the intended receiver and the 

acceptable decrease in power at the receiver.  We find that the signal-to-suppression-region ratio 

is less sensitive than the receiver power to suppression point separation; however, a decrease in 

signal-to-suppression-region ratio is worse than a decrease in receive power, since the latter can 

be accommodated with an appropriately scaled transmitter power. 

Figure 5.8 shows the effect the distance between suppression points can have on the 

optimized radiation pattern.  In Figure 5.8, we see that the decrease in user power after 

suppression remains constant until the separation between the suppression points exceeds the 

distance between the suppression region and the intended receiver.  If the distance between the 
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two points becomes too large, not only will the power to the intended user be overly limited, but 

the desired signal-to-suppression-region ratio threshold may not be satisfied for the entire region 

between the suppression points.  Figure 5.9 shows that the achievable signal-to-suppression-

region ratio remains fairly constant until the separation between the suppression points is twice 

the distance between the suppression region and the receiver.  This indicates that there is a range 

of suppression point separation for which the desired signal-to-suppression-region ratio can be 

achieved, but at a cost of decreasing intensity at the receiver. 

 

 
Figure 5.8 Fraction of maximum user power received after suppression versus distance between 

suppression points, for varying number of apertures.  The first suppression point is located 

0.1667 beamwidths away from the receiver. 

 

 

 



! *+"!

 
Figure 5.9 Signal to suppression region power ratio versus distance between suppression points, 

for various suppression region positions. 

 

Figure 5.10 shows that the effect on the achievable signal-to-suppression-region ratio 

caused by increasing the separation between suppression points is worse with more apertures, but 

we see in Figure 5.8 that the effect on the receiver power is worse with fewer apertures.  This is a 

result of our method of approximating the suppression region, through which we enforce the 

desired signal-to-suppression-region ratio only at the specified suppression points.  Thus when 

the suppression points are farther apart, the power to those points is suppressed exactly, but the 

power to the region between them is not deliberately limited.  With more apertures, the algorithm 

has more degrees of freedom with which to maximize the receiver power, but in doing so, it may 

create intensity peaks in between the spread suppression points. 
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Figure 5.10 Signal to suppression region power ratio versus distance between suppression points, 

for varying number of apertures. 

 

 

Although we claim that the achievable signal-to-suppression-region ratio is more 

important than the corresponding decrease in user power, the decrease in received power at the 

user is important for two reasons.  One, the number of iterations required for ISRES to reach a 

solution increases as the post-suppression power at the intended receiver decreases.  Two, the 

transmitter power required to ensure successful transmission to the intended receiver increases 

linearly with the decrease in receive power.  While a 10 dB increase in required transmit power 

might be acceptable, a 30 dB increase might not be.  Thus, it is useful to note what parameters 

affect the post-suppression receive power. 
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5.3.2 Distance and Length of Suppression Region 

This section discusses how the power received by the intended user after suppression 

varies with the distance of the suppression region from the receiver.  The distance of the 

suppression region from the receiver is measured from the first point in the suppression region.  

We noted earlier that for a filled array, increasing the number of apertures increases the fraction 

of the maximum user power received after suppression.  Figure 5.11 highlights the difference in 

this receive power ratio between a filled 12 aperture array and a filled 24 aperture array, with a 

1-beamwidth long suppression region.  The receive power ratio from the 24 aperture array is 

consistently higher than that of the 12 aperture array, but the difference in the ratio grows smaller 

as the suppression region moves further away from the receiver. 

 

 
Figure 5.11 Fraction of maximum user power received after suppression versus distance of 

suppression region, for varying number of apertures. 
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Figures 5.12 and 5.13 compare the effect of different suppression region lengths on the 

power received by the intended user after suppression as the distance of the suppression region 

moves from the receiver for different suppression region lengths.  We increase the length of the 

suppression region by increasing the number of suppression points; the distance between the 

suppression points is kept constant at 0.1111 beamwidths.  Each curve represents a suppression 

region of a different length.  Figure 5.12 shows that regardless of suppression region length, the 

user power after suppression increases with the distance of the suppression region from the 

intended receiver.  Figure 5.13 shows that the decrease in received user power after suppression 

is on the order of 20 dB when the suppression region is within a fifth of a beamwidth from the 

receiver.  This indicates that although an signal-to-suppression-region ratio of 10 can be achieved 

when the suppression region is as close as a tenth of a beamwidth away from the intended user, 

the necessary increase in transmit power might be too expensive, depending on the length of the 

suppression region.  Both plots indicate that when the suppression region is very close to the 

receiver, the length of the suppression region has a much greater effect on the post-suppression 

power at the receiver. 
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Figure 5.12 Intensity at the receiver after suppression versus distance of suppression region from 

receiver, for various suppression region lengths.  The intensity is normalized such that the 

transmit power !! !!
!!

!!! ! !, where ! is the number of apertures, !! is the area of aperture 

!, and !! is the weight of that aperture. 

 

 
Figure 5.13 Fraction of maximum user power received after suppression versus distance of 

suppression region, for various suppression region lengths. 
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Figure 5.14 shows how the length of the suppression region affects the power at the 

intended user after suppression.  A longer suppression region is necessary when there is 

significant uncertainty as to an eavesdropper’s or another user’s position.  It is clear from the 

figure that the location of the first point in the suppression region is much more significant than 

the length of the suppression region itself.  The first point has the highest received power prior to 

suppression and is closest to the intended receiver; therefore it is the hardest to suppress without 

pulling down the intended user’s received power.  Points further out in the suppression region are 

successively easier to suppress.  For a suppression region 0.5 beamwidths away, changing the 

length of the suppression region has a negligible effect.  However, for a close-in suppression 

region 0.1 beamwidths away from the from receiver, the length of the suppression region has a 

significant impact on the post-suppression user power.  Figure 5.14 indicates that if an 

eavesdropper is close to the receiver, in order to achieve adequate suppression with a reasonable 

transmit power, the uncertainty as to his position must be smaller than if the eavesdropper were 

further away. 
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Figure 5.14 Fraction of maximum user power received after suppression versus length of 

suppression region, for various suppression region positions. 

 

 

5.4 Summary of Trends 

• It is possible to suppress the power to a broadly defined region in the receive plane without 

compromising the ability of the intended user to receive the signal. 

• The amount of time the stochastic evolutionary algorithm takes to converge to the optimum 

weight vector is approximately constant if the suppression region is 0.2 beamwidths or 

more away from the intended user. 

• The sequential quadratic programming local algorithm is about three orders of magnitude 

faster than the evolutionary global algorithm.  For our calculations in this chapter, both 

algorithms converge to equivalent solutions. 
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• The separation between suppression points in the suppression region must be smaller than 

the distance between the user and the suppression region to prevent a significant decrease 

in post-suppression power at the receiver.  If we assume the closest region we will suppress 

power to is 0.1 beamwidths away from the receiver, then the distance between the 

suppression points must be no more than 0.1 beamwidths. 

• The separation between suppression points must be less than twice the distance between 

the user and the suppression region in order for an SSR of 10 to be achieved through 

optimization. 

• The required transmit power increases as the suppression region moves closer to the 

intended user.  Closer than 0.2 beamwidths, scaling the transmit power to maintain the 

integrity of the signal at the user becomes rapidly expensive. 

• The distance of the first suppression point is much more significant than the length of the 

suppression region.  However, suppressing more points does decrease the power received 

by the intended user. 

• For smaller fill factors, the number of apertures is much less significant than the width and 

distance between apertures.  The receive power ratio can even decrease with increasing 

number of apertures.  Additionally, as the fill factor gets smaller, the grating lobes become 

potentially damaging, allowing interference and interception much further away than just 

within the main lobe.  However, smaller fill factors with more apertures are best at 

mitigating the effects of turbulence via spatial diversity. 

!  
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Chapter 6 

 

Suppression Via Two-Dimensional Aperture 

Array 
 

As described in Chapter 4 (Section 4.4.2), our example two-dimensional array system 

model comprises a 0.1 meter by 0.1 meter square aperture array centered at !!! ! !! !  in the 

transmit plane.  Each aperture in the array is square, but its width can vary with the desired fill 

factor.  The fill factor is defined as the total summed area of the apertures in the array divided by 

0.01 square meters, the total area of the array.  The optical wavelength is 10
-6

 meters and the 

receive plane is a distance of 10000 meters from the transmitter.  The position of the intended 

receiver is at !!! ! !! !  in the receive plane.  The desired signal-to-suppression-region 

power ratio (defined as the signal power at the user divided by the maximum power in the 

suppression region) is 10 dB until Section 6.3. 

We measure distance along the !- and !- axes in approximate beamwidths of 0.1 meters, 

calculated from the array width of 0.1 meters.  This is the approximate half-width of the main 

lobe of the transmission in the receive plane.  Figure 6.1 demarcates a 1x1 beamwidth region in a 

plot of the output radiation pattern for a sparse array with 16 apertures, with maximum possible 

power transmitted to the receiver.  For arrays with small fill factors, this beamwidth is also the 

approximate half-width of grating lobes.  We can see several grating lobes in both the !- and !- 

directions in Figure 6.1.  In Figure 6.2, we show the same plot in 3D, with the !-axis 

representing the relative intensity at the receiver. 
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Figure 6.1a Radiation pattern in the far field from a 16-aperture transmit array with maximum 

power at the receiver.  The intensity is represented by color; red represents the greatest intensity 

value and blue represents the lowest.  The green square demarcates a !!!!! beamwidth region in 

the receive plane.  The orange square shows the location of a grating lobe.  Figures 6.1b and 6.1c 

below show 3D representations of this plot. 

 

 
Figure 6.1b Radiation pattern in the far field from a 16-aperture transmit array with maximum 

power at the receiver, where the !-axis represents the intensity on a linear scale. 
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Figure 6.1c Radiation pattern in the far field from a 16-aperture transmit array with maximum 

power at the receiver, where the !-axis represents the intensity on a logarithmic scale.  The 

existence of grating lobes is made clear by this representation of the intensity in the receive 

plane. 

 

 In this chapter, we always normalize the intensity at the receiver such that the total 

transmitted power !! !!
!!

!!!  is 1, where ! is the number of apertures, !!  is the area of 

aperture !, and !! is the weight of that aperture.  Due to the increased complexity of the two-

dimensional system compared to the linear array, we solve each system for the optimum weight 

vector using SLSQP to avoid the unreasonably long run times of ISRES. 

 

6.1 Transmit Array Characteristics 

 In Figure 6.2, we vary the number of apertures and the fill factor of the transmit array, 

and plot the signal-to-suppression-region power ratio in a !!!!! beamwidth region as the 

suppression region moves away from the receiver.  We constrain the power at the 4 corners of 

the square suppression region to less than one tenth of the power at the receiver.  The plotted 
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signal-to-suppression-region power ratio is the ratio of the maximum intensity within the 

suppression region (bounded by the 4 suppression points) to the intensity at the receiver.  As the 

suppression region moves away from the receiver, the intensity inside the suppression region 

decreases relative to the intensity at the receiver, and the ratio for the whole region approaches 

10 dB. 

 

 
Figure 6.2 Achievable signal-to-suppression-region power ratio in a !!!!! beamwidth region 

versus distance of suppression region from receiver.  The desired SSR of at least 10 dB is 

enforced only at the 4 suppression points at the corners of the suppression region.  We vary the 

number of apertures and plot results for a fill factor of 1 and a fill factor of 0.01. 

 

 

Figure 6.2 also indicates that for a two-dimensional array, the number of apertures and 

the fill factor of the array have very little effect on the achievable signal to suppression ratio.  

Increasing the fill factor improves the achievable ratio, but this improvement is slight.  When the 

suppression region is between 0.0667 beamwidths and 0.3 beamwidths away from the receiver, 
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there is less than a 1 dB difference between the achievable signal-to-suppression-region power 

ratios of arrays with fill factors 0.01 and 1.  When the suppression region is more than 0.3 

beamwidths or less than 0.0667 beamwidths away from the receiver, the difference in ratios 

between the different transmit array configurations is effectively negligible, less than 0.2 dB.  

Changing  the number of apertures has a similarly small effect.  For a sparse array, the 

achievable suppression ratio is less than 0.5 dB greater for 81-aperture array than for a 16-

aperture sparse array.  Figure 6.2 therefore indicates that achieving some desired signal-to-

suppression-region power ratio need not be a factor in the choice of the number of apertures and 

the fill factor for a transmit array.  However, the choice of fill factor will be influenced by the 

signal strength required by the intended user and the available transmitter power.  Additionally, 

if the suppression area is wider than a beamwidth, then the grating lobes resulting from small fill 

factors may make the problem of achieving the specified suppression ratio more difficult. 

 Figure 6.3 shows the intensity at the receiver versus the distance of suppression region 

for the same transmit arrays as in Figure 6.2.  From this figure, we see that the power received by 

the intended user increases as the suppression region moves away from the intended receiver.  

The rate of this increase appears to be approximately the same for both fill factors.   We also note 

that the number of apertures does not have a significant impact on the post-suppression intensity 

at the receiver.  However, it is clear from this figure that increasing the fill factor significantly 

increases the intensity at the receiver after suppression, even if the total transmit power is the 

same.  Given equal transmitter power, the intensity with the filled array is 20 dB greater than 

with the sparse array of fill factor 0.01.  This is because the filled array can better direct the 

power towards the receiver.  In Figure 6.4, we examine this effect more closely. 
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Figure 6.3 Intensity at receiver versus distance from suppression region.  We vary the number of 

apertures and plot results for a fill factor of 1 and a fill factor of 0.01. 

 

 

 Figure 6.4 shows how the intensity at the receiver varies with fill factor.  The effect of 

increasing the fill factor decreases as the fill factor approaches 1.  It is clear that a fill factor of 1 

achieves the best intensity at the receiver.  We also note that the area of the suppression region 

does not change the effect of increasing the fill factor.  However, it does appear to affect the 

absolute intensity at the receiver for each fill factor.  Generally, increasing the area of the 

suppression region decreases the power at the receiver.  Thus, in the plot below, the receiver 

intensity with the !!!!! beamwidth suppression region is greater than that with the !!!!! 

beamwidth suppression region.  Exceptions occur only if the distance between the suppression 

points becomes large enough that the power to the region between these points is not very 

suppressed.  In Figure 6.4, although the receiver intensity with a !!!!! beamwidth suppression 

region is greater than that with the !!!!! beamwidth suppression region, we note that for a fill 

factor of 0.1, the achievable suppression ratio for the !!!!! beamwidth region is only 4.41 dB, 
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much smaller than the achievable ratio of 9.81 dB for the !!!!! beamwidth region.  Since 

achieving the desired signal-to-suppression-region power ratio is our primary objective, and 

maximizing the receive power is secondary to that goal, we do not need to consider the receiver 

power for systems for which the desired suppression is not possible. 

 

 
Figure 6.4 Intensity at receiver versus fill factor. We vary the area of the suppression region.  

There are 4 suppression points in this area to which the desired signal-to-suppression-region 

power ratio (SSR) of 10 dB is enforced.  We want the intensity at the receiver to be as high as 

possible, but not at the cost of a lower SSR.  As predicted, the received intensity for the !!!!! 

beamwidth suppression region is greater than the !!!!! beamwidth suppression region.  Both 

of these regions can be suppressed to the desired 10 dB SSR.  The !!!!! beamwidth suppression 

region does not match the expected pattern because the 4 suppression points that approximate the 

region are spaced too far apart for the 10 dB SSR to be achieved. 
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Before we address the effects of various suppression region characteristics, we comment 

on two counterintuitive results that are evident in Figures 6.2 and 6.3, in which increasing the 

number of apertures has opposite effects for the two different fill factors.
 2
 

1.) Increasing the number of apertures increases the achievable signal-t-

suppression-region power ratio for small fill factors and decreases this ratio 

for large fill factors. 

2.) Conversely, increasing the number of apertures decreases the intensity at the 

receiver for the sparse array; for the filled array, increasing the number of 

apertures increases the intensity at the receiver. 

 These results are related to the ratio between the power at the receiver and the power in the 

suppression region before suppression, an effect we discussed in the context of a linear array in 

Section 5.2.2, and now discuss for the two-dimensional array.  Recall that our overall array has a 

fixed size.  This means that for any given fill factor, we cannot independently consider the 

number of apertures or the size of the apertures. 

For maximum diversity, we desire a small fill factor and a large number of apertures.    

As noted in Chapter 5, to increase the number of apertures in a sparse array with both a fixed fill 

factor and fixed dimensions, we must decrease both the distance between apertures and the size 

of the apertures.  Thus, the energy in the far field is more spread out, and the intensity at the 

receiver decreases, while the intensity in the suppression region (before suppression) increases.  

For a filled array, the distance between the apertures is irrelevant, and the effect of decreasing the 

size of the aperture is countered by the additional degrees of freedom apertures from the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2
 Recall that in our system model, the sub-apertures are identical and uniformly spaced along the !- and !- axes of 

the array.  Therefore our results do not reflect the effect on the system of adding additional apertures in other 

locations in the array (e.g. adjacent to the existing apertures in a sparse array) or of using apertures of varying size. 
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additional apertures.  Thus the intensity at the receiver increases with more apertures, while the 

pre-suppression intensity in the suppression region decreases. 

We can now explain the effect on the signal-to-suppression-region ratio of increasing the 

number of apertures.  For the sparse array, as the number of apertures increases, the intensity at 

the receiver decreases due to the wider energy distribution, and the pre-suppression signal-to-

suppression-region ratio decreases.  Achieving the desired suppression ratio of 10 dB is 

correspondingly difficult, and the post-suppression ratio is smaller.  For the filled array, the 

opposite occurs.  The intensity at the receiver increases due to the higher-dimensional weight 

vector, and the pre-suppression signal-to-suppression-region ratio increases.  Here, achieving the 

desired suppression ratio of 10 dB is easier, and the post-suppression ratio is closer to 10 dB as 

the number of apertures increases. 

 

6.2 Suppression Region Characteristics 

 We now look more closely at the effect of changing the area of the suppression region.  

Figure 6.5 depicts the achievable signal-to-suppression-region power ratio versus the distance of 

the suppression region.  We consider square suppression regions of varying width, approximated 

via suppression points in the 4 corners.  Because any square suppression region we consider will 

consist of a square number of such suppression regions regardless of the number of suppression 

points, the effect of varying the suppression region areas in Figure 6.5 could also be considered 

the effect of varying the distance between suppression points. 
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Figure 6.5 Achievable signal-to-suppression-region power ratio (SSR) versus distance of 

suppression region.  We vary the area of the suppression region.  There are 4 suppression points 

in this area to which the desired SSR of at least 10 dB is enforced.  The plotted SSR is the ratio 

of the maximum power in the suppression region to the power at the receiver after suppression. 

  

Figure 6.5 shows that the rate at which the achievable signal-to-suppression-region power 

ratio approaches the desired suppression of 10 dB increases with decreasing distance between 

suppression points.  This figure depicts the two-dimensional analog of our claim in Chapter 5 

that there is a tradeoff between the distance of another user or eavesdropper in the receive plane 

from the receiver and our uncertainty as to the user’s exact position.  If the other user is very 

close to the intended receiver, we must be significantly more certain as to his position in order to 

suppress all probable user locations to the desired ratio.  As the user moves farther away, we can 

achieve the desired suppression ratio without having precise information about its position.  If 

we want to suppress by 10 dB a region 0.1 beamwidths away from the receiver, the distance 

between the suppression points must be no more than 0.25 beamwidths. 
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 Figures 6.6 and 6.7 compare the effects of increasing the width of the suppression region 

and increasing the number of suppression points.  Figure 6.6 shows the closest distance a 10 dB 

suppression ratio is possible versus the width of the suppression region.  This is plotted for three 

different approximations of each suppression region – with 4, 9, and 16 suppression points.  

Figure 6.7 shows the closest distance a 10 dB suppression ratio is possible versus the number of 

suppression points for three different sized suppression region.  We define the closest distance 

suppression possible as the first location where the signal-to-suppression-region ratio exceeds 

90% of the desired suppression ratio. 

 

 
Figure 6.6 Closest distance suppression by 10 dB is possible for a given width of suppression 

region.  We vary the number of suppression points to which the desired signal-to-suppression-

region power ratio of 10 dB is enforced. 
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Figure 6.7 Closest distance suppression by 10 dB is possible for given number of suppression 

points.  We vary the area of suppression region. 

 

We observe two major trends: increasing the area of the suppression region increases the 

distance from the receiver at which suppression becomes possible, but increasing the number of 

suppression points decreases that distance.  Both of these trends are a function of the inter-

suppression-point spacing.  As the area of the suppress region increases, the spacing between the 

points increases; as the number of suppression points increases, the spacing between the points 

decreases.  Thus, we can compensate for uncertainty as to an eavesdropper’s position by 

increasing the number of suppression points used to approximate its location. 

We observe some kinks in the plots, particularly for larger number of suppression points.  

This may occur because as the number of suppression points increases, the optimization problem 

contains fewer degrees of freedom to maximize the intensity.  If the intensity is lower, it 

becomes harder to increase the suppression ratio.  This effect is intensified if the suppression 

points are very close together such that enforcing the suppression ratio at one point affects the 

ratio at another suppression point.  Because of the complexity of the equations involved, 
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particularly the Fraunhofer diffraction pattern, many of the relationships between various 

parameters and the signal-to-suppression-region are not monotonically increasing or decreasing.  

However, since the kinks in the plots we observe are fairly small in both amplitude and 

beamwidth, the general trends we observe will still be useful when designing a system. 

In Figure 6.6, the horizontal line to which all three of the plots converge is 0.5667 

beamwidths.  This suppression region position is 0.1 beamwidths closer to the receiver than the 

position at which the desired suppression ratio of 10 dB is achieved without suppression, when 

maximum power is directed at the intended receiver.  At this point, it is unnecessary to have a 

suppression region that is much wider than 0.1 beamwidths, unless the suppression region is 

wide enough to extend to a grating lobe.  Thus 4 suppression points are sufficient mainly for 

regions less than 0.75 beamwidths wide.  However, much wider suppression regions can be 

successfully approximated by 4 points if they are located at least 0.5667 beamwidths away from 

the receiver.  A 9-point suppression region is therefore useful only for regions less than 1.5 

beamwidths wide, and a 16-point region is only useful for regions less than 2.25 beamwidths 

wide.  For larger regions 4 suppression points could achieve the same signal-to-suppression-

region power ratio. 

We can use Figure 6.7 to find the closest distance suppression by 10 dB is possible for a 

given separation of suppression points.  For instance, in order to suppress to 10 dB the power in a 

region 0.1 beamwidths away from the receiver, a !!!!! beamwidth region must have 4 

suppression points, a !!!!! beamwidth region must have 9 points, and a !!!!! beamwidth 

region must have 25 suppression points.  These all correspond to square regions with suppression 

points separated by ! beamwidths. 
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Figure 6.8 also shows how the number of suppression points affects the achievable 

signal-to-suppression ratio for a !!!!! beamwidth region varying distances from the receiver.  As 

expected, increasing the number of suppression points decreases the distance at which a signal-

to-suppression-region power ratio of 10 dB is achievable.  Each curve in the figure reaches a 

suppression ratio of 10 dB when the distance between the suppression region and the receiver is 

approximately one half the distance between adjacent suppression points in the suppression 

region.  This roughly corresponds to what we noted in Figure 6.7. 

 

 
Figure 6.8 Achievable signal-to-suppression-region power ratio (SSR) for a !!!!! beamwidth 

region as it moves away from the receiver.  We vary the number of suppression points to which 

the desired SSR of at least 10 dB is enforced. 
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6.3 Desired Signal-to-Suppression-Region Power Ratio 

 In this section, we vary the desired signal-to-suppression-region power ratio and show the 

effects on the intensity at the receiver and the distance at which various suppression ratios are 

achievable.  Figure 6.9 shows the intensity at the receiver versus the desired suppression ratio for 

a suppression region 1/3 beamwidths away from the receiver.  Each curve represents a 

suppression region of a different area.  The figure shows that the post-suppression intensity at the 

receiver decreases as the signal-to-suppression ratio increases.  The rate of decrease is slower for 

smaller suppression region areas, although the curves for the 1 x 1 beamwidth region and the ! x 

! beamwidth region are very close. 

 

 
Figure 6.9 Intensity at receiver versus desired signal-to-suppression-region power ratio (SSR).  

We vary the area of the suppression region.  There are 9 suppression points in this area to which 

the desired SSR is enforced. 
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Figure 6.10 reveals two trends.  One, as the desired signal-to-suppression-region ratio 

increases, the distance at which such a ratio is achievable increases.  The rate of this increase is 

fairly constant for different suppression region parameters.  Two, as discussed in Section 6.2, the 

distance at which the desired suppression ratio is achievable is affected more by the separation 

between suppression points than by the area of the suppression region or the number of 

suppression points independently.  As the distance between suppression points increases, the 

distance at which suppression is possible also increases, due too the unsuppressed energy spikes 

that occur between the suppression points of close-in suppression regions with widely spaced 

points. 

 

 
Figure 6.10 Closest distance a desired signal-to-suppression-region power ratio (SSR) can be 

achieved, based on the suppression region geometry.  We vary both the area of the suppression 

region and the number of suppression points in this area to which the desired SSR is enforced. 
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Figure 6.11 shows four plots, each showing the signal-to-suppression-region power ratio 

versus distance of the suppression region from the receiver for six different desired suppression 

ratios.  Each plot shows results for a different suppression region.  Figure 6.11a shows results for 

a !!!!! beamwidth suppression region approximated by 4 suppression points.  Figure 6.11b 

shows results for a !!!!! beamwidth suppression region approximated by 4 points.  Figure 

6.11c shows results for a  !!!!! beamwidth suppression region approximated by 9 points.  

Figure 6.11d shows results for a !!!!! beamwidth suppression region approximated by 9 

points.  Figures 6.11b and 6.11c therefore show results for suppression regions with the same 

suppression point spacing.  
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Figure 6.11a Achievable signal-to-suppression region ratio (SSR) for a !!!!!  beamwidth 

suppression region as it moves away from the receiver.  The desired SSR is only enforced at 4 

suppression points. 

 

 

 

 
Figure 6.11b Achievable signal-to-suppression region ratio (SSR) for a !!!!!  beamwidth 

suppression region as it moves away from the receiver.  The desired SSR is only enforced at 4 

suppression points. 
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Figure 6.11c Achievable signal-to-suppression region ratio (SSR) for a !!!!!  beamwidth 

suppression region as it moves away from the receiver.  The desired SSR is only enforced at 9 

suppression points. 

 

 

 
Figure 6.11d Achievable signal-to-suppression region ratio (SSR) for a !!!!!  beamwidth 

suppression region as it moves away from the receiver.  The desired SSR is only enforced at the 

9 suppression points. 

 



! *#+!

 

 

 The results in Figure 6.11 are what we would expect from our previous analysis.  In each 

case, increasing the desired signal-to-suppression-region power ratio increases the distance at 

which the desired suppression ratio is achieved.  The achieved signal-to-suppression-region 

power ratio increases with increasing distance of the suppression region from the receiver until it 

reaches the desired ratio, at which point it remains approximately constant. 

Comparing Figure 6.11a with Figure 6.11b, and Figure 6.11c with Figure 6.11d, we see 

that decreasing the area of the suppression region decreases the distance at which the desired 

suppression ratio is achieved.  Comparing Figure 6.11a with Figure 6.11c, and Figure 6.11b with 

Figure 6.11d, we note that the increasing the number of suppression points in the suppression 

region has a similar effect to decreasing the area.  Since increasing the number of suppression 

points will generally decrease the post-suppression power at the receiver and may not yield a 

feasible solution to the optimization problem, it is best to instead decrease the area of the 

suppression region.  However, decreasing the area of the suppression region requires us to have 

more information about the position of the user or eavesdropper to whom we are suppressing 

power, which we may not be able to acquire. 

 

6.4 Time to Convergence 

 The plots in Figure 6.12 illustrate the performance of the SLSQP algorithm in solving the 

optimization problem for a two-dimensional system.  We compare the run time of the algorithm, 

the number of iterations, and the average time per iteration for the variable system parameters: 

number of apertures, suppression region position, fill factor, number of suppression points, and 

width of the square suppression region.  We note that the run time and number of iterations 
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required are most affected by the number of suppression points; adjusting this parameter changes 

the number of inequality constraints that must be satisfied.  Increasing the number of apertures 

also has a noticeable impact on the run time, but this parameter affects the dimensionality of the 

weight vector, and not the number of equations that must be solved.  Increasing the width of the 

suppression region increases the necessary run time until the width becomes large enough that 

many of the inequality constraints become inactive. 

 Increasing the number of apertures or the number of suppression points increases the 

average time per iteration.  Increasing the number of suppression points increases the number of 

iterations required, but increasing the number of apertures does not.  This may be because the 

starting guess for SLSQP was the weight vector that maximized power at the receiver; this is 

closer to the optimum weight vector for transmitters with more apertures.  On the whole, the 

convergence of SLSQP is on the order of seconds, so the differences shown below are of limited 

practical impact. 
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Figure 6.12 Performance metrics of solving for the optimum weight vector using SLSQP.  Unless otherwise noted, the number of 

apertures is 100; the suppression region is located 5/30 beamwidths away from the receiver; the fill factor is 0.01; there are 9 

suppression points, and the width of the suppression region is 1 beamwidth. 
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6.5 Redistribution of Energy in Receive Plane 

 As we discussed earlier, limiting the power to a desired suppression region also limits the 

power to the intended receiver.  However, due to the conservation of energy, we know that the 

excess energy must be diverted elsewhere in the receive plane.  Therefore, we now briefly 

consider the post-suppression energy distribution in the receive plane near – but not in – the 

desired suppression region.  Specifically, we consider a semi-infinite region which consists of 

the desired suppression region and the region that extends infinitely beyond it along the x-axis, 

away from the receiver.
3
  Figure 6.13 diagrams this region in relation to the suppression region. 

 

 
Figure 6.13  Diagram of the receive plane.  The suppression region is marked by a red square; 

the suppression points that approximate this region are denoted by red X’s.  The  semi-infinite 

region is marked in purple. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3
 For simplicity of computation, we only compute the radiation pattern within three beamwidths of the receiver.  

This is a reasonable simplification; we found that the integrals of the output radiation patterns we computed under 

various suppression conditions were approximately equal. 
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 Our goal in considering this semi-infinite region is to examine whether limiting power to 

the specified suppression region might cause power to be diverted further from the receiver, such 

that the potential eavesdropper could move away from the receiver to detect the signal.  We 

show below that if the desired suppression region is far from the intended receiver, the maximum 

power in the semi-infinite region is no more than the maximum power in the suppression region.  

In such a case, the eavesdropper would not benefit from moving away from the receiver.  

However, if the desired suppression region is very close to the intended receiver, then there may 

be significant power diverted to the semi-infinite region beyond the suppression region, such that 

an eavesdropper could achieve more success by moving away from the receiver.   

 We first consider the effect of the number of apertures (see Figure 6.14) and the fill factor 

(see Figure 6.15) of the transmit array on the maximum power inside the semi-infinite region. 

We find that increasing the number of apertures slightly increases the signal-to-semi-infinite-

region power ratio; however, between a 36-aperture and a 100-aperture transmit array, this 

increase is no more than 3 dB.  This implies that if the desired suppression region is close to the 

receiver, increasing the number of apertures may somewhat limit the power diverted further 

away from the receiver.  From Figure 6.14, it is clear that the fill factor does not have any 

significant impact on the signal-to-semi-infinite-region power ratio. 
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Figure 6.14  The solid curves show the minimum signal-to-suppression-region power ratio 

versus the distance of the suppression region from the receiver.  The dashed curves show the 

minimum signal-to-semi-infinite-region power ratio versus the distance of the suppression region 

from the receiver.  We vary the number of apertures. 

 

 

 

 
Figure 6.15  The solid curves show the minimum signal-to-suppression-region power ratio 

versus the distance of the suppression region from the receiver.  The dashed curves show the 

minimum signal-to-semi-infinite-region power ratio versus the distance of the suppression region 

from the receiver.  We vary the fill factor. 
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 We next consider the effects of the size of the specified finite suppression region and the 

number of suppression points used to approximate this suppression region.  The signal-to-semi-

infinite-region power ratio does not seem to be affected by the number of suppression points 

used to approximate the suppression region.  Increasing the number of suppression points  

increases the achievable signal-to-suppression-region power ratio but does not affect the signal-

to-semi-infinite-region power ratio.  From Figure 6.16, we see that the signal-to-semi-infinite-

region power ratio is, however, dependent on the size of the desired suppression region.  Given a 

constant number of suppression points, we can achieve a higher signal-to-suppression-region 

power ratio by decreasing the size of the suppression region; in contrast, we achieve a greater 

signal-to-semi-infinite-region power ratio by increasing the size of the suppression region.  For 

determining the signal-to-suppression-region power ratio, the inter-spacing of the suppression 

points is the dominant factor; for determining the signal-to-semi-infinite-region power ratio, the 

size of the overall finite suppression region is the dominant factor. 
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Figure 6.16  The signal-to-suppression-region power ratio versus the distance of the suppression 

region from the receiver.  The solid curves show the minimum such ratio within the specified 

finite suppression region; the dashed curves show the minimum such ratio within the semi-

infinite region that extends along the x-axis along the suppression region away from the receiver.  

We vary the width of the actively suppressed region. 

 

 

 Finally, we note that the real constraining factor in limiting interference and interception 

of the transmitted signal is that we must know precisely to which side of the receiver the 

eavesdropper or other user is.  In order to limit power to a specified suppression region, we 

showed in this section that most of the power does not get diverted further away from the 

receiver.  Instead, the excess power is directed towards the opposite side of the receiver.  If we 

are trying to suppress a region located at some ! ! !, most of the power in the receive plane is 

located at ! ! !. 
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Chapter 7 

Analysis of Suppression Capabilities 

 In this chapter, we analyze the numerical results we obtained for the two-dimensional 

aperture array system in Chapter 6.  Although we were unable to find analytical expressions that 

explicitly define the dependence of the achievable signal-to-suppression-region ratio and the 

intensity at the receiver on various system characteristics, we can approximate the relationships 

between these parameters.  In Section 7.1, we quantify these relationships for the particular 

system configurations we simulated in Chapter 6.  In Section 7.2, we show how well our results 

matched our predictions from our toy example analysis in Chapter 3.  Our overall goal is to get a 

sense of the considerations that will inform our system design for various suppression 

requirements.  We summarize these design considerations in Section 7.3. 

 

7.1 Best-Fit Equations for Observed Trends 

 In this section, we fit curves to our numerical results from the two-dimensional array 

simulations via MATLAB’s curve fitting tool, which uses either the linear or nonlinear least 

squares method to minimize the summed squared error between the actual values and the model 

values.  In Chapter 6, we presented the signal-to-suppression-region power ratios for various 

system configurations as dB ratios, but in this section we use the actual ratios to calculate the 

best fit equations.  We do continue to plot the data using the dB suppression ratios; the best fit 

curves are adjusted accordingly in each figure.  The normalized intensity at the receiver and 

other parameters are all plotted on a linear scale. 
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Figure 7.1 shows the relationship between the suppression region position and the 

achievable signal-to-suppression region ratio modeled as a cubic function.  This relationship is 

very complex, and it was hard to find a function type that modeled it well.  We recall from 

Chapter 6 that the achieved signal-to-suppression-region ratio is not monotonic with suppression 

region distance when there are a lot of suppression points in a suppression region close to the 

receiver.  So the best fit curves for 16 and 25 suppression point regions are not very accurate for 

low suppression region positions. 

The cubic function is the polynomial function of lowest order that could plausibly 

represent the relationship in this figure.  The horizontal region at a suppression ratio of 10 dB 

corresponds to the distances from the receiver in which suppression is both achievable – in that 

the desired ratio can be satisfied throughout the desired suppression region – and also necessary 

– in that the desired signal-to-suppression-region ratio is not satisfied by the weight vector that 

maximizes the receiver intensity.  A cubic function with a point of inflection in this horizontal 

region is therefore a good choice to approximate these curves.  We considered a quartic function, 

but it was not a significantly better approximation of the data than the cubic function we show 

below. 

The data points for each approximation of the suppression region are constant in two 

ranges along the !-axis: first, where a 10 dB suppression is achievable through suppression, and 

second where none of the suppression points need to be actively suppressed because the pre-

suppression intensity in the suppression region is low enough.  We discounted the region beyond 

0.7 beamwidths when calculating the best fit, since suppression is unnecessary in this region.   

There is no clear relationship between the number of suppression points and the coefficients in 

the best fit cubic functions.  However, the point of inflection in each plot could be used to 
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approximate the distance at which suppression is reasonably achievable.  This point is 

approximately the same for 16 and 25-point suppression regions, but occurs at a more distant 

position for the 9-point suppression region.  

 

 

 
Figure 7.1 Best fit curves (polynomial, order 3) for the signal-to-suppression-region power ratio 

in terms of distance of a !!!!!!beamwidth suppression region from the receiver, for varying 

number of suppression points.  Table 7.1 shows the polynomial coefficients for each curve. 
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is the actual signal-to-suppression-region power ratio (i.e. not expressed in dB).  ! is the is the 

distance of the suppression region from the receiver. 
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Figure 7.2 shows that the closest distance a 10 dB suppression region can be to the 

receiver varies exponentially with the width of the region until the closest distance becomes 

0.5667 beamwidths.  At this distance, any sized suppression region with at least 4 suppression 

points can be suppressed to 10 dB.  From Table 7.2, we see that the coefficient !! inside the 

exponential decreases approximately linearly with the number of suppression points used to 

approximate the suppression region. 

  

 
Figure 7.2 Best fit curves (exponential) for the closest distance a signal-to-suppression-region 

ratio of 10 dB can be achieved in terms of the width of the suppression region, for varying 

number of suppression points.  Table 7.2 shows the coefficients of the exponential curves. 
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closest distance a suppression region of the specified width ! can be suppressed such that the 

achieved signal-to-suppression-region ratio is greater than 90% of the desired ratio. 
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 Figure 7.3 shows that there is also an exponential relationship between the closest 

distance a 10 dB suppression region can be to the receiver and the number of suppression points.  

This is a decreasing exponential relationship as opposed to the increasing exponential of Figure 

7.2.  Here, the coefficients inside the exponential increase almost linearly with increasing width 

of the suppression region.  Since 0 suppression points implies no active suppression, we expect 

every curve to intersect the !-axis at 0.7 beamwidths. 
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Figure 7.3 Best fit curves (exponential) for the closest distance a signal-to-suppression-region 

ratio of 10 dB can be achieved in terms of the number of suppression points, for varying width of 

the suppression region.  Table 7.3 shows the coefficients of the exponential curves. 
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 Figure 7.4 reveals a quadratic relationship between the intensity at the receiver and the 

desired signal-to-suppression-region power ratio. The rate of change of this second order 

polynomial is less for smaller suppression regions.  We considered a cubic approximation for the 

data, but the best fit curves had very small third order coefficients (~!"!!); we therefore fit each 

data set to a quadratic expression.  We know that a quadratic function cannot accurately 
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represent the asymptotic behavior as the desired signal-to-suppression-region ratio increases, but 

for desired suppression ratios less than 15, the quadratic approximations fit the data better than 

the exponential curves that might be more appropriate asymptotically. 

 

 
Figure 7.4 Best fit curves (polynomial, order 2) for the intensity at the receiver in terms of the 

desired signal-to-suppression-region power ratio, for varying size of suppression region. Table 

7.4 shows the polynomial coefficients for each curve. 

 

 

! ! !!!
!
! !!! ! !!!! !!! !!! !!!

"#$!%!

%
!

!
!
!

!
!!"#$%&'(!!!"##$%!!&'(!!"#$%&&!

'(')")*! +,(-"! #.($$!

"#$!&!

%
!

!
!
!

!
!!"#$%&'(!!!"##$%!!&'(!!"#$%&&!

'('/)'*! +.('$-! ##(/#!

"#$!'!

%!!!!!"#$%&'(!!!"##$%!!&'(!!"#$%&&!

'('/-//! +.('#"! ##(/!

01234! -(#! ! Best fit quadratic equations for the curves in Figure 7.4.  The value of ! is the 

intensity at the receiver.  In these equations, ! is the actual desired signal-to-suppression-region 

power ratio (i.e. not expressed in dB). 

 

 



! "#$!

 Figure 7.5 approximates the relationship between the closest distance suppression is 

possible and the desired signal-to-suppression-region ratio with a logarithmic curve.  A 

logarithmic curve is an appropriate approximation for two reasons.  First, as the desired signal-

to-suppression-region ratio increases, the closest distance suppression to that ratio is possible 

increases, but the rate of that increase decreases fairly rapidly.  Second, if the desired suppression 

ratio is less than or equal to 1, the closest distance suppression is possible is 0.  Therefore we do 

not need to consider suppression ratios less than 1, and the logarithmic curves cross the distance 

axis somewhere in or near this region.  We note that the outside coefficient increases linearly 

with the suppression region width.  This is because the rate of increase of the closest distance 

suppression is possible versus the desired suppression ratio is smaller for smaller suppression 

regions. 
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Figure 7.5 Best fit curves (logarithmic) for the closest distance a desired signal-to-suppression-

region ratio can be achieved in terms of the desired ratio, for varying size of suppression region.  

Table 7.5 shows the coefficients of the logarithmic best fit functions. 
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7.2 Accuracy of Toy Example 

 We now compare the analytical expressions relating various system parameters that we 

derived in Chapter 3 with the numerical results we obtained in Chapter 6.  First, we demonstrate 

that our toy example in Chapter 3 is comparable to the physical system we analyzed in Chapter 

6.  Figure 7.6 plots the intensity at the receiver versus the distance of the suppression region from 

the receiver.  The red plot represents the simulated data from Chapter 6; the green shows a scaled 

version of the equation found in the toy example for the intensity at the receiver versus the angle 

between the receive and suppression vectors. 

 

 
Figure 7.6 Comparison of the relationship between the numerically optimized intensity at the 

receiver and the distance of suppression region from receiver calculated in Chapter 6 with the 

same relationship calculated in the toy example in Chapter 3. 
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Here, we see that the function that describes the post-suppression intensity at the receiver 

in our toy example is approximately the same shape as the function that describes the intensity at 

the receiver in our two-dimensional example.  The difference between the two curves when the 

suppression region is close to the receiver – whereby the red curve appears to be a shifted 

version of the green – is probably due to the greater number of suppression points (four) in the 

numerical example versus the single suppression point in the toy example.  Figure 7.6 then 

suggests two things: first, that increasing the number of suppression points affects the intensity at 

the receiver similarly to moving the suppression point in our toy example closer to the receiver; 

and second, that changing the system parameters changes the coefficients of this function, but 

not its general shape. 

 Figure 7.7 shows the relationship between the intensity at the receiver after suppression 

and the fill factor of the transmit array.  This plot shows that this relationship is almost exactly 

described by a quadratic polynomial.  In fact, each of the three curves in the figure match the 

calculated data points with an adjusted coefficient of determination !! ! !!!!!!.  We predicted 

this quadratic relationship in Chapter 3 by showing that the intensity at the receiver before 

suppression was also approximately quadratic with varying fill factor. 
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Figure 7.7 Best fit curves (polynomial, order 2) for the intensity at the receiver in terms of the fill 

factor of a 25-aperture transmit array, for varying suppression region size.  Table 7.6 shows the 

polynomial coefficients for each curve. 
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Recall that ! !
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 is the signal-to-suppression-region power ratio at a point ! near 

the desired suppression point !.  In Chapter 3 we showed that 
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In Chapter 3, we claimed that ! is approximately proportional to the distance between the 

suppression region and the receiver.  We now suggest that ! in our toy example could represent 

the distance between suppression points in a physical system.  We now compare the curves in 

Figure 3.9 that showed ! versus ! for varying ! with the curves in Figure 6.5 that show our 

numerical calculations of the achieved signal-to-suppression-region power ratio versus the 

distance of the suppression region for varying suppression point spacing.  We see in Figure 7.8 

that the relationships depicted in these two plots have generally the same shape; thus we posit 

that our analysis in Chapter 3 of the effect of the distance between suppression points on the 

achievable suppression ratio, where we found that 
!!

!!
! !

!!
!

!!

!"#
! ! !"# !!!!!

!"#! !!!!!
 , is valid. 
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Figure 7.8 The top plot shows how the suppression ratio at a point ! ! !" as ! increases for 

!! !
!"#!

!"#!
, !! !

!

!
, and a desired suppression ratio of 10.  The lower plot shows how the 

suppression ratio increases as the distance between the suppression region and the intended 

receiver increases for a 4-point suppression region and a 36-aperture transmit array of fill factor 

0.1.  Both plots show very similar trends. 
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7.3 Design Considerations 

7.3.1 Transmit Array 

 Assuming we hold the overall size of the array fixed, the variable parameters in the 

transmit array are the number of apertures and the fill factor.  Increasing the number of apertures 

gives more control over the output radiation pattern, and thus generally increases the intensity at 

the receiver.  Increasing the fill factor decreases the extent of the energy spreading in the far 

field, and thus also increases the intensity at the receiver.  Ideally, we want a large number of 

apertures and a large fill factor.  This is complicated for two reasons.  One, we can increase the 

fill factor either by increasing the number of apertures or increasing the size of the apertures, 

both of which increase the cost of the system.  Two, increasing the fill factor can cause adjacent 

apertures to be within one atmospheric coherence length of each other and thus can reduce the 

achievable spatial diversity of the transmission, and thus the system is more susceptible to the 

effects of atmospheric turbulence.  A sparse array with sub-apertures separated by more than one 

phase coherence length mitigates the effects of deep fades at the receiver. 

For a sparse array, we want fewer apertures to limit the spread of energy in the receive 

plane.  In a sparse array, adding additional apertures decreases both the width of the apertures 

and the distance between the apertures, causing more significant grating lobes and reducing the 

power at the receiver. However, with fewer apertures in the transmit plane, we can actively 

suppress fewer suppression points and therefore can only limit power to a smaller suppression 

region. 

Thus in designing the transmit array, we must consider the following tradeoffs: 
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• A large fill factor can transmit more power to the receiver, but will have less spatial 

diversity to mitigate the effects of atmospheric turbulence.  A small fill factor can achieve 

spatial diversity but will also produce grating lobes in the receive plane. 

• For a sparse array, increasing the number of apertures decreases the intensity at the 

receiver and may increase the severity of grating lobes, but it will also allow active 

suppression of more points in the receive plane.  This allows for either a larger 

suppressed region or a closer suppressed region. 

 

7.3.2 Suppression Region 

 There are three parameters that define the suppression region: the area of the region, the 

number of suppression points to which the desired ratio is enforced, and the position of the 

region with respect to the intended receiver.  The first two can generally be considered together; 

the dominant parameter seems to be the separation between suppression points.  Increasing the 

width of the suppression region in a specified location requires increasing the number of 

suppression points.  However, increasing the number of suppression points limits the power 

received by the intended user and may also require increasing the number of apertures in the 

transmit array.  Generally, increasing the number of suppression points that approximate a given 

area allows us to suppress power to a region closer to the receiver.  Decreasing the width of the 

suppression region while keeping the number of suppression points constant has a similar effect. 
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 Thus in specifying the required suppression region, we must consider the following 

tradeoffs: 

• If we are very uncertain about the position of the user to whom we seek to limit power, 

we must increase the number of suppression points, but increasing the number of 

suppression points decreases the available power at the receiver.   

• We might also consider the benefits of using a non-uniform suppression point spacing.  

We may be able to decrease the number of required suppression points if we concentrate 

these points in the part of the suppression region closest to the receiver and use fewer 

points in the part of the suppression region furthest from the receiver.  This would be 

particularly appropriate for large suppression regions, in which the furthest extent of the 

suppression region is in a location where the desired signal-to-suppression-region power 

ratio is achievable even before the aperture phases are adjusted. 

• If the user to whom we are limiting power is very close to our intended user's receiver, 

we must be much more certain about his position than if the user is further away.  The 

same holds true if the undesired user is in or very near a grating lobe of the transmission. 

 

7.3.3 Desired Signal-to-Suppression-Region Power Ratio 

 Finally, we consider the required signal-to-suppression-region power ratio to meet our 

goal of preventing eavesdropping and interference in a multi-user network.  We posit that in 

most cases, a signal-to-suppression-region ratio of 10 dB should be sufficient.  In a multi-user 

network, if the users all have similarly capable receivers, such a suppression ratio should be 

sufficient to prevent one user’s transmission from interfering with another’s.  Such a suppression 

ratio will also significantly increase the difficulty of eavesdropping; an eavesdropper would then 
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need a larger receive aperture or more sensitive detector than the intended user.  If our intended 

receiver has a very sensitive receiver and we lower the transmit power such that the intended 

user can just barely receive the transmission, an eavesdropper receiving a 10 dB lower 

transmission would not be successful. 

 If a suppression ratio of 10 dB is not sufficient, we showed that it is possible to achieve 

greater suppression ratios if the eavesdropper is further away from the receiver or if we decrease 

the separation between suppression points.  We showed in Figure 7.5 in Section 7.1 that the 

closest distance at which suppression is possible does not increase very fast with the desired 

suppression ratio for small suppression regions.  Thus if we are reasonably certain as to the 

eavesdropper’s position, we can achieve suppression ratios greater than 10 dB fairly as close as 

0.2 beamwidths away from the receiver. 
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Chapter 8 

Conclusion 

8.1 Future Work 

 As we discussed in Section 7.3, limiting the interference in a multi-user network is easier 

than preventing eavesdropping.  In a multi-user network, we assume that all of the users have 

similarly sensitive receivers; if we suppress the power in the direction of another user to 10 dB 

less than the power directed at our intended user, we can significantly reduce the chance that our 

transmission will be detrimental towards the other user’s communication.  To prevent 

eavesdropping, however, we may require a much larger suppression ratio.  If the eavesdropper’s 

receiver is much more sensitive than the intended receiver, it is possible that he could still 

intercept the signal despite the 10 dB suppression.  If we increase the sensitivity of our receiver, 

then the probability of an eavesdropper having a correspondingly better receiver decreases.  

However, we would still like for the signal-to-noise ratio at the eavesdropper to be suppressed by 

30 dB or so.  Therefore, we suggest a method of intentionally adding noise to the signal that 

could be used in concert with our suppression scheme to provide extra security. 

 There are two potential ways of implementing this suggestion.  The first of these is to 

employ a similar method to the one developed in this thesis and add a random noise signal that is 

maximized in the direction of the eavesdropper and minimized in the direction of the intended 

receiver.  This would result in another nonlinear optimization problem that would be solved for 

the optimum weight vector for the noise signal.  This optimization problem would be more 

complicated than the one solved in this thesis; it would either have multiple objective functions 
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to maximize the noise signal at all of the suppression points, or we would have to choose a point 

within the suppression region to direct the noise too.  If we chose this method, we could combine 

the two optimization problems, the one to maximize the signal at the receiver and the one to 

maximize the noise at the eavesdropper, and then optimize the weight vector to find the best ratio 

!"!!"

!"!!"#!

 

Where !"!!" is the signal-to-noise ratio at the intended receiver and !"!!"#! is the signal-to-

noise ratio at the approximated eavesdropper location.  This method – combined with a 

transmitter power chosen such that a reasonably sensitive receiver at the intended user can just 

barely detect the signal after suppression – should allow us to achieve the desired confidentiality 

of the signal. 

Alternatively, a second method would be to add a deterministic encrypted signal on top 

of the intended transmission.  The intended receiver could detect and decrypt this noise signal 

and subtract it from the intended transmission; the eavesdropper would be unable to distinguish 

between the “noise” transmission and the signal.  Combining this with our method of 

suppressing the energy transmitted in the direction of the eavesdropper would additionally 

decrease the possibility of interception. 

 

8.2 Summary 

 In this thesis, we considered the problem of limiting power to a specified region in the 

receive plane of a free-space optical communication link.  Our goal was twofold: one, to limit the 

interference of the transmission with other user’s transmissions in a multi-user wireless optical 

network, and two, to prevent the energy of the transmission from propagating in the direction of 

an eavesdropper who sought to intercept the signal. 
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We showed that it is possible to use a linear transmit array to suppress by 10 dB the 

power to a 1-beamwidth suppression region as close as 0.2 beamwidths to the receiver without 

significantly decreasing the power transmitted to the receiver; we also showed that with a two-

dimensional transmit array, we can suppress by 10 dB a ! x ! beamwidth suppression region 

that is even closer to the receiver.  We can suppress power to arbitrarily large regions arbitrarily 

close to the receiver if we have the capabilities to significantly increase the transmit power and 

the number of transmit apertures.  In general, given a required suppression region in the receive 

plane and a desired signal-to-suppression-region power ratio, we must consider the tradeoffs 

between increasing the number of apertures and the additional system expense; between 

increasing the fill factor and reducing spatial diversity; and between increasing the number of 

suppression points (and therefore the achievable suppression ratio) and the decrease in the 

intended user’s received power.  Given fixed system constraints, i.e. the number and size of the 

transmit apertures, the distance of the region to which we can successfully suppress power grows 

exponentially with the required size of the suppression region.  Generally, the size of the 

suppression region will be proportional to  our uncertainty as to an eavesdropper or other user’s 

position.  Thus, to achieve a desired signal-to-suppression-region power ratio, we must be more 

certain of the eavesdropper or other user’s position if he is closer to our intended receiver than if 

he is further away. 
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Appendix A 

 

Derivation of Filled Aperture KKT 

Conditions 
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Appendix B  

 

Derivation of KKT Conditions for Sparse 

Aperture With Real Weight Vector 

Components (for MATLAB computation) 
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