Distributed Inference: Combining Variational Inference With Distributed Computing

by

Chris Calabrese

S.B. Computer Science and Engineering, Massachusetts Institute of Technology, 2011

Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2013

© Massachusetts Institute of Technology 2013. All rights reserved.
Abstract

The study of inference techniques and their use for solving complicated models has taken off in recent years, but as the models we attempt to solve become more complex, there is a worry that our inference techniques will be unable to produce results. Many problems are difficult to solve using current approaches because it takes too long for our implementations to converge on useful values. While coming up with more efficient inference algorithms may be the answer, we believe that an alternative approach to solving this complicated problem involves leveraging the computation power of multiple processors or machines with existing inference algorithms. This thesis describes the design and implementation of such a system by combining a variational inference implementation (Variational Message Passing) with a high-level distributed framework (Graphlab) and demonstrates that inference is performed faster on a few large graphical models when using this system.

Thesis Supervisor: David Wingate
Title: Research Scientist
Acknowledgments

I would like to thank my thesis advisor, David Wingate, for helping me work through this project and dealing with my problems ranging from complaints about Matlab to my difficulties working with some of the mathematical concepts in the study of inference. Most importantly, his efforts helped me develop some kind of intuition for the subject matter relevant to this project, and that is something I know I can use and apply in the future.
Contents

1 Introduction

1.1 Example: Inference on Seismic Data ... 12
1.2 Variational Message Passing and Graphlab 14
 1.2.1 Variational Inference and VMP .. 14
 1.2.2 Distributed Computation and Graphlab 15
1.3 Contributions ... 16

2 Variational Message Passing .. 17

2.1 Bayesian Inference .. 17
 2.1.1 Example: Fair or Unfair Coin? ... 18
2.2 Variational Inference .. 21
2.3 Variational Message Passing ... 23
 2.3.1 Message Construction .. 24
 2.3.2 Operation Details ... 25

3 Graphlab Distributed Framework .. 29

3.1 Parallel/Distributed Computation ... 29
 3.1.1 Parallel Computing .. 30
 3.1.2 Distributed Computing .. 32
3.2 Parallel/Distributed Frameworks .. 34
 3.2.1 Distributed VMP Framework ... 35
3.3 Graphlab Distributed Framework .. 37
 3.3.1 Graphlab PageRank Example ... 41
List of Figures

2-1 Results from performing inference on the fairness of a coin. Observed Data = 3H, 2T; Fairness Prior = 0.999 .. 19

2-2 Results from performing inference on the fairness of a coin. Observed Data = 5H; Fairness Prior = 0.999 .. 20

2-3 Results from performing inference on the fairness of a coin. Observed Data = 5H; Fairness Prior = 0.500 .. 20

2-4 Results from performing inference on the fairness of a coin. Observed Data = 10H; Fairness Prior = 0.999 .. 20

2-5 Results from performing inference on the fairness of a coin. Observed Data = 15H; Fairness Prior = 0.999 .. 20

2-6 Variational Inference: High-Level Diagram .. 21

2-7 VMP Example: Gaussian-Gamma Model .. 27

3-1 Typical Parallel Computing Environment [28] .. 30

3-2 Typical Distributed Computing Environment [28] 33

3-3 Graphlab: Factor Graph Example [33] .. 38

3-4 Graphlab: Consistency Models [33] .. 40

3-5 Graphlab: Relationship Between Consistency and Parallelism [33] .. 41

4-1 VMP/Graphlab System Block Diagram .. 49

4-2 Supported Models: Gaussian-Gamma Model .. 57

4-3 Supported Models: Dirichlet-Categorical Model 58
Chapter 1

Introduction

The ideas associated with probability and statistics are currently helping Artificial Intelligence researchers solve all kinds of important problems. Many modern approaches to solving these problems involve techniques grounded in probability and statistics knowledge. One such technique that focuses on characterizing systems by describing them as a dependent network of stochastic processes is called probabilistic inference. This technique allows researchers to determine the hidden quantities of a system from the observed output of the system and some prior beliefs about the system behavior.

The use of inference techniques to determine the posterior distributions of variables in graphical models has allowed researchers to solve increasingly complex problems. We can model complicated systems as graphical models, and then use inference techniques to determine the hidden values that describe the unknown nodes in the model. With these values, we can predict what a complicated system will do with different inputs, allowing us access to a more complete picture describing how these systems behave.

Some systems, however, require very complex models to accurately represent all their subtle details, and the complexity of these models often becomes a problem when attempting to run inference algorithms on them. These intractable problems can require hours or even days of computation to converge on posterior values, making it very difficult to obtain any useful information about a system. In some extreme
cases, convergence to posterior values on a complicated model may be impossible, leaving problems related to the model unsolved.

The limitations of our current inference algorithms are clear, but the effort spent in deriving them should not be ignored. Coming up with new inference algorithms, while being a perfectly acceptable solution, is difficult and requires a lot of creativity. An alternative approach that makes use of existing inference algorithms involves running them with more computational resources in parallel/distributed computing environments.

Since computational resources have become cheaper to utilize, lots of problems are being solved by allocating more resources (multiple cores and the combined computational power of multiple machines) to their solutions. Parallel and distributed computation has become an cheap and effective approach for making problems more tractable, and we believe that it could also help existing inference techniques solve complicated problems.

1.1 Example: Inference on Seismic Data

Consider an example problem involving the use of seismic data to determine what parts of the earth may be connected. This has practical applications relating to efficient drilling for oil, where the posterior distribution describing the layers of sediment in the earth provides invaluable information to geologists when determining what locations for drilling are more likely to strike oil and not waste money. Figure 1-1 shows an example of seismic data.

The seismic data was generated by shooting sound waves into the ground and waiting for the waves to bounce back to the surface, giving an idea of where each layer of sediment is located relative to the layers above and below it. From this information, we want to determine which horizontal sections (called “horizons”) are connected so that geologists have a clearer picture of when each layer of sediment was deposited. This is a difficult problem because the “horizons” are hardly ever straight lines and can only be determined by combining global information (for example, the
orientation of horizons on each side of the bumps in the above figure) with local information (for example, adjacent pixels in a particular horizon).

This example is particularly useful for motivating the complicated inference problem because it is difficult to perform inference over the graphical models used to encode all the necessary information of this physical system. The global information requires that models representing this system have lots of edges between nodes (resulting in lots of dependencies in the inference calculations). The local information requires that the model has a very large number of nodes (since each pixel is important and needs to be accounted for in some way). The result is a complicated graphical model that our current inference techniques will have trouble describing in a reasonable amount of time.

With parallel/distributed computation, there may be ways to perform inference on different parts of the graphical model at the same time on different cores or machines, saving all the time wasted to perform the same computations in some serial order. It is clear that inference problems will not usually be embarrassingly parallel (that is, easily transformed into bunch of independent computations happening at the same time), but there is certainly a fair amount of parallelism to exploit in these graphical models that could increase the tractability of these complicated problems.
1.2 Variational Message Passing and Graphlab

The difficulty in coming up with a parallel/distributed inference algorithm comes from finding the right set of existing tools to combine, and then finding the right way to combine them such that the benefits of parallel/distributed computing are realized. This thesis will describe the design process in more detail later, but the solution we eventually decided on was a combination of a variational inference implementation, called Variational Message Passing [32], and a relatively high-level distributed computation framework based on factor graph structures, called Graphlab [33].

1.2.1 Variational Inference and VMP

Variational inference [19, 26] refers to a family of Bayesian inference techniques for determining analytical approximations of posterior distributions for unobserved nodes in a graphical model. In less complicated terms, this technique allows one to approximate a complicated distribution as a simpler one where the probability integrals can actually be computed. The simpler distribution is very similar to the complicated distribution (determined by a metric known as KL divergence [15]), so the results of inference are reasonable approximations to the original distribution.

To further provide a high-level picture of variational inference, one can contrast it with sampling methods of performing inference. A popular class of sampling methods are Markov Chain Monte Carlo methods [7, 2, 21], and instead of directly obtaining an approximate analytical posterior distribution, those techniques focus on obtaining approximate samples from a complicated posterior. The approximate sampling techniques involve tractable computations, so one can quickly take approximate samples and use the results to construct the posterior distribution.

The choice to use variational inference as the target for combination with parallel/distributed computing is due to a particular implementation of the algorithm derived by John Winn called Variational Message Passing (VMP) [32]. The VMP algorithm involves nodes in a graphical model sending updated values about their own posterior distribution to surrounding nodes so that these nodes can update their
posterior; it is an iterative algorithm that converges to approximate posterior values at each node after a number of steps. The values sent in the update messages are derived from the mathematics behind variational inference.

The emphasis on iterative progression, graphical structure, and message passing make this algorithm an excellent candidate for integrating with parallel/distributed computation. These ideas mesh well with the notion of executing a program on multiple cores or multiple machines at once because the ideas are also central to the development of more general parallel/distributed algorithms.

1.2.2 Distributed Computation and Graphlab

With a solid algorithm for performing variational inference, we needed to decide on some approach for adding parallelism and distributed computing to everything. The primary concerns when choosing a parallel/distributed framework were finding a good balance between low-level flexibility and high-level convenience, and finding a computation model that could mesh well with the VMP algorithm. After looking at a few options, we eventually settled on the Graphlab [33] framework for distributed computation.

Graphlab is a distributed computation framework where problems are represented as factor graphs (not to be confused with graphical models in Bayesian inference). The nodes in the factor graph represent sources of computation, and the edges represent dependencies between the nodes performing computation. As computation proceeds, each node in the graph updates itself by gathering data from adjacent nodes, applying some sort of update to itself based on the gathered data, and then scattering the new information out to the adjacent nodes. Any nodes that are not connected by edges can do this in parallel on multiple cores, or in a distributed fashion on multiple machines.

The Graphlab framework has a number of qualities that meshed very well with our constraints. For one, the library provides a useful high-level abstraction through factor graphs, but achieves flexibility through the fact that lots of problems can be represented in this way. Once a problem has been represented as a factor graph, the Graphlab internal code does most of the dirty work relating to parallel/distributed
Another useful quality is the ease in switching from parallel computation on multiple cores to distributed computation on multiple machines; this only requires using a different header file and taking a few special concerns into account. Finally, the particular abstraction of a factor graph appears to be compatible with the emphasis on graphical structure inherent to the VMP algorithm, and we believed this would make combining the two ideas much easier.

1.3 Contributions

Apart from the ideas in this paper, this thesis has produced two useful pieces of software that can be used and extended to help solve problems in the field of probabilistic inference.

1. A functional and modular VMP library has been implemented in C++ that currently has support for a number of common exponential family distributions. The feature set of this implementation is not as deep as implementations in other languages, such as VIBES [32, 13] in Java or Infer.NET [20] in C-Sharp, but it can be extended easily to add support for more distribution types in the future.

2. An implementation combining the Graphlab framework and the VMP library described above has also been created. The combined Graphlab/VMP code has the same functionality as the original VMP library, and performs inference for some larger graphical models faster than the unmodified code does.

The remainder of this thesis is organized as follows: Chapters 2 and 3 provide a detailed look at the components of our implementation by describing the design considerations and component parts of the Variational Message Passing library and the Graphlab distributed framework. Chapter 4 describes the implementation details of the combined Variational Message Passing / Graphlab code that we have produced. Chapter 5 demonstrates some results that show the correctness and increased speed of the system we have created. Chapter 6 concludes this paper and discusses some other relevant work for this topic.
Chapter 2

Variational Message Passing

This chapter will describe the Variational Message Passing (VMP) [32] algorithm in greater detail. The VMP algorithm, as summarized in the introduction, is an implementation of variational inference that uses a factor graph and message passing to iteratively update the parameters of the posterior distributions of nodes in a graphical model. The ideas of general Bayesian inference, and more specifically, variational inference will be reviewed before describing how the VMP algorithm works.

2.1 Bayesian Inference

The VMP algorithm is a clever implementation of variational inference, which refers to a specific class of inference techniques that works by approximating an analytical posterior distribution for the latent variables in a graphical model. Variational inference and all of its alternatives (such as the Markov Chain Monte Carlo sampling methods mentioned in the introduction) are examples of Bayesian inference. The basic ideas surrounding Bayesian inference will be reviewed in this section.

Bayesian inference refers to techniques of inference that use Bayes’ formula to update posterior distributions based on observed evidence. As a review, Bayes’ rule says the following:

$$P(H|D) = \frac{P(D|H) \cdot P(H)}{P(D)}$$

(2.1)
The components of equation 2.1 can be summarized as:

1. $P(H|D)$: The posterior probability of some hypothesis (something we are testing) given some observed data.

2. $P(D|H)$: The likelihood that the evidence is reasonable given the hypothesis in question.

3. $P(H)$: The prior probability that the hypothesis in question is something reasonable.

4. $P(D)$: The marginal likelihood of the observed data; this term is not as important when comparing multiple hypotheses, since it is the same in every calculation.

Intuitively, the components of Bayes' formula highlight some of the important points about Bayesian inference. For one, it becomes clear that the posterior distribution is determined as more observed data is considered. The components also imply that both the hypothesis and the considered evidence should be reasonable. For the evidence, this is determined by the likelihood factor, and for the hypothesis, this is determined by the prior. The prior probability factor is very important, since it sways the posterior distribution before having seen any observed evidence.

2.1.1 Example: Fair or Unfair Coin?

The following example is adapted from the MIT-Church wiki [9]. Church is a high-level probabilistic programming language that combines MIT-Scheme [8] with probabilistic primitives such as coin flips and probability distributions in the form of functions. This thesis will not describe probabilistic programming in any detail, but for more information, one can look at the references regarding this topic [5, 31, 30]. For the purposes of this example, Church was used to easily construct the relevant model and produce output consistent with the intuition the example attempts to develop. The code used to generate the example model and the relevant output can be found in Appendix A.1.
Consider a simple example of a probabilistic process that should make some of the intuitive points about Bayesian inference a little clearer: flipping a coin. At the start of the simulation, you don’t know anything about the coin. After observing the outcome of a number of flips, the task is to answer a simple question: “is the coin fair or unfair?” A fair coin should produce either heads or tails with equal probability (weight = 0.5), and an unfair coin should exhibit some bias towards either heads or tails (weight ≠ 0.5).

Say you observe five flips of the coin, and note the following outcome: 3 heads and 2 tails. When prompted about the fairness of the coin, since there is really no evidence to support any bias in the coin, most people would respond that the coin is fair. Constructing this model in Church and observing the output backs this fact up, as demonstrated by the histogram in Figure 2-1. The histograms produced by Church in this section will count “#t” and “#f” values, corresponding to “true” (the coin is fair) and “false” (the coin is unfair). As you can see, all 1000 samples from the posterior distribution report that the coin is believed to be fair.

![Figure 2-1: Results from performing inference on the fairness of a coin. Observed Data = 3H, 2T; Fairness Prior = 0.999](image)

What happens when the outcome changes to 5 consecutive heads? Believe it or not, most people would probably still believe the coin is fair, since they have a strong prior bias towards believing that most coins are fair. Observing five heads in a row is a little weird, but the presented evidence isn’t really enough to outweigh the strength of the prior. Histograms for five heads with a strong prior bias towards fairness (Figure 2-2) and with no bias at all (Figure 2-3) are provided below.
Fair Coin (5H, Fairness Prior = 0.999)?

Figure 2-2: Results from performing inference on the fairness of a coin. Observed Data = 5H; Fairness Prior = 0.999

Fair Coin (5H, Fairness Prior = 0.5)?

Figure 2-3: Results from performing inference on the fairness of a coin. Observed Data = 5H; Fairness Prior = 0.500

As you can see, both the prior and the evidence are important in determining the posterior distribution over the fairness of the coin. Assuming we keep the expected prior in humans that has a bias towards fair coins, it would take more than five heads in a row to convince someone that the coin is unfair. Figure 2-4 shows that ten heads are almost convincing enough, but not in every case; Figure 2-5 shows that fifteen heads demonstrate enough evidence to outweigh a strong prior bias.

Fair Coin (10H, Fairness Prior = 0.999)?

Figure 2-4: Results from performing inference on the fairness of a coin. Observed Data = 10H; Fairness Prior = 0.999

Fair Coin (15H, Fairness Prior = 0.999)?

Figure 2-5: Results from performing inference on the fairness of a coin. Observed Data = 15H; Fairness Prior = 0.999

If someone is generally more skeptical of coins, or if they have some reason to believe the coin flipper is holding a trick coin, their fairness prior would be lower, and the number of consecutive heads to convince them the coin is actually unfair.
would be smaller. The essence of Bayesian inference is that both prior beliefs and observed evidence affect the posterior distributions over unknown variables in our models. As the above example should demonstrate, conclusions about the fairness of the coin were strongly dependent on both prior beliefs (notions about fair coins and the existence of a trick coin) and the observed evidence (the sequence of heads and tails observed from flipping the coin).

2.2 Variational Inference

The actual process by which one can infer posterior distributions over variables from prior beliefs and observed data is based on derivations of probability expressions and complicated integrals. One such technique that focuses on approximating those posterior distributions as simpler ones for the purposes of making the computations tractable is called variational inference. Variational inference techniques will result in exact, analytical solutions of approximate posterior distributions. A high-level, intuitive picture of how variational inference works is provided in Figure 2-6:

![Variational Inference: High-Level Diagram](image)

Figure 2-6: Variational Inference: High-Level Diagram
The large outer cloud contains all posterior distributions that could explain the unknown variables in a model, but some of these distributions may be intractable. The distributions inside the inner cloud are also part of this family, but the integrals used for calculating them are tractable. The variable θ parameterizes the family of distributions $Q(Z)$ such that $Q_\theta(Z)$ is tractable.

The best $Q_\theta(Z)$ is determined by solving an optimization problem where we want to minimize some objective function over θ based on the actual posterior and the family of tractable distributions. The minimum value of the objective function corresponds to the best possible $Q_\theta(Z)$ that approximates the actual posterior $P(Z|X)$. The best approximate posterior distribution will describe the unknown variable about as well as the actual posterior would have.

The objective function that is generally used in variational inference is known as KL divergence. Other divergence functions can be used, but the KL divergence tends to provide the best metric for determining the best approximation to the actual posterior distribution. The expression for KL divergence is in terms of the target approximate posterior Q and the actual posterior P is given below 1.

$$D_{KL}(Q||P) = \sum_Z Q(Z) \log \frac{Q(Z)}{P(Z|X)} \quad (2.2)$$

The optimization problem of minimizing the KL divergence between two probability distributions is normally intractable because the search space over θ is non-convex. To make the optimization problem easier, it is useful to assume that Q_θ will factorize into some subset of the unknown variables. This is the equivalent of removing conditional dependencies between those unknown variables and treating the posterior distribution as a product of the posterior distributions. The factorized expression for Q_θ becomes:

$$Q_\theta(Z) = \prod_{i=1}^{M} q_i(Z_i|X) \quad (2.3)$$

1The LaTeX code for the equations in this section come from http://en.wikipedia.org/wiki/Variational_Bayesian_methods
The analytical solution for $Q_\phi(Z)$ then comes from the approximate distributions q_j to the original factors q_j. By using methods from the “calculus of variations,” one can show that the approximate factor distributions with minimized KL divergence can be expressed as the following:

$$q_j^*(Z_j|X) = \frac{e^{E_{i \neq j}[\ln p(Z, X)]}}{\int e^{E_{i \neq j}[\ln p(Z, X)]} dZ_j}$$

(2.4)

$$\ln q_j^*(Z_j|X) = E_{i \neq j}[\ln p(Z, X)] + \text{constant}$$

(2.5)

The $E_{i \neq j}[\ln p(Z, X)]$ term is the expectation of the joint probability between the unknown variables and the observed evidence, over all variables not included in the factorized subset.

The intuition behind this expression is that it can usually be expressed in terms of some combination of prior distributions and expectations of other unknown variables in the model. This suggests an iterative coordinate descent algorithm that updates each node in some order, using the updated values of other nodes to refine the value computed at the current node.

This idea essentially describes how variational inference is generally implemented: initialize the expectations of each unknown variable based on their priors, and then iteratively update each unknown variable based on the updated expectations of other variables until the expectations converge. Once the algorithm converges, each unknown variable has an approximate posterior distribution describing it.

2.3 Variational Message Passing

The Variational Message Passing (VMP) algorithm follows the same intuition described at the end of the previous section: it is an algorithm that iteratively updates the posterior distributions of nodes in a graphical model based on messages received from neighboring nodes at each step.

The details specific to the implementation of this particular implementation of
variational inference surround the use of messages. The nodes in a graphical model interact (send and receive messages) with other nodes in their Markov blankets; that is, their parents, children, and coparents. The messages contain information about the current belief of the posterior distribution describing the current node. As the beliefs change with information received from other nodes, the constructed messages sent out to other nodes will also change. Eventually, the values generated at each node will converge, resulting in consistent posterior distributions over every node in the model.

2.3.1 Message Construction

Constructing the messages sent between a particular pair of nodes is relatively difficult, but by restricting the class of models to “conjugate-exponential” models, the mathematics behind the messages can be worked out. The two requirements for these models are:

1. The nodes in the graphical model must be described by probability distributions from the exponential family. This has two advantages: the logarithms involved in computation are tractable, and the state of these distributions can be summarized entirely by their natural parameter vector.

2. The nodes are conjugate with respect to their parent nodes; in other words, the posterior distribution $P(X|Y)$ needs to be in the same family of distributions as the prior distribution $P(Y)$ (where Y is a parent of X in the graphical model). This has one advantage: iterative updating of the posterior distributions of nodes only changes the values and not the functional form of the distribution.

Once these requirements are enforced, the source of the messages can be directly observed from the exponential family form expression:

$$P(X|Y) = \exp[\phi(Y)^T u(X) + f(X) + g(Y)]$$

(2.6)
In particular, the messages sent from parents to children ($Y \to X$) are some function of the *natural parameter vector* $\phi(Y)$, and the messages sent from children to parents ($X \to Y$) are some function of the *natural statistic vector* $u(X)$. The other functions in the above expression are for normalization purposes and do not affect the content of the constructed messages.

The natural parameter vector is determined by expressing a distribution in the exponential family form described above, and taking the part of the expression that depends on the parent nodes. The natural statistic vector is determined by taking the expectation of the vector containing the moments of a distribution. The process for obtaining each vector is different depending on the model in question, but once the vectors are determined, they can be directly inserted into the algorithm implementation for constructing messages.

For derivations of the natural parameter vectors and messages used in the models that the combined VMP/Graphlab implementation can support, see Appendix B for more information.

2.3.2 Operation Details

Determining the content of messages is work that needs to be done before the algorithm is actually run on a graphical model. Once the message content is coded into the algorithm, the actual operation of the algorithm follows a specific process that ensures each node in the graphical model ends up with the correct approximate posterior distribution. The steps performed at each node in the VMP algorithm are:

1. Receive messages from all of your parents. These messages will be used in updating your natural parameter vector during the update step.

2. Instruct your coparents to send messages to their children. This ensures that the children will have the most current information about the posterior distributions of nodes in your Markov blanket when they send you messages in the next step.

3. Receive messages from all of your children. These messages will be summed up and used to update your natural parameter vector during the update step.
4. Update your natural parameter vector by combining information about your prior with the messages you received from your parents and children. Once the natural parameter vector is current, use it to update your natural statistic vector for future messages you send to any children you have.

The above steps are performed once at each node during a single step of the algorithm. Once all nodes have been updated, the algorithm starts again with the first node. The algorithm terminates either after a set number of steps, or when the natural parameter vector at each node converges to some consistent value.

The update step for a particular node involves updating the natural parameter vector for that distribution. The derivations of natural parameter vectors for specific models supported by the combined VMP/Graphlab code are part of the work detailed in Appendix B. In general, the update step for a given node involves summing all the messages received from your children, and then adding that sum to the initial values of your natural parameter vector.

The following example demonstrates how the μ node in a Gaussian-Gamma model is updated during the first step of the VMP algorithm. The graphical model in question is provided in Figure 2-7. The circles with labels are the nodes in the graphical model; the leaf nodes with d_n labels are the observed data nodes, and everything else is an unknown variable. The uncircled numbers at the top of the model are the hyperparameters that define the prior distributions over the top-level nodes. The Gaussian and Gamma distributions are part of the exponential family, and the Gaussian-Gamma parent pair for Gaussian-distributed observed data satisfies the conjugacy constraint, so VMP can be performed on this model.

The steps taken for updating the μ node during the first iteration of the VMP algorithm are:

1. The μ node does not have any parents, so do not receive any messages.

2. The children of μ all have prec as a parent, so prec is a coparent of μ and must send messages to the d_n child nodes.
3. The d_n child nodes have been updated, so μ should receive current messages from all of them.

4. The μ node now has all the information about the believed posterior distribution of every node in its Markov blanket, so it can combine everything and update its own natural parameter vector and natural statistic vector.

The same steps would apply to prec during the first iteration (with the added note that prec will receive messages from rate in the first step), and the algorithm will keep updating μ and prec during each iteration until the natural parameter vector at both nodes converges to consistent values. The nodes should be visited in topological order during each iteration of the algorithm; in the above example, this means the effective order is $\{\text{rate, } \mu, \text{prec}\}$.

As a final note, the observed data nodes already have defined values (we are not determining posterior distributions for observed evidence), so only the unknown variables need to explicitly have an update step. The observed data in the leaf nodes becomes important when the unknown variables directly above them receive messages from the observed nodes; these messages contain the observed data as part
of the message and their upward propagation ensures that the unknown variables in
the model take the observed evidence into account.
Chapter 3

Graphlab Distributed Framework

This chapter will describe the Graphlab framework in more detail. The Graphlab framework takes problems represented as factor graphs and executes them on multiple cores or machines. The vertices of the factor graph represent individual parts of the problem, and the edges connecting them represent computational dependencies between those parts. The abstraction provided by Graphlab strikes an important balance between flexibility and difficulty in the implementation of parallel/distributed VMP code. This chapter will review some of the basic concepts surrounding parallel/distributed computing, and then focus on the design and implementation of the Graphlab framework.

3.1 Parallel/Distributed Computation

The study of parallel/distributed computation involves trying to find ways to leverage multiple processors or multiple machines to solve problems. The “parallel” aspect of computation comes from the processors operating in parallel to solve problems, and the “distributed” aspect of computation comes from multiple computers communicating on some kind of network to solve a problem together.

There is usually no straightforward way to convert a parallel program to a distributed one, but as the section on Graphlab will explain later, the Graphlab framework abstracts that difference away, allowing programs written with the framework
to be easily deployed on a cluster of machines. While this makes implementing your program easier, it is still important to have some idea of how each deploy method is different.

3.1.1 Parallel Computing

A typical parallel computing environment will involve multiple processors and some sort of shared memory that each one will use for reading/writing data. Figure 3-1 demonstrates such a system; the arrows represent the read/write pathways, and the boxes represent components of the machine (either one of the processors, or the shared memory).

![Figure 3-1: Typical Parallel Computing Environment [28]](image)

The above image doesn’t describe some of the concerns that must be addressed when writing parallel programs. For one, correctness is not guaranteed when simply moving a program from a serial environment to a parallel one. When a program is compiled, it becomes a series of instructions designed to run on a particular architecture. When spreading a sequential stream of instructions over multiple streams running at the same time, care must be taken to respect the read/write dependencies between different instructions. Consider the source code example in Listing 3.1:

```c
#include <stdio.h>

void transfer(int *pl, int *p2, int amount) {
  *pl = *pl - amount;
  *p2 = *p2 + amount;
}

void main(int argc, char **argv) {
  int *pl = malloc(sizeof(int));
  // ...
```
int *p2 = malloc(sizeof(int));
*p1 = 100;
*p2 = 100;

transfer(p1, p2, 50);
transfer(p1, p2, 25);

printf("p1: %d\n", *p1);
printf("p2: %d\n", *p2);
}

Listing 3.1: Parallel Dependencies: Transfer Code

When run in a serial environment, the output of the code should be $p1 = 25$ and $p2 = 175$. The two pointers have been initialized to hold a total of 200, and that total is preserved when the transfer requests are run in series. If the code above were run in parallel such that each transfer request was executed on a different processor, the results could be different. The lines of code in the `transfer` function compile down to several assembly instructions each, so there is a high possibility of interleaving instructions. In general, when writing parallel programs, any interleaving of instructions should be assumed possible without locks or other forms of protection.

One such interleaving that could cause major problems is when the LD(*p1) instruction in the second transfer request occurs before the ST(*p1) instruction at the end of the first transfer. In other words, the second transfer request may use the old value for *p1 and incorrectly subtract 25 from 100, instead of subtracting 25 from 50. The end result would be $p1 = 75$ and $p2 = 175$, which is obviously not what should happen after executing two transfers. There are several other ways to interleave the instructions that could produce incorrect results, so special care must be taken when writing parallel programs.

There are many ways to ensure that shared memory is manipulated in the right order within parallel programs; the most common way involves the use of locks. A lock around some data prevents other processors from reading/writing it until the lock is released. Other examples of concurrency protection will not be discussed here, but can be explored in the references [23, 18, 12].

In the above example, each transfer call would lock *p1 and *p2 before modifying
them, and then release the lock when they are finished. This ensures that the two transfer requests cannot interleave and produce incorrect results. Listing 3.2 shows how locking manifests itself in the above example (of course, the specific implementation depends on the language/framework being used):

```c
#include <stdio.h>

#include <stdio.h>

void transfer(int *p1, int *p2, int amount) {
    // Lock p1 and p2 before modifying their values so any other processors will block until they are released
    lock(p1); lock(p2);

    *p1 = *p1 - amount;
    *p2 = *p2 + amount;

    // Release p1 and p2 so any processors waiting at the lock calls above can continue
    release(p2); release(p1);
}
```

Listing 3.2: Parallel Dependencies: Transfer Code With Locking

A closer look at what actually happens shows that the program instructions are actually just run in some serial order. This leads into another concern with parallel programming: efficiency. In the absence of data dependencies, running several parts of a complicated program concurrently should make the program run faster. While parallel programs have some overhead in starting up and combining the results of each processor at the end, that time is easily offset by the amount saved by executing each part of the program at the same time. When dependencies force serialization of the instructions to occur, the overhead becomes an additional cost that might not be worth it.

3.1.2 Distributed Computing

All of the problems described in the parallel computing section are concerns when writing programs to run on multiple machines. The added level of complexity in writing distributed programs comes from the addition of some communication network
required so that each machine can send messages to each other. Figure 3-2 demonstrates what a typical distributed environment would look like with the same labels for processors and memory used in the parallel computing diagram:

![Diagram of a typical distributed computing environment](image)

Figure 3-2: Typical Distributed Computing Environment [28]

Each of the problems described above (correctness and efficiency) are amplified when working with distributed clusters of machines because the additional requirement of communication between each machine is difficult to coordinate correctly. Imagine if each of the transfer operations in Listing 3.1 were being run on different machines: there would be significant latency between when one machine updates *p1 and *p2, and when the other machine becomes aware of this update. The lack of actual shared memory between the two machines introduces new problems to the system.

The problem of correctness becomes more difficult to solve because locking mechanisms will also require communication on the network. A typical solution to distributed locking involves adding another machine to the network whose only purpose is to keep track of which machines hold locks for various data shared over the network. This adds significant complexity to most applications, especially when each machine on the network is performing local operations in parallel with those distributed locks.
The code in Listing 3.2 may still be applicable in a distributed system, but the underlying locking mechanism would be significantly more complicated.

The problem of efficiency becomes even more important to consider because the overhead cost now includes a significant amount of time devoted to network transmission and message processing. In general, communication networks are assumed to be unreliable, and measures must be taken at each machine in a distributed cluster to ensure every message is received in some enforced order. These measures require extra computation time, and may even delay certain operations from completing. Synchronization between multiple machines in a distributed program is another source of computation, and in many cases, this could completely kill any gains realized from an otherwise efficient distributed protocol.

Added to the problems mentioned above is the concern for reliability and fault-tolerance within distributed programs. In a distributed cluster of computers connected by a network, both machine and network failures are much more common than individual processor failures in a parallel environment. Accounting for these failures is difficult and requires even more overhead in most systems. While reliability and fault-tolerance will not be described in any more detail with regards to the VMP/Graphlab system, some useful references can be followed that describe components of the replicated state machine method for solving this problem [17, 3].

3.2 Parallel/Distributed Frameworks

With all the problems described in the last section, it should come as no surprise that most programs using parallel/distributed environments use pre-existing libraries and frameworks for implementing their code. These libraries and frameworks handle many of the complicated details associated with solving the problems outlined above while providing a high-level abstraction for writing parallel/distributed programs.

In the case of parallel programming, most pre-existing support comes in the form of programming language primitives. In a lower-level language like C, primitive libraries such as pthreads [4] can be used; this library exposes threads and mutexes, but requires
that the programmer explicitly use these constructs to control parallel operation at a fine-grained level. In a higher-level language like Java, the explicit use of locks is not always required, since the language abstracts them away by implementing thread-safe keywords for synchronization [22].

In the case of distributed programming, support within a programming language is not as common, so programs usually incorporate separate systems to handle the details of distributed computing. These systems provide their own abstractions that make the task of dealing with distributed machines way more manageable.

One such example is the Remote Procedure Call (RPC) framework [1], where programs on individual machines make function calls that actually execute on other machines and have the return value sent across the network to the calling machine. Another example is System Ivy [14], where the programs on individual machines access what appears to be shared memory on the distributed network. These abstractions require complicated implementations to ensure correct operation, but once completed and tested thoroughly, they can be placed under the hood of other distributed programs and reliably be expected to work.

3.2.1 Distributed VMP Framework

Taking all of the concerns surrounding parallel/distributed computation into account, we needed to find a framework that would seemingly mesh well with the VMP algorithm. Three specific frameworks were examined in great detail, with the idea that each one was representative of some class of frameworks:

1. Message Passing Interface (MPI): a low-level framework that provides basic support for sending messages between computers on a network [29]. This framework provides no high-level abstraction, but provides a high degree of flexibility since any kind of system can be built around the provided message passing primitives.

2. MapReduce: a high-level framework that reduces the problem of distributed computation to simply providing a map and reduce function to execute in a
specific way on a cluster of machines [6]. This framework provides an easy abstraction to work with, but makes it impossible to solve many problems that cannot be represented in the underlying structure of the system.

3. **Graphlab**: a mid-level framework that requires representing a distributed problem as a factor graph filled with computation nodes and edges describing the data dependencies between those nodes [33]. This framework requires work to represent a problem in the factor graph format, but handles many of the other details of distributed computation once the graph is constructed.

In general, the pattern with most distributed frameworks is that flexibility is usually traded off with complexity. The lower-level frameworks provide simpler primitives that can be molded into many different systems, but at the cost of needing to write overly complicated code that needs to deal with many of the gritty details of distributed computation. The higher-level frameworks deal with almost all of those details in their underlying implementations, but at the cost of restricting the kinds of problems they can solve to ones that fit nicely in the provided abstraction.

Using MPI would require that the distributed VMP implementation contain extra infrastructure code for dealing with data dependencies in the variational inference updates. The actual schedule of passing messages would need to be controlled at a relatively low level, so that each node can correctly update itself without using stale data from a previous iteration. This would be difficult, but clearly possible, since nothing restricts the kinds of systems that can be molded around the message passing primitives.

Using MapReduce would probably not be possible because the VMP algorithm has more data dependencies than the underlying structure of MapReduce can support. The MapReduce framework tends to be useful for problems that can be broken down into independently running parts that need to be combined after all processing has occurred. The ease of using MapReduce comes from the restrictive abstraction that only works effectively for certain kinds of problems, so although this framework would remove almost all of the distributed computing concerns, it did not seem useful for
implementing the VMP algorithm.

The Graphlab framework seemed to find a sweet spot between the flexibility provided by MPI and the abstraction provided by MapReduce. The abstraction provides high-level support for distributed computation while actually fitting the problem we need to solve; the factor graph abstraction is restrictive, but seems to mesh well with the emphasis on graphical structure inherent to the VMP algorithm. As mentioned earlier, the Graphlab framework also provides a way to easily switch between parallel and distributed execution, making it easier to deploy the code in different environments. All in all, the Graphlab framework seemed like the correct choice for implementing a distributed VMP algorithm with the least difficulty.

3.3 Graphlab Distributed Framework

The Graphlab framework, as mentioned earlier, performs distributed computation on problems represented as factor graphs. The underlying implementation of Graphlab handles the concerns described in the parallel/distributed computing section while enforcing an abstraction that “naturally expresses asynchronous, dynamic, and graph-parallel computation” [33]. The majority of the effort in using Graphlab to solve a problem comes from constructing the factor graph to represent a particular problem; an example of an arbitrary factor graph is provided in Figure 3-3.

The numbered circles are the vertices of the factor graph, and the lines connecting them are the edges. Both the vertices and the edges can store user-defined data, which is represented by the gray cylinders in the image (the thin ones with labels D_i are vertex data, and the wide ones with labels D_{i+j} are edge data). The scope of each vertex refers to the data that can be read and/or modified when a vertex is updating itself during computation. For a given vertex, the scope is defined by the outgoing edges and the vertices connected by those edges. The overall structure of the graph cannot be changed during computation, so the vertices and edges are static.

Once the graph is constructed, the framework performs computation on the structure using a user-defined “vertex program” that uses something called the Gather-
Apply-Scatter (GAS) paradigm. The computation model requires that a function be written for each of these three operations. These functions will be called during each iteration of the Graphlab computation on each node in the graph. The purpose of each function is summarized below:

1. **Gather**: a function that will be called at each vertex once for each of its adjacent edges. Every pair consisting of a node and one of its adjacent edges will call this function before any *apply* operations are started. This function is typically used to accumulate data from adjacent vertices to be used in an update during the *apply* step; when the + and += operations are defined for the declared type stored in each node, accumulation happens automatically and the sum is passed directly to the *apply* function.

2. **Apply**: a function that will be called exactly once for each vertex in the graph with the accumulated sum calculated during the *gather* step as an argument. Every vertex will call this function only after all the *gather* functions have completed, but before any *scatter* operations are started. This function is typically used to update the data stored in a vertex. This is the only function whose method signature allows for vertex data to be changed; vertex data structures must be marked as constant in the arguments to *gather* and *scatter*.
3. **Scatter**: a function that will be called at each vertex once for each of its adjacent edges, similar to **gather**. Every pair consisting of a node and one of its adjacent edges will call this function only after every **apply** operation has finished. This function is typically used to push new data out to the adjacent edges of a vertex after an update has completed in the **apply** step. This data will be grabbed by adjacent vertices during the **gather** step in the next iteration. Similar to the **apply** step, the edge data structures are not marked as constant in the arguments to this function.

The **gather**, **apply**, and **scatter** functions will execute on each vertex whenever the vertex is signaled. Normally, after constructing a graph, each node will be explicitly signaled once to begin executing some algorithm. The GAS functions will execute one iteration of the algorithm and, unless some convergent value or maximum number of steps has been reached, each vertex will signal itself to run again for another iteration. This signaling mechanism must be explicitly included in the vertex program. When the vertices stop signaling themselves to run, the algorithm ends and the resulting values can be examined in the nodes.

The exposure of the signaling mechanism is an example of how the Graphlab abstraction allows some flexibility to solve different kinds of problems. While there is a standard way for coordinating the signals between nodes so that a typical iterative algorithm can run, an ambitious problem can use fine-grained control of the signals to create interesting update schedules.

Another example of this is evident in the consistency models Graphlab exposes for performing the GAS computations in parallel. While Graphlab handles the complicated details of parallel/distributed programming under the hood, the API provides higher-level ways to influence how the computation will actually proceed. This has a direct influence on correctness and efficiency, but it allows the user to find the balance that works best for a particular program. The consistency models provided by Graphlab are outlined in Figure 3-4.

The consistency model chosen by the user directly affects the subset of the scope that a vertex is allowed to read and/or modify during an update step. The full-
consistency model allows complete access to the entire scope of a vertex. This disallows the nodes in that scope from executing their own update functions in parallel with the current vertex, providing the highest amount of consistency. This decreases the degree to which parallel computation can occur, so lesser consistency models are provided.

The edge-consistency model is slightly less consistent, only allowing a vertex to modify the data on its adjacent edges, but read all the data in its scope. The edges may still not be involved in parallel computation with this model, however, so a final, lower consistency model is also provided: the vertex-consistency model. The vertex-consistency model only allows reads and writes to occur on the adjacent edges, allowing Graphlab the highest amount of freedom to execute node updates in parallel.

In general, consistency and parallelism are traded off differently in each of the consistency models, and the right one to use depends heavily on the constraints of the problem being solved. Figure 3-5 summarizes the trade-off for the three models provided by Graphlab; the highlighted regions represent data that cannot be updated in parallel in the specified consistency model.

The other low-level details of how Graphlab actually constructs the factor graph on a distributed cluster of machines and performs computation with multiple machines
will not be discussed in significant detail, unless it is relevant to some implementation detail of the combined VMP/Graphlab system in Chapter 4.

The next part of this section will outline the PageRank [16] example from the Graphlab tutorial [34] to solidify the intuition behind how the abstraction works and how it should be used to write distributed programs. For more information on the implementation details of the Graphlab framework, follow the reference to the VLDB publication [33].

3.3.1 Graphlab PageRank Example

The PageRank algorithm assigns a numerical weighting to each node in a graph that is based on how “important” the node is relative to the others in the graph. This weighting is determined from some function involving the importance of nodes pointing to the current node and a damping factor included to represent a small random assignment of importance. For the purposes of this example, the pseudocode provided in the Graphlab tutorial (adapted to look like a standard C program in Listing 3.3) provides a perfect starting point for implementing this code in the Graphlab framework:

```c
#include <stdio.h>
```
void main(int argc, char **argv) {
 // Iterate through all the nodes in the graph
 for (int i = 0; i < graph.size(); i++) {
 Node node = graph->getNode(i);

 // Compute the pagerank of this node based on
 // the pagerank of nodes connected on in-edges
 double acc = 0;
 for (int j = 0; j < node.countInEdges(); j++) {
 Node inNode = node.getInNode(j);
 acc = acc + (inNode.pagerank / inNode.countOutEdges());
 }

 // Update the pagerank of this node
 node.pagerank = (0.85 * acc) + 0.15;
 }
}

Listing 3.3: Example PageRank Pseudocode

The final goal is to implement this algorithm using a Graphlab factor graph and the GAS paradigm so that the PageRank algorithm can easily run on multiple cores or multiple machines. The process for writing a Graphlab program for the PageRank algorithm involves two major steps: creating the factor graph and writing the vertex program to perform the PageRank updates.

The creation of the factor graph is a relatively simple process due to the widespread use of templates throughout the Graphlab library. The Graphlab primitives are available to use once a particular header file is included. Once the primitives are available, creating the factor graph involves defining structures for the vertex and edge data, and registering them with a specific instance of a graph. Listing 3.4 demonstrates how this looks:

```cpp
#include <string>
#include <graphlab.hpp>

// Define the vertex data structure
struct vertex_data {
    // Store the name and pagerank of a node
    // inside each vertex
```
std::string pagename;
double pagerank;

// Constructors for creating vertex_data structs
vertex_data(): pagerank(0.0) {
}
explicit vertex_data(std::string name): pagename(name),
pagerank(0.0) {
}

// Serialization methods to send and receive vertex_data structs over the network
void save(graphlab::oarchive& oarc) const {
oarc << pagename << pagerank;
}
void load(graphlab::iarchive& iarc) {
iarc >> pagename >> pagerank;
}

// Type definition of the factor graph based on the vertex_data defined above and an empty type
// (since edge_data is not needed)
typedef graphlab::distributed_graph<
 vertex_data, graphlab::empty> graph_type;

// Initialization stuff that needs to happen
// to commit the graph
int main(int argc, char** argv) {
 graphlab::mpi_tools::init(argc, argv);
 graphlab::distributed_control dc;
 graphlab::mpi_tools::finalize();
}

Listing 3.4: PageRank Factor Graph Creation Code

Once the factor graph is created, loading it with data is also relatively easy. Graphlab provides functions for adding vertices with a specific ID, and then connecting two vertex IDs with through a function that adds edges. Listing 3.5 demonstrates the general idea behind using these functions:

#include <string>
#include <graphlab.hpp>

// Initialization stuff that needs to happen
// to commit the graph
int main(int argc, char** argv) {
 graphlab::mpi_tools::init(argc, argv);
 graphlab::distributed_control dc;

 // Actually define a graph using the graph_type
 // template defined earlier
 graph_type graph(dc);

 // Create three vertices using the add_vertex
 // method; note that the ID type is simply
 // another use of templating
 graphlab::vertex_id_type vid;
 for (int i = 0; i < 3; i++) {
 vid = i;
 graph.add_vertex(vid, vertex.data("node" + i));
 }

 // Add edges between certain nodes using
 // the add_edge method and the vertex IDs
 // created above
 graph.add_edge(0, 1);
 graph.add_edge(1, 2);
 graph.add_edge(2, 0);

 graphlab::mpi_tools::finalize();
}

Listing 3.5: PageRank Factor Graph Loading Code

The final part of the Graphlab PageRank program involves writing a vertex program that implements the PageRank updates in the GAS paradigm, and continues to schedule itself until the algorithm converges on consistent values. This is best explained by demonstrating commented code as with the last two parts; Listing 3.6 demonstrates what it looks like:

#include <string>
#include <graphlab.hpp>

// Create the vertex program
class pagerank_program :

// Define the template type for the vertex program:
// the first type is the graph_type, and the second
// type is the type of data stored in each node
public graphlab::ivertex_program<graph_type, double>,

// Required syntax for defining the program
public graphlab::ISPOD_TYPE {

private:

// Create a local variable to assist in dynamic
// signaling of vertices
bool perform_scatter;

public:

// Create the gather operation: note that it
// will receive a vertex and one of its adjacent
// edges when invoked
double gather(icontext_type& context,
 const vertex_type& vertex,
 edge_type& edge) const {

 // Code performing some part of the PageRank
 // calculations to be accumulated in the apply step
 return edge.source().data().pagerank /
 edge.source().num_out_edges();
}

// Create the apply operation: note that the total
// variable will store the accumulated sums for the
// vertex in question from the gather step
void apply(icontext_type& context,
 vertex_type& vertex,
 const gather_type& total) {

 // Code updating the pagerank based on the data
 // collected from other nodes in the gather step
 double newval = total * 0.85 + 0.15;
 double prevval = vertex.data().pagerank;
 vertex.data().pagerank = newval;

 // Check whether the pagerank has converged, and
 // store this check in the local variable
 perform_scatter = (std::fabs(prevval - newval) > 1E-3);
}
Once the three vertices we defined in Listing 3.5 are initially signaled, the vertex program takes over and performs PageRank updates until the values in each node converge. The Graphlab framework is executing these vertex programs in parallel (or, with minor changes to the code and environment, on a distributed cluster) with minimal stress from the programmer.

The C++ syntax used to write the code in this subsection may be difficult to understand for those not familiar with the language, but the point of demonstrating code snippets is to give a clear picture of how writing distributed programs with...
Graphlab should feel. The comments provide a high-level picture of what each important line of code is doing, and the entire thing should provide a general idea of what Graphlab programs usually look like. The PageRank code should also look similar to some of the code provided in Chapter 4 demonstrating how VMP code is combined with Graphlab, further building up an intuition for how Graphlab programs work with the reader.
Chapter 4

VMP/Graphlab Implementation Details

This chapter will describe the design and implementation of the combined VMP-/Graphlab system in detail. Once all the design considerations from the previous chapters were taken into account, we designed a modular system that could take a graphical model as input and output posterior distributions over the unknown variables in that model. A high-level block diagram of the system is provided in Figure 4-1. Each block in the diagram represents a major component of the system, and the relative vertical positions of each block represent the layer where that component is located in the system.

![Figure 4-1: VMP/Graphlab System Block Diagram](image)

49
Starting with the lowest layer, the VMP/Graphlab system can operate on a distributed cluster of machines. The Graphlab abstraction makes it possible to easily switch between running the code on a single machine, multiple processors, or multiple machines. The most complicated case is the distributed cluster case, but it does not require significantly more effort to operate due to the distributed computing abstraction provided by the Graphlab layer.

The Graphlab layer provides the distributed computing abstractions described throughout Chapter 3. Once Graphlab has been installed on every machine in the distributed cluster, one machine starts everything by executing the VMP/Graphlab main function. The code must include the Graphlab API header file and use some pre-defined Graphlab functions for constructing factor graphs and signaling vertices. This keeps the Graphlab footprint in the VMP code relatively small, but still links it with all the low-level code that executes the program on multiple cores or multiple machines.

The VMP layer is a standalone VMP library implemented in C++. The library was built from scratch and based on existing implementations called VIBES [13] and Infer.NET [20]. Both VIBES and Infer.NET support more models with VMP than the combined VMP/Graphlab system currently does, but it made sense to implement a new library from scratch because compatibility with Graphlab required using C++. Writing a new library also allowed a detailed understanding of the VMP library specifics, which made integration with Graphlab significantly easier.

The block corresponding to the scheduler does not correspond to an individual component of the system. It exists as a separate block between the VMP and Graphlab layers because the user has control over how Graphlab will run inference over a provided model. The Graphlab framework provides functions for influencing the order in which nodes are updated during execution and for controlling the desired level of parallelism for a particular program. The VMP code needs to partition a graphical model into a Graphlab factor graph and decide which of these controls it wants to use for maximum efficiency. These concerns are separate from most of the abstraction provided by the Graphlab layer and the VMP library, so it exists as a
separate entity in the system diagram.

The graphical models and data layer contains the format for representing models that the VMP/Graphlab code can support. Currently, the accepted format and parser are relatively simple, but emphasis on this layer as a modular component of the system means that a more complicated language for describing models can replace the simpler code without compromising the rest of the system. The model and data files can be manually written or generated with scripts, and the output can be easily accessed when inference has completed.

The rest of this chapter will explore the finer details about the major components of the system outlined above. The Graphlab abstraction was described in Chapter 3, so everything above that layer will be covered in the next few sections.

4.1 VMP Library

The VMP library is a separate component of the system that contains code for performing the VMP algorithm on different graphical models. The library consists of code describing probability distributions and their behavior during an execution of the VMP algorithm. Treating the library as a black box, the code takes a graphical model in some specified text format, and outputs the values characterizing the posterior distributions of any unknown variables in the model. The major components operating inside the box, in order of control flow, are:

1. parser.cpp: This code is responsible for parsing the input graphical model into some internal structure that the VMP library can use. It reads the specified text file and creates polymorphic Node objects that contain pointers to all the information relevant to the VMP algorithm. This is also the location where checks for conjugate-exponential models can be performed, although the current version of the code hasn’t implemented this yet.

2. node.cpp: This is the pure abstract virtual class that describes nodes in a graphical model. The classes that inherit from Node share a core set of variables
and methods that are the same for any node in a graphical model. When a particular node requires a specific implementation for some function, that function is created as virtual in this class and overridden in each specific class that inherits from Node.

3. *distribution*.node.cpp: These are the classes that implement specific probability distributions for the VMP algorithm. The parser directly instantiates these classes based on the information contained in the model file. Before the VMP algorithm actually begins, objects of this type have initialized natural statistic and natural parameter vectors; correct parent, children, and coparent lists; and flags determining whether the node is observed data or not. The message and update equations for specific distributions are coded directly into methods of these classes.

4. vmp.cpp: This contains the function that ties together all the other parts of the VMP library. The input file is passed into this function, and the inference output is available to it once the VMP algorithm has terminated. The parent, children, and coparent lists are populated after the parser is invoked, and all necessary information about the graphical model is compiled and prepared before the VMP algorithm is actually started. Due to the high degree of modularity in the system, this is the only file that required a major overhaul when the code was integrated with Graphlab.

The decision to implement distribution nodes as polymorphic added a fair amount of effort to the early coding stages, but it has made the code easy to extend in the long run. Adding new distribution types is simple because most of the relevant information for nodes is immediately available by inheriting from the pure virtual abstract Node class. The following source code listing demonstrates exactly which fields are shared for Node objects:

```cpp
// Lots of include statements

class Node {
```
protected:

 // String identifier for this node
 string name;

 // Vector containing the names of all parents
 // to this node in the model
 vector<string> parameters;

 // Flag storing whether this node is observed
 // data and the actual observed data value
 bool is_observed;
 double observed_data;

 // Enumeration type identifying this node as
 // one of the specific node types (usually
 // not important because of polymorphism)
 Type type;

 // Depth in the graphical model (used for
 // determining topological order and the
 // set of coparents)
 int depth;

 // Vectors containing polymorphic pointers to
 // the parents, children, and coparents of
 // this particular node
 vector<Node*> parents;
 vector<Node*> children;
 vector<Node*> coparents;

 // Declarations of the natural parameter vector
 // and final posterior value vector
 vector<double> npv;
 vector<double> generated_values;

 // Declarations of the maps associating the
 // messages received at this node with the
 // parents/children that sent them
 map<Node *, vector<double>> p2c_messages;
 map<Node *, vector<double>> c2p_messages;
}
Not included above are the getter and setter methods that modify all of those fields. The polymorphic support provided by C++ allows for these fields and methods to use the generic Node * pointer type because the code will use the right type at runtime. This is because the class contains pure virtual methods that require specific implementations to be written in every subclass. These are the methods that are unique for each probability distribution; the following source code listing explains their functions:

```cpp
// Rest of Node class here

// Convert the node to a string representation
virtual string to_string() = 0;

// Output the current beliefs about the posterior
virtual string show_generated_values() = 0;

// Initialize the natural parameter vector
virtual void init_npv() = 0;

// Initialize the eventual output vector
virtual void init_generated_values() = 0;

// Construct a parent to child message
virtual vector<double> make_p2c_msg() = 0;

// Construct a child to parent messages based on
// the target parent and the coparents
virtual vector<double> make_c2p_msg(Node *, vector<Node *>) = 0;

// Update the posterior based on the messages
// received from children and your natural
// parameter vector (both stored in the class)
virtual void update_generated_values() = 0;
```

Listing 4.2: Node Class: Pure Virtual Methods

The specific implementations of each class not only implement these virtual methods, but also provide other fields and methods to make working with specific distributions easier. For example, Gaussian distributions will always have two parameters
(mean and precision), so the constructor for that class takes the generalized parameter vector and stores the first two elements directly in class variables. These type of constraints are inherent to different distribution types, and therefore can be coded safely in the classes of those distributions.

As an example, some of the functions from the Gaussian distribution class `gaussian_node.cpp` are outlined below (all message and update equations were derived in Appendix B, so feel free to cross-check with that for a more complete picture):

```cpp
#include "gaussian_node.h"

// Constructor for the Gaussian node class
GaussianNode::GaussianNode(string iname,
    vector<string> params)
    : Node(iname, params, GAUSSIAN) {
    // Create field variables "mu" from params[0]
    // and "prec" from params[1]
}

// Initialize the natural parameter vector
void GaussianNode::init_npv() {
    // If this node is observed data, the natural
    // parameter vector should just contain the
    // observed data value

    // Otherwise, we know the vector should be
    // [mu * prec; prec / -2.0]
}

// Initialize the vector for the posterior values
void GaussianNode::init_generated_values() {
    // Allocate space for the vector and initialize
    // the values to the observed data if applicable
}

// Create a parent to child message
vector<double> GaussianNode::make_p2c_msg() {
    // If this node is observed data, the expectation
    // is just the observed data, so the message is
    // [observed_data; observed_data^2]

    // Otherwise, we want the expectation of the
```
natural statistic vector, which is just
[E(X); E(X^2)]

Create a child to parent message based on the target
parent and the coparents

vector<double> GaussianNode::make_c2p_msg(Node *parent,
vector<Node *> parents) {
 // Use the p2c-messages map to obtain the message
 // sent from the coparent and remember it (we will
 // call it "pmsg")

 // If the target parent has type GAUSSIAN: the message
 // should be [E(other) * E(X); E(other) / -2.0], which
 // is just [pmsg[0] * E(X); pmsg[0] / -2.0]

 // If the target parent has type GAMMA: the message
 // should be [(-0.5 * E(X)^2) - (2.0 * E(X) * E(other))
 // + E(other^2); 0.5], which is just [(-0.5 * E(X)^2 -
 // (2.0 * E(X) * pmsg[0]) + pmsg[1]; 0.5]
}

Update the posterior values

void GaussianNode::update_generated_values() {
 // If this node is observed data, do nothing

 // Otherwise, we need to obtain the natural parameter
 // vector from our parents, which consists of the
 // same quantities as above: [mu * prec; prec / -2.0]

 // Next, we need to sum all the messages received
 // from children (stored in the c2p-messages map)
 // and add it to the new NPV we obtained above

 // Finally, we need to obtain the new values for mu
 // and prec from the resulting vector; these values
 // represent the current belief about the posterior,
 // so store them in generated_values
}

Listing 4.3: Gaussian Node Class: Method Functionality

The VMP library supports a few different kinds of models and implements several
different distribution types. The following subsection outlines those types and goes
into a bit more detail about mixture models that the VMP library supports.

4.1.1 Supported Models

The current VMP library code supports four large classes of conjugate-exponential models:

1. Gaussian-Gamma Models: This model consists of Gaussian distributed observed data that has Gaussian parents for the mean parameter and Gamma parents for the precision parameter. The Gamma nodes can also have Gamma parents for their rate parameter. As long as a conjugate parent-child pair is Gaussian/Gaussian, Gaussian/Gamma or Gamma/Gamma, the system can construct the right messages and perform inference over the model. An example of this model is provided below:

 ![Gaussian-Gamma Model Diagram](image)

 Figure 4-2: Supported Models: Gaussian-Gamma Model

2. Dirichlet-Categorical Models: This model consists of Categorically distributed observed data that has a Dirichlet parent. Dirichlet nodes are not allowed to have probabilistic parents, so as long as the model consists of Dirichlet/Categor-
ical parent-child pairs, the system will produce correct messages and perform inference over the model. An example of this model is provided below:

psuedocount prior
[1.0, 1.0, 1.0]

Figure 4-3: Supported Models: Dirichlet-Categorical Model

3. Gaussian Mixture Models: This model is similar to the Gaussian-Gamma model described above, but now K Gaussian/Gamma parent components exist, and every Gaussian data node is accompanied by a Categorical node that selects from the different parent components during inference. An example of this model is provided below:

Figure 4-4: Supported Models: Gaussian Mixture Model [27]
4. Categorical Mixture Models: This model is similar to the Dirichlet-Categorical model, but now K Dirichlet parents exist, and each Categorical data node is accompanied by another Categorical node that selects from the different parent components during inference. An example of this model is provided below:

![Diagram of Categorical Mixture Model]

Figure 4-5: Supported Models: Categorical Mixture Model [27]

The messages for the mixture models are based on the particular graphical structure of each model, a fact that is discussed in another paper discussing Gates [25]. These Gates enclose parts of a graphical model and either turn them on or off based on the status of the Categorical selector node. This representation makes it possible to execute the VMP algorithm on mixture models. The message and update equations were more difficult to derive, so much of the work was double checked against the values used for mixture code in VIBES.

To implement mixture models, new classes of nodes were made for Gaussian mixtures and Categorical mixtures. These nodes are used to represent the observed data in these models, since when compared to the original Gaussian and Categorical nodes, they have an extra parent and different messages to send. In particular, these classes need to send a weighted message to the component parents, and a special kind of message based on all the components to the selector parent. The following outline of the child to parent message generating function in the Gaussian mixture class demonstrates how this works:
vector<double> GaussianMixtureNode::make_c2p_msg(
 Node *parent, vector<Node *> parents) {

 // If the target parent is the selector parent, then
 // the coparents consist of all the component mixtures

 // Obtain the messages sent by each Gaussian/Gamma
 // pair of component parents

 // Calculate the natural parameter vector from these
 // messages [mu * prec; prec / -2.0] and use this vector
 // to compute a value to insert into the message being
 // send to the selector parent

 // Perform the above steps for each mixture component,
 // inserting the value for each one into a different
 // index in the message

 // Otherwise, the target parent is one of the mixture
 // components, and a weighted message should be sent

 // Obtain the message sent by the selector parent

 // Obtain the believed weight that the target mixture
 // component has by taking the right element from the
 // weights message obtained from the selector parent

 // Multiply the expected message that would be sent
 // to the target parent (based on the target coparents)
 // by the obtained weight

 Listing 4.4: Gaussian Mixture Node: Child To Parent Messages
4.2 VMP/Graphlab Integration

Once the VMP library described in the previous section was completed, the code needed to be layered on top of the Graphlab API to allow for parallel/distributed inference. Due to the modularity of the VMP library and the abstractions provided by the Graphlab framework, all of the necessary changes were confined to the vmp.cpp file that drives the VMP code to actually perform inference. The integration effort required three major steps:

1. Creating the Graphlab factor graph from the VMP graphical model. This requires partitioning the provided graphical model into sets of vertices and connecting edges. The VMP/Graphlab code currently imitates the graphical model structure when constructing the factor graph (each distribution node is treated as an individual vertex in the factor graph) but this may not be the most efficient way to partition models; this is discussed a little further in the limitations section at the end of this chapter.

2. Defining the vertex program for performing iterations of the VMP algorithm. This requires finding a way to translate the control flow in the VMP algorithm to the Gather-Apply-Scatter paradigm that the Graphlab abstraction enforces. The VMP library contains most of the code that constructs and passes messages during the algorithm, but figuring out when to invoke those methods within the Graphlab vertex program requires some work.

3. Creating an execution engine and schedule the vertices to run. Once the factor graph and vertex program are created, the driving function in the VMP code needs to instruct Graphlab how to proceed with execution. The consistency model needs to be selected, and the vertices in the factor graph need to be initially signaled. The Graphlab API exposes enough of its internals to allow for fine-grained control over these things, but simpler settings can also be enabled to run the program with base settings.
4.2.1 Creating The Factor Graph

The creation of the factor graph requires a new data structure to be used in the vmp.cpp file: a global map associating Node pointers with their Graphlab vertex IDs. Each Node object created by the parser is eventually added as a vertex to the factor graph and assigned a vertex ID in the process (which is stored in the map). The edges are then populated from top to bottom using the children of each node and the ID map. This process is shown in the following source code listing:

```cpp
// Assign every single node a vertex_id_type
graphlab::vertex_id_type vid = 0;
map<Node *, graphlab::vertex_id_type> node_vid;
for (it = nodes.begin(); it != nodes.end(); ++it) {
    Node *node = it->second;
    node_vid[node] = vid++;
}

// Construct the Graphlab factor graph by creating
// vectors of nodes and passing them to vertex_data
for (it = nodes.begin(); it != nodes.end(); ++it) {
    Node *node = it->second;
    // Add the vertex to the graph using the vid map
    graph.add_vertex(node_vid[node],
        vertex_data(node->get_name()));

    // Create edges from each node to all its children;
    // only allow the first distributed process to do this
    // since duplicate edges are not allowed
    for (int x = 0; x < node->get_children().size(); x++) {
        if (dc.procid() == 0) {
            graph.add_edge(node_vid[node],
                node_vid[node->get_children()[x]]);
        }
    }
}
```

Listing 4.5: VMP/Graphlab Integration: Factor Graph Construction
4.2.2 Creating The Vertex Program

The creation of the vertex program requires defining *gather*, *apply*, and *scatter* functions for performing the VMP algorithm. The general idea was to handle all the message passing during the *gather* step, and handle all the updating during the *apply* step, but the delaying of the *apply* step until all *gather* operations have completed made this difficult. Instead, nodes are updated immediately when they have received all relevant messages in the *gather* step to produce the same values after inference as the original VMP library. This results in the *apply* function only dealing with signaling vertices for another iteration, and the *gather* function doing all of the work.

The *gather* function is executed for all node and adjacent edge pairs in the factor graph in some parallel/distributed way, so the speed increase in using Graphlab comes from the ability to perform some of the message construction and update steps in parallel. The *gather* function is demonstrated below:

```c++
// Define the gather operation for VMP
vector<
double
> gather(
text
_type &context,
        const vertex_type &vertex,
        edge_type &edge) const {
    // Obtain the node pointer corresponding to this name
    // by doing a lookup in the global nodes table
    Node *node = global_nodes[vertex.
data().name];
    Node *other = global_nodes[edge.
target().data().name];

    // Make sure the other node on the edge is different
    if (node == other) {
        other = global_nodes[edge.
source().data().name];
    }

    // If the other node is the parent of this node, receive
    // the downward message
    if (is_parent(node, other)) {
        vector<double> msg = other->make_p2c_msg();
        node->set_p2c_message(other, msg);
    } else if (is_child(node, other)) {
        // Otherwise, it is a child node, so all the coparents
        // should send a message upwards
        vector<Node *
> coparents = other->get_parents();
        for (unsigned x = 0; x < coparents.size(); x++) {
```
Node *coparent = coparents[x];
if (node != coparent) {
 vector<double> msg = coparent->make_p2c_msg();
 other->set_p2c_message(coparent, msg);
}

// After the coparents are done, receive the message
// from the child
vector<double> msg = other->make_c2p_msg(node,
 other->get_parents());
node->set_c2p_message(other, msg);

// Order hack: on the first iteration, do not update
// any categorical selector nodes
if (context.iteration() == 0 &&
 node->get_type() == CATEGORICAL) {
 return vector<double>();
}

// Once all the messages are received, update posterior
// values for this node
if (node->get_num_p2c_messages() ==
 node->get_parents().size() &&
 node->get_num_c2p_messages() ==
 node->get_children().size()) {
 node->update_generated_values();
}

// The factor graph nodes are not storing any values
// since the VMP library does all the work, so an empty
// vector is returned for the accumulator to pass along
return vector<double>();

Listing 4.6: VMP/Graphlab Integration: Gather Function

The vertex data only maintains the name of its corresponding graphical model node because that information is important for obtaining the Node pointers on other machines that are required arguments to most functions in the VMP library. Most of the functionality is still coming from the VMP library, but in order to ensure that the right Node pointers exist on each machine running a gather function, a global
map associating node names and the memory address in the current memory layout has been added to vmp.cpp. The first lines of code in each gather function obtain the correct pointers for the nodes being referenced, and the rest of the function uses those pointers to call VMP library functions as in the original vmp.cpp functions.

Another problem that Graphlab introduced was executing the gather operation on each node in an unspecified order due to the nature of running everything in parallel. This sometimes produces different values than the original VMP library (which used the topological ordering for nodes in the model) due to different messages being constructed from different update orders. This is not always a problem, but with some models, the numbers may be different on certain runs of the VMP algorithm.

4.2.3 Scheduling Vertices For Execution

The scheduler component of the system diagram is a representation of the issues covered in this subsection. The two main issues that need to be addressed are the iterative signaling of vertices and the consistency model that Graphlab uses for running the vertex program. There exist many other controls in the Graphlab API that can tune how efficient the parallel/distributed execution can be, but these two are the most important in the current implementation of the system and fairly representative of the thought process.

The signaling of vertices is initially performed in the same topological order used by the original VMP library. This doesn't actually enforce an ordering, however, because some vertices may be located on other machines and the parallel/distributed execution of each gather function can have different orderings on different runs of the program.

Each vertex is only explicitly signaled once, and then the vertices signal themselves until some set number of iterations is reached. The VMP/Graphlab code required a global counter to keep track of the total number of iterations, and it was used in the apply function to determine whether a particular vertex should be signaled again. That mechanism is demonstrated in the following source code:
// Define the apply operation for VMP; this function
// is primarily used for scheduling vertices in the
// current implementation
void apply(icontext_type &context,
 vertex_type &vertex,
 const gather_type &total) {
 // Check the current iteration count of this vertex
 // against the global steps counter; if less, signal
 // this vertex to run again
 if (vertex.data().count < global_steps) {
 vertex.data().count++;
 context.signal(vertex);
 }
}

Listing 4.7: VMP/Graphlab Scheduling: Apply Function

Another option for signaling vertices is to explicitly check the posterior values at
each node and determine if they have converged in each apply step. This requires
a bit more effort, but could save a lot of time because variational inference on most
models seems to converge rather quickly (sometimes as quickly as the fifth iteration).
This has nothing to do with the parallel/distributed nature of the code, however, and
is only absent because the original VMP library also used a fixed number of iterations
for performing inference.

As for the consistency model selection, this requires choosing from a “synchronous”,
“asynchronous,” or “semi-synchronous” engine when creating the object driving the
Graphlab computation. The engine takes the constructed factor graph, a distributed
control object, and a string denoting what kind of engine is desired. The different
settings of the engine are related to the consistency/parallelism trade-off discussed in
Chapter 3.

The “synchronous” setting guarantees that all vertex programs (regardless of
their location on a distributed cluster of machines) will execute serially. The “asyn-
chronous” setting attempts to run vertex programs in parallel, but will exhibit a lower
degree of consistency with the data in the graph. The “semi-synchronous” setting is
a middle ground between the last two options, and attempts to find a better balance
between consistency sacrifices and increased parallelism.

Beyond explicitly setting a consistency type, Graphlab does not force the programmer to do anything more complicated to construct the computation engine. The API exposes other lower-level fields and methods for more fine-grained control, but no controls of that sort were used with the VMP/Graphlab computation engine. The VMP algorithm can be run with any of the three consistency types, and as expected, the trade-off between consistency and parallelism shows up: lower consistency is slightly faster, but with a higher amount of incorrect values, and higher consistency is slightly slower, but the inference reports correct values more often.

4.3 Graphical Model Parser

The parser is a text file parser that expects a particular format for graphical models, and it reads the file according to this format to construct Node objects. A context-free grammar describing what the parser expects is provided below:

```
model -> "graph\n", graph, "data\n", data;
graph -> (name, type, parameters, "\n")+;
type -> "gaussian" | "gamma" | "constant" |
      "dirichlet" | "categorical", int |
      "mixture:", ("gaussian" | "categorical", int);
parameters -> (number | name), (" ", (number | name))*;
data = (name, number, "\n")+;
name -> string;
string -> ("A-Z | a-z | 0-9")+;
number -> int | double;
int -> ("0-9")+;
double -> int, ".", int;
```
The name field is what connects entries in the parameter lists to nodes declared earlier in the input file. The name also connects the data entries to nodes. The accepted types reflect what the code can currently support; as the number of accepted models increases, the list of recognized types will grow larger. Also, it is useful to note that "categorical" types require that the dimensionality of the vector be specified in the input file (hence, the "int" field showing up next to the type in the grammar).

4.4 Current Limitations

There are several limitations in the current implementation of the VMP/Graphlab code, and this section will outline a few of them and some thoughts about how to work around them until a proper fix is introduced.

1. The types of models that the VMP/Graphlab code can support is fairly limited. While Gaussian and Categorical mixture models can be used for many different problems, failure to include other distribution types prevents certain problems that depend on those distributions from being solvable with this code. The feature set of VIBES includes other distributions, as well as deterministic (non-probabilistic nodes that tend to represent functions like "sum" and "logical OR"), and it would be excellent if the VMP/Graphlab implementation eventually boasted a similar feature set.

2. The models that the VMP/Graphlab code support only work in one dimension. In other words, there is no implicit support for multi-dimensional probability distributions, like a 3D Gaussian with mean and precision parameters in each dimension. The VIBES code seems to distinguish between scalar and vector distributions, and has support for vector distributions that the current VMP/Graphlab system does not. This can be worked around, however, if the supplied models just treat separate dimensions as another node in the graphical model. This will not work with all models, but it certainly would allow for simpler ones like the 3D Gaussian referenced above.
3. The vertex program written for the VMP/Graphlab code does not make full use of the GAS paradigm provided by Graphlab. Most of the important computation is bunched in the *gather* function at the moment because correctness was the primary concern when developing an initial version of this system. This version still experiences speedups, but it would be nicer if the VMP steps were spread out over the GAS operations more smoothly. This could include ideas like actually using the *apply* step for updating nodes, or actually using the accumulator working behind the *gather* operation to sum child to parent messages and automatically pass the sum to the *apply* function.

4. The consistency model is somewhat important in determining how often the VMP/Graphlab code outputs the correct values for inference on a model. The correct values were determined by running the same models through VIBES and Infer.NET. The original VMP library always gives the same values for the models we tested, but the VMP/Graphlab code is sometimes different. This is related to the lack of control over the ordering of updates and the consistency model chosen for the computation engine. It would be much better if the settings could be easily exposed to guarantee correctness under a certain set of constraints, and almost always be correct under another set of constraints that allows the code to run faster.

5. The distributed computation aspect has a bug that prevents nodes from updating during each step of the VMP algorithm. The problem appears to be that Graphlab automatically shards the factor graph over the number of distributed environments created with "mpiexec" and the nodes in the graphical model do not receive all of their messages. The update is triggered when all the messages are received in the *gather* step, so failure to reach that number of messages causes many of the nodes to skip their update step. This is a major problem for correctness, but performance results in distributed environments may still have some merit because the system is still performing all of the message construction and passing work as if the updates were going to happen.
Chapter 5

Results

This chapter will demonstrate some of the results we obtained from running our combined VMP/Graphlab system on some complicated graphical models. The purpose of showing these results is to demonstrate that the combined VMP/Graphlab system performs inference faster than the original VMP library. As mentioned earlier, the combined VMP/Graphlab has limited functionality, but obtaining increased speeds with the current functionality shows promise that parallel/distributed inference could actually be useful for performing inference on complicated models.

The system used for running these tests has eight cores available for use, and distributed environments were simulated using the \texttt{mpiexec} command to spawn copies of the VMP executable and execute programs with all of them.

5.1 Parallel Test Results

For the first set of tests, we want to measure how the combined VMP/Graphlab system responds to different Gaussian mixture models of increasing complexity while running on a single machine. The mixture model is the most complicated type of model currently supported by our system, so it provides the best workload for running these tests.

The Gaussian mixture models we use are generated with a script that reads the parameters of each component and how much weight each one is given. The script
generates a model based on the provided components, and generates observed data consistent with the entered parameters. This approach allows us to easily check if the posterior values actually make sense, while quickly generating models with different characteristics.

The first variable we modify is the number of mixture components in the Gaussian mixture model, while keeping the number of observed data nodes and iterations constant. The results are visualized as a histogram in Figure 5-1. The total number of observed nodes is 100 and the total number of iterations is 500. The reported times are averaged over three independent executions of the code. All times are reported in seconds.

![Inference Time vs. Number of Mixture Components](image)

Figure 5-1: Parallel VMP Execution Time: Mixture Components

The reported execution times show that VMP/Graphlab converges to the same values as the original VMP library in significantly faster times. The execution time ratio appears to be about 7x for the three examples, although it looks like the ratio decreases slightly as the number of mixture components increases. This could be related to Graphlab having difficulty matching the same level of parallelism with the complicated models as it did with the simpler models. This could possibly be remedied by exerting some lower-level control over the parallel/distributed settings that the
Graphlab API exposes, or it could just be an unfortunate property of complicated models.

The number of mixture components in the model and the reported execution time seem to be linear with the original VMP library, and the Graphlab times appear to also follow this pattern. The linear dependence makes sense because adding more mixture components to a model only requires that extra edges be added between all the observed data and the new parent components. The Categorical selector nodes are connected to the observed data, so that part of the graph structure is unaffected by adding more mixture components. The fact that Graphlab follows a similar linear pattern is promising because it indicates that the two implementations are probably performing similar computations. The VMP/Graphlab version performs them in parallel, so the times are lower, but since they are effectively the same, the linear pattern remains.

As an added note about parallelism, the time reports for the VMP/Graphlab executions consistently reported a “user time” that was about twice as large as the “real time.” The “user time” refers to the amount of time spent performing computation with processors, and the “real time” refers to the actual wall clock time that has elapsed.

The graphs throughout this section all depict “real time” because that is the amount of time one has to wait to view the output of performing inference with the system. However, it is promising to note that the “user time” is larger than the “real time” because it implies that multiple processors are performing computations at the same time. The exact meaning of the fact that it is almost always twice as large has something to do with how Graphlab generally executes code in parallel; this may indicate that Graphlab generally decides that running these programs on two cores is the most efficient thing to do.

The second variable we modify is the number of observed data nodes in the Gaussian mixture model, while keeping the number of mixture components and iterations constant. The results are visualized as a histogram in Figure 5-2. The total number of mixture components is 3 and the total number of iterations is 500. The reported times
are averaged over three independent executions of the code. All times are reported in seconds.

![Inference Time vs. Number of Observed Data Nodes](image)

Figure 5-2: Parallel VMP Execution Time: Observed Data Nodes

The second test case also shows significant speedups when using VMP/Graphlab over the original VMP library. Many of the same thoughts from the first test case apply for this example. The relative decrease in execution time ratio is especially noticeable in this example, as the ratio starts off at about 6x, and ends up dropping to about 5x and eventually 3x as the number of observed nodes increases. Adding new observed data nodes requires adding edges from all the existing mixture components and adding a new selector variable to the model. This is significantly more complex than the first test case, so the concerns of not optimizing how Graphlab executes code in parallel probably stand out much more.

The increased complexity of changing the number of observed data nodes is also demonstrated by the fact that its relationship with execution time seems to be exponential. This is particularly concerning, because 200 observed data nodes is not always enough for coming up with correct posterior values. The other parameters in the model were relatively simple, so this may indicate a need to actually optimize some code in the VMP library. VMP/Graphlab is almost following the exponential
pattern, but the decreasing ratio implies that, for some large number of observed data
nodes, VMP/Graphlab will run just as slowly as the original VMP library. With 200
not exactly being a large number, this model should prove to be useful for testing
optimizations and enhancements to the entire system.

As a sanity check on the parallelism, the “real time” is consistently about half
as large as the “user time” again. This implies that Graphlab, as before with the
first test case, is attempting to run this program on at least two cores. This explains
the fact that Graphlab delivers a significant increase in speed, but doesn’t say much
about the efficiency concerns described in the last paragraph.

The third variable we modify is the number of iterations over the Gaussian mixture
model, while keeping the number of mixture components and observed data nodes
constant. The results are visualized as a histogram in Figure 5-3. The total number
of mixture components is 3 and the total number of observed data nodes is 100. The
reported times are averaged over three independent executions of the code. All times
are reported in seconds.

![Inference Time vs. Number of Steps](image)

Figure 5-3: Parallel VMP Execution Time: Iterations

The third test case matches the expectations established by the first two and
demonstrates that VMP/Graphlab outperforms the original VMP library again. Ad-
mittedly, however, this test case does not say anything new about the capabilities or limitations of the system. Both the original VMP library and VMP/Graphlab display a linear correlation between execution time and number of iterations because doubling the number of steps should exactly double the amount of work performed in either system. The inclusion of this test case was more to make sure that VMP/Graphlab did not demonstrate any decrease in the execution time ratio, and according to the results, the ratio stays fairly constant at about 6x for all cases.

In future implementations of either system, the termination condition could be changed to explicitly detect for convergence instead of using a constant number of iterations. This would make both systems faster for many simple models where convergence happens almost immediately. For some really simple models, however, such a termination condition would probably make the VMP/Graphlab code run slower. Indeed, some other test cases demonstrated that, for really small models, the overhead of Graphlab actually causes the parallel/distributed execution time to be slower. This is not a concern for the design of the system because the target models we want to solve are usually complicated, but it provides a nice sanity check to verify that Graphlab does have some overhead that becomes negligible as the models become more complex.

Overall, VMP/Graphlab performed fairly well while performing inference on these Gaussian mixture models with multiple cores. Other types of models may have slight differences in their execution time ratios, but every model requires the same mechanics of updating and message passing, and it is clear that the VMP/Graphlab system performs those operations faster than the original VMP library.

5.2 Distributed Test Results

For the second set of tests, we want to measure how VMP/Graphlab performs in a distributed setting by performing inference over a complicated model with multiple copies of the VMP executable spawned using the “mpiexec -n [number]” command. This emulates a distributed cluster of machines running the VMP/Graphlab system.
on a single machine so that the correctness and effectiveness of distributed integration can be determined without needing to painstakingly configure an actual distributed cluster. In the parallel tests, Graphlab made use of multiple cores, but only spawned one TCP Communication Layer; for these examples, actual network communication and sharding of the factor graph will occur between each emulated environment.

The model used for determining the effect of adding a distributed environment is the same Gaussian mixture model used in the second parallel test where the number of observed data nodes was varied. The particular model has 3 mixture components, 250 observed data nodes, and will experience 500 iterations of message passing and updates.

At the moment, an overlooked bug in the Graphlab vertex program prevents any nodes from properly updating during each step of the VMP algorithm. This results in incorrect posterior values being reported once inference has completed, but the same amount of message construction and passing is happening between each machine. This problem will decrease the usefulness and validity of the following results, but since most of the work required to step through the VMP algorithm is still being performed, it may still be worthwhile to analyze how performance varies with the number of emulated machines spawned by the “mpiexec” command. The results obtained from running this test are visualized in Figure 5-4. The reported times are averaged over three independent executions of the code, and all times are reported in seconds.

As demonstrated by the above graph, the VMP/Graphlab code does better than the parallel-only case for several settings of the distributed environment count passed into the “mpiexec” program. The execution time decreases until it reaches a minimum with four distributed environments, and then slowly climbs back up towards the baseline time of 18.67 seconds that the parallel-only VMP/Graphlab test case reported. Although the values produced by inference are incorrect due to nodes always failing to update, the message construction and passing between multiple distributed environments is still occurring, and it would seem reasonable that any decreases in execution time obtained while still performing most of the work could be reliable.
An interesting thing to consider when looking at these results is that, although the machine being used has eight cores, the best execution time is achieved with four distributed environments running on the same machine. The results seem to support the idea that the overhead of distributed computation begins to outweigh the benefits of spreading the problem over multiple machines at some point.

It is entirely possible that the machine used for this test only has four actual cores, and hyperthreading technology is causing the operating system to report that eight cores are present. The problem could also be that managing more than four distributed environments is not worth it for this particular model. For some more insight into this question, graphs of the reported “user time” and “system time” are provided below in Figures 5-5 and 5-6. The “user time” has the same definition as earlier, and the “system time” refers to the amount of time spent performing computations directly in kernel space.

These graphs support the fact that the “real time” graph reported a decrease after some number of distributed environments. The “user time” graph increases pretty steadily as the number of distributed environments increases, meaning that the VM-P/Graphlab code is actually being executed in all these different environments. The
net processing time spent at all the environments is higher when more environments are present, meaning that each one is doing some of the work for a given execution of the program. For large numbers of environments, the overhead of managing communication and coordination between them becomes too costly to offset the benefit of spreading the problem over several machines.
The "system time" graph further supports this idea because it demonstrates that more time is spent dealing with low-level concerns in the kernel as the number of distributed environments increases. This represents the system spending more time focusing on the task of coordinating all these distributed environments. It turns out that, for the model used in these test cases, four environments provide the best balance between distributed benefit and added overhead. This may not be true for other models, due to the fact that the different problems may change the effect that either distributed computing or the overhead has on the outcome.

Overall, it appears that the VMP/Graphlab system is benefitting from the distributed abstraction that Graphlab provides. The current state of the code makes it hard to completely depend on the results presented in this section, but it seems reasonable to expect that these results will not be completely invalidated when the problem in the code is resolved. The trends reported by the time graphs are also fairly dependable, since the logic behind their explanations is not dependent on the VMP/-Graphlab system reporting correct values, but rather on how computation proceeds with the help of the Graphlab framework.
Chapter 6

Conclusion

The efforts of this thesis project have resulted in a modular VMP library implemented in C++ and a system that integrates this library with the Graphlab distributed framework. The results have demonstrated that the effect of combining parallel/distributed computation is promising, and that this approach could be helpful for performing inference over complicated graphical models. The system currently has some limitations, but further modification of the code can add the same functionality already present in the two other popular implementations of VMP, VIBES and Infer.NET.

From an extension standpoint, VIBES has been left alone for many years now, and although Infer.NET is currently being developed, it was released under a restrictive software license by Microsoft that makes it difficult for anyone to attempt integrating it with a parallel/distributed framework. As an attempt at implementing distributed VMP, this system has the best chance of being extended and turned into a fully functional and highly efficient system for performing inference.

The modular design of the code also makes it very reasonable to expect that support for different distribution types and other kinds of nodes can be added. The core components of the VMP library are unaffected by adding support for new kinds of models, making it easy to play around with the system and attempt adding code for different kinds of nodes. The Graphlab integration is also separate from the core components of the VMP library, so addition of new kinds of nodes should not adversely affect the code tying the library into the Graphlab API.
The effectiveness of Graphlab has already been demonstrated for the VMP algorithm without diving into the finer details of the API. It seems entirely possible that even better results for performing inference on complicated models can be obtained by playing with the options for parallelism and consistency exposed by the Graphlab API. The current system takes advantage of the abstraction and does not dive into these details, but future work could figure out how to configure Graphlab to get the most out of its parallel/distributed abstraction.

The VMP/Graphlab system may prove to be useful right out of the box for certain kinds of problems that require a boost in efficiency and only use supported graphical models. If not, the groundwork is in place for building a robust implementation of variational inference that takes advantage of the vast amount of computational resources available today. The efforts of the past involved with determining variational updates and a message passing algorithm for implementing them have new life when combined with parallel/distributed computing, and the outcome seems promising for everyone interested in solving complicated inference problems.
Appendix A

Coin Example: Church Code

The following is the Church code used to create the generative model for the coin flipping example in the Bayesian inference section.

```
(define observed-data '(h h t t h))
(define num-flips (length observed-data))

(define samples
  (mh-query
    1000 10
    (define fair-prior 0.999)
    (define fair-coin? (flip fair-prior))

    (define make-coin (lambda (weight) (lambda () (if (flip weight) 'h 't))))
    (define coin (make-coin (if fair-coin? 0.5 0.95)))

    fair-coin?

    (equal? observed-data (repeat num-flips coin))
  )
)

(hist samples "Fair Coin (3H, 2T)?")
```

Listing A.1: Coin Example: Church Code [10]

The generative model is defined in the “mh-query” function, and the observed evidence is defined at the top of the code as a list of symbols. The model generates
a coin based on some prior that determines whether the coin is fair (weight = 0.5) or unfair (weight = 0.95), and then uses the Metropolis-Hastings algorithm [24] (an implementation of MCMC sampling that will not be covered in this thesis) to find posterior distributions over a particular variable (in this case, “fair-coin?”) based on the observed data. The first number passed to “mh-query” determines the number of samples the Metropolis-Hastings algorithm takes, and each one corresponds to a posterior belief about the fairness of the coin.

For more information about the Church language, and some documentation that will explain the functions and keywords in the above code, check out the MIT-Church wiki [9] and the tutorials associated with probabilistic programming located there.
Appendix B

VMP Message Derivations

The following are some derivations of the message content for the models that the combined VMP/Graphlab currently supports. For each derivation, the exponential family form of the relevant distribution X, given its parent Y, is used:

\[P(X|Y) = \exp\left(\phi(Y)^T u(X) + f(X) + g(Y)\right) \]
\[(B.1)\]

\[\ln P(X|Y) = \phi(Y)^T u(X) + f(X) + g(Y) \]
\[(B.2)\]

This can be re-written in slightly different terms to emphasize the dependence on the coparents of a particular node. This will become important when the expressions are re-arranged to clearly obtain the natural parameter vector and natural statistic vector for determining the actual messages. The re-written expression looks like the following:

\[\ln P(X|Y, cpy) = \phi_{X,Y}(Y, cpy)^T u_{X}(X) + f_{X}(X) + g_{X}(Y, cpy) \]
\[(B.3)\]

\[\ln P(X|Y, cpy) = \phi_{X,Y}(X, cpy)^T u_{Y}(Y) + \lambda(X, cpy) \]
\[(B.4)\]

The cpy term refers to the coparents of Y, which includes the other parents of X that are not equal to Y. Due to the conjugacy restriction, the first expression can be
re-written in terms of the natural statistic vector of the parent \(u_Y(Y) \), resulting in the second expression. The \(\phi_{XY} \) function is the natural parameter vector that determines the upward message sent to a parent.

With regard to the VMP algorithm, this expression demonstrates that upward (child \(\rightarrow \) parent) messages will depend on messages sent down from the coparents. This explains why the coparents need to be notified to send downward messages before a node can receive any messages from its children in the algorithm.

Once the exponential family expression is written in terms of the coparents, the conjugacy constraints allow the specific expressions for each model to be re-arranged in different ways to expose the natural parameter vector and natural statistic vector that determines the messages. Such derivations are provided for the Gaussian-Gamma model and the Dirichlet-Categorical model in the following sections.

B.1 Gaussian-Gamma Models

A simple Gaussian-Gamma model is provided in Figure B-1. For this model, we need to compute the parent \(\rightarrow \) child messages sent by the Gaussian and Gamma nodes, and the child \(\rightarrow \) parent messages sent from the Gaussian and Gamma nodes to their respective parents.

![Figure B-1: VMP Message Derivations: Gaussian-Gamma Model](image-url)
We start by writing the expressions for the Gaussian distribution. For the Gaussian, we will use precision, which is defined as the inverse of the variance (so, $\beta = \frac{1}{\sigma^2}$). The probability distribution is defined in terms of the mean, μ, and the precision, β.

$$P(X|\mu, \beta) = \sqrt{\frac{\beta}{2\pi}} e^{-\frac{\beta(x - \mu)^2}{2}}$$ \hspace{1cm} (B.5)

As implied by the coparent expression in Equation B.4, μ and β correspond to the Gaussian and Gamma parents, respectively, of a Gaussian distributed node. In some cases, the nodes only have hyperparameter priors (as in the root node), but in other cases, the parents are actually distributions (as with the observed data nodes).

We can now write the above expression in exponential family form. This involves re-grouping the terms in the expression to match the form of Equation B.4. Since there are two different parents, there are two different re-groupings that can be done: one for the case where μ is the target parent (and β is the coparent), and another for the opposite case. Each re-grouping will determine the message destined for that particular parent, so we have to show both.

Starting with μ as the target parent, we express the equation in terms of the natural statistic vector of μ:

$$\ln P(X|\mu, \beta) = \frac{-\beta(x^2 - 2x\mu + \mu^2)}{2} + \ln \sqrt{\frac{\beta}{2\pi}}$$ \hspace{1cm} (B.6)

$$\ln P(X|\mu, \beta) = \begin{bmatrix} \beta X \\ -\frac{\beta}{2} \end{bmatrix}^T \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + \frac{1}{2} (\ln \beta - \beta X^2 - \ln 2\pi)$$ \hspace{1cm} (B.7)

From the above equation, we can grab the natural parameter vector \(\begin{bmatrix} \beta X \\ -\frac{\beta}{2} \end{bmatrix} \) and the natural statistic vector \(\begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} \) and take their expectations to compute the relevant messages.

For Gaussian parent to child, the message is the expectation of the natural statistic vector:
For Gaussian child to Gaussian parent, the message is the expectation of the natural parameter vector:

\[
m_{\mu \to X} = \begin{bmatrix} E[\mu] \\ E[\mu^2] \end{bmatrix} \tag{B.8}
\]

The child to parent message is especially clever because it is described in terms of messages the Gaussian child nodes will receive from their Gamma parent. The expectation of the \(\beta \) node, as will be demonstrated shortly, is the first element of the downward message from the Gamma node. In essence, the messages are effectively being passed along from the coparents through the children, who modify them based on the observed data (represented the \(E[X] \) term), and then finally up to the parent node.

We now perform the same work treating \(\beta \) as the target parent, expressing the equation in terms of the natural statistic vector of \(\beta \):

\[
\ln P(X|\mu, \beta) = \frac{-\beta(x^2 - 2x\mu + \mu^2)}{2} + \ln \sqrt{\frac{\beta}{2\pi}}
\tag{B.10}
\]

\[
\ln P(X|\mu, \beta) = \begin{bmatrix} -0.5(x^2 - 2x\mu + \mu^2) \\ 0.5 \end{bmatrix}^T \begin{bmatrix} \beta \\ \ln \beta \end{bmatrix} - \ln 2\pi \tag{B.11}
\]

From the above equation, we can grab the natural parameter vector \(\begin{bmatrix} -0.5(x^2 - 2x\mu + \mu^2) \\ 0.5 \end{bmatrix} \) and the natural statistic vector \(\begin{bmatrix} \beta \\ \ln \beta \end{bmatrix} \) and take their expectations to compute the relevant messages.

For Gamma parent to child, the message is the expectation of the natural statistic vector:

\[
m_{\beta \to X} = \begin{bmatrix} E[\beta] \\ E[\ln \beta] \end{bmatrix} \tag{B.12}
\]
For Gaussian child to Gamma parent, the message is the expectation of the natural parameter vector:

\[m_{X \rightarrow \beta} = \begin{bmatrix} -0.5(E[X^2] - 2E[X]E[\mu] + E[\mu^2]) \\ 0.5 \end{bmatrix} \]
(B.13)

Again, notice how the child to parent message is based directly on the contents of the Gaussian parent to child message obtained earlier and the observed data stored in the child node. The conjugacy constraints allow the re-grouping of terms in these expressions such that this outcome is possible.

We still need to determine the upward messages at the β node to the node representing the rate parameter b of the precision node, so we will do the same work for the Gamma distribution. For the Gamma, we will use the rate parameter, which is defined as the inverse of the shape parameter (so $b = \frac{1}{k}$). The Gamma distribution is defined in terms of the shape parameter a and the rate parameter b:

\[P(X|a, b) = \frac{b^a}{\Gamma(a)} X^{a-1} e^{-bX} \]
(B.14)

As before, we will write this in the exponential family form. There is only one possible parent for a Gamma node, so we only need to express the equation in terms of the natural statistic vector of the rate node.

\[\ln P(X|a, b) = -bX + (a - 1) \ln X + a \ln b - \ln \Gamma(a) \]
(B.15)

\[\ln P(X|a, b) = \begin{bmatrix} -X \\ a \end{bmatrix}^T \begin{bmatrix} b \\ \ln b \end{bmatrix} + (a - 1) \ln X - \ln \Gamma(a) \]
(B.16)

From the above equation, we can grab the natural parameter vector (\([-X \ a]^T\)) and the natural statistic vector (\([b \ \ln b]\)) and take their expectations to compute the relevant messages.

We already know the Gamma parent to child message (and it checks out here with what we obtained earlier), so we just need the Gamma child to Gamma parent
message:

\[m_{\beta \rightarrow \text{rate}} = \begin{bmatrix} -E[X] \\ E[a] \end{bmatrix} \] \hspace{1cm} (B.17)

To drive home the intuition behind these expressions and the work in re-grouping terms, notice again how the Gamma child to parent message is based on the current node \((E[X])\) and the message passed downwards from the shape parent \((E[a])\). This will be true for any distributions that are compatible with VMP due to the conjugate-exponential restriction.

B.2 Dirichlet-Categorical Models

A simple Dirichlet-Categorical model is provided in Figure B-2. Dirichlet nodes cannot have probabilistic parents, so we only need to compute the parent \(\rightarrow\) child messages for the Dirichlet parent node. For the Categorical nodes, however, the messages in both directions need to be computed, even though this particular model does not require parent \(\rightarrow\) child messages. The downward messages will be necessary for performing inference over mixture models, where Categorical nodes determine which component of a mixture is the most likely cause of a particular observed data node.

![Figure B-2: VMP Message Derivations: Dirichlet-Categorical Model](image-url)
We start by writing the expressions for the Dirichlet distribution. As above, the standard form of the Dirichlet is written first, and then the exponential family form is written to isolate the natural parameter vector and the natural statistic vector. The natural parameter vector is not relevant for sending messages with Dirichlet nodes, but since the update step requires adding it to the incoming messages, it is worthwhile to identify it anyway. The probability distribution is defined in terms of the pseudocounts vector, α, and the k term refers to the dimensionality of that vector.

\[
P(X|\alpha) = \frac{1}{B(\alpha)} \prod_{i=1}^{k} X_i^{\alpha_i - 1}
\]

(B.18)

\[
\ln P(X|\alpha) = \begin{bmatrix}
 \alpha_0 - 1 \\
 \alpha_1 - 1 \\
 \vdots \\
 \alpha_k - 1
\end{bmatrix}^T \begin{bmatrix}
 \ln X_0 \\
 \ln X_1 \\
 \vdots \\
 \ln X_k
\end{bmatrix} + \ln \frac{1}{B(\alpha)}
\]

(B.19)

For reference, the B function is:

\[
B(\alpha) = \frac{\prod_{i=1}^{k} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{k} \alpha_i)}
\]

(B.20)

From the above equation, we can grab the natural parameter vector \(\begin{bmatrix} \alpha_0 - 1 \\ \alpha_1 - 1 \\ \vdots \\ \alpha_k - 1 \end{bmatrix} \) and the natural statistic vector \(\begin{bmatrix} \ln X_0 \\ \ln X_1 \\ \vdots \\ \ln X_k \end{bmatrix} \) and take their expectations to compute the relevant messages.

For the Dirichlet parent to child message, the message is the expectation of the natural statistic vector:

\[
m_{X \rightarrow \alpha_i} = \begin{bmatrix}
 E[\ln X_0] \\
 E[\ln X_1] \\
 \vdots \\
 E[\ln X_k]
\end{bmatrix}
\]

(B.21)
We now need to determine the messages coming from the Categorical nodes, so we write the Categorical distribution in terms of its Dirichlet parent, X, and the dimensionality of the parent vector, k. As before, this will be expressed in exponential family form to isolate the relevant vectors for determining the messages.

$$P(\theta|X) = \prod_{i=1}^{k} X_i^{\theta_i} \quad (B.22)$$

$$\ln P(\theta|X) = \begin{bmatrix} \ln X_0 \\ \ln X_1 \\ \vdots \\ \ln X_k \end{bmatrix}^T \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_k \end{bmatrix} \quad (B.23)$$

From the above equation, we can grab the natural parameter vector $\left(\begin{bmatrix} \ln X_0 \\ \ln X_1 \\ \vdots \\ \ln X_k \end{bmatrix} \right)$ and the natural statistic vector $\left(\begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_k \end{bmatrix} \right)$ and take their expectations to compute the relevant messages.

For the Categorical parent to child message, we are simply sending an expectation of values that are either 0 or 1, so the message will contain a single 1-value and the rest of the entries will be 0-values. The 1 corresponds to what the Categorical node believes is the correct selection of the variable in question, which is effectively the posterior distribution for a Categorical node. This is not relevant in the current model, but for mixture models where mixture components are being selected, this message is required.

$$m_{\theta\to\text{child}} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_k \end{bmatrix} \quad (B.24)$$

The Categorical child to parent message is the expectation of the natural parameter vector:

92
The Categorical child to parent message, as expected, is based on the message it receives from its parent. In this case, the message looks exactly the same as the Dirichlet parent to child message, but due to the fact that Categorical nodes enforce normalization constraints on its natural parameter vector, the actual upward message is different than the one received.

\[
m_{\theta \rightarrow X} = \begin{bmatrix} E[\ln X_0] \\ E[\ln X_1] \\ \vdots \\ E[\ln X_k] \end{bmatrix}
\]

(B.25)
Bibliography

