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Abstract

Narratarium is a system that uses English text or voice input, provided either real-

time or off-line, to generate context-specific colors and sound effects. It accomplishes

this by employing a variety of machine learning approaches, including commonsense

reasoning and natural language processing. It can be highly customized to prioritize

different performance metrics, most importantly accuracy and latency, and can be

used with any tagged sound corpus. The final product allows users to tell a story in

an immersive environment that augments the story-telling experience with thematic

colors and background sounds. In this thesis, we present the back-end logic that gen-

erates best guesses for contextual colors and sound using text input. We evaluate the

performance of these algorithms under different configurations, and demonstrate that

performance is acceptable for realistic user scenarios. We also discuss Narratarium's

overall design.
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Title: Research Scientist
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Chapter 1

Introduction

Narratarium is a consumer-facing device, comprising a projector, speaker, and com-

puter, that uses machine learning techniques to intelligently augment real-life sto-

rytelling with colors and sounds. It offers two immersive user experiences. In the

first experience ("freestyle" mode), the user (storyteller) either reads text aloud or

enters it into Narratarium using a keyboard. Narratarium displays the words using

the projector, then processes the input in real-time and enhances the storytelling en-

vironment by either changing the ambient color of the room via projector or playing

a sound effect via speaker. In the second experience ("story" mode), the user selects

a pre-recorded story that is saved on the computer, rather than speaking or typing.

After a story is selected, the experience proceeds as if the user were entering the story

using a keyboard in freestyle mode. Here is an example of a potential freestyle mode

user scenario (for this example, we assume Narratarium is set up in a room with white

walls):

1. The user selects freestyle mode.

2. The user speaks, "The giant tree was ablaze with the orange, red, and yellow

leaves that were beginning to make their descent to the ground..."

3. The projector displays the story, word by word as the words are spoken, on

the walls of the room (i.e. "The" is displayed, followed briefly by "giant," then

"tree," etc.).
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4. When the word "tree" is displayed, the room's walls turn green.

5. When the word "ablaze" is displayed, the user hears wood burning, and the

room's walls turn red.

6. When the word "orange" is displayed, the room's walls turn orange.

7. When the word "red" is displayed, the room's walls turn red.

8. When the word "yellow" is displayed, the room's walls turn yellow.

9. The user experience proceeds in a similar manner until the story is finished.

The story mode user scenario is nearly identical:

1. The user selects story mode.

2. The user selects the story, "The giant tree was ablaze with the orange, red, and

yellow leaves that were beginning to make their descent to the ground..."

3. The projector displays the story, word by word, on the walls of the room (i.e.

"The" is displayed, followed briefly by "giant," then "tree," etc.) as if a human

is manually entering it into Narratarium.

4. The user experience is identical to the freestyle mode experience after this point.

At the highest level, the Narratarium system is composed of three parts, which to-

gether offer the user experiences described above:

" Hardware that supports all the necessary functionality (e.g. full-room projector,

speaker, microphone, computer)

" Front end software that can receive user input, whether by voice or by text, and

can project words, colors, and sounds gracefully.

" Back end software that can receive text input and return colors and sounds

based on the input.

12



My thesis work focuses primarily on the third requirement - back end software that

can receive text input and return colors and sounds based on the input. It also

provides an interface through which the front and back ends can communicate.

In the user scenarios described earlier, color change and sound effects occurred

selectively (e.g. a sound effect only occurred following the word "ablaze"). Narratar-

ium only provides color changes or sound effects that will enhance, and not detract

from, the user experience. The back end helps achieve this in the following manner:

" It decides what color or sound effect to use based on the available

context. Some words are only associated with color or sound when interpreted

in context. For example, the word "bark" is not associated with a sound when

presented in context with "tree," but is associated with a sound when in context

with "dog." Similarly, the word "leaves" is not generally associated with a

color unless it is considered in the context of "tree" or "autumn." Context

also allows for fine-grained refinement in the interpretation of words that are

strongly associated with a particular sound - for example, "loud rain" versus

"soft rain." The back end considers not only the most recently entered word,

but its context, when it makes its decisions.

" It decides what color or sound effect to use based on the available

color and sound corpora. If the user enters a word, such as "bassoon,"

which is strongly associated with a sound that is infrequently recorded, it is

possible that a file containing the sound is not present in Narratarium's sound

corpus. However, given the context of the word, other sound files which are

available in the corpus, such as a recording of another woodwind instrument,

may suffice. The back end produces best guesses for sounds and colors based

both on the input provided by the user and on the available sound and color

corpora.

" It provides a measure of confidence in its guesses. Certain words (e.g.

"honesty") are not commonly associated with a color or a sound, while other

words are commonly associated with a color (e.g. "red"), a sound (e.g. "creak"),

13



or both (e.g. "fire"). Although best guesses for color changes and sound effects

are generated for every input word (with the exception of stop words such as

"the" and "was"), an additional metric is presented that can indicate whether

the guesses should be used to change the ambient color or play a sound, or if

the guesses should be ignored.

* It makes best guesses for associated color and sound in real time. In

"freestyle" mode especially, latency and responsiveness are very important,

so efficient algorithms are essential. Because the processing power of the device

is unknown, the back end algorithms are highly configurable to ensure adequate

performance, both in terms of time taken to process input and generate output,

and in terms of accuracy of guesses.

This thesis describes the design and implementation of the back end. Dan Novy,

in the MIT Media Lab's Object-Based Media group, is designing and implementing

the front end.

Perhaps due to its limited practical application, color and sound extraction from

text is an unexplored niche of natural language processing. There is little to no related

work on the problem aside from research done at the MIT Media Lab. While ideo-

logically similar branches of natural language processing research, such as contextual

polarity analysis and document classification, are much more well-documented and

well-explored, certain aspects of the color and sound extraction problem render the

common machine learning approaches ineffective or inapplicable. For example, one

might consider color extraction to be a multi-dimensional version of contextual polar-

ity analysis. Rather than maintaining a scalar value corresponding to the magnitude

of positive sentiment of a section of text, one might maintain a vector of values, each

of which corresponds to the magnitude of "red" sentiment, "green" sentiment, and

"blue" sentiment. But even if this were possible, the vector of color sentiment values

would not provide nearly enough information to generate an accurate representative

color for a section of text (for example, the phrase "brick wall" may be more "red"

than "green" or "blue," but this information alone says nothing about what shade of
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red should be provided, or if green and blue color components should be present but

muted). Meanwhile, sound extraction can be seen as a classification problem (there is

no intuitive way to model sound extraction as a regression problem). However, there

would be as many class labels as sound files in the sound corpus, and any sound cor-

pus that can be claimed to adequately represent the entire human sound experience

will surely contain thousands, if not hundreds of thousands or millions, of sound files.

Common text classification approaches, such as Naive Bayes or EM, do not scale well

enough with number of class labels to support real-time classification. Narratarium

uses efficient and scalable algorithms to extract colors and sounds from words.

The rest of this thesis details the design, implementation, and evaluation of Nar-

ratarium's back end. Chapter 2 covers the front end work and pre-existing work

related to the back end. Chapter 3 covers the design and implementation of the

system. Chapter 4 presents an evaluation of the performance of the different imple-

mentations. Chapter 5 provides a conclusion and possibilities for future development.
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Chapter 2

Related Work

As mentioned earlier, traditional machine learning algorithms (e.g. Naive Bayes and

EM) used for natural language processing and computational linguistics problems,

such as contextual polarity analysis and document classification, can be either ineffi-

cient or inapplicable to the problem of contextual color and sound extraction. Thus

the problem of real-time contextual color and sound extraction calls for new, scalable

approaches.

Narratarium is a consumer-facing product comprising much more than machine

learning algorithms. For example, the back end is a combination of new implemen-

tation (which will be discussed in the next chapter), re-purposed libraries developed

previously at the MIT Lab, and corpora from outside sources. This chapter discusses

the front end component of Narratarium, as well as the many tools upon which the

back end relies.

2.1 Front End

Narratarium's front end has a number of responsibilities:

" Take a word as text input and pass it to the back end.

" Take a word as voice input, translate it to text, and pass it to the back end.

" Take a word as text input and display it elegantly through the projector.
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" Receive an RGB value from the back end and elegantly change the projected

background color to the RGB value, if it has not been changed recently.

" Receive a sound file location from the back end and play the sound file at that

location. If a sound effect is being played concurrently, either discard the new

sound effect or gracefully transition from the old sound effect to the new sound

effect.

Dan Novy is developing the front end as a C++ openFrameworks project. Voice

input recognition and translation of voice input to text input is accomplished using

the Carbon speech synthesis API. Text input is then passed to the back end using a

C++ to Python interface.

Text display is straightforward when the projection surface is a flat surface and is

parallel to the plane of the projector (e.g. a wall or a computer monitor). However,

Narratarium offers an immersive, full-room experience, so text is displayed elegantly

regardless of the geometrical nature of the projection surface (in the typical user

scenario, the projection surface will comprise four walls and a ceiling). Narratarium

accomplishes this by requiring the user to go through an initial set-up phase, in which

the user selects a series of control points, corresponding to the corners of each wall;

Narratarium then creates and applies a set of homographies that allows text to be

displayed properly on the walls for which the user provides control points.

Color changes and sound changes are handled in a straightforward manner. When

a new RGB value is received from the back end, the front end calculates the amount of

time since the most recent color change; if this exceeds a certain value, the front end

begins a smooth transition from the original color to the new RGB value. Similarly,

when a new sound effect (more precisely, a URL to an online .mp3 file) is received

from the back end, the front end considers whether a sound effect is currently being

played; if so, then the front end discards the new sound effect. Otherwise, the front

end plays the new sound effect if the corresponding certainty value that is passed

along with the sound effect exceeds a certain threshold value. Thus, the front end

maintains four state variables related to the back end: the current background RGB
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value, the time of the last background color change, the duration of the most recently

played sound effect, and the time that the last sound effect was begun.

2.2 Open Mind Common Sense (OMCS)

Humans subconsciously and continuously build and augment their commonsense

knowledge through everyday experiences. As a result, they assume that a certain

amount of commonsense knowledge, or set of facts about objects and the relations

between them, is shared by all humans. They almost always do not explicitly state

these facts when they communicate with other humans. This commonsense knowl-

edge which humans take for granted, such as "a dog is an animal" or "an alarm clock

is used for waking up," plays an critical part in deriving meaning from conversation,

and can only be learned through real-life experience or through direct enumeration

and memorization. This poses a major problem when attempting to interpret conver-

sation using a machine, as machines do not possess human experience. Thus a means

of compensating for the resultant lack in basic commonsense knowledge is necessary.

The Open Mind Common Sense (OMCS)[7] project attempts to enumerate and

record the extensive amount of commonsense knowledge that humans possess and

use. It accomplishes this goal by turning to the general public and allowing ordinary

people to submit facts, rules, stories, and descriptions about any facet of everyday

life. OMCS then parses these facts, rules, stories, and descriptions, and maintains a

large database of structured English commonsense sentences.

2.3 ConceptNet

ConceptNet, as described by its founders, is a "freely available commonsense knowl-

edge base and natural-language-processing tool-kit which supports many practical-

reasoning tasks over real-world documents" [3]. It processes commonsense data from

the OMCS corpus[7], in the form of sentences like "people generally sleep at night,"

and creates a graph network of nodes and edges that represents objects and the
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commonsense relationships between them.

First, ConceptNet uses a suite of natural language processing extraction rules

to transform each English sentence in the OMCS corpus into a binary-relation as-

sertion(a binary-relation assertion, as the name suggests, is a commonsense asser-

tion relating two variables, e.g. Property0f (lime,sour) or IsA(lime,fruit)). It then

normalizes the word components in each binary-relation assertion by stripping its

three terms (the two variables and the assertion itself) of semantically peripheral

features such as tense and multiplicity (thereby acknowledging and accounting for

the intuitive equivalence of assertions such as IsA(lime,fruit) and Are(limes,fruits)).

It also applies a number of semantic and lexical generalizations to further prevent

semantic- or lexical-based multiplicity of intuitively equivalent assertions. After ac-

complishing this, ConceptNet possesses a large set of normalized, intuitively unique

binary-relation assertions; it uses this set of assertions to construct a graph network.

Each node in the network corresponds to a unique term in a binary-relation asser-

tion, and a directed edge with label L exists from node B to node A for each binary

association L(A,B). Figure 2-1, provided by [3], depicts a particular subgraph of Con-

ceptNet's association graph. A few of the assertions that were used to generate the

subgraph include UsedFor(alarm clock, wake up), Location0f(kitchen, in house),

and SubeventOf (chew food, eat breakfast). Note that the an edge leaves the node

corresponding to the second term in the assertion and enters the node corresponding

to the first term in the assertion.

Each edge in the graph is also weighted with the frequency of its corresponding

binary-relation assertion (including semantically and lexically equivalent assertions)

in the original OMCS corpus. The weight of an edge connecting two terms can be

interpreted as indicating how strongly the two terms are associated; an assertion

between two words is "stronger," and the two words are more strongly associated, if

many people submitted the assertion to OMCS than if fewer people submitted the

assertion to OMCS.

20



in house
alarmn
clock

wake up

wake up in eat full
moring breakfast stomach

yawn read

chek dinkchew fod newspaper

Figure 2-1: A Subgraph of ConceptNet's Assocation Graph

2.4 Divisi

ConceptNet's association graph contains an extremely large number of nodes and

edges. The graph is populated using the structured English sentences in the OMCS

corpus, for which little moderation of submission quality or legitimacy exists. As a

result, weak, uncommon, or even false commonsense assertions are included in the

corpus, and are transferred into the association graph.

Because OMCS draws its commonsense sentences from a very large number of

users, Divisi makes the assumption that strong assertions (assertions that are more

likely to be true) will have higher weights in the ConceptNet association graph than

weak or faulty assumptions - that is, a true or commonly held assertion is likely to

be submitted more often than a weak or false assertion.

Divisi[8] uses an adjacency matrix to represent ConceptNet's association graph.

Because the graph contains an extremely large number of nodes, the adjacency ma-

trix is of extremely high dimensionality, and operations involving the matrix can
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be extremely inefficient. However, the adjacency matrix is also very sparse. Divisi

dramatically reduces the dimensionality of the adjacency matrix by pruning weakly

connected nodes and the assertions about them (i.e. reducing the adverse effect

of weak and faulty assumptions). It does this using singular value decomposition

(SVD) [8]. Divisi uses a number of Python toolkits (including NumPy, PySparse,

and SVDLIBC) to factor the adjacency matrix A into the product UEVT of the or-

thonormal matrices U and VT and the diagonal matrix E. The diagonal matrix E

has along its diagonal the many singular values of A. Divisi rejects the smallest sin-

gular values of E, and the rows and columns of U and VT to which they correspond,

thereby reducing the dimensionality of U, E, and VT, and thus also reducing the di-

mensionality of their product. The result is a new adjacency matrix of much smaller

dimension than the original adjacency matrix, which represents a pruned version of

the original ConceptNet association graph.

This adjacency matrix dictates the existence of a commonsense assertion, and

measures its strength/legitimacy, between two words. Divisi introduces a new fea-

ture called "activation spreading" [8] which measures the strength of the semantic

relationship between any two words, regardless of whether a commonsense assertion

exists between them, and independent of what the assertions actually are. It does this

by turning the underlying directed association graph into an undirected association

graph (applying a graceful transformation of directed edges to undirected edges), then

generating a new square, symmetric adjacency matrix for the undirected association

graph. It then performs a number of matrix operations on the new adjacency matrix

[2] such that the final result is a square matrix divisi such that 0 < divisi[i, j] < 1

and divisi[i, j] estimates the semantic relatedness between words i and j.

It is important to emphasize that this measure of semantic relatedness is com-

pletely determined by the nature of the original OMCS corpus, and thus the semantic

relatedness between two words provided by Divisi is truly the semantic relatedness

between two words according to the humans who submitted commonsense knowledge

to OMCS. However, the OMCS corpus samples commonsense knowledge from more

than 16,000 unique contributors [7], so it is likely that divisi's semantic relatedness

22



>>> divisi.rownamed('red') .top_items(5)
[(u'red', 0.70358479022979736), (u'color', 0.68834376335144043), (u'colour', 0.6
6469812393188477), (u'blue', 0.65805768966674805), (u'orange', 0.629241645336151
12)]
>>> divisi.rownamed (' basson') .top_items (5)
[(u'band', 0.54526448249816895), (u'instrument', 0.54265880584716797), (u'musica
1 instrument', 0.53656864166259766), (u'orchestra', 0.53629171848297119), (u'mak
e music', 0.53453058004379272)J
>>> divisi.rownamed(' limousine') .top_items (5)
[(u'car', 0.16289833188056946), (u'automobile', 0.14575172960758209), (u'vehicle
', 0.14069372415542603), (u'drive', 0.13873940706253052), (u'mntcr', 0.134099721
90856934) ]

Figure 2-2: Example Relatedness Values using Divisi

values are reasonably accurate.

Figure 2-2 presents the five most semantically related words for each of the words

"red," "bassoon," and "limousine" using the matrix divisi. divisi contains rows and

columns for 66,375 English words, but we include only the top five for the sake of

brevity.

An interesting characteristic of the semantic relation matrix divisi is that divisi [i, ]

> divisi [i, i] for certain words i and j, implying that certain words are less semanti-

cally related to themselves than to other words. For example, divisi['bassoon',' bassoon']

= 0.423 while divisi['bassoon',' band'] ~ 0.543. This seemingly counterintuitive phe-

nomenon is a side effect of the dimensionality reduction and matrix operations per-

formed upon the original association matrix. The back end algorithms use the se-

mantic relation matrix divisi and compensate for this side effect.

2.5 XKCD Color Corpus

Humans learn color-word associations through their everyday experiences, just as

they do commonsense knowledge. For example, humans associate the word "apple"

with red and green tones either because the apples they see are generally red or green,

or because someone told them so.

Obviously the latter method of learning color-word associations is easier for a

machine to replicate, and so the need arises for a color association corpus which maps

English words to colors that are commonly associated with them.
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Figure 2-3: Example XKCD Color Associations

Randall Munroe (of XKCD fame) completed this task previously[4], and provides

a corpus mapping English words to sets of commonly associated RGB values for those

words.

Figure 2-3 presents a graphical representation of a subset of the XKCD color

association corpus. Each of the words in the figure is followed by the number of

unique RGB color values that people have associated with the word and preceded by

the swatches for eight RGB values randomly sampled from these values. For example,

the word "above" was associated with 32 different colors; it just so happens that the

eight random samples from these 32 colors are all different shades of green. The

corpus does not keep track of the frequency of RGB value - word associations.

2.6 Colorizer

Colorizer[2] is an application that "hypothesizes color values that represent a given

word or sentence." It uses the XKCD color corpus[4], in conjunction with two other

color corpora, to generate an extensive corpus mapping 11,009 English words to sets

of RGB values commonly associated to those words.

Colorizer works by maintaining a set of weighted RGB values corresponding to
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the colors associated with any words previously entered (this set is initially empty).

When presented with a new word W, Colorizer performs a few steps to update the

set:

1. Decreases the weights already in the set by a constant factor (thus imposing a

sense of "decay" so that more recently entered words receive priority in color

associativity over less recently entered words).

2. Checks if W is in the corpus; if it is, adds the colors to which it maps to the set

with weight 1.0.

3. Finds the k (a configurable integer with default value five) most closely seman-

tically related words using Divisi's semantic relatedness matrix divisi. Then for

each of these words W, checks if W is in the corpus; if it is, adds the colors to

which W maps to the set with weight equal to divisi[W, Wi].

4. Re-weights each of the colors in the set as a function of its current weights as

well as its Euclidean distance, in the LAB color space, from the other colors in

the set.

5. Performs a single transferable voting election using the colors in the set and

their weights to determine the "best" hypothetical associated color valuess.

Colorizer was developed by MIT Media Lab researchers Catherine Havasi, my thesis

supervisor, and Rob Speer. The source code is mostly open source. Further im-

plementation was performed to re-purpose the code in conformity to Narratarium's

design.

2.7 Freesound Sound Corpus

For the purpose of this thesis, we constructed a sound corpus using a database dump

of Freesound's online sound database[1]. It contains metadata for 72,999 unique sound

files in the database. This will be discussed to greater depth in next chapter.
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Chapter 3

Design and Implementation

This chapter discusses the back end's requirements, design, and implementation.

3.1 Requirements

Narratarium's back end is responsible for receiving, asynchronously, a series of words,

and for each word, hypothesizing a RGB color value and a sound file (drawn from the

Freesound corpus [1]). Furthermore, there are several requirements of the hypotheses

which can be used to measure Narratarium's success. The hypotheses must be:

" Context aware. When the ith word W is received, the back end uses words

Wi 1 , Wi- 2 ,..., Wj (for some finite j) to provide a more contextually accurate

hypothesis for Wj's color and sound values.

" Accompanied with a measure of certainty/validity. Although a color

and sound guess will be generated for almost every English non-stopword (the

exception being words which are not in Divisi's relatedness matrix divisi or any

of the color or sound corpora), a color change or sound effect need not be played

after every word (indeed, this would detract from the user experience). For each

input word, the back end provides a number in addition to its hypotheses. This

number indicates the back end's confidence in the guess, as well as how strongly

the word appears to be associated with color or sound in the first place. The
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front end can use this metric in conjunction with its knowledge of the recency

of the last color change or sound effect to determine whether or not to act.

* Generated in real-time with low latency. Like any other user experi-

ence, Narratarium must appear fast and responsive. Nielsen[5] states that a 0.1

second response time is sufficient to make the system seem as if it is reacting

instantaneously. This would correspond to the time between when the user

finishes entering a word and when a corresponding state change, if there is one,

occurs. However, there are two important factors that allow for some leeway

in this regard. First, Narratarium is used as part of a storytelling experience,

where the listener is focused on the story rather than on the environment. In

freestyle mode, the story is being told by one human to another, so the listener

will be focusing on the storyteller and not on Narratarium's output. In story

mode, where the listener is reading the story off the walls, the words are pro-

jected on the walls before being sent to the back end. Thus in both modes, the

perceived delay between input and sound or color state change is marginalized

by other parts of the user exerience. Second, when people tell stories, words

that are in the same vicinity as each other may imply similar underlying sounds

or colors (e.g. "red leaves," "blazing inferno,"). This will likely be the case

when the story is describing something in detail (i.e. using many descriptive

words for the same object or concept). It is situations like these that Narratar-

ium especially aims to enhance with sound and color, and where higher latency

is forgiveable. For example, if a sequence of words "Wi, Wi+1, Wi+2, ... , Wj" are

all being used to describe a scene, it is acceptable if the corresponding color

change occurs later than W, since Wi+1... W are also describing the same scene

as Wi. Nevertheless, responsiveness and low latency are important parts of the

user experience.

These three metrics for success can be easily measured and evaluated, and will be

discussed later in this chapter and in Chapter 5.
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A notable non-requirement of the feature is that for any given word W, the color

hypothesis and sound effect hypothesis are the "most appropriate" hypotheses possi-

ble. There are two reasons for this.

First, there is no way to assign a number to a color or sound effect hypothe-

sis which measures the hypothesis's "appropriateness" for a particular sequence of

words, or to compare the "appropriateness" of two hypotheses on an absolute scale.

The "appropriateness" of a hypothesis is decided by the end user, and is completely

dependent on the end user's personal perceptions of color, sound, and the story being

told. Assuming that the back end were to propose a certain RGB value for a set of

words, it is very likely that any particular end user, if asked to choose an RGB color

for the same set, would choose a color with a different RGB value, simply because

there are 256' possible colors to choose from. Comparing the back end's proposed

RGB value to a particular user's proposed RGB value would be meaningless because

any other user would likely propose a different RGB value. Furthermore, even if all

humans possessed the exact same color-word associations, there is no absolute and

meaningful way to measure how much less appropriate the back end's proposed color

value might be than the correct value.

Second, the success of Narratarium as an overall product is determined by whether

it is able to enhance the user experience of the listener, not whether it is able to

maximize the user experience of the listener (this is impossible). Thus, it suffices

that a color or sound effect is "appropriate enough" for a set of words, and not that

a color or sound effect is the "most appropriate" color, of all RGB colors, or sound

effect, of all the sound effects in the corpus, for that set of words.

That the success of sound and color extraction from a text depends on the un-

specified listener, and not the person who wrote the text, differentiates it from other

NLP tasks. For example, text polarity analysis seeks to classify a set of words as

having an overall positive, neutral, or negative sentiment. Its success is determined

by whether its hypothesis matches the sentiment of the author of that set of words.

Thus one can measure the success of a text polarity analysis algorithm on a specific

piece of text by consulting its author to see if the hypothesized sentiment matches the
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Sound Corpus

Figure 3-1: General Design of Back End

author's sentiment when he wrote the text. The same verification cannot be easily

done for sound and color extraction.

3.2 Design

The design of the back end follows from the requirements enumerated in the pre-

vious section, and is depicted at the high level in Figure 3-1. The entire back end

is contained inside a single Python object called Reader. When the front end is

first initiated as a C++ OpenFrameworks project, it creates an embedded Python

instance of Reader. Then when the user enters or speaks a word, the front end calls

Reader's update method, passing it the new word. Reader contains two subclasses,

ColorGuesser and SoundGuesser, which function independently. Reader calls the

update methods of both subclasses, passing them the new word, and the subclasses

perform the necessary state updates and return their respective guesses. Each sub-

class utilizes its corresponding corpus, and Divisi's relatedness matrix divisi, in its

computations. The guesses are then passed back to the front end.
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3.2.1 Color Extraction vs. Sound Extraction

Although the tasks of color extraction and sound extraction are conceptually similar,

the constraints imposed on guessing sound are very different than the constraints

imposed on guessing color. Consequently, the approach used to extract color in [2]

does not transfer gracefully to sound extraction.

Consider the full statement of each task:

" Color extraction seeks to provide a best guess for the color, chosen from the

set of colors in a particular color corpus, associated with a word or set of words.

When coming up for a best guess for the color to represent "fire," Colorizer[2]

simply consults its color corpus to determine which colors have been associated

with "fire," and chooses from these a particular color c such that the sum of

the Euclidean distances, in the LAB color space, between each of the colors in

the set and c is minimized. From a human's perspective, this is a meaningful

and sensible optimization, since it is equivalent to choosing the color that is the

least different from all of the other colors (or the most "neutral").

" Sound extraction seeks to provide a best guess at the sound file, chosen from

the set of sound files in a particular sound corpus, such that the sound in the

sound file is associated with a word or set of words.

When coming up for a best guess for the sound file whose contents represent

"fire," one can again consult a sound corpus to determine which files have been

associated with "fire." If one were to continue using the strategy that Colorizer

uses for color extraction, one would look at the waveform or bit representation

for each file and choose the file whose waveform differs the least from the all

of the rest. However, the file whose waveform is the least different from the

waveforms of the other files is not the file whose underlying sound effect is

the least different from the underlying sound effects of the other files. The

distinction is that RGB values, which define colors, hold practical meaning for

humans, while the waveform or bitwise content of a sound file, which defines

the file, does not hold practical meaning for humans.

31



As a result, the algorithms for color extraction are different from the algorithms

for sound extraction; consequently, ColorGuesser and SoundGuesser are completely

modular and can function independently of each other.

3.3 ColorGuesser High Level Implementation

ColorGuesser's implementation is a version of Colorizer's implementation[2] that has

been modified in a few ways:

" Colorizer uses methods from a proprietary library, Luminoso[9]. Code was im-

plemented that replicated the effects of these methods, without using the pro-

prietary library.

* Small changes in implementation and in parameter settings were made to de-

crease computation time(latency).

Conceptually, however, ColorGuesser functions identically to Colorizer.

3.4 SoundGuesser High Level Implementation

The implementation of SoundGuesser can be conceptually split into three parts: the

sound corpus, the metrics algorithms, and the guessing algorithms.

3.5 Sound Corpus Implementation

There was no publicly available sound association corpus which, similar to Colorizer's

color corpus, mapped English words to sound files, so it was necessary to create one.

The bulk of Colorizer's color corpus was obtained through a global color survey

by [4], in which volunteers were shown a set of colors and asked to provide a word

or phrase related to each of the colors. Using the same approach to create a sound

corpus was infeasible for a few reasons. First, it takes much more of the user's time

to listen to a sound file than it takes to look at a color; in addition, it is much easier
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to generate sample colors than it is to generate meaningful sample sound files (sound

files that play sounds humans are likely to encounter in everyday life). Thus, setting

up and administering a poll would have been very tedious and painful for both the

poll giver and the poll takers. Second, the global color survey sampled more than

222,500 users, a sample size that is far outside the scope of this thesis.

Instead, the color corpus was created using a database dump from Freesound,

an open source online sound database[1]. Anyone can upload any sound file to

Freesound's database. Uploaders are encouraged to tag their file with keywords and

to provide a description string along with the upload. Figure 3-2 presents five sam-

ples of sound file entries from the Freesound database dump. Each entry in the dump

corresponds to a unique sound file hosted on Freesound's website. The first two fields

in each entry are tracking numbers assigned to the sound file for that entry, and can

be used to generate a direct URL to the .mp3 of the sound file on Freesound's web-

site. Together, they are unique for each sound file in the database and can be used

as identification. The third, fourth, and fifth fields in each entry are the username of

the uploader, the original name of the sound file for that entry, and the name of the

file's corresponding preview file (generated by Freesound when the file is uploaded),

respectively. The sixth field in each entry corresponds to a comma-separated set of

keywords the uploader tagged the file with, or the value \N if the uploader did not

tag the file with any keywords. Finally, the seventh field in each entry corresponds

to the description of the file's content that the uploader provided during upload.

3.5.1 Sound Corpora Generation

Creating the corpus required parsing the Freesound dump and creating a few dictio-

naries:

" TagsToIDs, a dictionary which maps an English word to a set of file IDs of the

sound files which have been tagged with that word as a keyword.

" IDsToTags, a dictionary which maps a file ID to the English words which the

uploader tagged the file with (the reverse mapping of TagsToIDs).
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230,15, "Erratic", "snare0.wav", "230_Erratic__snare01,\N,"a simple snare drum"

426,196, "TicTacShutUp", "prac -
hat .wav", "426__TicTacShutUpprac hat","percussion,drums,hi-hat", "half open hi-
hat with a bit of room sound."

568,29, "TwistedLemon","scissors scraping.wav", "568_TwistedLemon__scissors_scrap
ing","scissors,cutting","a small pair of scissors. Close-up recording of the
iron scraping against each other. processing: noise reduction."

10920,186, "batchku","thumpG_. R. aif", "10920_batchku__thumpG_1.R","low,thump,t
rumpet,extended,davood,technique","recordings of variouts trumpet extended
techniques, performed by David Bithell, recorded by Ali Momeni with a Neumann
mics (marked .L) and an earthwords (marked .R). Dynamics are indicated with
from pp (very soft) to ff (very loud). V indecas valve, s and 1 indicate short
and long, pitches in names indicate fingered pitches,"

17074,58726, "lgarrett", "lg_thunderstormi.wav", "17074_lgarrettlgthunderstorm1
",field-recording,dripping,wind,rumble,horncarrain,thunderstorm","30 seconds
of a massive thunderstorm recorded from my front porch inwashington dc. one nice
thunderclap, a car horn, a car driving by, andsome rhythnic dripping water.
stereo recording: sony esm-ds70p -&gt;, minidisc."

Figure 3-2: Example Freesound Database Dump Records

IDsToMeta, a dictionary which maps a file ID to all the metadata available for

it from the dump.

There were a few ways do do this (described following this paragraph). In layman's

terms, Method 1 adds a file to the corpus only if it has been tagged with keywords,

regardless of whether or not a description is provided for it. Method 2 first completes

Method 1, at which point TagsToIDs's keyset contain all the keywords used in the

dump. It then iterates through the files that were not tagged with any keywords. For

each of these files, if a description is provided, it checks to see if any of the words

in the description was used explicitly as a keyword to tag other files (by consulting

TagsToIDs's keyset). If so, it creates an artificial set of keywords for the file comprising

such words, and updates the three dictionaries accordingly. Method 3 adds a file

to the corpus if it has been tagged with keywords, using those keywords. If a file is

not tagged with keywords, it then treats the words in the file's description, if it has

any, as the file's keywords. Finally, Method 4 treats both a file's keywords and the

words in its description as keywords. The different methods are enumerated in order

of increasing verbosity:

* Method 1. For each record Ri in the database, corresponding to the sound
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file Fj with file ID IDj, check if F has been tagged with keywords (that is, the

sixth field in Ri is not \N).

If F has been tagged with keywords W = {wo, w1 , ..., wn}, then remove stop-

words from W, normalize the words in W, and set IDsToTags[IDj] =

{wo, W1, ..., wn}. Add ID to TagsToIDs[w] for wi E W, and set IDsToMet a[IDi]

= Ri.

If F has not been tagged with keywords, do not change any of the dictionaries.

* Method 2. Do Method 1 first.

Then for each record Ri in the database, corresponding to the sound file F with

file ID ID, such that F is not tagged, check if a description is provided for Fj

(that is, the sixth field in Ri is not an empty string).

If a description is provided, extract the set of words Desc = {desco, desci,

descn} from the description by removing special characters and splitting the

description around empty spaces. Remove stopwords from Desc and normalize

the words in Desc. Create a reduced set of words D = {do, di,..., dm} C

Desc such that a word desci from Desc is in D iff TagsToIDs[descj] : 0. Set

IDsToTags[ID] = {do, d1 ,...,dm}. Add IDj to TagsToIDs[di] for di E D, and

set IDsToMeta[1D 1 ] = Ri.

If a description is not provided (thus the file has been neither tagged nor de-

scribed), do nothing.

* Method 3. Do Method 1 first.

Then for each record Ri in the database, corresponding to the sound file F with

file ID ID, such that F is not tagged, check if a description is provided for Fi.

If a description is provided, extract the set of words Desc = {desco, desc1 ,...,

descn} from the description by removing special characters and splitting the

description around empty spaces. Remove stopwords from Desc and normalize

the words in Desc. Set IDsToTags[1DJ = {desco, desci,..., descn}. Add IDi to

TagsToIDs[descj] for desci E Desc, and set IDsToMeta[IDj] = Ri.
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If a description is not provided (thus the file has been neither tagged nor de-

scribed), do nothing.

* Method 4. For each record Ri in the database, corresponding to the sound

file F with file ID IDj, initialize a set K of keywords for F to {}.

Check if F has been tagged with keywords. If F has been tagged with keywords

W = {wo,W 1, ..., Wn}, then remove stopwords from W, normalize the words in

W, and add wi E W to K.

Check if a description is provided for F. If a description is provided, extract the

set of words Desc = {desco, desci, ..., desc} from the description by removing

special characters and splitting the description around empty spaces. Remove

stopwords from Desc, normalize the words in Desc, then add desci E Desc to

K.

If K = {ko, k1, ..., km} is not empty, then set IDsToTags[IDj] = {ko, k1, ..., km}.

Add ID to TagsToIDs[ki] for ki E K, and set IDsToMeta[IDj] = Ri.

If K is empty, do nothing.

In all of the methods, files that are neither tagged nor described are treated as if

they do not exist. This is because the only other field that can possibly indicate the

content in the file is the original file name (the fourth field), but filenames are very

often ill-indicative of content and hard to parse.

Figure 3-3 is an example of the IDsToTags dictionary entries after running each

of the methods, if the database dump contained only the three records shown at the

top of the figure, and highlights the strengths and weaknesses of each approach:

* Method 1 skips any file that hasn't been tagged with keywords, but has been

described. This is likely the correct behavior if the uploader, who did not tag

the file but described it, thought that none of the words in the description were

strongly associated enough with the file to be considered "keywords." However,

it is more likely that the uploader was simply lazy and did not take the time

to provide both keywords and a description. For example, keywords in the
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230_, "Erratic", "snare0.wav", "230_Erratic_snare01", \N,"a simple snare drum
spurious unrelated text"

426,196, "TicTacShutUp", "prac -
hat.wav"," 426_ITicTacShutUp_prachat","percussion,drums, hi-hat", half open hi-
hat with a bit of room sound."

568,29, TwistedLemon","scissors scraping.wav","568_TwistedLemon__scissors scrap
ing","scissors,cutting","a small pair of scissors. Close-up recording of the
iron scraping against each other. processing: noise reduction. "

IDsToTags[FiLeID ]

Figure 3-3: Example IDsToTags Dictionary
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Method FiLeID

1 (230,15) None

1 (426,196) {percussion,drum,hi-hat}
1 (568,29) {scissors,cut}

2 (230,15) {drum}

2 (426,196) {percussion,drum,hi-hat}

2 (568,29) {scissors,cut}

3 (230,15) {simplesnare, drum, spurious,unrelated,text}

3 (426,196) {percussion,drums,hi-hat}

3 (568,29) {scissorscut}

4 (230,15) {simplesnare,drum,spurious,unrelatedtext}

4 (426,196) {percussion,drum,hi-hat,half,open,hihat,bit,room,sound}

4 (568,29) {scissors, cut, small, pair, closeup, recording, iron, scraping,
against, eachother, process,noise, reduction}



record for File (230,15) in Figure 3-3 are completely skipped, even though its

description, "a simple snare drum spurious unrelated text," contains useful

information. The only possible benefit to Method 1 is that the resulting corpus

is smaller and thus faster to use.

" Method 2 skips any file that has been neither tagged nor described. It also

skips any file that has been described and not tagged, if none of the words in the

description are pre-existing tags. As shown in Figure 3-3, after using Method

2, File (230,15) is included with the single tag "drum." The extra descriptor

"snare," although useful, is not included as a tag because it is not explicitly

used as a tag for Files (426,196) or (568,29).

* Method 3 does not skip any file with metadata, but uses only either the

tags or the description. However, if it uses the description, it uses every

(non-stopword) word in the description. Many records in the database con-

tain overly long descriptions with spurious unrelated text, such as File (230,15)

in Figure 3-3. Consequently, these spurious, unrelated words show up as tags

in the corpus (for example, the tags for File (230,15) using this method are

"{simple,snare,drum,spurious,unrelated,text}").

" Method 4 does not skip any file with metadata, and uses both the tags and

description. Thus, if a file was uploaded by a user who put only the most

relevant words in the tags, and provided a much more eloquent and accurate

description, this method might be the correct behavior. However, it has the

same weakness to spurious, unrelated descriptive text that Method 3 does,

so the tags in the corpus for Files (230,15) and (586,29) both include spurious,

unrelated words.

3.5.2 Sound Corpora Comparison

The next step after generating the corpora using the methods described in the previ-

ous section was to choose which among the four to use.

38



# Files Added to Average Average

Corpus Tags/File Files/Tag

1 18044 72318 5.81 23.27

2 18044 72882 5.77 23.50

3 18414 72884 5.77 23.05

4 40713 72900 5.78 25.95

Figure 3-4: Corpus Analytics

Figure 3-4 shows high level statistics of the TagsToIDs and IDsToTags dictionaries

using each of the four methods in the previous section with the Freesound database

dump. The original dump contains 72,999 files, 99 of which were uploaded with

neither tags nor description.

Method 2 includes 564 files from the original dump that Method 1 omits. These

files are untagged but contain known tag words in their descriptions. Method 3

includes only 2 new files from the original dump that Method 2 does not include,

but introduces 370 new tags. Finally, Method 3 includes only 16 new files from the

original dump that Method 2 does not include, but introduces 22,299 new tags.

As mentioned earlier, the only benefit of Method 1 over Method 2 was the poten-

tial for faster computation. However, only 564 extra files out of 72,999 are added in

Method 2, so any detraction from performance would be hardly noticeable. Conse-

quently, the task became choosing the best of Methods 2, 3, and 4.

Figures 3-5a, 3-5b, and 3-5c present the distribution of files by number of tags per

file. No file is tagged with less than one keyword (by construction), no file is tagged

with more than 60 keywords (by nature of the original Freesound database), and as

mentioned earlier, each file is tagged with an average of 5-6 keywords. Because there

is a total increase of 386 originally non-included files from Method 2 through Method

4, the change in distributions across the methods is very slight.

Figures 3-6a, 3-6b, and 3-6c present the distribution of keywords by number of files

tagged per keyword. No keyword is used to tag less than one file (by construction),

no keyword is used to tag more than 18,381 files (by nature of the original Freesound

database), and as mentioned earlier, a keyword is used to tag, on average, between
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Figure 3-6: Files/Keyword Distribution for Different Sound Corpora

23 and 26 distinct files. Although the maximum frequency of a keyword is 18,381,

figures 3-6a, 3-6b, and 3-6c only show the portions of the distributions for keywords

that occur with frequencies between 0 and 250. Since 95% of keywords are occur with

frequencies not exceeding 74, by any of the methods, the truncated distributions con-

tain the vast majority of the whole distributions while allowing a more detailed look

at the part of the distributions which experience the most variation across methods.

Of the new keywords introduced to the corpora by Methods 3 and 4, most are used

to tag no more than five unique files, implying that the new keywords are infrequently

used among the descriptions for all the files in the corpus. Some further exploration

suggests that the newly added keywords are mainly spurious and unrelated to the

actual sound content, such as the brand name of the sound recording device used,
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the name of the upload, or abbreviations. Figure 3-2 provides a few examples of

spurious and unrelated descriptors that are included as tags by Methods 3 and 4,

such as "David," "Bithell," "Ali," "sony," "esm-ds-70p," and "gt." From an intuitive

standpoint, it makes sense that most of the new keywords are unrelated to the actual

sound content - 72,318 of the 72,999 sound files are used to generate the original

set of keywords in Method 2, and the new keywords in Methods 3 and 4 are drawn

from the descriptions of no more than 16 files or from the descriptions of files that

have been tagged with keywords. It would be highly unlikely that relevant and useful

keywords derived in this manner have not already been used as keywords previously.

Because Methods 3 and 4 introduce a very large number of keywords that are

unrelated or not useful to the corpus generated by Method 2, and do not introduce a

large number of files that were excluded, we use the corpus generated by Method 2

in the Narratarium system.

3.6 SoundGuesser Metrics Implementation

It was necessary to define a metric C(H,) that would evaluate SoundGuesser's cer-

tainty in a particular sound file hypothesis H,. We found that defining a metric which

would evaluate how strongly a word was associated with the concept of sound in the

first place, if used in conjunction with the guessing algorithms, would lead directly to

C(H,). We call this metric "soundiness," and drew inspiration for its implementation

from Colorizer's voting algorithm.

3.6.1 Colorfulness

Given a word W, Colorizer generates a color hypothesis for W by first creating a set

of color hypotheses. This set contains not only the colors that W itself maps to in

the color corpus, but also the colors that the 5 most related words to W, according

to Divisi's relatedness matrix divisi, map to. Each color C in the set is weighted as
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follows:

w(C) = I(C, W) + E I(C, K)divisi[W, K] (3.1)
KER

where I(C, M) = 1 if C is in the set of colors that M maps to in the color corpus

and 0 otherwise, and R is the set of the 5 most related words to W in divisi (i.e.

R =divisi.row-named(W).top-items(5). Then Colorizer runs a single transferable

vote election using a small sample from the set of color hypotheses as candidates;

each color hypothesis in the pool gives a weighted vote, with weight equal to its own

weight, to the candidate in the set that is the smallest Euclidean distance from it in

the LAB color coordinate plane. The candidate that receives the most net votes is

returned as the best hypothesis.

Although Colorizer returns only a RGB color hypothesis for a word W, its voting

algorithm generates an implicit metric of certainty for the hypothesis - the amount

of votes the winning candidate received, which is the sum of the w(C) in Formula 3.1

for some subset of the colors that W and divisi.row-named(W).top-items(5) map to

in the color corpus. This metric can be interpreted as the "colorfulness" of W in that

it not only indicates the strength of the color hypothesis, but also the extent to which

W and the words most related to it are associated with the concept of color in the

first place. If W and the words related to it map to a very large set S of colors in

the color corpus, then the value of the metric will be high, regardless of the value of

the RGB hypothesis, because it receives the majority vote from a very large set of

voters. Since the color corpus was created using the color survey in [4], a word W will

map to more colors if more people associated a color with it, regardless of what color

any single person chose. Colorizer's logic thus relies on the (reasonable) assumption

that if humans more commonly associate a word W with the concept of color than

another word W 2 , then more colors will be associated with W than with W 2 .

3.6.2 Soundiness

In a similar fashion to Colorizer's voting method, the "soundiness" metric makes the

assumption that if a word W is more strongly associated with the concept of sound
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than another word W2, it will be used to describe sound files more frequently. Then

W1 will appear as a keyword more frequently in Freesound's public sound database,

and thus SoundGuesser's corpus, than W2. Simply defining the soundiness of a word

W as its frequency as a keyword in the sound corpus, however, forces words that are

strongly associated with sound, but not commonly used in speech, such as "bassoon,"

"piccolo," and "timpani," to have misleadingly low scores. We thus use the three

most semantically related words to W (i.e. divisi.row-named(W).top-items(3)) to

generate the metric (similar to how Colorizer uses the five most semantically related

word, in addition to the word itself). We tried three different methods of measuring

the soundiness Soundiness of a word W.

" Method 1. Initialize a set Matches of sound file IDs to {}. Then for each

word W in divisi.row-named(W).top-items(3), set Matches = TagsTo Ids [W] U

Matches. Return Soundiness(W) = IMatchesl.

" Method 2. Initialize Soundiness(W) = 0. Then for each word W in

divisi.row-named(W).top-items(3), set Soundiness(W) = Soundiness(W) +

ITagsToIds[Wi . Return Soundiness(W).

" Method 3. Initialize Soundiness(W) = 0. Then for each word W in

divisi.row-named(W ).top-items(3), set Soundiness(W) = Soundiness(W) +

divisi[W,W - jTagsToIds[Wi]|. Return Soundiness(W).

Figures 3-7a, 3-7b, and 3-7c show the distribution of keywords for soundiness values

using the three methods described above. Although some keywords have soundiness

values in excess of 4,000, these comprise less than 5% of the total keywords in the

corpus(regardless of method), so the distributions are truncated to better illustrate

the sections of greatest change across distributions.

Methods 1 and 2, corresponding to the distributions in Figures 3-7a and 3-

7b, generate distributions with higher variance than the distribution generated by

Method 3. This is a desirable characteristic because differences between sound-related

words and sound-unrelated words are exaggerated. Because the differences in the
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distributions generated by Methods 1 and 2 were slight, we use Method 2 in our

implementation because there is slightly more variation in its distribution.

3.7 SoundGuesser Guessing Algorithm Implemen-

tation

The sound hypothesis for a word W, needs to be context aware, accompanied with

a measure of certainty, and generated in real-time with low latency. These three

requirements are not independent of each other. A hypothesis is more certain and

accurate when the algorithm used to generate it is more context aware, both in terms

of considering words previously entered by the user, and in terms of considering words

other than the input that are semantically related to the input. However, increasing

the certainty and accuracy of a hypothesis by increasing the algorithm's context

awareness will also increase the amount of necessary computation, thus adversely

affecting latency.

Because the computer that will be used to run Narratarium is unknown, there are

no guarantees regarding processing speed. We have included a high degree of cus-

tomization in our algorithms to deal with this uncertainty, and present performance

results in the following chapter.

We implemented a number of different guessing algorithms, which can be concep-

tually reduced to a naive algorithm, a graph-based algorithm, and several variations

on the latter. We describe them in the following sections.

Each of the guessing algorithms is independent of the others. When Reader is

initialized upon Narratarium's launch, it creates an instance of the SoundGuesser

subclass (see Figure 3-1), with the particular guessing algorithm determined by a

configurable value. The instance of the SoundGuesser subclass then loads the sound

corpus (the dictionaries TagsToIDs, IDsToTags, and IDsToAllMeta) and Divisi ma-

trix from locally saved files, and initializes a few variables to maintain state:

* maxHistory, a configurable integer. The guessing algorithm will consider the
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last maxHistory words entered by the user when deriving a sound file hypoth-

esis.

" wordBuf f er, an array that keeps the last maxHistory words passed to

SoundGuesser, with the most recent word at the front. Initially empty.

" branch, a configurable integer. The guessing algorithm will consider, in addition

to each word W in WordBuffer, the branch most semantically related words to

W (i.e. divisi. row-named(W). top-items(branch))

" maxDepth, a configurable integer. This will be used by the graph algorithms

described later.

" decayRate, a configurable float between 0.0 and 1.0. Given wordBuff er=

Iwo, w 1, ... ,wa], the guessing algorithm will consider Wk to be decayRate as

important as Wk+1 for k E [0,1, ..., n - 1] when deriving the hypothesis.

" hypothesis, a tuple which includes the file ID of the most recent hypothesis

and the hypothesis's certainty. This is initially null.

" NetworkMap, a dictionary which represents a graph network. This will be used

by the graph algorithms described later.

When SoundGuesser is passed a word by Reader, it updates wordBuf f er accordingly

by appending the word to the front of wordBuf f er and popping the last value from

wordBuffer if wordBuffer exceeds maxHistory in length. It then calls the guessing

algorithm, which updates hypothesis.

3.7.1 Naive Algorithm

The algorithm first creates an empty dictionary mapping file IDs to scores,

soundMatches, which will be used to keep track of any sound file that could potentially

be associated with the words in wordBuf f er, as well as the algorithm's confidence in

its appropriateness. soundMatches is implemented as a Python default dictionary,

so that soundMatches[x] = 0 if x $ soundMatches.
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Then, the algorithm iterates through the words in wordBuf f er starting with the

most recently entered word at wordBuffer[0]. For each word W with index i in

wordBuf f er, it performs the following steps:

1. Create a default dictionary D and set D[W = 1.0.

2. Create S = [(wo, po), (w1 , pi), ..., (Wbranch_1, Pyranch-1) where wj is the (j + 1)th

most semantically related word to Wi using divisi, and pj is the relatedness

coefficient divisi(Wi, wj).

branch-1

3. Normalize the p values in S by dividing each p3 by E Pk for j E [0, 1, ... , branch-
k=O

1]. Then, multiply each pj in S by decayRate t for j E [0, 1, ..., branch - 1].

4. Set D[wj] = D[wj] +p pfor all (wj,pj) E S.

5. For each (Wj, pj) E D:

1. Create a set of file IDs that wj maps to in the sound corpus,

F[0...m] =TagsToIds[wy].

2. Set soundMatches[F[n]] = soundMatches[F[n] +Soundiness(Wi )-pj for

n E [0, 1, ...m].

At this point, the algorithm has iterated through each word in wordBuffer and, for

each word, found a set of sound files that could possibly be associated with the word.

For each of these sound files, it adds the sound file to soundMatches if it is not already

in soundMatches, then increases its weight by a value that can be interpreted as the

word's vote (thus each word can vote for any number of files). The vote's weight is a

function of the soundiness of the word, the recency of the word, the decay rate, and

the relatedness of the word to the sound file.

Finally, the algorithm sorts soundMatches by weight, and extracts the file ID with

maximum weight. It sets hypothesis to a tuple comprising these two values, and

returns it. The algorithm's certainty in the hypothesis is equivalent to the hypothesis's

weight.
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3.7.2 Graph Algorithm

Theory

The theory behind this algorithm is similar to that of "activation spreading" men-

tioned in [8]. If a graph algorithm is used, SoundGuesser uses Divisi's relatedness

graph (the undirected graph whose edge weights are contained in the relatedness ma-

trix divisi) and the sound corpus to create a new graph stored in NetworkMap. It first

replicates divisi. Then for each file ID id in the sound corpus, it creates a new node

named id and constructs an undirected edge of weight 1.0 between each keyword in

IDsToTags[id] and the node id. Thus NetworkMap comprises "keyword" nodes, or

nodes corresponding to the words in divisi, "file" nodes, or nodes corresponding to

the files in the sound corpus, and undirected edges. The algorithm then augments

file nodes with a value called "energy," initially set to zero. The energy of a file node

represents the system's current estimate of the file's appropriateness for the words in

WordBuf f er (or, the algorithms' certainty in the particular file), and the file ID of

the file node with the highest energy is considered the best hypothesis.

When a new word is added to WordBuf f er, the graph algorithm is called to update

NetworkMap. The algorithm first decays the energy in the system by decayRate.

Then, it introduces energy equal to the soundiness of the word to the system. The

energy flows along edges through keyword nodes and is deposited into file nodes.

When energy is transmitted along an edge, its magnitude is extenuated by the weight

of the edge. The algorithm can also handle the removal of a word W from WordBuf f er

by spreading negative weight through the system to counteract the effects of W's

earlier addition.

Implementation

Because divisi's underlying graph has edges between each of its 66,375 nodes, and the

sound corpus contains 72,882 files, each of which is tagged 5.77 times on average, it is

impossible to implement the algorithm in full while maintaining low latency because

the graph is simply too large. The SoundGuesser variables branch and maxDepth
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are thus used to approximate the algorithm by limiting the number of times energy

is spread through the system.

The differences between the implemented algorithm and the theoretical algorithm

are as follows:

" NetworkMap is created lazily rather than upon initialization, and only contains

file nodes. It is initialized as an empty default dictionary.

" A helper method called spreadEnergy(keyword, energy, branch, depth) spreads

energy from the keyword node keyword with value energy. It follows two steps:

1. Transmits energy to the file nodes to which keyword is adjacent by setting

NetworkMap[id] = NetworkMap[id] + energy for each id in

TagsToIds [keyword].

2. If depth > 0, spreads energy to the keyword nodes to which keyword is

adjacent. The amount of spreading is limited here by only spreading energy

along the branch edges with the highest weights. Thus the method creates

a set S = [(wo, po), (wi, pi), ... , (Wbranch-1, Pbranch-1)] where wj is the (j +

1)th most semantically related word to keyword using divisi, and pj is the

relatedness coefficient divisi(keyword, wj), and normalizes the p values in

the same manner as the naive algorithm. Then for each wj in S, the

method recursively calls spreadEnergy(wj, energy -p3 , branch, depth - 1).

" When a new word W is added to WordBuf f er and the algorithm is called to up-

date hypothesis, it calls spreadEnergy(W, Soundiness(W), branch, maxDepth).

It then sorts NetworkMap by energy, extracts the file ID with the highest en-

ergy, and updates hypothesis accordingly. The algorithm's certainty in the

hypothesis is equivalent to the file's energy.

3.7.3 Graph Algorithm Variations

The graph algorithm described previously exhibits two important characteristics:
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" It updates NetworkMap incrementally. When WordBuf f er is not full and a

new word W is added, SoundGuesser will call the algorithm once to perform

spreadEnergy(W, Soundiness(W), branch, maxDepth). When WordBuf f er is

full and a new word W is added, an old word W' is necessarily removed. Thus

SoundGuesser will call the algorithm twice - first to perform spreadEnergy

(W, Soundiness(W), branch, maxDepth) and second to perform spreadEnergy

(W', -Soundiness(W) - decayRatemaxHistory-1, branch, maxDepth). Note that

during the algorithm's second call, the energy in NetworkMap is not decayed.

" It allows energy that was spread from a keyword node WO to be spread back to

Wo. For example, if branch=3 and the word "band" is added, energy will be

spread from the node for "band" to the nodes for "instrument," "orchestra,"

and "saxophone." However, the energy which is spread to "instrument" will be

recursively spread back to the nodes for "band" and "saxophone" (in addition

to the node for "violin").

We implemented three variations of the algorithm to explore the effect of these char-

acteristics. The first variation updates NetworkMap incrementally, but does not allow

energy to be transmitted back into keyword nodes that have already received energy

during the same call to the algorithm (that is, if branch=3 and the word "band" is

added, energy will be spread from "band" to "instrument," "orchestra," and "saxo-

phone," then from "instrument" to "violin," "guitar," and "musician"; if the word

"band" is added again, energy will be spread to the same nodes). The second varia-

tion resets NetworkMap and performs an add operation for each word in WordBuf f er,

allowing backwards transmission of energy. The third variation resets NetworkMap

and performs an add operation for each word in WordBuf f er, not allowing backwards

transmission of energy.

If the graph algorithm is called to update hypothesis every time a new word is

added to WordBuffer, the original algorithm and the first variation will, on average,

be much more efficient than the second and third variations. However, considering

that the sound files in FreeSound's database can last tens of seconds, and that users
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can enter or speak several words in that amount of time, a new hypothesis may not

be necessary for every word entered. Because the original algorithm and the first

variation are incremental, they must be called every time a word is entered, and so

there is an average of two maxDepth energy spreads per word. Thus, if a hypothesis

update is required less frequently than every maxHistor words entered, the second and

third variations will perform better on average.

This point is only relevant to the story mode experience, in which a story with

pre-generated sound and color values is presented to the user. In freestyle mode,

worst case performance is the only meaningful metric.
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Chapter 4

Evaluation

4.1 Success Metrics

As mentioned in the previous chapter, the three metrics used to evaluate the back

end are that the hypotheses are generated in a context-aware manner, the hypotheses

are accompanied by a measure of certainty, and that the hypotheses are generated in

real-time with low latency.

Because the back end guessing algorithms are designed with configurable levels

of context-awareness and with the measure of certainty as the back end's means of

distinguishing between hypotheses, the task of evaluation simplifies to evaluating the

latency of the back end as a function of context-awareness.

4.2 Latency Evaluation

There are three ways to configure the level of context-awareness:

* Increase the value of maxHistory. This increases the maximum size of wordBuf f er

and forces the back end to consider more of the context of the story being told.

From a practical point of view, one might expect the accuracy of hypotheses to

experience dramatically diminishing marginal returns with maxHistory for two

reasons - first, words that are separated from each other in a story by several

intermediate words are much less likely to describe the same concept, sound,
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or color due to the inherent nature of storytelling. Second, the configurable

decayRate field forces the back end to pay exponentially less attention to the

less recently entered words. Assuming decayRate=0.75, increasing maxHistory

past a value of 10 will have negligible effect on the hypothesis that is made, while

having a detrimental effect on latency.

" Increase the value of branch. This increases the amount upon which the back

end employs divisi's commonsense knowledge when interpreting user input.

" Increase the value of maxDepth. This only applies to the graph-based algo-

rithms, and similar to branch, increases the amount upon which the back end

employs divisi's commonsense knowledge when interpreting user input.

4.2.1 Experiment Design

We evaluated the latency of each of the guessing algorithms by varying maxHistory,

branch, and maxDepth. We randomly generated a sequence of 15 words, drawn from

the rows of Divisi's relatedness matrix. The experiment added the first word in the

sequence, requested an updated hypothesis, measured the time the algorithm took to

compute the hypothesis, then added the second word in the sequence and repeated

the process until all 15 words had been added. We ran the experiment for values

of maxHistory between 1 and 10, values of branch between 1 and 5, and values of

maxDepth between 1 and 5. decayRate was set to 0.75.

4.2.2 Experiment Results

Figure 4-1 presents the high-level performance results of the experiment, marginalized

over the choice of guessing algorithm (and marginalizing out the configurable fields).

Unsurprisingly, the naive algorithm is by and large the fastest (and by and large ac-

companied with the smallest confidence values), and the incremental graph algorithms

are substantially faster than their non-incremental counterparts. Furthermore, the

graph algorithms which allowed backwards spreading of energy performed between
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Guessing Algorithm Average Time(s) Average Certainty Max Certainty

Naive 0.77 246.89 1149.50

Graph, Original 18.04 1495.03 8855.78

Graph, Variation 1 619.59 847.71 5274.34

Graph, Variation 2 84.19 1495.31 8855.78

Graph, Variation 3 2352.12 848.11 5274.35

Figure 4-1: High-Level Performance Results of Different Guessing Algorithms

3.8 and 4.7 times faster, on average, than the graph algorithms which did not allow

backwards spreading of energy, while offering certainty measures approximately 1.76

times higher, on average. It is to be expected that allowing for backwards spreading

of energy will reduce latency, since less keyword and file nodes are being explored

and less file nodes are being added to NetworkMap. The increase in certainty seems

to verify that the more common English words are also more common keywords, but

the magnitude of the increase is highly dependent on the input word sequence and

cannot safely be used to draw conclusions.

Figure 4-2 presents the average computation time for the incremental graph guess-

ing algorithm which allows backward spreading of energy (the original graph algo-

rithm), marginalized over choice of maxHistory. This result may seem somewhat

surprising at first, but is actually rather intuitive. Given that fifteen words were used

as input, a maxHistory value of 1 would require words to be removed from the buffer,

and thus a second call to spread negative energy, after only one word was entered,

and so the total number of algorithm update calls would be 1 + 2(14) . Increasing

maxHistory by 1 would put off the necessity for a second call to spread negative

energy by one input word, so the total number of algorithm update calls would be

1 + 2(13). This effect will decrease as the number of input words increases, and since

stories are often hundreds or thousands of words long, we expect that the choice

of maxHistory will have no effect on performance due to the benefit of incremental
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updating.

Figure 4-3 presents the average computation time for the incremental graph guess-

ing algorithm which allows backward spreading of energy, marginalized over choice of

branch. As should be expected, computation time increases exponentially with the

branch factor.

Figure 4-4 presents the average computation time for the incremental graph guess-

ing algorithm which allows backward spreading of energy, marginalized over choice

of maxDepth. As should be expected, computation time increases exponentially with

maximum depth of energy spread.

We found that, using the original graph guessing algorithm (which was used to

generate Figures 4-2, 4-3, and 4-4), latencies only began to exceed 0.50 seconds when

either of the values branch or maxDepth was set to 3 and the other of the values was

set to a number greater than 3.

Figure 4-5 presents the average computation time for the complete graph guessing

algorithm which allows backward spreading of energy, marginalized over maxHistory.

56



Marginalized Update Time vs branch

3.5

3

.52.5

2

0 1.5

El

0.5

0
0

4

*

4 4

1 2 3

branch
4 5 5

Figure 4-3: Average Performance of Graph Guessing Method, Marginalized over
branch

Marginalized Update Time vs mnaxDepth

4.5

4 4
-3.5

S3

125

1.5

0.5

0
0 1 2 3 4 5 5

maxDepth

Figure 4-4:
maxDepth

Average Performance of Graph Guessing Method, Marginalized over

57



Figure 4-5: Average Performance of
over maxHistory

Graph Guessing Method Variant 2, Marginalized

As expected, the average marginalized update time varies almost linearly with maxHistory

because this variation of the algorithm resets NetworkMap(the energy map) upon ev-

ery new input word, and thus must perform n energy spreads, where n is the number

of words in WordBuffer.

Figures 4-6 and 4-7 present the average computation time for the complete graph

guessing algorithm which allows backward spreading of energy, marginalized over

branch and maxDepth, respectively. As expected, computation time increases expo-

nentially with both branch and maxDepth.

The performance graphs for the other two graph variants (incremental updates

without backward spreading and complete updates without backward spreading) can

be found in the appendix. They exhibit similar trends to their backward spreading

counterparts here, and the only significant difference is a constant factor slowdown

in computation time, attributable to the inherent need to search more keywords (and

thus also more files).
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Marginalized Update Time vs branch
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4.3 Correctness

As mentioned in previous chapters, there is no objective or correct way to measure

the correctness or appropriateness of hypotheses generated by Narratarium, because

correctness is defined by the user's personal experiences and interpretation of the

story. Furthermore, the hypotheses that Narratarium generates are not only depen-

dent on its algorithms, but also on the corpora from which it draws sound and color

guesses, the semantic relatedness matrix divisi, and Narratarium's many configurable

parameters.

Figure 4-8 presents the results of running the back end update algorithm on the

two sentences,

It didn't so much as quiver when a car door slammed on the next street,

nor when two owls swooped overhead. In fact, it was nearly midnight

before the cat moved at all.

from the first book from J.K. Rowling's Harry Potter series [6]. The first column in

the table contains the input words. The second column contains the suggested RGB

values for the input words. The third column contains the keywords used to tag the

suggested sound files for the input words, and the fourth column contains Narratar-

ium's certainty in the suggested sound files (the sound file URLs and metadata have

been excluded for the sake of brevity). Finally, the fourth column contains the total

time to generate the color and sound guess for each input word. These results were

generated using the incremental, non-backwards spreading graph algorithm with a

decay rate of 0.5 (the effect of which can be seen in the fourth column, where values

sometimes decrease across subsequent words by a factor of 0.5), a maxHistory of 10,

a branch of 3, and a maxDepth of 2.

Figure 4-8 illustrates the intractability of analyzing correctness. Even if the com-

plete metadata for each sound file were presented, it is important to realize that the

metadata for any sound file F may not necessarily be the most accurate or appropri-

ate metadata for the actual contents of F. Rather, the metadata (upon which the

corpus is built, and hypotheses generated) is the information that the human who
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Input Word RGB Value Sound File Hypothesis Keywords Sound Certainty Time (s)
It (255, 188, 61) None None 1.07
didn't None set([u'corn']) 35 0.09
so None set([u'corn']) 35 0.00
much None set([u'corn']) 56.5 0.32
as None set([u'corn']) 56.5 0.00
quiver None set([u'shake']) 44.06363505 0.68
when None set([u'shake']) 44.06363505 0.00
a None set([u'shake"]) 44.06363505 0.00
car (91, 0, 255) set([u'corn']) 1348.565166 0.92
door (66, 172, 79) set([u'car', u'door']) 1616.446102 0.94
slammed (112, 136, 62) set([u'slam', u'door']) 1546.183e66 0.73
on (112, 136, 62) set([u'slam', udoor"]) 1546-183066 0.00
the (112, 136, 62) set([u'slam', u'door']) 1546.183066 0.00
next (90, 65, 114) set([u'slam', udoor']) 773.091533 0.75
street (e, 8, e) set([u'street', u'salesman']) 805.3946238 0.71
nor (e, e, 8) set([u'street', uWsalesman']) 805.3946238 0.00
when (0, 0, 0) set([u'street', usalesman']) 805.3946238 0.00
two None set([u'street', usalesman']) 402.6973119 0.60
owls None set([u'owl', u'scotland', u'bird', u'fieldrecor']) 1403.51231 1.03
swooped (255, 255, 255) set([u'owl', u'scotland', u'bird', u'fieldrecor']) 701.7561549 0.81
overhead (58, 82, 172) set([u'owl', u'scotland', ubird', ufieldrecor']) 350.8780775 0.99
in (58, 82, 172) set([uowl', u'scotland', ubird', 'fieldrecor']) 350.8788775 0.00
fact (43, 173, 172) set([uowl', u'scotland", ubird', u'fieldrecor']) 175.4390387 1.07
it (43, 173, 172) set([u'owl', u'scotland', 'bird', u'fieldrecor']) 175.4398387 8.80
was (43, 173, 172) set([u'owl', u'scotland', u'bird', u'fieldrecor']) 175.4390387 0.00
nearly None set([u'owl', u'scotland', u'bird', ufieldrecor']) 87.71951937 0.87
midnight (21, 17, 67) set([u'noon, u'gong', umidnight', uclock']) 76.56607629 1.60
before None set([u'noon*, ugong', 'midnight", u'clock']) 38.28303815 1.17
the None set([u'noon', ugong', umidnight', u'clock']) 38.28303815 0.00
cat (0, 0, 0) set([u'cat']) 591 1.22
moved (162, 0, 110) set([u'cat']) 295.5 1.50
at (162, 0, 110) set([u'cat']) 295.5 8.80
all (162, 0, 110) set([u'cat']) 295.5 0.00

Figure 4-8: Hypotheses Generated for a Text Input Sample
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uploaded F believes is the most important/descriptive of F. If another human were

to upload F, the description and tags for this second submission would likely differ

from the original description and tags, especially if the sound content of F is complex

and involves many different sound effects.

Thus, it would be more meaningful to attempt to optimize Narratarium's sound

and color corpora, divisi's relatedness matrix, and Narratarium's configurable values

than it would be to attempt to define a metric for accuracy.
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Chapter 5

Conclusion and Future Work

Narratarium is a MIT Media Lab project and product that uses commonsense knowl-

edge and natural language processing algorithms to enhance the storytelling experi-

ence with sounds and colors. A user can either tell a story out loud, enter a story

into Narratarium using a keyboard, or select a prerecorded story, and Narratarium

will project the words of the story onto the walls of the room in which it resides while

changing the color of the room and playing sound effects based on the content of the

story.

Narratarium utilizes a number of natural language processing algorithms, previ-

ously developed at the MIT Media Lab, so that it can not only generate colors and

sounds based off the story being told, but also based off the extensive set of experi-

ence that humans possess and take for granted. It uses a commonsense knowledge

base from ConceptNet's[3] large set of binary-relation assertions compiled from facts,

rules, stories, and descriptions from the Open Mind Common Sense project [7], in

conjunction with Divisi[8], a mathematics toolkit with special applications for rea-

soning over semantic networks, as the foundation of its commonsense reasoning logic.

It uses a modified version of Colorizer[2] to generate color guesses, and introduces a

number of new and innovative algorithms to generate sound guesses, including a naive

algorithm that performs with exceptionally low latency and a number of graph-based

algorithms that are highly customizable for a desired level of latency or accuracy.

Although Narratarium draws its sound effects from the Freesound corpus[1], the
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strategies and algorithms it employ are completely modular and can be used with

any set of sound files that are tagged with keywords.

5.1 Future Work

There are many opportunities for future work on Narratarium.

From a practical standpoint, the many configurable fields in Narratarium's back

end algorithms must converge to fixed values before the consumer-facing product

can be delivered, and a considerable amount of fine tuning must be done to achieve

convergence. In addition, the sound corpus was generated using a database dump

that is nearly four years out of date. A more recent version of the Freesound sound

database will assuredly be much more comprehensive and representative of the human

sound experience.

From a theoretical standpoint, Narratarium's back end algorithms can be modified

to exploit more correlations between words in context. For example, they can be

improved to support multi-word concepts. Currently, Narratarium considers separate

words as separate concepts, although many multi-word concepts exist in ConceptNet's

corpus, and thus divisi's relatedness matrix.

From a performance standpoint, Narratarium's color guessing method, which bor-

rows from Colorizer's [21 algorithms, can likely be optimized further. Narratarium

generates a color and a sound hypothesis for each word that the user speaks or en-

ters. As a result, the total computation time per input word is the sum of both

SoundGuesser's computation time and ColorGuesser's computation time. At this

point, generating a new color guess can take anywhere between 0.5 and 1.0 seconds,

while generating a new sound guess with reasonable accuracy takes less than 0.5 sec-

onds. Thus, any efforts to reduce Narratarium's latency are best spent improving

upon ColorGuesser's efficiency.
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Appendix

Figures

A
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Figure A-1: Average Performance of Graph Guessing Method Variant 1 (Incremental
Updates with Backwards Spreading Disallowed), Marginalized over maxHistory
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Figure A-2: Average Performance of Graph Guessing Method Variant 1 (Incremental

Updates with Backwards Spreading Disallowed), Marginalized over branch
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Marginalized Update Time vs maxDepth
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Figure A-3: Average Performance of Graph Guessing Method Variant 1 (Incremental
Updates with Backwards Spreading Disallowed), Marginalized over maxDepth
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Figure A-4: Average Performance of Graph Guessing Method Variant 3 (Complete
Updates with Backwards Spreading Disallowed), Marginalized over maxHistory
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Figure A-5: Average Performance of Graph Guessing Method Variant 3 (Complete
Updates with Backwards Spreading Disallowed), Marginalized over branch
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Figure A-6: Average Performance of Graph Guessing Method Variant 3 (Complete
Updates with Backwards Spreading Disallowed), Marginalized over maxDepth
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