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Abstract

We demonstrated the possibility of inferring the research interest of an MIT faculty member
given the title of only a few research papers written by him or her, using a topic model
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Chapter 1

Problem Background

The MIT Collaboration Graph Browser system is an internal MIT website that allows users

to search for a faculty member's research information. This information includes among

other things: his / her research areas, full-text data of research papers that he / she has

authored, as well as the strength of collaboration relationship between him / her to other

MIT faculty members. In this thesis report, we are focusing on the first item above, namely

how we can improve the accuracy of the result that the system displays whenever a user

queries the research areas of a particular faculty member. The proposed solution involves a

novel application of a modified Latent Dirichlet Allocation model introduced by Branavan,

Chen, Eisenstein, and Barzilay (2008), which will be referred to as BCEB-LDA in the rest of

this thesis report.

1.1 Data Sources

In order to compute a faculty member's research area, the system has at its disposal several

data sources.

First, we have obtained research paper bibliography and full-text data of each faculty

member. This data, however, suffers from name ambiguity problem. For example, data on

MIT CS & Al Lab's Robert C. Miller would also include research papers authored by other

Robert C. Miller-s, including one that is affiliated with Mayo Clinic Research. This data

source will be referred to as the non-disambiguated full-text data.

Second, we have recently obtained a disambiguated research paper data for each of the

faculty members. However, this data only contains a research paper's bibliographical
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information (journal name, volume / issue, year, article title, etc.), and contains neither the

abstract nor the full text of any research paper. Furthermore, the data source only covers a

small proportion of a faculty member's entire research work. For example, out of 50+

research papers that Regina Barzilay has currently published during her career in MIT, only

three research papers appear to be published by Prof. Barzilay in the data source. We will

refer to this data source as the disambiguated bibliographical data.

Third, we have obtained from the Library of Congress (LOC) online system a list of all

keywords that it uses to categorize its collection of books and medias. These keywords

range from general keywords such as "computers" to specific keywords such as "compilers"

and "automatic speech recognition". We refer to this data source as the list of LOC areas.

Finally, for many of the research papers in the non-disambiguated full-text data above, we

have also obtained from the LOC online system, the category keyword of the research

journal that contains the said research paper. We will refer to this data as the LOC areas of a

research paper. For example, the research journal "Artificial Intelligence in Medicine" is

labeled with the keyword "Artificial Intelligence" by the LOC online system. Therefore, we

say that the LOC area of all research papers that are published in this journal is "Artificial

Intelligence".

Note that not all of the LOC areas tagging of documents are detected by the interface

between our system and the Library of Congress data, due to difference in spelling or

abbreviation of research journal names between our database and theirs. Consequently,

only a subset of the research papers in our data (e.g. slightly less than 30% for the non-

disambiguated full-text data), have their LOC areas identified. Moreover, even though some

of the research journals may be tagged with more than one LOC area, the areas that a

document is tagged with are almost always too few to represent the actual scope of area of
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the said research journal. In the above example, we also found that the research journal

"Artificial Intelligence in Medicine" is only tagged with the LOC area "Artificial Intelligence",

even though it is reasonable to also relate this research journal with other entries in the list

of LOC areas, such as "medicine" or "medical sciences".

1.2 Baseline Method

Previous approaches have been quite successful in capturing the research areas of each MIT

faculty member, given the available data at the time (all the above data sources, minus the

disambiguated bibliographical data). For each faculty member a, this original system

returns all LOC areas 1, whose scorea(a, 1) value exceeds a certain threshold value. The

scorea function measures how related a faculty member is to a certain LOC area, and is

defined as:

( ZpEpaper(a) 1(LOCarea(p) = 1)

I paper(a) 1 (1)

Here, paper(a) is the set of all research papers that is authored by faculty member a, while

ll(LOCarea(p) = 1) is an indicator variable that returns 1 if the LOC area of paper p is 1, ane

zero otherwise.

However, the result that is returned by this original system suffers from three problems:

lack of coverage, area generalization, and name ambiguity. To better illustrate these

problems, we have shown in Figure 1, the search results associated with some selected MIT

faculty members, as well as their true research areas of interest (either as stated in their

personal website or as commonly known by people in the MIT community who interact

with them regularly).

The first problem stems from the fact that only a small proportion of research papers in our

data source have their LOC area identified, as we have previously explained. In the case of
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Edmund Bertschinger, our current Head of Physics Department, only one of his research

papers has its LOC area identified. Consequently, a search on Prof. Bertschinger's research

area only returns one LOC area.

Name True Research Areas of Interest Search Result (Baseline Method)
Edmund * Gravitation e Nuclear physics

Bertschinger
* Cosmology

e Large-scale structure

- Galaxy formation

* Relativistic accretion disks

* Computation

Saman - Compilers optimization - Computers
Amarasinghe

* Computer architecture - Electronic data processing

0 Parallel computing - Information storage and
retrieval systems

* Software engineering - Electronic digital computers

* Microprocessors

0 Microcomputers

Robert C. Miller * Crowd computing * Physics

* Online education - Science

* Software development tools * Technology

e End-user programming * Biochemistry

(and many more...)

Figure 1 - The true research areas of interest of some MIT faculty members,
as well as those predicted by the baseline method
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Prof. Bertschinger's research paper just described above, also illustrates the second

problem, namely area generalization. The said research paper, titled "Prescription for

successful extended inflation", is published in the "Physics Letters B" academic journal,

which specializes in nuclear physics, theoretical nuclear physics, experimental high-energy

physics, theoretical high-energy physics, and astrophysics. Although this research paper is

mostly related to inflationary universe and hence astrophysics, it is assigned to the LOC area

of the "Physics Letters B" research journal, which is nuclear physics. Astrophysics is indeed

very closely related to nuclear physics, as many studies in astrophysics are concerned with

the nuclear fusion reaction inside the core of a star. However, using "nuclear physics" as the

sole LOC area label for this research paper or Prof. Bertschinger's research area in general,

would risk misleading people into associating Prof. Bertschinger with nuclear reactors or

atomic bombs, instead of cosmology or galaxy formation.

This problem of area generalization stems from the fact that a research journal usually

contains several specialization areas and because the Library of Congress only assigns a few

LOC area for this research journal, it must inevitably assign the LOC areas that are general

enough to be the common denominators over all of the specialization areas that are covered

by the research journal. This problem can also be seen in the case of Prof. Amarasinghe,

where the search result of our baseline method tend to pick general LOC areas, such as

"computers", which are not very useful for the intended user of the Collaboration Graph

Browser system.

Lastly, we have the problem of name ambiguity, which has been explained in our

introduction on the non-disambiguated full-text data. As evidently shown in Figure 1, the

search result for Prof. Miller has been diverted away from the field of Computer Science
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altogether by research papers in our non-disambiguated full-text data that correspond to

the other Robert C. Miller-s.

Note, however, that the search results presented here does not exactly match those

displayed by the Collaboration Graph Browser system. In this thesis report we are mainly

concerned with the "raw" search result of an individual faculty member. On the other hand,

when a user queries the research area a particular faculty member in the Collaboration

Graph Browser system, the latter aggregates the "raw" search result of this faculty member

with the "raw" search results of other faculty members who are collaborating closely with

this faculty member, and then displays the top-ranked research areas of this aggregate

search result. While the error that is caused by the aforementioned three problems is

mitigated by this final processing stage, it is far from being eliminated.
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Chapter 2

Project Overview

As previously shown, most of the problems suffered by our baseline method are rooted in

our reliance on the Library of Congress' assignment of research journal to LOC area, which

not only has limited coverage (due to difference in spelling or abbreviation of journal titles),

but also tends to pick general LOC areas such as "computers" or "physics". In this thesis

project, we propose a novel method of detecting a faculty member's research area that

doesn't rely on the said manual assignment above. Furthermore, our method is able to

utilize the strength of both the non-disambiguated full-text data and the disambiguated

bibliographical data, while at the same time minimizing the effect of their weaknesses (i.e.

ambiguity in the former, and the lack of full-text data in the latter). Figure 1 illustrates the

overall strategy of our method.

2.1 Overall Strategy

First, we process both the list of LOC areas and the non-disambiguated full-text data to

produce a topic model, using the BCEB-LDA algorithm. In effect, we "softly" split the

collection of documents (i.e. research papers) into K different sets (where K is an integer

parameter that is set manually), clustering documents with similar frequency distribution

of words together (for example, it might find that many documents have high occurrence of

the word "stimuli" or "neurons", but low occurrence of the word "unemployment" or

"Keynesian"). For each set (i.e. topic), the algorithm then infers the topic's conditional

language model (i.e. probability distribution of all the words in the vocabulary, as observed

in the documents belonging to this set), as well as all the LOC area names that are
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representative of this particular topic. Note that the splitting of the document is done

"softly", which means that a document does not necessarily have to entirely belong to just

one topic. Part of the document could belong to one topic, and other parts of the document

to other topics.

Here, we assume each document as a bag of words, where each word v in the document is

generated by a memoryless random process, independently from the words preceding and

succeeding it (or any other words in the document for that matter), and independently of

the order / location of the said generated word inside the document. This random process

generates a word with a probability distribution P(vlk) that depends on the topic of the

Topic Model

Full- Prior Language Model LOC Area Names

Text P("subjects"l1)= ... *Cognitive

P(k-1) P("response"I1)= ... neuroscience
Data ... P("stimuli"|1) = ... *Motion perception

0: ... *Neural circuitry

List of P("language"12)= ... *Automatic speech Output
LOC P(k=12) P("speech"112) = ... recognition

Areas ... P("word"112) =... *Computational
... linguistics

eSentence Fusion for
Multidocument News
Summarization"

eAI's 10 to Watch
eModeling Local Co-S

herence: An Entity- 0

Based Approach *..

Disambiguated C

Bibliographical Data

(Observed Data)

Figure 2 - Overall process of this thesis project
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said document (or to be exact, part of document), which we call k. This probability

distribution P(vlk) is none other than the aforementioned conditional language model.

In concrete terms, the said topic model consists of:

(a) The a priori probability distribution, P(k) of all topic k, which is higher for a more

common topic than that for a less common topic

(b) The conditional probability P(vIk) of all words v in the vocabulary given any

particular topic k

(c) A set of LOC area names that best represents each topic v

Note that in order to make the computation of this topic model feasible, not all of the words

in our non-disambiguated full-text data are included in the final vocabulary V. The methods

employed to generate this final vocabulary and the said topic model will be discussed later

in this section.

In all fairness, items (a) and (b) above can be computed even with a simple Latent Dirichlet

Allocation (Blei, Ng, & Jordan 2003), and item (c) can then be determined, for example, by

examining how similar the documents that are tagged by a particular topic are, with the

documents that are tagged with a specific LOC area. However, BCEB-LDA is superior to this

method in at least three ways:

(a) The topic inference and the "soft" assignment of documents (i.e. research papers) to

topics is driven not only by the word tokens in the document's text, but also by the

LOC areas that are tagged to each of the documents. The simple LDA model, on the

other hand, does not use the latter.

19



(b) The result of BCEB-LDA already includes the joint probability (and hence likelihood)

of a particular LOC area being assigned to a topic, as well as how likely any two LOC

areas are referring to the same topic, while the result of simple LDA model includes

neither of these, and hence requires a separate calculation of this joint probability

(or likelihood) using a method that is not integrated into the Bayesian generative

(i.e. LDA) model.

(c) BCEB-LDA tolerates incomplete tagging information, by making use of the lexical

similarity data. For example, even if a document is only tagged with the LOC area

"Computational linguistics" and not "Natural language processing", the word tokens

in this document still contribute to the generation of language model for the topic

associated with "Natural language processing" (even if these two LOC areas end up

being in different topics), because "Computational linguistics" and "Natural language

processing" are lexically similar. On the other hand, the basic LDA model does not

offer this level of robustness.

After the topic model is generated, we use it to infer the most likely topic for each faculty

member a, by observing the research paper titles in the disambiguated bibliographical data

that are associated with a, which we will refer to as the observed data. In other words, we

calculate the likelihood of each topic k, given the observed data Da (list of all word tokens in

the research paper titles associated to faculty member a) that remains constant across all

topic k:

P(ktDa)OC P(k) 7 P( I k) (2)
VEDa
vEV

We then choose a few topics (i.e. values of k) that maximize the value of the right hand side

formula and consequently the left hand side formula as well, since the proportionality

constant (i.e. normalization constant to make sure P(k I Da) sums to one) is positive. In
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other words, we perform maximum likelihood estimation. Finally, the LOC area names that

best represent these chosen topics are output as the research areas of faculty member a.

Since we only iterate v over the word tokens that are both in Da and in V, we are

disregarding those word tokens in the research paper titles that are not part of the

vocabulary.

In the general usage of language models, disregarding words that are not part of the

vocabulary, like what we just did, will cause a disastrous error in the maximum likelihood

estimation. By disregarding a word V^ in the observed data, we're in effect treating its

conditional probability P(' I k) to be one. It poses two problems. First, it violates the

requirement that the conditional probability have to be normalized (the sum of the

conditional probability across all words must sum to one). Second, it assigns the highest

possible value that a conditional probability can take (i.e. one) to a situation that should

have received a very low probability instead. For example, when calculating the joint

probability of the English language model and some observed data that contains the word

"sur", we cannot simply disregard the word "sur", which effectively assigns the word with

conditional probability of one. In doing so, we end up assigning a higher conditional

probability of "sur" (i.e. one) to the English language model than to the French language

(whose vocabulary contains the word "sur", and hence assign the word "sur" some

probability value that is certainly less than one), which is exactly the opposite of what we

actually want. A normal practice in computational linguistic is therefore to assign a very low

probability e to unseen words in the vocabulary (lower than the probability of any seen

words). This is usually done through smoothing.

In the topic model like the one that we have, however, the language model of each topic has

exactly the same set of words in the vocabulary, differing only in their frequency and hence
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probability distribution. Therefore, a word in a data that is not part of the vocabulary of a

topic's language model will not be part of the language model vocabulary of all the other

topics either. Common sense dictates that we should assign a very low value E as the

conditional probability of this unseen word when calculating the joint probability P(Da, k)

of the observed data and a particular topic k. Therefore, if there are n words in the observed

data that is not in the vocabulary, then for each topic k, the joint probability P(Da, k) will

have the factor e' to account for these n words. However, since this factor is common to all

of the topics (as all the other topics also don't have these n words in their vocabularies

either), and since this factor is positive, we can simply disregard this factor of El altogether

as we are only interested in the relative value (as the proportionality symbol in equation (2)

reminds us) of P(Da, k) across k, when calculating the likelihood P(k I Da).

Finally, we must also be aware of the limitation on how fine of a granularity that this topic

model can achieve. As has been shown by Figure 2, our current topic model is not yet able to

separate between "automatic speech recognition" and "computational linguistics" into

different topics, even though these two LOC areas correspond to two separate research

groups in MIT. In order to make our topic model robust in light of this limitation, we assign

several LOC area names to each of the topic in our topic model. In the ideal situation, we

would assign one LOC area name for each topic, and assign several topics to a faculty

member. However, our model's limitation forces us to assign only a few topics (usually one

topic) to a faculty member, each topic being represented by several LOC area names.

Consequently, our algorithm will often output the same research area names for two faculty

members, if their true research areas of interest are very similar. This may be reminiscent

to the problem of area generalization that plagued our baseline method, and in fact, our new

method also suffers from the same problem. However, the extent of the area generalization

problem in our new method is much less than that in the baseline method. The fields of
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"automatic speech recognition" and "computational linguistics" are much more closely

related to each other than "astrophysics" and "nuclear physics". In our new method, the LOC

area names that are clustered into the same topic as "Astrophysics" are all astrophysics-

related LOC area names, such as "Extrasolar planets", "Telescopes", and "Cosmic rays".

One possible extension of this research is to see whether a hierarchical LDA (Blei, Griffiths,

& Jordan, 2010) can be incorporated into the BCEB-LDA model. Even after we filter out stop

words and general LOC areas such as "computers" and "physics", the more general words

and LOC areas that remain might still give too much "distraction" that hinders our BCEB-

LDA model from putting more "weights" on the more specific words and LOC areas to infer

a topic model with a finer granularity. Integrating hierarchical LDA into our BCEB-LDA

algorithm should improve its ability to neutralize the effect of those general words and to

achieve finer granularity of topics.

2.2 Generating Topic Model

The previously mentioned topic model is generated using three input data:

(a) A list of all possible (research) area names

In our project, we are using the list of LOC areas. Alternatively, we can use data from

another library (for example the MIT engineering library) or even a manually

crafted list, in order to better fit the specific domain that we're interested in.

(b) A full-text corpus that satisfies certain requirements

First, the corpus must be either the observed data itself (in our case, the research

paper titles in the disambiguated data), or another data of a similar domain. As the

disambiguated bibliographical data is too small (due to lack of full-text data and

satisfactory coverage), we are using the non-disambiguated full-text data instead to
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serve as our full-text corpus. Both the disambiguated bibliographical data and the

non-disambiguated full-text data are of similar domains (research paper titles vs.

research paper titles and full text), which means that the language models

(probability distribution over all words in the vocabulary) and hence the conditional

language models (given any particular topic) would likely be similar for both data.

This similarity of conditional language models is essential to produce a high-quality

topic model.

The second requirement is that each of the possible research area names as

mentioned in item (a) above, appears at least once in this full-text corpus. Area

names that never appear must be discarded.

Lastly, we require that an area name related to a certain topic is more likely to

appear in a document (i.e. research paper) that is related to that topic than in a

document that is not. This is one of the basic characteristics of any intelligible

writings, and hence can be safely assumed to also be true of our full-text corpus.

Note that we do not require that the full-text corpus be disambiguated. In fact, we do

not even require any author-to-document attribution at all. Had the non-

disambiguated full-text data not been available, we can simply substitute it with

other full-text corpus of similar domain, such as research paper full-text data from

other universities or public repositories such as arxiv.org, or even article full-text

data from Wikipedia.

(c) A parameter K, which sets the number of topics in our topic model

This parameter is an input to the BCEB-LDA algorithm (which we are using to

generate the topic model), and is manually tuned in order to achieve the best
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performance of our topic model. When K is set too low, the topic model will clump

together topics that could have potentially be separated out from each other, hence

not reaching as fine granularity of topics as it potentially could. However, when K is

set too high, the model breaks down altogether and start assigning topic to

(research) area names that are not at all related to the topic. We have found that

setting the value of K between 70 and 75 is optimal given our particular full-text

corpus.

A possible extension of this project is to develop a non-parametric version of the

BCEB-LDA algorithm, using a hierarchical LDA (Blei, Griffiths, & Jordan, 2010) for

example. A non-parametric BCEB-LDA would no longer require the parameter K as

input, and instead would automatically infer K.

Note that for simplicity sake, we have disregarded many other parameters in the

BCEB-LDA. These parameters (such as Dirichlet priors) are "soft" in a sense that

misadjusting them would bring significant impact to neither the result nor the

performance of our algorithm, except if it is misadjusted by factors of magnitude

(e.g. misadjusted by a factor of 100x or more). We found that BCEB-LDA in its

default settings performs well on our task. Further details of these parameters are

explained by Branavan et al. (2008).

The first stage of this topic model generation process is to tag each document with all LOC

areas whose name appears verbatim in the text of the said document. A document

containing the word "computer architecture", for instance, will be tagged by the LOC area

"computer architecture" but not "computers" (unless the word "computers" in its plural

form also appear on the document text). If a pair of LOC areas is tagged to a document, but

the name of one area is a substring of the other area's name, then only the latter is used to
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tag the document. For example, the list of LOC areas also includes the area name

"architecture", but our aforementioned example document is not tagged with the LOC area

"architecture", because it can also be tagged with "computer architecture". In other words,

we are only tagging document with area names that are the longest substring of the

document text. Note that the name for each LOC area is not unique. For example, there are

two LOC areas with the name "membranes". In order to disambiguate them, a different

qualifier term is tagged by the Library of Congress to each of the areas with ambiguous

name. In the case of "membranes", one is tagged with the qualifier term "biology", and the

other with the qualifier term "technology". For all LOC areas with ambiguous names such as

these, we only tag a document with such a LOC area if and only if both the area name and its

qualifier term exist in the document text. Therefore, a document would only be tagged with

LOC area "membranes" of the biological variety if and only if such document contains both

the word "biology" and the word "membranes" in its text.

In the second stage, we filter out LOC areas with document frequency (i.e. the number of

research paper document that is tagged with a particular LOC area) that is too high (which

indicates a too general LOC areas such as "computers" or "physics" that are not relevant to

our intended users) and LOC areas with document frequency that is too low. After some

experimentation, we found that in our specific case, we obtain the desirable level of area

specificity when we discard about 20% LOC areas with the most document frequency, and

about 50% LOC areas with the least document frequency, out of all LOC areas that has been

successfully tagged to at least one document. We refer to the final result of this filtering

process as the reduced LOC area list.

In the third stage, we filter out words that are less than 3 characters, words that are more

than 20 characters, and words that contains too many digit characters (i.e. words whose
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digit characters make up more than 20% of the word's total characters). Then, we filter out

about 75 words that occur most often in the remaining pool of words. Due to the size of our

full-text corpus, this method successfully removes all of the stop words (e.g. "the", "this",

"since") without any supervision data, as well as other common words, which is usually not

subject specific. The conditional probability of these words does not vary much across

different topics and hence does not much improve our algorithm ability to distinguish one

topic from another. Finally, in order to achieve a reasonable computation time of BCEB-LDA,

we filter out all the words that occur the least often until we have reached a vocabulary size

that provides a good balance between computation cost and quality of result. In this project,

we found that a vocabulary size between 7500 and 10000 word types provides such

balance. Note that the vocabulary that is used to compute the lexical similarity matrix (as

will be explained below) is the same as the vocabulary that is used by the BCEB-LDA, short

of this final step of size reduction. This is due to two reasons. First, the computation of

lexical similarity matrix takes far less time than the BCEB-LDA algorithm even with the

bigger vocabulary size. Second and most importantly, the quality of lexical similar matrix is

greatly affected by the size of the vocabulary that is used when computing the said matrix.

While the determination of which LOC areas to filter out is based on their document

frequency, the determination of which word types to include in the vocabulary is based on

their token frequency. If the LOC area name "computer architecture" appears five times in a

document, the LOC area is counted five times in the token frequency, but only once in the

document frequency.

Note also that once a document is tagged by a certain LOC area, this document to LOC area

connection is preserved, even if part or all of the word types that make up the LOC area

name and / or qualifier term does not make it into our final vocabulary.
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In the fourth stage, we calculate the lexical similarity and co-occurrence similarity of each

pair of LOC areas in the reduced LOC area list. This calculation, which will be elaborated in

section 3.1 of this thesis report, produces two symmetric matrices, one corresponding to

the lexical similarity, and one corresponding to the co-occurrence similarity. The value of

the i-th row of the j-th column of these matrices denotes the similarity (lexical similarity in

the first matrix, and co-occurrence similarity in the latter) between the i-th LOC area and j-

th LOC area.

The lexical similarity measures how similar the frequency distribution of words that

"accompanies" a LOC area name is with that of another LOC area name. A word that

"accompanies" a LOC area name is all the M words that precede a LOC area name, and all the

M words that succeed it, every time such area name occurs in the text. (Of course, if a LOC

area name begins near the beginning or end of a document, then number of words that

"accompanies" it might be less than 2M.) In this project, we set the value of M to be 10.

The co-occurrence similarity between two LOC areas compares how many documents that

are tagged with both LOC areas, versus how many documents are tagged with just one of

them. The higher the former (in comparison with the latter), the more similar the two LOC

areas are.

In the fifth and last stage of our topic generation process, we run the BCEB-LDA algorithm to

produce our topic model. Several input data are fed into this algorithm, including:

1. The full-text corpus in the form of a matrix, where the value of the i-th row of the j-

th column is the number of times thej-th word in the (size-reduced) vocabulary

appears in the i-th document (i.e. research paper) of the full-text corpus
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2. A matrix that describes which LOC areas are tagged to each of the documents in the

full-text corpus. The i-th row of the j-th column is one if the ]-th area in the reduced

LOC area list is tagged to the i-th document is tagged with, and zero otherwise. Note

that a document can be tagged with multiple LOC areas, and a LOC area can be

tagged to multiple documents.

3. The parameter k that we have previously discussed

4. A (finalized) similarity matrix, which is computed by averaging the two similarity

matrices computed in the fourth stage above, and by "smoothing" the resulting

matrix as follows. If any cell value is less than 0.2, we replace it by 0.2, and if any cell

value is more than 0.8, we replace it by 0.8.

Further details of the BCEB-LDA algorithm are explained in section 3.2 of this thesis report.

Finally, it's also worth noting that throughout the entire process above, we treat all words

as case insensitive, except when they are in all-capital letters. For example we treat "aids",

"Aids", and "AiDS" to be of the same word type, but "AIDS" to be of a separate word type.

Furthermore we discard diacritics, treating o and 6 to be the same, which might not be

entirely accurate (for example, the standard conversion procedure for the German 6 is

actually to turn it into "oe"). However, since most if not all of the research papers in our data

are in English, this simplification will not introduce any significant problem.

2.3 Inferring a Faculty Member's Topic

Using the output of the BCEB-LDA algorithm, we can find the best estimate of several

(marginal) probability distributions that are of our immediate concerns, namely:

(a) The prior probability distribution of each of the K topics, P(k)
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(b) The conditional probability of all word v in the vocabulary, P(v I k), for all topic k

Both of which have been elaborated in section 2.1 above.

(c) The joint probability P(k, 1) of each topic k and each area 1.

Note that in (c) above, and in future references to LOC area, we are only concerned with

LOC areas that are part of the final (reduced) list of LOC areas, as explained in section 2.2

above. We define L as the number of LOC areas in this final list.

Based on output (c) above, we calculate the Pointwise Mutual Information (PMI) between

each topic k and each LOC area 1 using the following formula:

P(k,l)
PMI(k, 1) = log P() (3)P(k) P(1) 3

where P(k) = P(k, l) and P(1)= P(k, 1).

Each area 1 is then assigned to the topic that has the highest PMI with 1. Figure 4 to 11

shows some examples of topics along with the all the LOC areas that are assigned to these

topics. The result in these figures corresponds to a BCEB-LDA execution with parameter

k = 75. For each topic, we also list several words inside the vocabulary that has the highest

conditional probability given the said topic.

Finally, using output (a) and (b), as well as the observed data (i.e. the research paper titles

in the disambiguated bibliographical data), we infer the most likely topic for each of the

faculty member, using the procedure explained in section 2.1 above. In Figure 4 to 11, we

also show several faculty members that are assigned (based on this procedure) to each of

the sample topics. There are a few details from the said inference procedure that have so far

been omitted for simplicity's sake:
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1. Topic that is not assigned to any LOC area will be disregarded. Note that in our

observation, most of the topics (more than 97%) are assigned to at least one LOC

area. Furthermore, if the parameter K is not stretched to its maximum limit, this

proportion is almost always 100%.

2. Although we usually associate only one (i.e. the most likely) topic to each faculty

member, in the rare instance where the likelihood of the second most likely topic is

close in magnitude as that of the first topic (i.e. roughly 10% as likely, or more), we

also include this second most likely topic as part of the faculty member's research

areas. In Figure 4 to 11, if a faculty member is associated with more than one topic,

we put his / her name on his / her most likely topic, and list his / her second most

likely topic at the end of his / her name. For example, in Figure 6 we see that Nir

Shavit's most likely and second most likely topics are topic E (networking,

algorithms, security, etc.) and topic D (high performance computing) respectively.

3. Due to lack of coverage in the disambiguated bibliographical data, some faculty

members have just two or even one research paper associated with him or her. If

the overlap between the observed data (i.e. word types in the research paper titles

for a particular faculty member inside the disambiguated bibliographical data) and

the vocabulary is less than ten word types, we would use the non-disambiguated

full-text data instead of the disambiguated bibliographical data as the observed data

for the said faculty member.

Moreover, on top the data that we have listed in section 1.1, a disambiguated full-

text data (in the form of grant proposal text) exists for a very small number of

faculty members. When this data is available for a particular faculty member, we use

this data instead of the disambiguated bibliographical data as our observed data.
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In all of our figures and results, we only show faculty members whose observed data

are the disambiguated bibliographical data (i.e. disambiguated research paper

titles), and are substituted by neither the disambiguated full-text data nor the non-

disambiguated full-text data. To further show the robustness of our method, we

have included in Figure 4 to 11 the number of word types in the overlap (as

previously mentioned) between the vocabulary and each faculty member's observed

data. This number can be found on the left side of each faculty member's name.

2.4 Finding Representative Topic Names

As shown in Figure 4 to 11, the limitation of our topic granularity causes many LOC areas to

be clustered into the same topic. However, displaying all of those topics in the Collaboration

Graph Browser system would only confuse our users. Therefore, several representative LOC

area names need to be selected for each topic.

Ideally, the selection of these representative area names is done through a feature-based

supervised learning, or other similar techniques. Some of the features that might prove

useful include:

(a) The Point Mutual Information (PMI) between the said LOC area name and the topic

under consideration, as defined in equation (3) above.

(b) The document frequency of the said LOC area

(c) The document frequency of the said LOC area name in relation with the entire

(reduced) LOC area list. This can be in the form of a percentile for example, where

the LOC area with the most document frequency assumes the value 100%, and the

LOC with the least document frequency assumes the value 0%.

(d) The number of characters in the LOC area name
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Since shorter LOC area names tend to have higher document frequency than longer LOC

area names, we can also replace feature (c) with a similar document frequency percentile,

that is compared not against the entire LOC area list as explained above, but instead only

against all the LOC area names that have the same number of characters as the LOC area

name of interest.

A good supervised learning must take into account the fact that there is usually more than

one right answer when choosing a good representative topic. Although not directly related

to our present problem, Branavan, Deshpande, and Barzilay (2007) introduced an example

of such learning method that can be easily repurposed for our present problem.

The training data itself can either be curated from the faculty member's websites or CV, as

well as from MIT's internal administrative record. However, the area names listed in these

data sources might be slightly different than the LOC area names (e.g. a faculty might

identify his / her research interest as "parallel computing" or "parallel architectures", while

Library of Congress might uses the name "parallel computers" or "high performance

computing" instead). Alternatively, training data can be obtained by asking respondents to

rate the quality of the representative topic generated by our system (e.g. via Amazon

Mechanical Turk) as demonstrated by Lau, Grieser, Newman, and Baldwin (2011). However,

as their research shows, even the human annotators themselves does not completely agree

with each other, as the average human annotator would only receive the score of 2.0-2.3

when his / her answers are scored by the others. Here, 2 means "reasonable" and 3 means

"very good".

As good-quality training data is not yet available at the time of writing of this thesis report,

and since the quality of user experience takes precedence over the research value of our

method, we decided to use a simple heuristic method that has shown to be very satisfactory
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for the particular problem domain that we are facing. We multiply a LOC area's PMI with

respect to the topic of interest (feature (a) above), together with the number of characters

in this LOC area name (feature (d) above), and use the product of this multiplication as the

score of the said LOC area. The 20% of LOC areas with the highest score (rounded up) in a

given topic are selected as the representative names for that topic. In Figure 4 to 11, we

have sorted the LOC areas in each topic descendingly according to their scores, which are

computed using the heuristic formula that we have just explained. The LOC area names that

are chosen as representative names for each topic are shown in bold characters.
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Chapter 3

Further Details

In this chapter, we briefly explain how the cosine similarity is calculated, and how BCEB-

LDA infers the topic model. Readers who are familiar with these topics should proceed to

the next chapter.

3.1 Similarity Measures

In section 2.2 above, we have computed the lexical similarity matrix and the co-occurrence

similarity matrix between each of the LOC areas of our interest. The computation of these

two matrices differs only in the features that are used to compute the joint distribution

matrix (see (a) below). The overall computation itself is divided into three stages:

(a) Computation of joint distribution matrix

The result of this computation stage is a two-dimensional matrix of size L x F, where

L is the number of LOC areas of interest, and F is the number feature. Here, the l-th

row of the f-th column denotes the number of times feature f occurs in LOC area 1.

Further details of these features will be explained later in this section. Before

proceeding to the next stage, the said matrix is divided by a normalization factor so

as to make sure that the content of this matrix sums up to one, hence the name "joint

distribution matrix". In other words, the l-th row of the f-th column of this final

matrix is the joint probability of feature fand LOC area 1.

(b) Computation of positive point-wise mutual information (PPMI) matrix
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In this stage, a new two-dimensional matrix of size L x F is created. The l-th row of

the f-th column of this matrix is the PMI between feature fand LOC area 1, which is

defined as:

P(f, 1)
PMI(f, 1) = log P(f) P() (4)

Here, P(f, 1) is the 1-th row of the f-th column of the probability distribution matrix,

P(f) is the sum of the f-th column of the probability distribution matrix, and P(1)

is the sum of the l-th row of the probability distribution matrix. Before proceeding

to the next stage, all negative values are removed (i.e. replaced with zeroes), hence

the name "positive PMI".

(c) Computation of the (cosine) similarity matrix

In this final stage, we create a symmetric two-dimensional matrix of size L x L. The

11 -th row of the 12 -th column of this matrix denotes the cosine similarity between

the 11-th LOC area and 12 -th LOC area, which is defined as:

similarity,, (1i, 12) =

f{pMI (f, 11)} 2 . {f PMI U, 12 )J2

In other words, if we picture the 11 -th and l2 -th rows in the PPMI matrix as two

vectors of size F, then the cosine similarity between LOC area 11 and 12 is the dot

product between these two vectors, divided by the product of their magnitudes,

hence the name "cosine similarity".

As previously stated, the difference between lexical similarity matrix and co-occurrence

similarity matrix lies only in the features that are being used for the above computation:
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(a) The features used in the lexical similarity matrix are all the word types in the

vocabulary. The number of times feature f occurs in LOC area 1 (i.e. the content of

the I-th row of the f-th column) is the number of times a word of type f appears (in

the full-text corpus) "near" the name word / phrase of LOC area 1. By "near", we

mean that the said word of type f must not be separated from the LOC area name by

more than M words. In this project, we set the value of M to be 10.

(b) The features used in the co-occurrence similarity matrix are all of the documents (or

to be more exact, all of the document identifiers) in the full-text corpus. The number

of times feature f occurs in LOC area 1 is simply the number of times the name LOC

area 1 appears in document f. In our project, however, we slightly modify this co-

occurrence similarity matrix, by replacing all values that are greater than one, with

one.

Lin (1998) has given a good and detailed explanation about similarity matrices.

3.2 BCEB-LDA

This particular section requires background knowledge of the Bayesian generative model

and Gibb's sampling. Koller and Friedman (2009), as well as Jordan (1999) provide a good

introduction on the said topics. Alternatively, the reader may also continue to treat BCEB-

LDA as a black box, just like what we have done in this thesis report up until this point.

The BCEB-LDA is an extension of Latent Dirichlet Allocation, and is a type of Bayesian

generative model. In this model, we define the joint probability of several random variables

that we think are relevant to the problem at hand. We then fix certain variables (which we

refer to as observed variables) to some values (based on the observation / input data that

we have). Next, we compute the joint probability of the remaining variables conditioned
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upon the particular values of these observed variables. Finally, we reduce this joint

probability to only include those variables that we are interested in. In other words, we find

its marginal probability by summing this joint probability over those variables that is

neither observed nor needed for our final result.

All the (random) variables that are relevant to our particular problem, are as follows:

(a) A continuous random vector variable 4 of size K (i.e. number of topics), whose

components must sum to one and must each be a real number between 0 and 1. The

k-th component of this vector denotes the a priori probability of a LOC area being

assigned to the k-th topic (given no other data or observation). The probability

distribution of this random vector variable follows a Dirichlet distribution, hence for

all possible combination of non-negative vector of real numbers (1p1, 2 , ... ,K)

whose components sum to one:

K

PO(1 2,- K ' 1  (6)
Za) k=1

Here, we use a variant of Dirichlet distribution with a symmetric prior. The

normalizing factor Z(ap) = r(Ka ,) where F(x) = fo txletdt is the gamma
[r(agp)]"

function, makes sure that this probability distribution sums to one. Also note that

we have chosen a Dirichlet distribution, because doing so will simplify our inference

computation (as this distribution is the conjugate form / conjugate prior of a

multinomial distribution), and not necessarily because of its accuracy in reflecting

our belief about the true a priori probability of 4'.

Note the presence of the parameter ap above, which influences how "skeptical" the

model is with the observed data. (A high ac means that the model is more willing to
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consider unseen topics, even if all the observed data so far are concentrated in only

a few popular topics). In this project, we set a* to be 0.1.

(b) For each LOC area 1, a discrete random variable x, that denotes the topic assignment

of LOC area 1. The value of this random variable x, for each LOC area 1 is

independent from those of the other LOC areas, and can take an integer value

between 1 and K (inclusive). Each x, is drawn from the probability distribution that

is described by the K-sized random vector variable 4 (see item (a) above). In other

words, x, is dependent on 4.

(c) For each pair of LOC areas, l1 and 12, a continuous random variable sl, 12 that takes a

different probability distribution depending on the current value of x1 and xL1 (item

(b) above). In other words, s11,1, is dependent on xl 1and xl1 . The random variable

S1,1 takes the Beta(2,1) probability distribution if l1 and 12 are assigned to the same

topic (i.e. x1l = x12 ), and the Beta(1,2) probability distribution if 11 and 12 are

assigned to different topics. In both cases, S11,12 can only take a real value between 0

and 1. In Figure 3, the hyperparameters of the above Beta probability distributions

(i.e. (2,1) and (1, 2)) are denoted as a.

The Beta distribution is simply a Dirichlet distribution with two dimensions, and

hence one degree of freedom. In other words, for 0 < s 11 ,12 < 1:

S,2(1 - S11,12) if x 11 = X
P(s, x) =(7)

S1,(1 - s11,12)2  otherwise

Note that the value s11 ,12 for all pair of LOC areas are observed, since it must be set to

the same value as the (finalized) similarity matrix that is fed as an input to our

BCEB-LDA algorithm.
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(d) For each document d, a vector hd of size L that denotes the set of all LOC areas that

document d is tagged with. The I-th component of the vector is one if document d is

tagged with the I-th LOC area, and zero otherwise. This vector is an observed data,

as it is simply the d-th row of the input matrix that contains the tagging information.

(e) For each document d, a vector li of size K that is dependent on item (b) and (d)

above. The k-th component of this vector is one if document d is tagged by at least

one LOC area that is currently assigned to the k-th topic in item (b) above, and zero

otherwise. Note that 17 is not really a random variable, as it is deterministically

calculated from item (b) and (d) above. In other words, 17 is simply a derived

variable from these other variables, and whose sole purpose is to facilitate our

understanding of the BCEB-LDA generative process.

(f) For each document d, a continuous random vector variable #3d of size K that is

similar to 4 in item (a) above. The k-th component of this vector, however, denotes

the a priori probability of document d (instead of a LOC area) being assigned to the

k-th topic. Each random vector variable bd for all document d takes a vector value

according to the Dirichlet distribution similar to that explained in item (a) above,

but with hyperparameter a, instead. In this project, we set this hyperparameter to

be 0.001.

(g) For each document d, a continuous random variable ad between 0 and 1 (inclusive)

that denotes how likely it is for a word token in d's title and text to be influenced by

the topic of a LOC area that is tagged to document d. The random variable Ad follows

a Beta(1, 1) probability distribution. In other words, for all 0 5 Ad < 1:

1
PA)= §td(1 -Ad)(8

2 (8)

The hyperparameter (1, 1) above is denoted in Figure 3 as a,,.
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(h) For each document d, a discrete random vector variable Cd of size Nd (the number

of word tokens in d's title and text data). The i-th component in Cd is one if the topic

of the i-th word token in document d is influenced by one of the LOC areas that are

tagged to document d, and zero otherwise. In the latter case, the topic of the i-th

word is influenced by the latent topic distribution bd of document d itself (item (f)

above). All of the components in vector Cd are independent from each other, and are

only dependent on the random variable Ad (item (g) above). Each component takes

the value 0 or 1 with probability (1 - Ad) and Ad respectively.

(i) For each document d, a discrete random vector variable Zd of size Nd. The i-th

component in Zd denotes the topic of the i-th word token in document d. Each

component in this vector is independent from each other, and has a probability

distribution that is dependent on the vector 17 (item (e) above), as well as the

random vector variables 4 d and Cd (item (f) and 0 above). Each component in Zd

can take an integer value between 1 and K (inclusive) with the following probability

distribution:

e If the i -th component of Cd is zero, then it takes the integer value

between 1 and K with the probability distribution described by the

random vector variable #d of size K described in item (f) above.

* If the i-th component of Cd is one, then it takes one of the topics that

have non-zero value in 17 with equal probability.

() For each topic k, a continuous random vector variable 6 k of size V (i.e. number of

word types in the vocabulary). All of the components of this random vector variable

must sum to one, and must each be a real number between 0 and 1 (inclusive). The

i-th component of 0 k denotes the probability that a word token of topic k is of the

same type as the i-th word type in the vocabulary. Furthermore, Ok assumes a
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Dirichlet probability distribution with hyperparameter ao . Therefore, for all

possible combination of non-negative vector (0;,, 6 i,2, -.. , Bi,V) whose components

sum to one:

V

P0(6i,1 , i,2 , = Z( 1) 6 ae-1 (9)

Z~~)j=1

Again, Z(ao) = r(vao) is the normalizing constant to make sure the aboveI[r(ae)Iv

probability distribution sums to one.

(k) Finally, for each document d, a discrete random vector variable Wd of size Nd, which

is dependent on the random vector variable Zd as well as 6 k (for all topic k) as

described in item (i) and (j) above. The i-th component of Wd denotes the word type

of the i-th word token in document d, and takes an integer value between 1 and V

(inclusive) with the probability distribution described by the vector random

variable Oj of topic j, where j is the value of the i-th component of Zd.

Clearly, the Wd is also an observed variable, as it must match the actual text

document of our full-text corpus.

Note that in order to better explain the generative model above, we have slightly abused the

definition of probability distribution to also refer to the probability density of a continuous

random variable.

The plate diagram (Figure 3) above summarizes the generative process of our BCEB-LDA.

Dashed lines denotes a deterministic generation of (derived) variable, while dashed plates

indicates vector variables that usually are not denoted with plates in the traditional

notation. Finally, D is the number of documents in our full-text corpus.

Given an infinite computing resource, we may simply multiply the probability or conditional

probability of all the random / vector variables listed above, and since there are no circular
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dependencies, we would get a joint probability of all of the relevant variables. We can then

simply set the values of the observed variables according to our input data, and find the

marginal probabilities of our interest, namely:

(a) The joint probability of topic and word token type (item (j) above).

(b) The joint probability of topic and LOC areas (item (b) above).

(c) Either the marginal a priori probability that a LOC area takes a particular topic (item

(a) above) or the marginal a priori probability that word token (that is not

influenced by a LOC area tag) of a randomly selected document takes a particular

topic (item (0 above). In this project, we have decided to use the former.

However, since the above computations are not feasible even with the computing power in

any foreseeable future, we resort to the method of Gibb's Sampling, a popular type of

- = 1

d =1..D

------------

L--------- ---------------------------
k = L..K:

Cd,n
n L=..Nd

Figure 3 - Plate diagram of BCEB-LDA
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Markov Chain Monte Carlo class of algorithms. We start with some random assignment of

all the above variables, and then we go through each of the variables, repeating back to the

first variable after we've reached the last variable. As we go through a variable, we sample

that variable according to its probability distribution, and if the said distribution is

conditional on other variables (as most of the above variables do), then we assume the

current assignment of those other variables at that time (which would likely be changed the

next time we visit this particular variable again). Given enough iterations, the number of

times a variable takes a certain value as a proportion to the number of iterations will

approximate the true probability of that variable taking the said value. Moreover, the

number of times a set of variables takes a certain configuration of values as a proportion to

the numbers of iteration will also approximate the true joint probability of that set of

variables taking the said configuration of values.

Further details on the BCEB-LDA algorithm can be found in Branavan et al.'s paper (2008).
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Chapter 4

Results

4.1 Topic Model Result

In the next pages (Figure 4 to 11), we show some selected entries from a topic model that

has been generated during one of the runs of BCEB-LDA, using vocabulary size of 7500

words, a collection of 1427 LOC areas, and parameter K of 75.

4.2 Comparison with Baseline Method

In the pages following these pages, we show Figure 12 to 15, which compare the result of

our method with that of the baseline method explained in section 1.2 above. We also show

in these figures the true research interest of each faculty members.
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Top WORDS TOP PHRASES EXAMPLE(S) OF FACULTY
MEMBER(S)

Topic A: Extrasolar planets 27: Edmund W. Bertschinger
solar spectral Physical constants 51: Max E. Tegmark
spectrum spectra Solar activity
mass range x-ray Interferometers
observations signal Magnetosphere
source objects energy Solar system
space measurements Astrophysics
detector light line Photoionization
planet observed star Cosmic rays
dwarfs angle Heliosphere
absorption planets Photometry
resolution values see Telescopes
due events high Solar wind
density stars fig Explosions
sources about optical Asteroids
low very large earth Astronomy
atmosphere Ionosphere
background measured Galaxies
distance wavelength Supernovae
detection band delay Comets
flux apj
Topic B: Microelectromechanical systems 52: Leslie A. Kolodziejski
sensor sensors device Semiconductor industry 66: Rajeev J. Ram
measurement signal Diffraction gratings
force measurements Photopolymerization
devices sensing Silicon nitride
measured pressure Electroplating
surface error sample Imaging systems
frequency contact Optical fibers
through during tip Nanotechnology
probe assembly Laser beams
mechanical stage Micromachining
response range Holography
precision calibration Sputtering (Physics)
top order high Baking
diameter air position Masks (Electronics)
channel machine
optical fiber
resolution three
channels components
measuring small
board could measure
detection power
output out

Figure 4 - Sample entries from a generated Topic Model
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EXAMPLE(S) OF FACULTY
TOP WORDS TOP PHRASES MEMBER(S)

Topic C: Synthetic aperture radar 58: Rodney A. Brooks
systems space spacecraft Software architecture 31: Tomas Lozano-Perez
mission satellite flight Systems engineering 66: Daniela L. Rus
performance cost Concurrent engineering
architecture module Space environment
flexibility satellites state Target acquisition
development requirements Space telescopes
launch through engineering Maintainability (Engineering)
vehicle survivability utility Space vehicles
research while missions Flight control
technology decision during Art and science
power software uncertainty System analysis
environment example test Space flight
exploration modules mass Utility theory
operational required based Helicopters
must multiple future section Astronauts
provide designs operations Avionics
servicing approach options Balloons
plan Antennas (Electronics)
Topic D: High performance computing 31: Arvind
memory code processor Computer animation 39: Saman Amarasinghe
software performance Weather forecasting 23: Ronald Rivest (D+F)
hardware message cache
block computer systems
implementation must section
communication program
operations bit state
architecture machine
processors messages
interface execution input bits
application logic instruction
operation processing
applications address parallel
size instructions storage
since access output register
stream example shared write
read computation protocol
blocks

Figure 5 - Sample entries from a generated Topic Model (continued)
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TOP WORDS TOP PHRASES EXAmPLE(S) OF FACULTY
MEMBER(S)

Topic E: Digital communications 65: Hari Balakrishnan
network node networks Discriminant analysis 31: Anantha Chandrakasan
nodes tree graph path Information networks 31: Shafi Goldwasser (E+G)
link communication Information security 51: Piotr Indyk
routing algorithm edge Computer algorithms 48: M. Frans Kaashoek
edges paths random Relational databases 21: David R. Karger
packet links agents Disease Outbreaks 40: Dina Katabi
packets connected Signal detection 18: Nir Shavit (E+D)
transmission Video recordings
distributed local log Network analysis (Planning)
traffic performance Computer networks
every graphs flow thus Sensor networks
section sensor size Jurisprudence
queue algorithms large Cryptography
agent source channel Graph theory
distance since Gardening
probability fig wireless Air travel
consider length Epidemics
applications capacity Cyberspace
maximum problem ...
Topic F: Human-computer interaction 19: Timothy J. Berners-Lee
user users web database Information visualization 22: Robert C. Berwick
systems application Information retrieval 45: James R. Glass
example query server Computer architecture 58: William Eric Grimson
content software access Software engineering 37: Barbara H. Liskov
type name applications Application software 45: Samuel R. Madden
list computer context Database management 15: Robert C. Miller
source http service Computer programming 64: Martin C. Rinard
internet interface based Knowledge management 73: Patrick H. Winston
online search www text Operating systems (Computers)
file provide available Ubiquitous computing
services com document Mobile computing
language knowledge Logic programming
client page how User interfaces (Computer systems)
provides types about Multiprocessors
through sources domain Cloud computing
current section Data structures (Computer science)
architecture many Supercomputers
framework Web services

Data mining
Middleware
Cache memory
Cell phones
Web sites
Workflow
Cataloging

Figure 6 - Sample entries from a generated Topic Model (continued)
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Top WORDS Top PHRASES EXAMPLE(S) OF FACULTY
T__PW_ RD__TPPHAE__MEMBER(S)

Topic G: Combinatorial optimization 32: Charles E. Leiserson
problem algorithm solution Calculus of variations
optimal state optimization Qualitative reasoning
problems cost constraints System identification
algorithms linear section Reinforcement learning
method variables bound Nonlinear programming
approach example Predictive control
programming constraint Stochastic programming
iteration methods step Genetic algorithms
approximation objective Automatic control
consider since systems Difference equations
search point dynamic Stochastic approximation
feasible path solutions Nonlinear systems
following minimum initial Real-time control
vector let formulation Operations research
computational policy states Integer programming
bounds performance note Robust control
values solve corresponding Stochastic models
solving order Mobile robots

Fuzzy logic
System theory
Stochastic analysis

Topic H: Mathematical analysis 42: Leslie P. Kaelbling
models distribution Information theory
probability error estimation Electrical engineering
parameters random Cellular automata
estimate matrix estimates Transformations (Mathematics)
mean values variables Mathematicians
parameter approach Distribution (Probability theory)
equation variance state Perturbation (Mathematics)
sample method section Inequalities (Mathematics)
estimated methods example Linear models (Statistics)
distributions linear Constraints (Artificial intelligence)
covariance problem Programming (Mathematics)
measurement statistical Sequences (Mathematics)
uncertainty standard true Set theory
based variable stochastic Estimation theory
estimator large errors Mappings (Mathematics)
observations algorithm Random graphs
since vector form gaussian Filters (Mathematics)
independent terms Gravitation
measurements prior Prints
likelihood

Figure 7 - Sample entries from a generated Topic Model (continued)
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Top WORDS Top PHRASES EXAMPLE(S) OF
FACULTY MEMBER(S)

Topic I: Automatic speech recognition 42: Regina Barzilay
language speech word words Computational linguistics
sentence english sentences Language acquisition
semantic example context Cognitive psychology
constraints verb structure Cognitive science
form does lexical Speech perception
phonological position Speech synthesis
languages must linguistic Active learning
features like possible Visual perception
grammar section subject Formal languages
what vowel theory john see Linguistics
feature syntactic event thus Pragmatics
natural constraint examples Perceptrons
following since verbs object Phonetics
place here second while rules Context (Linguistics)
semantics account Imagery (Psychology)

Horses
Kinship
Smell

Topic I: Cognitive neuroscience 82: Tomaso A. Poggio
visual subjects task response Motion perception (Vision) 69: Susan Hockfield
experiment stimuli stimulus Neural circuitry
brain memory cortex Face perception
attention human during Neurophysiology
regions face processing Visual pathways
activation target subject Cerebral cortex
trials tasks cognitive faces Mental retardation
across performance study Corpus callosum
object objects responses Motor learning
condition participants Basal ganglia
perception studies Schizophrenia
conditions neural left Brain damage
significant right effect effects Psychophysics
trial spatial learning activity Neurobiology
functional region presented Epilepsy
temporal frontal recognition Serotonin

Dementia
Dopamine
Autism
Cocaine

Figure 8 - Sample entries from a generated Topic Model (continued)
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EXAMPLE(S) OF
TOP WORDS TOP PHRASES FACULTY MEMBER(S)

Topic K: Fluorescence microscopy 70: John V. Guttag
cells fig cell fluorescence virus Affinity chromatography 152: Robert S. Langer
human protein receptor nature Protein engineering
after min binding detection Potassium channels
assay fluorescent gene Pathogenic bacteria
biological antibody Functional analysis
supplementary www Fluorescent probes
molecular viral methods drug Chemiluminescence
expression buffer activity Cell physiology
compounds antibodies viruses Bioluminescence
target specific microscopy Catecholamines
probes vivo cellular high Cluster analysis
samples method containing Binding sites (Biochemistry)
sirna proteins delivery Neuroblastoma
targeting per com institute Lipoproteins
incubated assays receptors Gonadotropin

Immunoassay
Bioreactors
Excitation (Physiology)
Detergents
Fibrinogen
Biophysics
Histamine
Liposomes
Opioids
DNA

Topic L: Ionizing radiation 289: Eric S. Lander
genes gene sequence Laboratory animals
expression genome human Coronary heart disease
sequences transcription Oxidizing agents
genomic chromosome nature Carcinogenesis
mirna fig mirnas sites regions Carcinogens
region mrna sequencing Body fluids
identified genetic drosophila Systems biology
protein cell mouse found Antioxidants
molecular genet conserved Toxicology
expressed clones known Xenobiotics
chromatin species target Mutagens
amplification within exon Hematology
promoter transcripts Vitamins
functional site www Nicotine
recombination genetics three Hormones
predicted chromosomes Bladder
targets elegans Kidneys

Figure 9 - Sample entries from a generated Topic Model (continued)
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TOP WORDS Top PHRASES EXAMPLE(S) OF FACULTY
MEMBER(S)

Topic M: Thin layer chromatography 166: Tania Baker
protein proteins binding Alcohol dehydrogenase
domain complex Superoxide dismutase
structure biol residues Eukaryotic cells
degradation site Natural products
sequence peptide Protein folding
substrate amino activity Polysaccharides
interactions cell domains Oligosaccharides
substrates sites acid Protein binding
complexes mol structural Energy metabolism
mutant enzyme Cell membranes
interaction acids form Phospholipids
buffer coli class fig Carbohydrates
peptides specificity Ultracentrifugation
protease active Fatty acids
membrane sequences Cell metabolism
containing molecular Nucleosides
cleavage yeast bound Tryptophan
mutants recognition role Pyrimidines
sci mutations formation Ribosomes

Microsomes
Glycoproteins
Phosphates
Purines

Topic N: Gel permeation chromatography 109: Donald R. Sadoway
power current voltage Fluorescence spectroscopy
circuit electrical device Infrared spectroscopy
electrode charge fig Conducting polymers
resistance devices output Surface chemistry
potential electrodes Drug delivery systems
energy frequency high Chemical structure
gate capacitance Biocompatibility
variation low density Block copolymers
layer cell electric applied Polyelectrolytes
chip channel length due Polymer solutions
performance source Materials science
electrochemical Liquid crystals
impedance electrolyte Polymer networks
circuits response Ellipsometry
dielectric measured Microelectrodes
signal battery area vol Biopolymers
wire piezoelectric Elastomers
technology voltages Biosensors
constant through Nanowires
structure ...

Figure 10 - Sample entries from a generated Topic Model (continued)
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EXAMPLE(S) OF
TOP WORDS TOP PHRASES FACULTY MEMBER(S)

Topic 0: Public administration 39: Olivier J. Blanchard
countries growth capital Political leadership 99: Abhijit Banerjee
economic income sector Income distribution
trade economy country Balance of payments
policy labor international Transfer payments
investment foreign world Economic policy
output percent productivity National income
market demand financial real Central planning
rates bank level exchange Budget deficits
government domestic Protectionism
markets prices consumption Fiscal policy
increase saving interest Macroeconomics
monetary goods sectors per Privatization
inflation firms supply total Labor productivity
average wealth institutions Job creation
period effect aggregate price Economic history
unemployment Political stability

Financial crises
Free trade
Monopolies
Welfare state
Civil service
Social mobility
Socialism
Tariff

Topic P: Unemployment insurance 54: Peter A. Diamond
insurance income effects Collective bargaining 126: Esther Duflo
effect percent age year Retirement income
estimates labor tax sample Political culture
workers average years Political rights
health employment evidence College graduates
benefits rates work variable Social security
family those change Social service
individuals increase wage job Nursing homes
estimate per retirement who Job satisfaction
changes economic variables Social policy
individual impact social level Minimum wage
earnings column across Job security
standard estimated since Labor economics
higher about policy state less Child care

Demography
Childbirth
Creative thinking
Pensions
Old age

Figure 11 - Sample entries from a generated Topic Model (continued)

53



Faculty Member Name (Selected) True Research Areas Baseline Method Current Method
Shafi Goldwasser Cryptography (No Result) Digital communications

Distributed computing Discriminant analysis
Complexity theory Information networks

Information security
Computer algorithms
Combinatorial optimization
Calculus of variations
Qualitative reasoning
System identification
Reinforcement learning

Leslie P. Kaelbling Motion and task planning Artificial Intelligence Mathematical analysis
Machine learning Information theory
Reinforcement learning Electrical engineering
Computer vision Cellular automata

Ronald L. Rivest Cryptography ... High performance computing
Computer and network security Cryptography Human-computer interaction
Electronic voting ... Information visualization
Algorithms Computer algorithms Information retrieval

World Wide Web Computer architecture
... Software engineering

Application software
Nicholas Negroponte One laptop per child Technology Written communication

Human-computer interaction SCIENCE Business enterprises
Electric power distribution Open source software

Appropriate technology
_Child development
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Faculty Member Name (Selected) True Research Areas Baseline Method Current Method
Regina Barzilay Natural language processing Artificial intelligence Automatic speech recognition

Computational linguistic Computational linguistics Computational linguistics
Machine learning Mathematical linguistics Language acquisition

Computer algorithms Cognitive psychology
Medicine

Robert C. Miller Crowd computing Physics Human-computer interaction
Online education Science Information visualization
Software development tools Technology Information retrieval
End-user programming ... Computer architecture

Timothy J. Berners-Lee Semantic Web Diagnostic imaging Software engineering
Real-time communication Nuclear engineering Application software
Internet Architecture ...

Telecommunication systems
Digital communications
Computer networks

Saman Amarasinghe Compilers optimization COMPUTERS High performance computing
Computer architecture Electronic data processing
Parallel computing Information storage &
Software engineering retrieval systems
Computer security Electronic digital computers
High performance computing Microprocessors
IT for Development Microcomputers

Arvind Synthesis and verification of large Int'l economic relations High performance computing
scale digital system Physics

Guarded Atomic Actions Virology
Memory Models Biochemistry
Cache Coherence Protocols United States
Parallel architecture Economics
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Faculty Member Name (Selected) True Research Areas Baseline Method Current Method
Hari Balakrishnan Wireless network Wireless communication system Digital communications

Mobile application & sensors Telecommunication Discriminant analysis
SQL over encrypted data Electronic data processing Information networks

... Information security
Anantha Chandrakasan Low-power chips & circuits Integrated circuits Computer algorithms

Ultrawide-band communication Semiconductors
Medical and Multimedia devices Solid state electronics

Economic Assistance
Technical Assistance

Leslie Kolodziejski Photonics and opto-electronics Electronics Microelectromechanical systems
Epitaxial growth Solids Semiconductor industry
Device fabrication Physics Diffraction gratings
Compound semiconductor ...

Edmund Bertschinger Cosmology Nuclear Physics Extrasolar planets
Galaxy formation Physical constants
Computation Solar activity
Relativistic accretion disks Interferometers

Donald R. Sadoway Batteries (No Result) Gel permeation chromatography
Molten oxide electrolysis Fluorescence spectroscopy
Thin film polymers Infrared spectroscopy
Electrochemistry Conducting polymers

Surface chemistry
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Faculty Member Name (Selected) True Research Areas Baseline Method Current Method
Shafi Goldwasser Cryptography (No Result) Digital communications

Distributed computing Discriminant analysis
Complexity theory Information networks

Information security
Computer algorithms
Combinatorial optimization
Calculus of variations
Qualitative reasoning
System identification
Reinforcement learning

Leslie P. Kaelbling Motion and task planning Artificial Intelligence Mathematical analysis
Machine learning Information theory
Reinforcement learning Electrical engineering
Computer vision Cellular automata

Ronald L. Rivest Cryptography ... High performance computing

Computer and network security Cryptography Human-computer interaction
Electronic voting ... Information visualization

Algorithms Computer algorithms Information retrieval
World Wide Web Computer architecture
... Software engineering

Application software

Nicholas Negroponte One laptop per child Technology Written communication
Human-computer interaction SCIENCE Business enterprises

Electric power distribution Open source software
... Appropriate technology

_Child development
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Chapter 5

Related and Future Works

5.1 Related Works

Lau, Newman, Karimi, and Baldwin (2010) used a feature-based supervised learning

method (using human annotators) to select out of the top ten word types in a topic's

language model (conditional probability distribution of words in the vocabulary), the word

type that is most representative of the topic. The features employed includes the PMI of a

word type with respect to all the other word types in the top-10 list, as well as its bigram

conditional probability, given those other word types. However, this method is only limited

to selecting representative names that have no more than one word.

Mei, Shen, and Zhai (2007) introduced a method to produce representative names that can

have more than one word. The candidate representative names are generated from bigrams

and noun chunks extracted from the document's text, and are ranked based on their KL

divergence with the given topic. Lau, Grieser, Newman, and Baldwin (2011) improved on

the result of Mei et al. by using a supervised learning method. The candidate representative

names are generated from title of the most relevant Wikipedia articles that are returned

when performing a search on the topic's top-10 words in the Wikipedia website. These

candidates are then ranked by a combination of association measures and lexical features.

The objective of all the methods above is to find representative names for topics that are

generated using the simple Latent Dirichlet Allocation (Blei et al., 2003). Mao et al. (2012),

on the other hand, focuses on finding representative names for topics and sub-topics that

are generated using hierarchical Latent Dirichlet Allocation (Blei et al., 2010). Their method
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uses the structural information of the generated topic hierarchy to rank the representative

name candidates.

5.2 Possible Future Works

Some possible future works have been suggested in Chapter 2. They include:

(a) Making BCEB-LDA non-parametric, for example by integrating a hierarchical LDA

into the model, in order to automatically infer the parameter K and to achieve a

finer level of granularity

(b) Replacing the heuristic-based method with supervised learning when ranking the

topic representative name candidates, in order to make the candidate selection

method more robust
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