
A System for Procedurally Generating Puzzles for

Games

by

Alec Thiomsoin

S.B.. Massachusetts Institute of Technology (2012)

ARCHNES

CT2 9 21

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@ Alec Thomson. MMXIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author
Department of Electrical Engineering and Co uter Science

M-a 6. 2013

Certified by....................
Richard Eberhardt

Research Staff. MIT Game Lab

I.
Thesis Supervisor

Accepted by...............
Prof. Dennis M. Freeman

Chairman. Masters of Engineering Thesis Committee

2

A System for Procedurally Generating Puzzles for Games

by

Alec Thomson

Submitted to the Department of Electrical Engineering and Computer Science
on May 16, 2013. in partial fulfillment of the

requirements for the degree of

Master of Engineering in Computer Science and Engineering

Abstract

In this thesis, I designed and implemented a set of designer-targeted tools and li-

braries for procedurally generating puzzles for video games and interactive fiction.

The system has the goals of producing solvable and flexible general-purpose puzzles
through the use of simple tools targeted at small development teams. The system is
implemented as two graphical tools built with the Java Swing Toolkit and a runtime

library written for the popular Unity game engine. Two games have been built with

earlier versions of the tools and one game was built with the most recent iteration of

the tools to test the effectiveness of the system.

Thesis Supervisor: Richard Eberhardt
Title: Research Staff, MIT Game Lab

3

4

Acknowledgments

Foremost. I thank the MIT Came Lab and the former Singapore-MIT GAMBIT

Game Lab for the inspiration and extensive support of this research.

Many thanks are due to Clara Fernandez-Vara for her inspiration, guidance, and

support and Richard Eberhardt for his advice and insight as the project matured.

Thanks go out to Michaela LaVan for her contributions to the original prototype

and the teams behind Symon and Stranded in Singapore for essential inspiration and

feedback. Special thanks go out to Andrew Grant for his constant high-quality advice

and insight.

Labmates and colleagues have contributed to this work in countless ways: Philip

Tan. Owen Macindoe. Abraham Stein. Sara Verrilli, Marleigh Norton. Generoso

Fierro. Todd Harper, Jason Beene. Jason Begy, Mike Rapa. Matthew Weise. Naomi

Hinchen. Kyle Miller, Raeez Lorgat, Daniel Vickery,. Avril Kenney, and Alison Malouf.

Finally, I would also like to thank my friends and family for their continued

unflinching support.

5

6

Contents

1 Introduction 19

1.1 Previous Work 20

1.2 Problem Description and Goals . 24

1.2.1 Solvability . 25

1.2.2 G enerality . 25

1.2.3 U sability . 26

1.3 Roadmap .. 26

2 Puzzledice System Design 27

2.1 O verview . 27

2.2 Puzzle Generator . 27

2.3 Database Editor . 28

2.4 Puzzle Map Editor . 28

2.5 Motivation for Design . 30

3 Puzzledice Puzzlegen Algorithm 33

3.1 Inputs to the Puzzle Generator . 33

3.1.1 Item Database . 34

3.1.2 Puzzle Map . 35

3.2 Outputs of the Puzzle Generator . 36

3.2.1 Puzzle Relationships . 36

3.2.2 Puzzle Items . 37

3.3 Generality of Puzzle Generator Output 38

7

3.4 General Pattern of Puzzle Generation

3.5 Solvability Guarantees of Puzzle Generator

4 Database Editor

4.1 Database Structure for Puzzle Generator

4.1.1 Database Items and Properties

4.1.2 Database Functions .

4.1.3 Database Extensions .

4.2 Structure of Database Editor .

4.2.1 List V iew .

4.2.2 Table V iew .

4.2.3 Output Format of Database Editor

4.3 Future Development of Database Editor

5 Puzzle Map Editor

5.1 Structure of Puzzle Map Editor

5.1.1 Area View

5.1.2 Puzzle View

5.1.3 Puzzle Description

5.1.4 Output Block

5.2 Valid Puzzle Map Guarantees

5.3 Output Format of Puzzle Map Editor . . .

5.4 Future Development of Puzzle Map Editor

6 Evaluation

6.1 Description of Game

6.1.1 Filler Rooms

6.1.2 Auxiliary Relationships.

6.2 Integration Process

6.2.1 Spawn Puzzle Items . .

6.2.2 Integrate Relationships .

8

39

43

45

45

45

46

49

51

52

52

55

55

57

. 5 7

. 5 8

. 5 8

. 6 1

. 6 1

. 6 1

. 6 2

. 6 4

67

67

69

70

71

71

71

6.3

6.4

6.5

6.2.3 Connect Areas

Solvability of Puzzles

Generality of System

Usability of System

7 Conclusion

7.1 Lim itations .

7.1.1 Narrowness of object oriented approach .

7.1.2 Tradeoff between generality and usability

7.1.3 Algorithmic Difficulty

7.2 Future W ork .

7.2.1 More General Building Blocks

7.2.2 Puzzle Map Generation

7.2.3 Front-Ends

7.3 Final Remarks

A NP-Completeness Proof for Puzzle Generation

B Building Blocks Reference

B. 1 Spawn Puzzle Block . .

B.1.1 Input

B.1.2 Output

B. 1.3 Expected Properties

B.1.4 Solvability

B.2 Combine Puzzle Block . . .

B.2.1 Input

B.2.2 Output

B.2.3 Expected Properties

B.2.4 Solvability

B.3 Item Request Puzzle Block .

B.3.1 Input

9

. 72

. 73

. 74

. 74

77

.. 77

. 77

. 78

.. 78

. 79

. 79

. 80

. 80

. 8 1

83

87

. 87

. 88

. 88

. 88

. 88

. 89

. 89

. 89

.. 90

. 9 0

. . . . I 90

. 90

B.3.2 Output

B.3.3 Expected Properties .

B.3.4 Solvability

B.4 Property Change Puzzle Block

B.4.1 Input

B.4.2 Output

B.4.3 Expected Properties

B.4.4 Solvability

B.5 Insertion Puzzle Block .

B.5.1 Input

B.5.2 Output

B.5.3 Expected Properties

B.5.4 Solvability

B.6 Unboxing Puzzle Block

B.6.1 Input

B.6.2 Output

B.6.3 Expected Properties

B.6.4 Solvability

B.7 Door Unlock Puzzle Block . .

B.7.1 Input .

B.7.2 Output

B.7.3 Expected Properties

B.7.4 Solvability.....

B.8 Filter Block

B.8.1 Input

B,8.2 Output

B.8.3 Expected Properties

B.8.4 Solvability

B.9 OR Block

B.9.1 Input

10

91

91

92

92

93

93

94

94

95

96

96

96

97

97

98

98

98

99

99

99

100

100

101

101

101

102

102

102

103

103

.

B.9.2 Output . 103

B.9.3 Expected Properties . 103

B.9.4 Solvability .. 103

B.10 Area Block . 104

B.10.1 Input . 105

B.10.2 Output . 105

B.10.3 Expected Properties 106

B. 10.4 Solvability . 106

B. 11 Composing Building Blocks . 106

11

12

List of Figures

1-1 Screenshot of Rogue15]. one of the earliest examples of procedural

generation in games. (source:I111) . 20

1-2 Screenshot of Spelunky[17], a modern example of procedural generation

in gam es. (source:112]) . 21

1-3 Screenshot of Symon 16]. the primary inspiration for this research. (source: 1141) 23

1-4 Screenshot of Stranded in Singapcre[7], a game made with an early

iteration of the system. (source: 113]) 24

2-1 Screenshot of the Database Editor 29

2-2 Screenshot of the Puzzle Map Editor 30

3-1 An example of a simple 'Combine" puzzle 34

3-2 An example puzzle map for the scenario in Figure 3-1 36

3-3 One process for building a cake with item relationships 38

3-4 Another process for building a cake with item relationships 38

3-5 Process for building cake batter with combine relationships 39

3-6 General structure of a building block 40

3-7 Pseudocode for simplified version of the output generation step. . . 40

3-8 Pseudocode for simplified version of the input generation step . . . 41

3-9 Pseudocode for simplified version of the relationship generation step 42

4-1 A screenshot of the list view of the database editor tool 53

4-2 A screenshot of the table view of the database editor tool 53

5-1 Screenshot of the area view of the puzzle map editor 59

13

5-2 Screenshot of the puzzle view of the puzzle map editor 60

5-3 An incomplete puzzle map that can still produce a text description . 60

5-4 A normally illegal puzzle map (because the spawn block has two outputs) 63

5-5 The puzzle map parser will split the map in Figure 5-4 into this legal

version . 63

6-1 Screenshot from 'Sandwitch", a sample game made to present the

capabilities of the system . 68

6-2 Screenshot of a filler room filled with enemies 69

6-3 The database for 'Sandwitch". as shown in the database editor . . . 75

6-4 One of the puzzle maps for 'Sandwitch", as shown in the puzzle map

editor . 76

A-1 Clause blocks cascaded across combine blocks to simulate ' anding" the

clauses . 84

A-2 Internal structure of a sample clause block. This one corresponds to

<X 1V X2 VX 3 > 85

A-3 The structure of an area corresponding to a specific variable and value.

The spawning of x, ensures that only one of the areas corresponding

to x, will be spawned. 86

B-1 Structure of a Spawn Puzzle Block 87

B-2 Structure of a Combine Puzzle Block 89

B-3 Structure of an Item Request Puzzle Block 91

B-4 Structure of a Property Change Puzzle Block 93

B-5 Structure of an Insertion Puzzle Block 95

B-6 Container block built by cascading an insertion block with an imboxing

b lock . 96

B-7 Structure of an Unboxing Puzzle Block 98

B-8 Structure of a Door Unlock Puzzle Block 100

B-9 Structure of a Filter Block . 101

14

B-10 Structure of an OR Block . 102

B-11 Structure of start area block . 104

B-12 Structure of an area to area connection 104

B-13 A full 'Container" puzzle block built out of existing building blocks . 107

B-14 A simpler representation of the composed block in Figure B-13 108

15

16

List of Tables

4.1 Common properties expected by the puzzle generator. 46

4.2 Functions provided by the whole database. 47

4.3 Functions provided by each object representing a database item. . . . 48

4.4 The property types provided by the database editor. 54

B. I Properties expected or used by the spawn block 88

B.2 Properties expected or used by the combine block 90

B.3 Properties expected or used by the item request block 92

B.4 Properties expected or used by the property change block 94

B.5 Properties expected or used by the insertion block 97

B.6 Properties expected or used by the unboxing block 99

17

18

Chapter 1

Introduction

While procedural content generation has been a common technique used in video

games since their invention, most procedural content generation in commercial prod-

ucts and other research focuses on map generation, audiovisual generation, and en-

vironmental generation. In the few cases where procedural puzzle generation is ex-

plored, the focus is on very narrow forms of puzzles. The aim of my thesis was to

research and develop much more general tools and ideas that can be used procedurally

generate puzzles for a wide variety of games.

This kind of general procedural generation of puzzles represents an interesting

technical challenge because of the requirements most games have for their puzzles.

For a procedural puzzle generator to be useful, it must generate puzzles that are si-

multaneously solvable. intuitive, and engaging. For a puzzle generator to be adopted,

it must be adaptable to a wide variety of games and genres. To solve this problem, the

approach my thesis work has taken is to separate puzzles into discrete reusable units

that can be recombined and customized by designers making use of simple editors.

This approach culminated in the Puzzledice system outlined in chapter 2. The rest

of this chapter outlines background work and defines the goals of the system in more

detail.

19

Figure 1-1: Screenshot of Roguej15], one of the earliest examples of procedural gen-
eration in games. (source: III])

1.1 Previous Work

There are a variety of benefits that can be gained from using procedural content

generation as a component of video game development. First, procedural generation

can be used for performance reasons. One notable example is the 1986 game The

Sentinel, originally released for the BBC Micro, which used procedurally generated

levels because the disk the game shipped on did not have enough space to contain

manually designed levels.

Procedural generation can also be used to instill a game with a massive amount

of re-playability. Games such as 1980's Rogue115] and 2009's Speiunky117] use proce-

durally generated levels to provide a unique experience every time the player plays.

Procedural generation can also be used to construct gigantic game spaces that it

would be beyond the scope of a design team to manually create. Recent indepen-

dent games Minecraft[110] and Dwarf FOrtrcssji] both use procedural generation to

construct enormous worlds for players to explore.

Despite the obvious utility of procedural content generation for video games, not

20

Figure 1-2: Screenshot of Spelunkyl17], a modern example of procedural generation
in games. (source:112])

21

a lot of commercial products attempt to procedurally generate puzzles. Those that

do tend to focus on a very narrow kind of puzzle (such as Mineswceper'9]) or allow

procedurally generated puzzles to be unsolvable or optional (such as The Binding of

Isaac 8]). The most likely reason for this is the fact that games tend to have very

strict requirements for their puzzles. In general, designers want their puzzles to be

solvabie so the player is not frustrated by an unsolvable game. intuitive so the player

can find a solution to the puzzle. and engaging so the player continues to play and

enjoy the game. Procedurally generating puzzles that fulfill all of these requirements

represents an interesting technical challenge.

There exists a lot of related ongoing and previous research into procedural con-

tent generation in games. While not specifically related to puzzles, a good amount

of research has been done on procedural level generation for video games. Some

examples include Compton and MateasJ3] and Dormans5]. Specific to puzzle re-

search. Ashmore2 has researched procedural 'lock and key" puzzles while Doran

and ParberryJ4] have constructed a procedural "Quest" model based on common

structures of quests from MMORPGs.

Some of this research was ultimately the inspiration for Symon. a game produced

during the GAMBIT summer program by a team led by GAMBIT Post-doc Clara

Fernandez-Vara|6]. Symon was a point-and-click adventure game that attempted to

procedurally generate traditional point-and-click adventure game "narrative" puzzles.

The puzzles generated by Symon were very narrow in focus and ultimately consisted of

a small subset of the kinds of narrative puzzles common to point-and-click adventure

games and interactive fiction.

It was the benefits and drawbacks of the system used in Symon that directly

inspired the development of the Puzzledice system which forms the basis of my re-

search. An initial prototype of this system was developed by myself and a team of

undergraduates at the Singapore-MIT GAMBIT Game Lab led by Clara Fernandez-

Vara in the Spring of 2011. This early iteration of the system was integrated into the

game Stranded in Singapore by a team of students during the 2011 GAMBIT summer

session7]. Direct feedback from the Slranded team was a large factor in the direction

22

Figure 1-3: Screenshot of Symon 16], the primary inspiration for this research.

(source: 114])

23

Figure 1-4: Screenshot of Stranded in Singapore [7]. a game made with an early iter-
ation of the system. (source: 113])

of my research. Since the summer of 2011, my contributions to the system outlined

in this thesis include managing a complete overhaul of the puzzle generation library,

porting the puzzle generation library to the Unity game engine, designing and im-

plementing the latest version of two graphical editors that interface with the library,

and constructing a sample game (outlined in Chapter 6) to evaluate the system.

1.2 Problem Description and Goals

The ultimate goal of my research was to develop a designer-targeted system for pro-

cedurally generating puzzles that could be used in a variety of games. To meet these

requirements, three overarching goals were defined for the system. These goals are

referred to as solvability. generality. and usability. Each of these goals is described in

24

more detail below.

1.2.1 Solvability

One of the major challenges of a procedural puzzle system for games is to produce

puzzles that are guaranteed to be solvable by a player. A system that produces

unsolvable puzzles is unlikely to be useful for designers or adopted in existing genres of

games. While there exist many games that relax the solvability requirement (117]. 181)

to reduce complexity, relaxing solvability requires a good understand of the specific

game being implemented and can lead to unexpected results. Therefore. solvability

is necessary to achieve generality and usability. Since solvability is a difficult goal to

achieve and inspires much of the design decisions of the systen, it is listed as a major

goal on its own.

Additionally, the original implementation of Symon|6-the inspiration for this

research-produced puzzles that could be placed into an unsolvable state, a prob-

lem which ultimately hurt the game and required a patch to fix after the game was

released. With this case in mind. solvability was a major goal for my system.

1.2.2 Generality

For the system to be useful for designers and game developers, it must be possible to

integrate the system with a variety of games in a variety of genres and platforms. The

system should also be highly extensible so that developers can customize the system

to the individual needs of their games. These are the requirements of generality.

As will be outlined in the following chapters, my system achieves generality by

presenting a small set of puzzle primitives (building blocks) that can be recombined

and extended for different purposes. Additionally, the system provides a highly ex-

tensible database that allows developers to customize and extend the output of the

puzzle generator depending on how they integrate the system with their games. Chap-

ter 6 presents a sample implementation game and describes how the system could be

integrated with a large variety of games.

25

1.2.3 Usability

For the system to actually be useful to game developers, it must be usable enough to

not produce undue amounts of frustration on the part of the developers. This is the

requirement of usability.

To provide usability, my system is designed with a team of technical and non-

technical developers in mind and provides tools for both. While a technical developer

is necessary to integrate my system with a game, I also provide two graphical tools

that were designed for use by non-technical designers to add content to a game inte-

grated with my system. Additionally. I provide a runtime library written for the Unity

game engine, a popular engine that is widely used by technical and non-technical game

developers alike.

1.3 Roadmap

The system I present in the rest of this thesis is known as the 'Puzzledice" system

and is composed of several parts. The high level design of this system is outlined

in chapter 2 while individual components of the system are described chapter 3,

chapter 4. and chapter5. A sample game that integrates with the system is described

and analyzed in chapter 6, while chapter 7 concludes with an eye towards limitations

and future work.

Ultimately. I believe this system is novel because it is the first attempt at a

general purpose procedural puzzle system that satisfies the three goals of solvability,

generality, and usability. My hope is that this system can be used as a starting point

for developers and researchers who wish to study or apply procedurally generated

puzzles to their games.

26

Chapter 2

Puzzledice System Design

2.1 Overview

The high-level design of the Puzzledice system is split up into three major components,

a puzzle generation library that's implemented as a runtime library for the Unity game

engine, a graphical tool for editing a database of puzzle items and relationships. and a

graphical tool for building puzzle map structures that the generator requires as input.

Each of these components is briefly described below, with a more detailed description

in the following chapters.

2.2 Puzzle Generator

The puzzle generator., described in greater detail in Chapter 3, is a runtime library

implemented for the popular Unity game engine. The purpose of the puzzle generator

is to take designed input (from the graphical tools) and produce object manipulation

puzzles in abstract form as output.

More concretely, the puzzle generator takes as input a database of items and their

relationships (created in the database editor tool) along with a puzzle map defining

the desired interaction flow of the output puzzle. The puzzle generator then returns

a list of abstract items and relationships that the integrating game can spawn to

implement the puzzle.

27

The puzzle generator uses a basic approximation algorithm to fit database items

and relationships to a set of constraints defined by the puzzle map. As proven in

Appendix A. the problem solved by the puzzle generator is NP-Complete. justifying

the use of an approximation algorithm despite a negative effect on usability.

2.3 Database Editor

The database editor, described in greater detail in Chapter 4. is a graphical tool

used to define the items and relationships that the puzzle generator can use when

generating puzzles. It was designed with non-programmers in mind as the target

users.

The tool is a basic graphical editor implemented with the Java Swing Toolkit that

includes multiple data views and a lot of customizability. The editor exports to XML

for easy portability.

The database editor is used primarily to produce content for the puzzle generator

to use when generating puzzles. The database editor features many customizable

systems. including custom properties and programmatic database extensions. The

database editor is general enough that it can be useful as a design tool for games

unrelated to the Puzzledice system.

2.4 Puzzle Map Editor

The puzzle map editor, described in greater detail in Chapter 5. is a graphical tool

used to build the puzzle maps that the puzzle generator uses to determine the abstract

'shape" of the puzzle it produces. This 'shape" represents the flow of interactions

the player engages in to solve the puzzle and is described in more detail in Chapter 3.

The puzzle map editor was designed with non-programmers in mind as the target

users.

The tool is a simple graphical editor implemented with the Java Swing Toolkit

that includes a graph visualization of the puzzle map. The editor only allows acyclic

28

Addie ihnae tmae d rpry ftp: Txtwt ae poetn

LN =iw Table View

Da~tabase Items
water
oxygen
frog
lock
magic jar
microwave
refrigerator

fire
kiss
princess
staffp
sandwich
prince
bread
ice
hydrogen
jar
bread with toppings
key
toppings

Proert Ies
npc
sprite
madeby
givenby
keyname
cooked
destroyoncombine
temperature
size
emotion
requests
livingniess
fulfiedtext
carryable
container
description
requesttext
capacity
mutables
key
changes

Figure 2-1: Screenshot of the Database Editor

29

Text with name: propertyname

Database Items

-Add item with n-ame- itemname Add-property of type:

A n~ n

I Add Area Add Output
- re Delete Puzzle Block

dWI-2 Area Name: kitchen-3 Spawn-Puzzle-2 Type Output
grass-I (Start Arval Add Door to I dl-2 Block Name Output- I

Remove Door From_ grass- 1 (Start Area) Property-Change-l Root Bock Item-Request-Pu zIe-1

Make Start Area Item- Request-Puzzle- I Requested Output Item staff

AaGraph

ulI Puzzle Description ITEM-I shows up in grass- L ITEM-2 shows up in dirt-2. ITEM- I shows up in kitchen- 3. iTEM-4 shows up in dirt-2. The player puts ITEM-3 inside
ITU-4. The player uses ITEM-2 to change some property of ITEM-4(containing ITIEM-3) to some value. iTEM- L requests ITEM-4(containing ITEM-3 (with some property

#t to some value) from the player. When the player fulmlls this request, helshe receives ITEM-S as a reward. ITEII-S is the output item staff and ends the puzzle.

Figure 2-2: Screenshot of the Puzzle Map Editor

puzzle maps to be created in keeping with the requirements of the puzzle generator.

The editor exports to XML for easy portability.

Puzzle maps produced by the puzzle map editor can be used by a designer to

exert greater control over the types of puzzles produced by the generator and provide

enough features for a designer to completely remove non-determinism from the puzzle

generator.

2.5 Motivation for Design

The design of the system was motivated by the goals outlined in Chapter 1 and the

experiences gained from the system implemented in Symcnj6]. Briefly:

* The puzzle generator was based on the generator used in Symon. with an em-

phasis on greater usability, solvability, and generality. In particular, I wanted

the new system to be able to generate puzzles that the system used in Symon

was unable to generate. the 'Container" puzzle being the canonical example.

30

P- A.-M'. CA _

Additionally., the system in Symrn produced puzzles that could be placed in

an unsolvable state by the player, so the generator presented in Chapter 3 was

designed heavily with solvability in mind.

* The database editor was dcvcloped in response to the difficulties Symon's de-

signer had crafting inputs to Symrn's puzzle generator. It has gone through

a few iterations before arriving at the design and implementation presented in

Chapter 4. The design was built with usability and generality in mind.

* The Puzzle Map Editor was developed in response to feedback from the team

that developed Stranded In Singapore using an early iteration of these tools7].

The team found that a tool for building puzzle maps was necessary for the

development of their game and prototyped a simple version. The final tool

presented in Chapter 5 was based on this simple version and designed primarily

with usability in mind.

31

32

Chapter 3

Puzzledice Puzzlegen Algorithm

This section expands on the previous chapter's short description of the puzzle gener-

ator. It describes the inputs to the generator. the abstract outputs produced by the

generator and some advice on how these inputs and outputs can be integrated with

a game in a general way. The puzzle generator algorithm (referred to as puzzegen)

relies on the behavior of many puzzle 'building blocks" that correspond to discrete

areas or puzzle relationships. These building blocks all follow a very similar process

that is described in Section 3.4. A detailed description of all the building blocks built

for the system is included in Appendix B.

To illustrate how these different inputs and outputs are used. the following scenario

of a simple 'Combine" puzzle (illustrated in Figure 3-1) is presented as an example:

The game presents the player with two objects, a 'Hydrogen" item and an 'Oxygen"

item. The player combines these two items to produce the desired 'Water" item.

3.1 Inputs to the Puzzle Generator

There are two main inputs to the puzzlegen algorithm: a database of items that can

exist in the world and a recursively defined puzzle map representing the abstract

structure of the puzzles to be generated. Each of these components is described in

greater detail below and in the following chapters.

Additionally, the puzzleg.n algorithm takes as input the name of an item to gener-

33

Hydrogen

Combine Water

Oxygen

Figure 3-1: An example of a simple "Combine" puzzle

ate as the "reward" for solving the entire puzzle structure. For an integrating game,

this reward is an item defined in the database that can be produced as the result of

game interactions. For example, the reward item might be a physical item the player

seeks to acquire (such as "The Amulet of Yendor") or it might be an abstract item

recognized by the integrating game as a signal that the game is now complete (such

as 'Game-Complete-Trigger-22"). The puzzle generator requires this reward input

primarily to support the elegant recursive structure of the puzzle map and for use as

a starting point when generating a complete puzzle.

3.1.1 Item Database

The item database is a collection of items that can exist in the game world along with

their properties and relationships to other items in the database. An item database

can be manually constructed in code. procedurally generated by use of 'Database

Extensions" (see 4.1.3), or built with the graphical database editor tool described in

Chapter 4.

The puzzle generator uses the item database to select items for use in its puzzles.

It also uses the relationships between items in the database to determine which items

are appropriate for different pieces of the generated puzzle.

While generating the scenario in Figure 3-1. the puzzicgen algorithm will first look

at the 'Water" entry in the item database. It will then determine that water can

34

be constructed by combining the 'Hydrogen" and 'Oxygen" items. The puzzhgen

algorithm then uses this information to construct the described scenario.

3.1.2 Puzzle Map

The puzzle map represents the structure of the puzzle we hope to generate, It can be

viewed as a map of all the actions a player takes while moving from the beginning of

the puzzle to the end of the puzzle. The puzzle map is composed of a set of 'puzzles"

and 'areas" and the connections between them. These components of a puzzle map

are collectively referred to as 'building blocks" in this writeup and are described in

more detail in Appendix B.

Puzzle building blocks are objects that represent a single set of actions the

player performs to get from a set of input items (hydrogen and oxygen in the Figure 3-

1), to an output item (water in the Figure 3-1 scenario).

Area building blocks are objects that represent a set of 'rooms" within the

game world that are accesible from each other. This notion of accessible space is

important for the puzzle generator because it assumes the integrating game will in-

volve a player character moving between spaces while interacting with items. The

accessibility of certain spaces is therefore essential to solvability as the player must

be able to access items to interact with them. The original version of the puzzle

generator had no notion of where items were to be placed in relation to each other,

but this feature became necessary to implement 'Door Unlock" puzzles that relied

on accesible space.

A puzzle map can be manually constructed in code or built with the graphical

puzzle map editor tool described in Chapter 5. Figure 3-2 presents a sample puzzle

map that represents the scenario in Figure 3-1. Each of the available building blocks

is described extensively in Appendix B.

35

Spawn
Block

Start A rea Combine Output
Block B Iock

Spawn
Block

Figure 3-2: An example puzzle map for the scenario in Figure 3-1

3.2 Outputs of the Puzzle Generator

The output of the puzzicgen algorithm is a list of items and relationships to spawn in

the world. Below is a more detailed description of these outputs.

3.2.1 Puzzle Relationships

The list of relationships produced by the puzzkegen algorithm represents a list of

abstract relationships necessary to produce the puzzles created by the generator.

Relationship is a rather loose term that can describe a number of different things.

Here are a few examples of relationships used by existing building blocks of the system:

" A Combine Relationship represents a relationship between two 'ingredient"

items that can be combined to produce a third item. The relationship contains

the ids of the two ingredient items along with a copy of the result item (and all

properties it possesses).

" A Property Change Relationship represents a relationship between two

items where one item can be used to change a property of the other. The

relationship contains the names of the 'changer" and the ' changee" along with

the name and desired value of the property to change.

36

* An Insertion Relationship represents a relationship between two items where

one item can be inserted into the other.

" An Item Request Relationship represents a relationship where one item

(possibly an NPC) 'requests" another item from the player and offers the player

a ''reward" in return.

" An Area Connection Relationship represents a required connection be-

tween two areas. While additional 'auxiliary" connections might be made be-

tween areas. an area connection relationship outlines a connection that must

exist for the puzzle to be solvable. The relationship contains the unique IDs of

the two areas requiring the connection.

Developers of integrating games are given freedom to decide how to implement the

relationships listed by the puzzle generator. In the case of the Figure 3-1 scenario, the

only relationship generated would be a combine relationship between the 'Hydrogen"

and 'Oxygen" items to produce the 'Water" item.

3.2.2 Puzzle Items

The list of items produced by the puzzkgen algorithm represents a list of items to be

spawned in the game world. Each item includes a list of properties for the item to

possess. These properties can include properties relevant to the generated puzzles and

properties relevant to the integrating game. The properties are primarily copied from

properties contained in the database entry for a given item, with a few exceptions in

the case of property change puzzles.

Among the properties the items has is a unique ID for the area in which an item

should be spawned. This information is mainly required for 'Door Unlock" puzzles

(as the items required to unlock a door must be accessible without opening the door

for the puzzle to be solvable).

As is the case with relationships, developers of integrating games are given freedom

to decide how to implement the items listed by the puzzle generator. To achieve

37

CFe B 3dter
I nsert Bster

inrto Pan
Ci e Pat Cone Bater (i n Pan) w vi

with Oven

Oven

Figure 3-3: One process for building a cake with item relationships

Cake Bader
Inrsert Bater

ianto Pa
Cke ne Oa t oRefPesus Cake Bater (iun F tn) C...

Whil the outut oulie abv.ayse.lmtn..hyaculyacon. fr n

Figure 3-4 Another process for building a cake with item relationships

generality. I attempted to provide a general enough description of 'item" for this

information to be useful for a wide variety of games.

In the case of the Figure 3-1 scenario. the list of items to generate would include

the 'Hydrogen" ad ' Oxygen" itemns with both being spawned in the player's stating

area.

3.3 Generality of Puzzle Generator Output

While the outputs outlined above mnay seem limiting, they actually account for many

situations. some of them unclear from the abstract relationships. For example. con-

sider an in-game situation where the player needs to bake a cake.

Intuitively. the player would make a cake by making the batter and sticking it in

the oven. This process can be described a variety of ways with the puzzle relationships.

The relationship between the cake batter and the oven could be a combine relationship

where some database property indicates that the oven should not be destroyed on the

38

Milk
Comb! ne M I Ik Preliminay

and Eggs Baitter
Eggs COMbine Suga with Ck ~e

Prediminary Bater c eBte
sugar

Figure 3-5: Process for building cake batter with combine relationships

combine. (such as in Figure 3-3). Alternatively. the relationship could be an item

request relationship where the oven 'requests" the cake batter and offers the baked

cake as a 'reward" (such as in Figure 3-4). Whatever the relationship between the

batter and the oven. it is unlikely that the batter will be portable by the player.

Therefore. an insertion relationship between the batter and the cake pan will also be

necessary. The batter itself is constructed by mixing ingredients together, a process

that might be represented by a cascade of combine relationships such as in Figure 3-5.

This example illustrates how the relationships produced by the generator can

correspond to a wide variety of situations and puzzles within a game. meeting the

goal of generality.

3.4 General Pattern of Puzzle Generation

The actual details of most of the puzzlegen algorithm depend on the building blocks

used to construct the puzzle map. Fortunately. almost all of the building blocks follow

a very general pattern when generating puzzles. An individual building block is only

aware of its direct input building blocks and the requested output it received from

its output block, as shown in Figure 3-6 and thus can operate independently of other

blocks in the puzzle map. This section describes the inner workings of the puzzigen

algorithm in more detail.

When a building block is asked to generate a puzzle. it is given the name of a

desired output item along with a list of desired properties for the output item to

have. With this information. the building block then follows a sequence of steps

39

I nput
Block 1

Building Otu
Block

I nput
Block 2

Figure 3-6: General structure of a building block

public bool gencratcOutput (String itemName) {
if (Database. itemFullySpawned (itemName))

return false:
PuzzleItem item = Database . spawnitem (itemName);
applyPropertiesToSpawnedItem(item, this. desiredProperties);
this . outputIteim = item-;
return true;

}

Figure 3-7: Pseudocode for simplified version of the output generation step

outlined below. If the building block determines it can't continue during any of these

steps. it returns a failure to the caller that asked it to generate a puzzle (either

another building block or the initial call to the puzzlegn algorithm). As described

below, when inputs to a building block return a failure, the building block simply

tries another combination until it runs out of options, at which point it returns a

failure.

Step 1: Attempt to generate the output item

Summarized in Figure 3-7. the building block first attempts to generate the output

item requested of it with the desired properties. If for some reason the output item

40

public bool gencratclnputs() {
List<StringPair> possibleInputltemNames =

findPossibleInputItemNames (this. outputltem);
randomShuffle (possiblelnputltemNames);
for (StringPair itemNamePair : possibleinputltemNames) {

String itemNamnel = itemNamePair. String;
String itemName2 = itemNamePair. String2
i f (! areCarryable (itemNamel . itemName2))

continue;
PuzzleOutput outputl =

this. inputi . gencratePuzzle (itemNamel);
PuzzleOutput output2 =

this. input2. generatePuzzle (itemName2):
if (outputl = null output2 - null) {

this, inputi . despawn () ;
this . input2 . despawn ();
continue:

}
this. finalOutput = creatcOutput (itemNamel, itemName2,
outputl, output2);
return true;

}
return false;

}

Figure 3-8: Pseudocode for simplified version of the input generation step

cannot be generated (if it has been spawned to max capacity already or it cannot

possess the desired properties), the building block returns a failure. Depending on

the building block, it might not always attempt to spawn the output item. For

instance, a "Property Change" puzzle will attempt to have its inputs generate the

output item while it merely generates a property change relationship.

Step 2: Attempt to generate the input

Summarized in Figure 3-8, after the desired output item has successfully been gener-

ated, the building block then constructs a list of items that might function as inputs

to the building block. Each building block decides on this list differently. For in-

stance, a combine puzzle will only consider items that can be combined to form the

41

public PuzzleOutput creatcOutput (String itemNamel.
String itemName2, PuzzleOutput output ,
PuzzleOutput output2) {

PuzzleOutput output = new PuzzleOutput ()
output. Items = concat (outputI . Items , output2. Items);
output . Relationships = concat (output1. Relationships
output2. Relationships);
Relationship rel = buildRelationship (itemNamel. itemName2,
this. outputItemr):
output. Relationships .Add(rel)
return output;

}

Figure 3-9: Pseudocode for simplified version of the relationship generation step

output item. A property change puzzle chooses a specific property it hopes to change

and only considers items that have that property or can change that property. Once

a list of possible inputs has been produced,. the building block shuffles the list and

chooses items one by one. For each chosen item, it asks its input building blocks to

attempt to generate that item as their output item. It any of its input blocks fail, the

building block will move on to the next set of items in its list. If it runs out of items

to try, the building block returns a failure. During this step, the building block will

also ensure that any input items that need to be transported to the same location are

actually 'carryable". Items are ''carryable" if they possess the ''carryable" database

property (indicating that the player can carry the item) or one of the inputs to the

building block descends from an 'Insertion Puzzle" that ensures a container for an

non-carryable item will be generated.

Step 3: Build the Relationships

Summarized in Figure 3-9, once all of its inputs manage to successfully generate

input items, the building block has succeeded in generating a puzzle and proceeds to

generate relevant relationships. Using the input and output items generated in steps

1 and 2. the building block will create relevant relationships determined by the type

of the building block. For instance. a combine puzzle block will generate a combine

42

relationship. The building block has now generated a complete puzzle. It returns

a list of items and relationships to spawn in the game that includes all items and

relationships returned by its input blocks.

3.5 Solvability Guarantees of Puzzle Generator

The puzzle generator algorithm guarantees solvability by induction on the building

blocks. For a given block, successfully producing an output item indicates a guarantee

that there is a way for the player to acquire that item by making use of relationships

and other items in the game. Since each input block also provides this guarantee,

then by induction the entire puzzle produced by the generator must be solvable, i.e.

the player can acquire the final item representing a successfully solved puzzle. The

solvability arguments for each of the building blocks is provided in Appendix B.

Additionally, since each relationship is tied to uniquely spawned items in the game,

if the developer of an integrating game only implementes relationships returned by

the generator. then the player will be incapable of placing the game in an unsolvable

state because only relationships that advance the puzzle can actually be applied. This

means that in one game, the generator might spawn a 'Hydrogen" item intended to

be combined with 'Oxygen" to produce "Water". In another game, the generator

might generate 'Hydrogen" intended to be given to an NPC for a reward, meaning

that "Hydrogen" and 'Oxygen" cannot be combined to form water in this particu-

lar game. Developers who desire consistent rules (i.e. it should always be possible

to combine "Hydrogen" and 'Oxygen" to form 'Water") can spawn additional re-

lationships not specified by the generator. To do so. they would simply construct

additional relationships after puzzle generation and add those relationships to their

game as appropriate (an example of this process is outlined in 6.1.2). However, these

developers must do so with the knowledge that these auxiliary relationships might

make it possible for a player to place the game in an unsolvable state.

Despite these solvability guarantees, an important note is that the algorithm de-

scribed above is an approximation algorithm. The implications of this are that there

43

exist situations where a given database and puzzle map are capable of producing a

valid set of puzzles but the puzzlegfin algorithm might still return a failure. This has

an unfortunate effect on usability as a designer might be surprised to discover that a

set of inputs that work occasionally will not always successfully generate a puzzle. To

cope with this unreliability, designers should expect to invoke the puzzle generator

multiple times in the event of failure and also ensure that their databases are flexible

enough to produce multiple solutions. Increasing the 'capacity" of database items

(see Table 4.1) can also improve the chances of a solution being found.

Ultimately, the use of this approximation algorithm is justified by the fact that the

problem of determining whether a given set of inputs to the generator can successfully

generate a puzzle is actually NP-Complete. This claim is proven in Appendix A and

represents one of the major limitations of the system discussed in Chapter 7.

44

Chapter 4

Database Editor

This chapter describes the item database and the database editor tool used to con-

struct it. The database was designed to have a very simple interface and implemen-

tation to increase usability.

4.1 Database Structure for Puzzle Generator

This section describes the structure of the database as seen by the puzzle generator.

As the item databases are expected to be fairly small (compared to databases used

to store user accounts for web services) and the system isnt concerned about failures

or concurrent access, I avoided using a powerful relational database system such as

MySQL or Postgres and instead chose to build my own simple database structure.

This structure is described below.

4.1.1 Database Items and Properties

The database can be thought of as a single table where the rows of the database

are items and the colunns are properties. The database provides functions to easily

access these items and properties at any time during the puzzle generation process.

As described in Chapter 3. properties of items are used by the generator and the

integrating game to define how the items are used to generate puzzles and how they

45

classname A text property representing the unique name of the
item. No two items in the database should ever have
the same classname,

carryable A boolean property that determines whether the item
can be carried by the player. Necessary for ensuring the
solvability of puzzles produced by the generator.

capacity An integer property that determines how many times
an item can be spawned by the generator during puzzle
generation. To ensure solvability, each spawn of an item
must be uniquely identifiable (see 'spawnIndex") with
this unique identifier taken into account by the relation-
ships.

abstract A boolean property indicating whether the item can be
spawned within the game. Abstract items will be ig-
nored by the puzzle generator and can be useful for
implementing database extensions (described in Sec-
tion 4.1.3).

spawnlndex An integer property used throughout the puzzle genera-
tion process to distinguish two items of the same name.
To guarantee solvability, two items of the same name
with different purposes should not share relationships, so
the 'spawnIndex" property is used to distinguish them.

Table 4.1: Common properties expected by the puzzle generator.

behave in the game after they have been spawned. There are a common set of

properties that the puzzle generator expects every item in the database to have.

These properties are summarized in Table 4.1.

4.1.2 Database Functions

Functions provided by the top-level database object are summarized in Table 4.2.

The database maintains two separate structures for items marked 'abstract" and

normal items. By default. most of the database functions will ignore all items marked

'abstract".

Item objects returned by database functions possess their own set of functions,

summarized in Table 4.3. These functions expose item properties and whether a

database item is free to be spawned.

These database functions are used by database extensions to transform an existing

46

addExtension Adds an extension (see 4.1.3) to be run later.
runExtensions Runs all extensions added to the database in

the order they were added.
addltem Adds a fully formed item to the database.

itemExists Returns whether an item with a given 'class-
name" exists. Ignores items marked 'ab-
stract".

getltem Retrieves an item by its 'classname" from
the database. Ignores items marked 'ab-
stract". Returns null if it doesn't have a
record for the requested name.

itemExistslnMasterLast Returns whether an item with a given 'class-
name" exists, even if the item is marked 'ab-
stract".

getItemFromMasterList Retrieves an item by its 'classname" from
the database. even if the item is marked 'ab-
stract". Returns null if it doesn't have a
record for the requested name.

getItemsWithProperty Returns a list of item names corresponding to
items that possess a certain named property.

filterListByProperty Given a list of item names. creates a new
list that contains only the items that pos-
sess a given property Often used by individ-
ual building blocks to find appropriate input
items.

copyItem Given the name of an item to copy and a new
name, attempts to copy an existing database
item into a new name. Fails if the initial item
does not exist or the new name is already
present in the database. Primarily used by
door unlock puzzle blocks to copy canonical
keys (see B.7).

Table 4.2: Functions provided by the whole database.

47

Spawned A boolean function indicating whether this
item has been spawned to capacity indicat-
ing that it should no longer be spawned in
the game.

spawnItem Increments the spawn reference coumt for this
item and returns a reference to the spawned
puzzle item.

despawnItem Decrements the spawn reference count for
this item.

setProperty Sets a given property to a given value. Pri-
marily called when the database is initially
constructed, when an item is being copied,
and when a database extension transforms
the database.

propertyExists A boolean function indicating whether this
item possesses a value for a given property.

getProperty Returns the value for a given property. as-
suming it exists. Returns null if this item
does not possess the property.

copyToNewName Creates and returns a copy of this database
item with a new 'classname" provided by the
caller. Called by the top-level database func-
tion "copyltem" and primarily used by door
unlock puzzle blocks.

Table 4.3: Functions provided by each object representing a database item.

48

database and used by the puzzle building blocks to retrieve information about the

current state of the database. As database item spawn counts are incremented every

time a puzzle is generated, the database must be appropriately reset each time a new

puzzle is generated.

4.1.3 Database Extensions

The system allows a developer to extend the database or generate certain portions of

the database through the use of "Database Extensions".

A database extension is a simple function run on the in-imemory database after

it has been constructed from a file exported by the database editor. It can modify

the database by adding/deleting items and modifying the properties of items in the

database. Database extensions proved incredibly useful while building the sample

game described in Chapter 6.

Additionally, features of the database that were previously built-in (such as a

flexible inheritance system for database items) were rewritten entirely as database

extensions. a move that vastly simplified the code for the database. A few examples

of database extensions are included below.

In addition to adding features to the database, Database extensions can be used

to partially or completely procedurally generate entire databases via any scheme

imagined by the developer, vastly increasing the generality of the database editor

system.

Example: Container Size Extension

As described in Appendix B, container puzzle blocks built out of insertion and un-

boxing blocks expect items to have ' filledby" and 'fills" properties to indicate which

items can be used as containers of other items. The use of these properties was chosen

for greater generality (e.g. the designer may wish that the "laptop case" item only

be able to hold the 'laptop" item). but negatively affects usability of the database

editor.

49

Usability is affected negatively by the use of these properties because filling out

all the "filledby" and 'fills" properties for every item in the database is a long and

repetitive task that can be very prone to error. A much simpler way of thinking

about container puzzles would be to have some items specified as containers and to

give every item an integer 'size" property such that an item can fit inside another

item only if it is smaller.

With the introduction of database extensions, it was easy to implement this style of

container specification as an extension. Because highly general container relationships

were not used in the sample game described in Chapter 6. container relationships

were solely expressed using the 'size" property and this extension (known as the

'FilledbyExtension"). This extension allows a developer to retain both the generality

of the original properties and the usability of the new properties.

Example: Changes Extension

As described in Section B.4, a property change block expects database items to have

a 'changes" property formatted as a dictionary mapping property names to lists of

property values. Unfortunately, creating a property with this format is not possible

nor necessarily desirable with the current version of the database editor tool. To

handle this. a previous version of the database code would automatically convert the

format of the 'changes" property from a list of string pairs to the expected dictionary.

With the introduction of database extensions. this code was easily ported to an ex-

tension (referred to as a ' ChangesExtension"). a step that simplified the core database

code considerably. When run the extension simply iterates over all of the database

items and modifies their "changes" property to the expected format.

Example: ''Parent" Extension

The value of some properties in the database might often be shared across multiple

items. For instance, all humanoid items might share the same set of "mutable"

properties used by property change blocks. In this case, it would harm usability

to require the designer to enter the same set of property values for all items that

50

share the value. This is where an 'inheritance" system for the database becomes

exceedingly useful. With an inheritance system, items in the database can inherit

property values from other items. creating a hierarchical type system that improves

the usability of the database editor for the designer.

In an earlier iteration of the tools, this inheritance system was built into the

database code, a design that caused a variety of problems. One of the problems with

this design was that it forced a single inheritance system on developers who might

want a system more appropriate for their needs. For instance, developers might want

a child item to inherit certain property values from one item and other property

values from another item, something that was not possible with my 'one-size-fits-all"

inheritance scheme.

Another problem with this design was that it added a lot of messy special case code

to the core database. Many properties such as 'types" and 'parent" were augmented

with special meaning and simple functions such as 'getProperty" became bloated

with handling all possible inheritance cases and breaking out of inheritance loops.

Database extensions presented a solution to both of these issues. By redesigning

the inheritance system completely as an extension. I was able to remove all special

case inheritance code from the database core, returning it to a simple implementation.

Additionally, if the developer wishes to create a new inheritance system or extend

the example system Yve provided (in the 'ParentExtension" class). they can simply

create a new database extension and replace the existing extension with it.

4.2 Structure of Database Editor

The database editor as it currently exists has been through three iterations. The

initial database editor was constructed in the Spring of 2011 by myself as part of a

team of undergraduates led by Clara Fernandez-Vara. During the smnmer of 2011,

the team implementing Stranded in Singaporej7] with an early version of the tools

constructed their own version of the database editor based on the initial version.

Finally. in January 2012. I built the current version of the database editor as part of

51

my thesis research using knowledge gained from the previous two iterations.

The editor was designed to be cross-platform in support of generality. so it was

implemented as a Java application built with the Java Swing Toolkit. The code

is structured using the common 'Model-View-Controller" pattern and provides two

views. a 'List" view where items and properties are displayed as parallel lists and a

'Table" view where the entire database is displayed as a table similar to a spreadsheet.

Both views were included to support different requirements for entering data into the

database.

In both views, a designer can add and delete items and properties to the database

via the toolbar at the top of the editor. Items are given a name when added to

the database and the editor disallows two items with the same name to exist in the

database. This name is automatically added as the 'classname" property when the

database is exported. Properties are given a name and a type when added to the

database. The type of the property determines the GUI editor used to modify it.

The property types the editor provides are listed in Table 4.4.

4.2.1 List View

The list view, displayed in Figure 4-1 presents two parallel lists, one for items and

one for properties. To modify an item in the list view, the designer simply selects one

of the items from the item list on the left. Once selected, that item's properties can

be selected from the list on the right. When a property is selected, it s value can be

modified by a type-specific GUI at the bottom of the editor.

The list view proves useful for designers who want to edit the database on a per-

item basis. Whenever a new item is created. the designer can quickly set up all of its

properties.

4.2.2 Table View

The table view, displayed in Figure 4-2 presents a spreadsheet-like table view of

the entire database. Items are included as rows in this table while properties are

52

npc
sprite
madeby
givenby
keyname
cooked
destroyoncombine

A n ni
Add Item with name; itemname Add property of type: Text with name: propertyname

Add propey of ype: Text Iwith name: propertyname

Table View

ProcertiesDatabase items
water
oxygen
frog
lock
magic jar
microwave
refrigerator

temperaturefire
kiss
princess
staff
sandwich
prince
bread
ice
hydrogen
jar
bread with toppings
key
toppings

size
emotion
requests
Wvingness
fulfilledtext
carryable
container
description
requesttext
capacity
mutables
key
changes

Figure 4-1: A screenshot of the list view of the database editor tool

Add it nao J mname

oa*,N ,p c gW"aY madiii"y aoakad iiyoaoo deo,
ger aer ...

frog rg
bock kekk

na-* jar
mry" micro
rFOYI.r fridge ..
Maiard O wizard

kill
princess

prow'ePrM

Wte
bread
Moy
bread
tMppNWge

6"

keess
praff5 -
sarnde
proree
jar
hydrog -
bread
key
bread
WOpings

S Add prop"rt of type- -Text

.e1p ate. omod"o raqaaro 0ngW f..a-=I

* I

2..

0

0

a.

0
0
0 -
1 ...
a -.

I..

ragoas.

kbty

with nazm propeyname

descqa r r ae"ah tapamOy k"y
CleAtr s

A snv
A magv D
A OWi 0
Standa D
The o. Greet 0
A burn 0
true 1" 0

A Oikt. D
A truil D
I hefta 0
A PrKn Greett. 10

Aoe 2
A dice 2
A bicL 0
Dekio
Dtk*.. .

Figure 4-2: A screenshot of the table view of the database editor tool

53

Add Item with namc : itemname I

Text A simple string property type. Used for properties such
as ' description".

Integer An integer property type. Used for properties such as
'capacity" and 'size".

Boolean A boolean property type. Used for properties such as
'carryable" and "NPC".

Item List A property type representing a list of other items in
the database. Used for properties such as 'givenby".
'gives", and 'parents" (for the inheritance extension).

String List A property type representing a list of strings. Usually
used to create a list of property names for properties
such as 'mutables" and various mutable properties.

String Pair List A property type representing a list of string pairs. Ef-
fectively used whenever a property requires pairs, such
as with the 'madeby" property. Also used for the
'changes" property before it is converted by an exten-
sion.

Custom A user defined property type that can include any num-
ber of sub-properties which can have any property type
except 'Custom". When this type is selected, an edi-
tor window pops open allowing the designer to create a
custom property. The puzzle generator treats a custom
property as a dictionary mapping strings (sub-property
names) to objects (sub-property values).

Table 4.4: The property types provided by the database editor.

columns. Basic property types such as 'Text". 'Integer", and 'Boolean" types can

be modified directly in the table cells. More complex property types such as "Item

List" or 'Custom" types display a '..." in their cells that. when selected, pops open

an appropriate editing GUI at the bottom of the window.

The table view proves useful for designers who want to edit the database on a per-

property basis. For example, when a new boolean property is added to the database,

the designer can simply switch to the table view and quickly set all the check boxes

as appropriate for each item in the database.

54

4.2.3 Output Format of Database Editor

The database editor exports to a simple XML format that specifies every item and

every property. Properties are described by their name, type, and default values.

Each item is listed with a list of the properties it possesses a value for along with

the corresponding values. This output format was chosen to be human readable and

cross-platform. The puzzle generation library has a simple parser that produces an

in-memory database object when given an XML file containing the database editor

output.

4.3 Future Development of Database Editor

While the database editor has proven very powerful and usable for building item

databases, there still remains some possible improvements for future iterations.

For instance. the current database editor provides types such as 'String Pair List"

and 'String List" that are commonly used to create lists of properties, property pairs,

and item-property pairs. Future development might take these uses into account and

construct specific property types tailored to these uses.

Additionally, the database editor currently lacks common functionality expected of

a graphical editor, most notably an 'Undo" function for correcting mistakes. While

this is a desirable feature, I chose to keep it low priority because all the actions

are already reversible within the editor. Future development of the editor could

implement this and other desirable features that improve usability of the editor.

55

56

Chapter 5

Puzzle Map Editor

This chapter describes the graphical tool used to construct the puzzle map inputs

to the puzzle generator. This tool has been through only two iterations. fewer than

the puzzle generator and the database editor, because it was a later addition to the

Puzzledice system. In the original version of the system, puzzle maps were created

in code by manually instantiating objects.

During the summer of 2011, the team that developed Siranded in Singapore 171

decided that a level editor was necessary and constructed an editor that was capable

of building levels for their game as well as puzzle maps for the Puzzledice system.

As part of my continuing research. I iterated on their design and constructed a new

puzzle map tool designed to meet the goals of generality and usability.

5.1 Structure of Puzzle Map Editor

Similar to the database editor, the puzzle map editor was designed to be cross-

platform in support of greater generality. so it was also implemented as a Java appli-

cation built with the Java Swing Toolkit. The editor makes use of the open source

JGraph library to display both an undirected area graph in an 'Area View" window

and a directed puzzle graph in a 'Puzzle View" window. Both areas and building

blocks can be named to improve readability of the graphs with the restriction that

no two area blocks or puzzle blocks can share the same name.

57

Along with the visual representations of the puzzle maps provided by the two

views. the puzzle editor presents a 'puzzle description" as a short textual description

representing the kind of puzzle that would be produced by this map (with placeholder

names for items).

Regardless of the view, a designer can add and delete areas, connections between

areas. puzzle blocks, and connections between puzzle blocks via the toolbar at the top

the window. This toolbar also allows the designer to edit certain aspects of specific

building blocks (e.g. choosing a specific property and value for a property change

block) and mark which of the area blocks is intended to be the start area of the map

(a start area is always necessary for a valid puzzle map).

5.1.1 Area View

The 'Area View" window presents a current view of all the areas blocks in the map

and direct connections between them. The area view presents an undirected graph of

area blocks. Locked doors are not included in the area view as they rely heavily on

the directionality of the puzzle map and are therefore not correctly represented by an

undirected graph.

While it might seem unrelated to the actual puzzle map. the area view and graph

proved useful from a usability standpoint as designers naturally like to think about

areas and connections between them in this way (as opposed to generating all area

blocks in the puzzle view and manually choosing their input areas). The area view

provides generality by treating an area map as a general undirected graph. leaving

the actual structure of the in-game area map up to the developers.

5.1.2 Puzzle View

The 'Puzzle View" window presents a current view of the puzzle map (including both

area blocks and puzzle blocks) as a directed acyclic graph. The graph shown by this

view is very similar to the figures used throughout this document to represent puzzle

maps.

58

Add Area
Delete Area

Add Area i

Area-I (Start Ar
-Area-2
Area-3
Area-4
Area-5
Area-6

ull Puzzle Description:

Add Output

Area Name: Area- 8

Add Door to: Area-1 (Sart Area)

Remove Door From Area-6

Make Start Area

Puzzle Graph

rrea-4
15tart Area)

rea~ a e-7

Figure 5-1: Screenshot of the area view of the puzzle map editor

59

Delete Area

fl~ff~
Add Area Delete Area Add Output

dirt-2 Area Name: kitchen- 3 Spawn-Puzzle-2
grass-I (Start Area Add Door to dirt-2

Remove Door From: grass-i (Start Areal roperty-Change-l
insertion-Puzzle-1

make Start Area jtem-Request-uuzze-l

IAeGraph

Delete Puzzle Block
Type: Output

Block Name output-I

Root lock: Item-Roquest-Puzzie-1

Requested Output Item: staff

- .penp-_________

ull Puzzle Description, ITEM- I shows up In grass- 1, ITEM-2 shows up in dirT-2. ITEM-3 shows up In kitchen-). ITEM-4 shows up In dirt-2 The player puts ITEM-3 inside
ITU-4. The play.r uses ITEM-2 to change some property of ITEM-4(contamiung ITEM-3) to some value. ITEM-L requests ITEM-4(containing ITEM-3) (with some property

et to some value) from the player. When the player fulfills this request. hefshe receives ITEM-5 as a reward. ITEM-S is the output Item staff and ends the puzzle-

Figure 5-2: Screenshot of the puzzle view of the puzzle map editor

Because the puzzle map takes the area graph into account (by including some areas

as inputs to other areas), the puzzle graph will often rearrange itself in response to

changes of the area topology. These changes can include adding or deleting area

blocks and connections or changing which area is marked as the "Start Area".

SArea- Sp twn-1 Combine-1

Figure 5-4 An incomplete puzzle map that can still produce a text description

60

5.1.3 Puzzle Description

The puzzle map editor provides a textual description of the general flow of a puzzle

map via the "puzzle description" included at the bottom of the window. To view a

puzzle description, the designer selects one of the puzzle blocks from the list at the

top and a description appears at the bottom.

The descriptions are general and specific to the building blocks used in the map.

When a block does not yet have an input selected, the input is listed as "SOME-

THING" or ' SOMEWHERE" in the description. For example, the puzzle map shown

in Figure 5-3 would have the following description: 'ITEM-1 shows up in Area-1. The

Player combines ITEM-1 with SOMETHING to create ITEM-2."

5.1.4 Output Block

One building block available in the puzzle map generator that is not available as an

in-memory building block is the 'Output" block. This block is used to indicate the

starting point for generating the puzzle map when the runtime library is parsing the

output of the editor. Without any of the blocks being marked as the "Output", the

generator has no way of knowing which block marks the end of the puzzle and will

be unable to produce a valid in-memory puzzle map.

In the editor. the input to the 'Output" block is simply the puzzle block that the

designer intends to represent the output of the map. The designer also has the option

to specify a specific item name to generate as output but this feature is currently

ignored by the simple parser. When parsing the editor output, the parser will choose

the first "Output" block it finds as the output to the puzzle, so in most cases there

will only be one such block.

5.2 Valid Puzzle Map Guarantees

For usability purposes, it is important that the puzzle editor only allow a designer

to construct puzzle maps that the system considers 'valid". For a puzzle map to be

61

valid, it must be acyclic (so the generator does not enter an infinite loop) and building

blocks that require certain types of inputs (such as spawn puzzles that require an area

block as input) must only have those types of block as their inputs.

The latter requirement is satisfied by the editor separating area and puzzle blocks

into two separate lists (and UI sections). Puzzle blocks that require an area block as

input will only present the list of area blocks as valid choices while puzzle blocks that

require other puzzle blocks as input do likewise.

The former requirement is a little trickier. Normally, if the designer directly

attempts to introduce a cycle into the graph (e.g. an attempt to attach the output of

a combine block as its input), the editor will detect this. inform the designer of the

mistake. and disallow the operation. Unfortunately., since the area blocks and puzzle

blocks are separated and the the editor attempts to build an acyclic puzzle map based

on the area topology, cycles can be subtly introduced by seemingly innocuous user

actions. If the topology of the areas is changed by the user, it is entirely possible the

change will introduce a cycle into the puzzle map. The editor handles this by first

informing the designer that the topology change introduced a cycle and then carefully

breaking connections as necessary to remove the cycle from the graph. While this

solution is not very elegant. it is very explicit to the designer about when cycles occur.

5.3 Output Format of Puzzle Map Editor

Like the database editor. the puzzle map editor exports to a simple XML format.

This format specifies each of the areas (along with their connections) and each of

the building blocks with appropriate inputs. This output format was chosen to be

human readable and cross-platform. The puzzle generation library has a simple parser

that constructs an in-memory puzzle map object (represented by a single recursive

building block) when given an XML file containing the puzzle map editor output.

An important note is that while the simple parser will take Area names into

account when parsing the XML (i.e. it will only generate one block corresponding to

''area-i"). it will construct a new block for every puzzle block it encounters regardless

62

output 1
Block

Area Sp-wn
Block Block

Output 2
Block

Figure 5-4: A normally illegal puzzle map (because the spawn block has two outputs)

if,

Spawn output 1
Block Block

A re
Block

Spawn Output 2
Block Block

Figure 5-5: The puzzle map parser will split the map in Figure 5-4 into this legal
version

63

of whether it has seen the name already. It does this because in a valid puzzle map

every puzzle block must only have on(output block. but a puzzle map that ignores

this requirement can easily be converted into a valid puzzle map by splitting repeated

puzzle blocks into multiple blocks.

Figure 5-4 and Figure 5-5 represent how the parser of the puzzle map's output

converts seemingly illegal puzzle maps (as in Figure 5-4) to a corresponding legal map

(as in Figure 5-5). This effect creates greater usability for the designer as fewer puzzle

blocks need to be shown on screen for the same puzzle maps. For instance. I found

that a common work flow for creating puzzle maps for the sample game (described

in Chapter 6) was I would create a single spawn block for each area and then attach

multiple blocks as output as needed. I found that this technique massively reduced

clutter and the speed with which I could construct the puzzle maps.

5.4 Future Development of Puzzle Map Editor

While the puzzle map editor has proven very powerful and usable for building puzzle

maps, there still remains some possible improvements for future iterations.

Most notably, there is currently no facility to include custom designed building

blocks in the puzzle map editor. A future iteration might include a special type of

building block (called 'Custom") that pops open a window where the designer can

name the various inputs to the block. This would allow developers to include their

own custom-made building blocks in the puzzle map editor and would vastly improve

the generality of the system.

Another possible improvement is the graph representation of the area view and

puzzle view could certainly stand some improvement. Due to the rather finicky nature

of the JGraph library, the animating graphs occasionally succumb to visual glitches

or artifacts. Future development might wish to fix these to improve the aesthetics of

the editor.

Additionally, the puzzle map editor currently lacks common functionality expected

of a graphical editor, most notably an ' Undo" function for correcting mistakes. While

64

this is a desirable feature. I chose to keep it low priority because all user actions are

already easily reversible within the editor and a usable implementation of 'Undo"

can be difficult to design well. Future development of the editor could implement this

and other desirable features that improve the usability of the editor.

Finally, the current implementation of the puzzle map editor relies entirely on

the toolbars at the top of the window for editing while the graph views are merely

a visual representation of the puzzle. A more ambitious UI might allow a designer

to construct puzzle maps completely by interacting with the graph view and adding

input and output connections as needed. While designing such a UI was beyond the

scope of my thesis, it remains as an interesting challenge for future work.

65

66

Chapter 6

Evaluation

To evaluate the usability and generality (and solvability to a lesser extent) of the

system, I constructed a sample game to demonstrate how the system could be easily

integrated with existing game development tools. This section describes the steps

necessary to integrate the sample game with the puzzle generator and includes my

thoughts on how well the system achieves its goals.

The complete source code for this sample game 'Sandwitch" (with proprietary

rendering components removed) is included with the rest of the system and can serve

as a starting point for any developers interested in integrating the system with their

own games.

6.1 Description of Game

The sample game. called 'Sandwitch". is a simple 2D tile-based 'Adventure" game

featuring a fantasy setting and basic graphics and sound. The player controls a

witch character with the keyboard and is able to move around the game world and

interact with various items and creatures. The goal of each play-through is to find a

''sandwich" item and place it in the player's inventory. Doing so involves exploration,

performing tasks for NPCs, using items with each other to alter properties or create

new items, and unlocking doors.

The game was built with the Unity game engine and tihe proprietary 2D1Tolkut

67

Figure 6-1: Screenshot from 'Sandwitch". a sample game made to present the capa-
bilities of the system

68

Figure 6-2: Screenshot of a filler room filled with enemies

library for easily managing 2D objects. As I cannot include the source code for

2DITcolkit in my public release, all 2D2ooikit code has been removed from the project.

References to the affected components were left in the code so that interested develop-

ers could easily compile and run the game after purchasing a license for the 2DTcolkii

library and including the library in the project.

The game features two components that were used to experiment with the solvabil-

ity and generality of the Puzzledice system: filler rooms and auxiliary relationships.

These components are described in more detail below.

6.1.1 Filler Rooms

To show how the Puzzledice system can be integrated with games that feature other

kinds of mechanics and puzzles than the ones generated by Puzzledice. I included a

69

set of "filler rooms" between the rooms that corresponded to area blocks in the puzzle

map.

These rooms contain simple enemies that impede the player's progress. Ultimately,

these enemies pose no threat to the player; they are merely there to expose how

traditional game elements can be added to a game integrated with Puzzledice. A

screenshot of one of these filler rooms is shown in Figure 6-2.

6.1.2 Auxiliary Relationships

As mentioned in Chapter 3, the puzzle generator maintains perfect solvability by gen-

erating oniy the items and relationships necessary for solving the puzzle. Unfortu-

nately. this can make games inconsistent. For instance, in one game, the 'Hydrogen"

and 'Oxygen" items are combined to form 'Water". In another game. 'Hydrogen"

and 'Oxygen" are produced independently as the request items of certain NPCs. In

the second game. if the two items could be combined to form 'Water", the player

might be able to put the game in an unsolvable state even though this combination

is consistent with the rules of the first game.

To experiment with relaxing solvability requirements, I added 'Auxiliary Relation-

ships" to Sandwitch. These are relationships that exist in the database but aren't

necessarily produced by the generator as part of the solution. They allow for consis-

tent behavior of items across games at the expense of perfect solvability. A warning

was added to the instructions screen of Sandwitch to acknowledge that players can

place the game in an unsolvable state if they are not careful and that they should

reset the game if they feel they have done so.

A more sophisticated use of auxiliary relationships would detect what relationships

can be generated without violating perfect solvability but these go beyond the scope

of my research. The auxiliary relationships in Sandwitch are merely there to present

how solvability can be relaxed to create consistency.

70

6.2 Integration Process

This section outlines the steps that were necessary for integrating 'Sandwitch" with

the puzzle generation library The major task for this integration was converting the

abstract outputs of the puzzle generator into concrete objects and rules in the world

of the game. For Sandwitch. this task consisted of three parts, each outlined below.

6.2.1 Spawn Puzzle Items

The most obvious task for integration was taking the abstract item descriptions from

the puzzle generator output and producing their in-game representations. This task

was relatively simple. Puzzle objects were each represented by an instantiated Unity

prefab called 'puzzleitein". This prefab has a 2D1oclklt sprite component and a

script component called 'SpawnedPuzzleltem" which maintains properties for the

item.

When an item generated by the puzzle generator is added to the game. a new

'puzzleitem" is instantiated and all of the properties of the item are copied to the

'SpawnedPuzzleltem" component. One of these properties is called 'sprite" and its

value corresponds to an ID of one of the sprites in the 2DTrolkit sprite atlas. The

'SpawnedPuzzleltem" component tells the 2Dtoofkit sprite component which sprite

to use based on this property.

Other properties of the puzzle item, such as 'carryable" or 'NPC" define the

behavior of the 'puzzleitem" object. For instance, if the item is not marked as

''carryable", the player treats it like a wall and cannot pick it up. If the item is

marked 'NPC". then text provided by other properties is displayed when the player

bumps into the object.

6.2.2 Integrate Relationships

The next major task for integration is to include the abstract relationships produced

as output of the puzzle generator and integrate them into the logic of the game. For

71

Sandwitch. the 'AreaConnection" and 'StartArea" relationships were kept separate

from the rest of the relationships as they mostly pertained to area generation.

To add custom behavior to the game for each type of relationship. a 'Relationship

Visitor" was constructed that defined a special function for each of the relationships.

Using the 'Visitor" pattern, each relationship produced by the generator is sent to

this visitor object and added to the appropriate data structures.

Most relationships in the game are added to a "Relationship Map". This structure

maps the ids of pairs of items to a possible relationship between them. When the

player attempts to use two items together. their ids are sent to the relationship map.

If a relationship was found to exist between the two items. this relationship is passed

along with the items to a 'RelationshipExecutor" (itself another relationship visitor)

that actually performs the effect of the relationship while taking item properties into

account.

As an example. when two items that can be combined are used together. the re-

lationship map returns a 'Combine" relationship which the executor than applies to

the game by spawning the result item and (possibly) destroying the two ingredient

items. In Sandwitch. the executor only destroys ingredients that have the "destroy-

OnCombine" property set to true. This is one example of using database properties

for purposes beyond puzzle generation.

Auxiliary relationships are added to the relationship map after the relevant puzzle

relationships are added. The game looks through the relationship map to find pairs

of items that do not share a relationship. It then attempts to construct a relationship

based on database properties. For instance, it will always construct insertion rela-

tionships for containers and items that can fit inside and it will occasionally construct

auxiliary combine and property change relationships.

6.2.3 . Connect Areas

The last task for the integrating game is to take abstract information about areas and

their connections and somehow construct a physical space representing the areas.

This process can be handled a variety of ways depending on the game. In an

72

early iteration of the tools, we built a text adventure integrated with the generator

that could keep the area graph in almost exactly the same form with little difficulty.

Another possible implementation might make a single 'Floor" per area and connect

the floors via stairs and ladders.

For Sandwitch. each area is represented by a single screen-sized room that can

have four possible exits. The areas are connected by a small set of 'filler" rooms

(sec 6.1.1) that branch randomly from their source rooms. I made sure that none

of the areas were given more than four connections in my puzzle maps and that the

number of filler rooms was small enough that intersections between area paths was

not a problem.

Items are then spawned in the appropriate room as indicated by their 'spawnArca"

property. Locked doors are placed at the exit of the "source" area in a door unlock

puzzle. A relationship is added to the relationship map between the lock object and

the spawned key indicating that the key can remove the lock. For convenience, the

lock object is included in the database as a database item, but it is marked 'abstract"

so that no building block attempts to generate it. This case presents another use of

the 'abstract" tag for database items.

6.3 Solvability of Puzzles

Without auxiliary relationships. I never encountered a situation in which the game

produced an unsolvable puzzle while playing. I also never encountered a case where

I placed the game into an unsolvable state, indicating that the solvability guarantees

of the puzzle generator held true.

Of course, the introduction of auxiliary relationships changed the solvability of

the game. While it was still true that the game would never produce an unsolvable

puzzle, it definitely became possible to place the game in an unsolvable state if the

wrong auxiliary relationship was activated. In my experience, this was relatively rare

and it became apparent that the game was unsolvable fairly quickly due to its small

size, but the fact remains that auxiliary relationships should be used with caution.

73

6.4 Generality of System

The entire development of Sandwitch was mostly a test of generality. While previous

iterations of the tools had been used to construct text and graphical adventure games,

I wanted to show that the system could be integrated with a game that might have

other mechanics such as action sequences. The filler rooms outlined in Section 6.1.1

were designed to display this kind of generality.

The database editor also proved to be quite useful as a general purpose tool. As

mentioned above., game specific logic was stored in database properties and items for

convenience. If I had wanted. I could have stored the entire game configuration in

the database which is a strong argument for its generality.

6.5 Usability of System

The graphical tools proved very usable for developing the sample game. Figure 6-3

shows a screenshot of the database used by the final version of the game as viewed

from the database editor. There were no issues constructing this database with the

database editor tool and I found myself using both views depending on the circum-

stances.

Figure 6-4 shows a screenshot of one of the puzzle maps used by the game as

viewed from the puzzle map editor. While the UI of the puzzle map editor was

slightly cumbersome due to the use of toolbars and menus. I also experienced no

major problems with this tool and was able to construct a wide variety of puzzle

maps with little difficulty.

Overall. it was pretty straightforward to integrate the game with the system after

the initial game logic and rendering system was set up. The only major speed-

bumps that occurred when working with the puzzle generator were due to bugs in the

implementation which have since been fixed. Overall, I consider the system usable

enough that I plan to use it extensively in my future games.

74

Add item with name; itemname Add property of type Text with name: propertyname

L V i able View

Database Items Properties
oxygen npc
frog gives
microwave sprite
I agivenby
hat madeby
powdered key keyname
slippers cooked
ashes destroyoncombine
kiss temperature
staff size
prince emotion
jar requests
ice Iivlngness
bread fulnlledtext
key carryable
knife container
toppings shinyness
water description
lock requesttext
magic jar capacity
refrigerator mutables
fire key
princess changes
sandwich pointyness
commoner
hydrogen
book
bread with toppings

Figure 6-3: The database for 'Sandwitch". as shown in the database editor

75

-Add te Ara

WIItA)Ar" Amw grass-3
Add qMt-a -ta'tJAf

nss-2 Reo Doa Frmm I
M"ke5t"At,.o

d~t 1~w.,,

0"Name* gaSs-1-ApaWM

SFMera graU-16tSWArWa

'*7" iJ

Figure 6-4:
editor

One of the puzzle maps for 'Sandwitch", as shown in the puzzle map

76

-- LL -- I

M,,] D- r-W Edd".-

, !!LZ

; 79 1-, V-1-1
S Arjw

Chapter 7

Conclusion

7.1 Limitations

The system outlined in this thesis has a number of limitations. each outlined below.

These limitations are related to the object oriented approach of the system. the

generality of the system, and the inherent algorithmic difficulty of the system.

7.1.1 Narrowness of object oriented approach

The focus of the Puzzledice system is oii puzzles involving the manipulation of physical

objects represented in game. While this approach is well suited for a variety of puzzles

common to games, there are many types of puzzles for which this approach fails.

For instance. it would be difficult for the system as-is to generate puzzles that rely

on spatial reasoning (such as block pushing puzzles, sliding puzzles. traditional jig-

saw puzzles. etc.) or puzzles that rely on word-play. Puzzles that rely on there being

more than one relationship between two objects can also be difficult to implement

with this system.

Despite the narrowness of this approach, it can be adapted to puzzles that are

seemingly unrelated to objects. For instance, 'Hidden Information" puzzles where

the player must discover some piece of information (such as a safe combination) be-

fore being able to continue could be generated by the system by treating the hidden

77

information as an object in the database and implementing the relationships as ap-

propriate in-game.

Ultimately the object oriented approach of this system is a limitation but can be

worked around in certain situations.

7.1.2 Tradeoff between generality and usability

Because one of the goals of this thesis was to produce a system that could be integrated

with a wide variety of games, the system strives to provide as much generality as

possible. Unfortunately, this generality makes the task of integrating the system

with a game considerably more challenging. ultimately affecting the usability of the

system.

Unfortunately, the problem of procedural puzzle generation presents a direct trade-

off between generality and usability. Simply put, the more general the system is, the

more details exist that will need to be filled in by a developer integrating the sys-

tem with a game. To alleviate this problem, the idea of Puzzledice 'Front-Ends" is

presented below in section 7.2.3.

7.1.3 Algorithmic Difficulty

As proven in Appendix A, the puzzle generation problem being solved by the puzzle

generator is NP-Complete, which justifies my use of an approximation algorithm for

the puzzle generator. As explained in Chapter 3, the approximation algorithm can

occasionally have a harmful effect on the usability of the system.

Ultimately. the more general problem of determining whether a given game is solv-

able is often NP-Hard. as shown in 116]. Since a common approach for procedurally

generating puzzles is to first randomly generate a puzzle and then verify its solvabil-

ity. these results show that producing interesting and perfectly solvable puzzles and

games can often be algorithmically intractable.

Despite this limitation, procedural generation remains a rich field of study. Many

games, including 117] choose to relax the solvability requirement in favor of more

78

interesting puzzles. They do so by providing the player with enough 'life-lines" that

most unsolvable situations can be escaped at the cost of some player resources.

The Puzzledice system allows solvability to be relaxed on an implementation-

by-implementation basis. providing a good amount of flexibility for developers. As

outlined in Chapter 6 the system will produce perfectly solvable puzzles if only the

items and relationships produced by the generator are added to the game. More

interesting puzzles and multi-puzzle solutions can be added to a game by including

additional relationships as desired.

7.2 Future Work

While the system as presented represents a complete body of work. there are still

potential improvements and refinements to the system.

7.2.1 More General Building Blocks

The existing building blocks generate puzzles by relying on the simple names and

properties of items described in the database. While this is sufficient to produce basic

puzzles. more general building blocks that rely more heavily on database properties

could produce interesting results.

For example, the existing 'Combine" block will create a Combine relationship

that combines two items to produce a third item. This relationship does not impose

any restrictions on the properties of the ingredient items., yet this kind of restriction

might make sense in the context of a game. For instance, iron and hammer are

combined to produce a blade., yet a developer might want the player to first heat up

the iron at forge (changing the temperature property) before it can be combined with

the hammer. A more general Combine block that imposes these sorts of restrictions

might be desirable and is worth looking into.

79

7.2.2 Puzzle Map Generation

While the puzzle map editor allows a designer to easily specify the shape of puzzles

to be produced by the puzzle generator, a system that procedurally generates the

puzzle maps could potentially produce more interesting and unexpected puzzles with

less effort on the part of the designer.

Additionally, since the database extensions outlined in Chapter 4 can be used

to procedurally generate a database, a logical next-step would be to allow similar

extensions to the puzzle maps produced by the puzzle map editor. While the OR-

Blocks allow for a small degree of dynamic puzzle maps, it would be worthwhile

exploring more complex schemes that take database relationships into account when

generating puzzle maps.

7.2.3 Front-Ends

One of the original goals of this project was for the tools to be usable by non-

programmers. While the graphical tools meet this goal. there still exists a requirement

for the runtime library to be integrated with an existing game, a task requiring non-

trivial amounts of programming.

To further improve the usability of the system for non-programmers. it is possible

and might be worthwhile to create a series of 'front-ends", pre-integrated template

games that allow designers use only the graphical tools to take advantage of the

system. For example, the sample game described in Chapter 6 could be converted

into a front-end by building a tool that accepts designer inputs (such as art and puzzle

generation parameters) and builds a version of the game using those inputs. Other

possible front-ends include an 'Interactive Fiction" front-end that produces a text

game controlled by a parser or hypertext or a 'Roguelike" front-end that produces a

turn-based role playing game.

80

7.3 Final Remarks

In this thesis, I presented a system for procedurally generating general-purpose puz-

zles in video games. The system is composed of a puzzle generator library and two

graphical tools that are flexible enough to be used for a wide range of games.

The puzzle generator library is implemented as a library for the popular Unity

game engine and as such is ready for use by any developers who take an interest

in this approach. To test the usability and flexibility of the system, I implemented

a simple game (described in Chapter 6) that made use of all of the features of the

system.

While this system has a few limitations and does not represent a perfect fit for

all situations. I believe it is a viable approach to a largely unexplored problem in the

fields of computer science and game design and can serve as a strong foundation for

future work.

81

82

Appendix A

NP-Completeness Proof for Puzzle

Generation

Claim: The problem of determining whether, given a puzzle map and database, the

puzzle generator will be able to generate a puzzle is NP-Ccmplete.

Proof:

To prove that the puzzle generation problem (PGEN) is NP-Complete, we must

show that PGEN E NP and that PGEN is NP-Hard. Proving that PGEN E NP

is easy. Given a record of the inputs and outputs of each block in the puzzle map,

we could verify in polynomial time that no rules or database properties were violated

and that the record therefore corresponded to a valid solution. Since we can verify a

PGEN solution in polynomial time, PGEN E NP.

To prove that PGEN is NP-Hard. we reduce from 3SAT. Given a boolean formula

Q of the form C, A C2 A... A C where each C corresponds to an OR clause with three

variables (e.g. < X1 V ,x 2 V x 3 >), we construct a puzzle map and database such that

the puzzle generator will be able to produce a puzzle if and only if Q has a satisfying

assignment.

83

dase3

:dausel combine

combine

dause2

Figure A-1: Clause blocks cascaded across combine blocks to simulate "anding" the
clauses.

First. each clause Ci is represented by a single puzzle block in our puzzle map and a

single item in the database. These blocks are chained together by combine blocks as

in Figure A-1 and additional items are added to the database to represent the results

of this cascade of combines.

The result of this cascade is that the puzzle generator will only generate a puzzle if

each of the clause blocks is able to successfully generate a puzzle. Now, to see how

each clause block corresponds to a Cj in Q, we examine each clause block in greater

detail.

As shown in Figure A-2,. each clause block is actually an OR block attached to three

spawn inputs, each one spawning in its own area. Each of these areas corresponds to

a specific value for a specific variable. Since area blocks can act as inputs to multiple

blocks. these areas will potentially be attached to multiple clause blocks as necessary.

Now, since each of these variables corresponds to a specific value for a specific variable

(e.g. x, = true). we must ensure that at most one of the areas corresponding to a

specific variable xi is spawned. It would make no sense if both the x1 = true and the

84

x1=True
Area spawn

x2=Faiespw Clause
A reasw (OR Block)

x3=-True spawn
Area

Figure A-2: Internal structure of a sample clause block. This one corresponds to
< X1 V -'X2 V X3 >.

85

Doo Unlock x Ar=True

Stert X1 x1=True Key
Area (S9pwn) (Canbine)

x1True
(Spewn)

Figure A-3: The structure of an area corresponding to a specific variable and value.

The spawning of x, ensures that only one of the areas corresponding to x, will be

spawned.

X, = false areas were spawned as this would correspond to the variable x, taking on

both a true and false value.

To see how to prevent this. we look at each of these areas in greater detail. Figure A-3

expands the area blocks.

The area corresponding to x, = true will attempt to spawn an item in the database

called 'xl" that is set to only be spawned once. Since the 'x1" item can only be

spawned once, we can be confident that at most one of the two areas x1 = true and

X, = false will be spawned. The additional door unlock, spawn, and combine blocks

are included only because area blocks require either door unlock blocks or other areas

as their input.

Now, since an area block spawning corresponds to a variable xi being assigned a

value of true or false and clause blocks will only successfully generate a puzzle if one

of the variables in their clause is assigned a desired value, this constructed puzzle map

and database will only be able to generate a valid puzzle if there exists a satisfying

assignment for Q. completing the proof that PGEN is NP-Hard and therefore also

NP-Complete.

86

Appendix B

Building Blocks Reference

This appendix includes a detailed specification of each of the building blocks built

for the system at this time. Each section includes the expected input to a building

block, the output produced by the block, the database properties used by the block,

and an argument for why the block guarantees solvability.

B.1 Spawn Puzzle Block

The spawn puzzle block (structure in Figure B-1) is a base case that represents the

simple act of the player picking up an item for use.

Spawn Spawn
A rea Block

Figure B-1: Structure of a Spawn Puzzle Block

87

Property Name Item Format Use
spawnArea output item text Inserted by the spawn block to indicate

the unique id of the area to spawn the
output item.

Table B.1: Properties expected or used by the spawn block

B.1.1 Input

The expected input to a spawn block is an area block. This area block represents the

spawn area for the item spawned by the spawn block.

B.1.2 Output

The output to the spawn block is the items and relationships necessary for the player

to reach the spawn area along with the output item with the requested properties.

The spawn block will also apply a 'spawnArea" property to the item to indicate

where it should be spawned. The Spawn puzzle returns no additional relationships.

B.1.3 Expected Properties

The properties expected and used by the spawn block are listed in Table B.1. In

summary, the spawn block uses a property named "spawnArca" to indicate which

area the output item should be spawned in.

B.1.4 Solvability

The spawn block guarantees that the player has access to the output item by spawning

it in an area the player is guaranteed to have access to. The solvability guarantees of

the spawn area block ensure that the player has access to any items spawned within

it.

88

I ngredi ent 1
Block

- Combine
Block

I ngredient 2-
Block

Figure B-2: Structure of a Combine Puzzle Block

B.2 Combine Puzzle Block

The combine puzzle block (structure in Figure B-2) is a building block that represents

the act of the player combining two items together to produce a third item.

B.2.1 Input

The combine block requires two other puzzle blocks as its inputs. It attempts to

generate the two 'ingredients" used in the combination as the output to these input

blocks. The combine block will also ensure that the two inputs can be transported to

each other (either via containers or simple carryability).

B.2.2 Output

The combine block produces its output item via a combine relationship. Along with

the items and relationships required to form the 'ingredient" items, the combine

block will return a combine relationship containing the output item.

89

Property Name Item Format Use
madeby output item list of string pairs Used by the combine block

to determine which items
can be used to construct the
output item.

Table B.2: Properties expected or used by the combine block

B.2.3 Expected Properties

The properties expected and used by the combine block are listed in Table B.2. In

summary, the combine block expects its output item to have the 'madeby" property

so it can determine which of the database items can be combined to produce this

item. The 'madeby" property is structured as a list of string pairs where each string

pair is a pair of ingredients that can be used to form the item.

B.2.4 Solvability

The input blocks to the combine block guarantee that the player has access to the two

'ingredient" items. Since the combine block ensures that the player can transport

the two ingredients to the same location and that the two ingredients can be combine

to form the output item. it guarantees that the player has access to the output item.

B.3 Item Request Puzzle Block

The item request puzzle block (structure in Figure B-3) is a building block that

represents an NPC that requests an item from the player (sometimes with a specific

property) and offers another item in return.

B.3.1 Input

The item request block requires two other puzzle blocks as its input blocks. One

of these blocks represents the 'requester" which requests an item. The other input

block represents the 'requested" item.

90

Re utrRequester
Block

Item Request

Requested
Block

Figure B-3: Structure of an Item Request Puzzle Block

The item request block also ensures that the two inputs can be transported to

each other (either via containers or simple carryability).

B.3.2 Output

The output of an item request block is the items and relationships necessary to

generate the 'requester" item and the "requested" item along with an item request

relationship indicating that the re(Iiested item can be given to the requester to receive

the output item as a reward.

B.3.3 Expected Properties

The properties expected and used by the item request block are listed in Table B.3.

In summary. the item request block expects the output item to have the "givenby"

property formatted as a list of items. It also expects the requester item to have the

''requests" property formatted as another list of items.

91

Property Name Item Format Use
givenby output item list of items Used by the item request

block to determine which
items will provide the out-
put item as a reward.

requests requester input list of items Used by the item request
block to determine what
items a chosen requester

might request.

mutables requested input list of properties Used by the item request
block to choose a property
that the requester can re-
quire of the requested item.
Useful for chaining item re-
quest blocks with property

change blocks.

Table B.3: Properties expected or used by the item request block

B.3.4 Solvability

The input blocks to the item request block guarantee that the player has access to

both the 'requester" and 'requested" items. Since the item request block ensures

that the player can transport these items to the same location and that the requester

will exchange the output item for the requested item, it guarantees that the player

has access to the output item.

B.4 Property Change Puzzle Block

The property change puzzle block (structure in Figure B-4) is a building block that

represents the act of a player using one item to change a physical property of another

item. It should be noted that A proptrty change block by itself dcrsn t na-ssarily

represent a puzzle required ti cmplete the game. When a property change block is

provided as an input to another block that requires a certain property of its input

(such as an item request block) then it actually becomes necessary for solving a puzzle.

92

Changer
Block

Property Change
Block

Changee
Block

Figure B-4: Structure of a Property Change Puzzle Block

B.4.1 Input

The property change block requires two other puzzle blocks as its input blocks. One

of these blocks represents the 'changee" and is used to spawn the requested output

item with an appropriate starting property. The second input block represents the

'changer" and is used to spawn the item that will change the starting property of the

changee to a requested (or randomly chosen) value.

The property change block also ensures that the two inputs can be transported

to each other (either via containers or simple carryability).

B.4.2 Output

The output of a property change block is the items and relationships necessary to

generate the 'changee" item and the 'changer" item along with a property change

relationship indicating that the changer can change a certain property of the changee.

The official output item produced by the property change block is the item spawned

as the changee.

93

Property Name Item Format Use
changedby output item list of items Used by the property

change block to deter-
mine the possible items to
generate at the changer
input.

mutables output item list of properties Used by the property
change block to determine
what properties of the
output item can actually be
changed.

changes changer input dictionary map- Used by the property
ping property change block to determine
names to a list whether a possible changer
of potential item can actually change
values a relevant property of the

output item.

Table B.4: Properties expected or used by the property change block

B.4.3 Expected Properties

The properties used and expected by the property change block are listed in Ta-

ble B.4. In more detail, the property change block expects the output item to have

the 'changedby" property and one or more items present in a 'mutables" property.

Any potential changer item is required to have the 'changes" property with the ap-

propriate property names contained within. The expected format of the 'changedby"

property is a list of item names. The expected format of the 'mutables" property is a

list of property names. The expected format of the 'changes" property is a dictionary

mapping property names to a list of potential property values. Since the database

editor as-is cannot produce the expected format of the 'changes" property, a database

extension is included that converts the format of the 'changes" property from a list

of string pairs to the expected format.

B.4.4 Solvability

The input blocks to the property change block guarantee that the player has access

to both the 'changer" and the 'changee" items. Since the property change block

94

Box
Block

I nserti on
Block

Item to I nsert
Block

Figure B-5: Structure of an Insertion Puzzle Block

ensures that the player can transport these items to the same location and that the

changer can change a relevant property of the changee. it guarantees that the player

has access to the output item with the requested properties.

B.5 Insertion Puzzle Block

The insertion puzzle block (structure in Figure B-5) is a building block that represents

the act of a player inserting one item into another. Similar to the property change

blocks, an insertion block by itself is not necessarily a complete puzzle. It is very

often combined with an unboxing block (Section B.6) to create a simple container

puzzle that only becomes necessary for solving the entire puzzle if the item to insert

into the container is not carryable by the player on its own.

In fact, since insertion blocks are almost always combined with unboxing blocks

in practice, the simple puzzle map parser included with the current system will create

a cascade of an insertion block followed by an unboxing block whenever it sees an

insertion block in the output from the puzzle map generator. This structure is shown

in Figure B-6.

95

Box
Block

I nserti on Unboxing
Block Block

Item to insert
Block

Figure B-6: Container block built by cascading an insertion block with an unboxing
block

B.5.1 Input

The insertion block requires two other puzzle blocks as its input blocks. One of these

blocks represents the 'box" which can contain the other input. The other input block

represents the 'filler" which can be inserted into the box.

The insertion block also ensures that the two inputs can be transported to each

other (either via containers or simple carryability).

B.5.2 Output

The output of an insertion block is the items and relationships necessary to generate

the 'box" item and the "filler" item along with an insertion relationship indicating

that the filler can be inserted into the box. The official output item of an insertion

block is the box item containing another item.

B.5.3 Expected Properties

The properties expected or used by the insertion block are listed in Table B.5, In

summary, the insertion block expects the output item to have the 'filledby" prop-

erty formatted as a list of items. It also expects the output item to possibly have a

96

Property Name Item Format Use
filledby output item list of items Used by the insertion block

to determine what items
can possibly fill the output
item.

contains requested prop- list of items Used by the insertion block
erties to choose an item to gener-

ate at the filler input if a
specific item is requested.

innerItemProps requested prop- dictionary map- Used by the insertion block
erties ping property to determine what proper-

names to prop- ties to request at the filler
erty values input if a specific item is

requested in the 'contains"
property.

Table B.5: Properties expected or used by the insertion block

requested property 'contains" indicating the name of an item that should be gener-

ated at the 'filler" input. Additionally, it expects the output item to possibly have a

requested property 'inneritemProps" formatted as a property dictionary indicating

what properties should be requested at the 'filler" input.

B.5.4 Solvability

The input blocks to the insertion block guarantee that the player has access to both

the 'box" and 'filler" items. Since the insertion block ensures that the player can

transport these items to the same location and that the filler can be inserted into the

box. it guarantees that the player has access to the output item containing another

item inside.

B.6 Unboxing Puzzle Block

The unboxing puzzle block (structure in Figure B-7) is a building block that acts

as the inverse of the insertion block (Section B.5). It represents the act of a player

rcmoving an item from another item. As explained in Section B.5, an unboxing block

by itself is not a complete puzzle and is often cascaded with an insertion block as in

97

Contai ner (wi th i tem i nsi de) Unboxing
Input Block Block

Figure B-7: Structure of an Unboxing Puzzle Block

Figure B-6 to produce a full container block.

B.6.1 Input

The unboxing block requires one puzzle block as its input. It will attempt to gener-

ate a 'box" item containing its requested output as the output to this input block.

Since it has only one input, it doesn't need to make any guarantees about the player

transporting inputs to the same location.

B.6.2 Output

The output of an unboxing block is the items and relationships necessary to generate

a 'box" for the output item along with the output item itself. Although possibly

redundant if cascaded with an insertion block, the unboxing block will also generate

an insertion relationship to indicate that the output item can be placed inside some

other item. The official output item of an unboxing puzzle is the requested item with

requested properties and the guarantee that the output item can be removed from a

container at some point.

B.6.3 Expected Properties

The properties expected and used by the unboxing block are listed in Table B.6. In

summary, the unboxing block expectes the output item to have the 'fills" property

formatted as a list of other items. It uses the 'contains" property and the 'inner-

98

Property Name Item Format Use
fills output item list of items Used by the unboxing block

to determine what items the
output item can fit into.

contains input item list of items Inserted by the unboxing
block to inform its input
that the box item should
contain the output item.

innerItemProps input item dictionary map- Inserted by the unboxing
ping property block to request specific
names to prop- properties for the item gen-
erty values erated inside the box at the

input block.

Table B.6: Properties expected or used by the unboxing block

ItemProps" property to communicate that the output item is inside another item to

its input blocks.

B.6.4 Solvability

The input blocks to the unboxing block guarantee that the player has access to a

''box" containing the requested output item with requested properties. Since the

unboxing puzzle merely ensures that this input is generated and that the output item

can be removed from the box, it guarantees that the player has access to the output

item.

B.7 Door Unlock Puzzle Block

The door unlock puzzle block (structure in Figure B-8) is a building block that rep-

resents a locked door between two areas, It generates a 'key" item used to unlock

the door.

B.7.1 Input

The door unlock block requires two input blocks. One of the blocks is an area block

representing the 'source" area of the locked door (i.e. the side of the door that

99

Key
Block

Door Unlock Desti nati on
Block Area

Source
Area

Figure B-8: Structure of a Door Unlock Puzzle Block

the player can reach without the key). The other input block is a puzzle block

representing the 'key" used to unlock the door. To generate a unique key for the

areas in question. the door unlock block will attempt to create a new database item

by copying an existing 'key" entry in the database.

The door unlock block also ensures that the key can be transported (either in a

container or by hand).

B.7.2 Output

Door unlock blocks can only act as input to an area block. As such, a door unlock

block does not expect to generate an output item. Instead, it expects to know the

ID of the 'destination" area block so that it can generate an appropriate locked

area connection relationship along with all the items and relationships necessary to

generate the 'key" item and provide access to the 'source" area.

B.7.3 Expected Properties

The door unlock block does not expect any properties of its items. Instead, it expects

an item named 'key" to exist in the database that it can use to generate a unique

key.

100

nput to fi Iter FilIter
Block Block

Figure B-9: Structure of a Filter Block

B.7.4 Solvability

The inputs to the door unlock block guarantee that the player has access to the

''source" area of the locked door along with a 'key" used to unlock the door. There-

fore. the door unlock block guarantees that the player has access to the 'destination"

area that maintains the door unlock block as its input.

B.8 Filter Block

The filter block (structure in Figure B-9) is a building block that can be used to filter

out certain inputs from being considered. When a filter is created. it is given a list of

database properties and required values. A required value of "None" indicates that,

to pass the filter, a given item must possess some value for the given property.

B.8.1 Input

The filter block requires one puzzle block as its input. If the requested output item

passes its filters, it will attempt to generate the output item at its sole input. Since

it has only one input. it doesn't need to make any guarantees about the player trans-

porting inputs.

101

Option 1
Block

OR
Block

Option 2
Block

Figure B-10: Structure of an OR Block

B.8.2 Output

The output of a filter block is the items and relationships necessary to generate the

output item. assuming the output item passes its filter.

B.8.3 Expected Properties

The filter does not expect the output item to have any specific properties.

B.8.4 Solvability

Filter blocks are unrelated to solvability. They are primarily a tool that allows the

designer greater control over the puzzles produced by the generator. One possible

use of filter blocks is to force the generator to choose a certain solution by altering

the puzzle map. Filters can effectively be used to remove non-determinism from the

generation process.

102

B.9 OR Block

The OR puzzle block (structure in Figure B-10) is a building block that randomnly

chooses what order to forward its output item to its inputs, allowing for a more

dynamic puzzle map.

B.9.1 Input

The OR block requires two puzzle blocks as its inputs. It will attempt to generate

its output item at both of these blocks in a random order, using the first input that

successfully produces the output item.

In terms of transporting items, the OR block will only report that its output can

be transported to another location if both of its inputs report that the item is portable

(either via container or simple carryability). The reason for this is that if the output

item is carryable when spawned at input 1. but not at input 2, the OR block can't

guarantee that it uIll spawn the output item at input 1. so it has no choice but to

be conservative.

B.9.2 Output

The output of an OR block is the items and relationships necessary to generate the

output item. provided by one of the input blocks.

B.9.3 Expected Properties

The OR block does not expect the output item to have any specific properties.

B.9.4 Solvability

One of the input blocks to the OR block guarantees that the player has access to the

output item. Additionally., the OR block will tell its output block that its output

item can be transported only if the output item would be carryable when spawned at

103

i > Block

Figure B-11: Structure of start area block

Are Are
Block Block

Figure B-12: Structure of an area to area connection

both of its input blocks. ensuring that the output block of an OR block won't make

any mistakes in determining carryability.

B.10 Area Block

The area block is a building block that represents a single unit of location within a

game. It might represent a single room or an entire floor. The sample game outlined

in Chapter 6 implements areas as a set of connected rooms. Area blocks are different

than other building blocks primarily because they accept multiple output requests.

For instance, multiple spawn blocks might spawn an item in the same area. Area

blocks also have more restrictions on their inputs and outputs.

104

B.10.1 Input

There are only three possible inputs to an area block. An area block might have one

of the following as its input:

1. A special 'Start" block indicating that this area block represents the area in

which the player starts the game. See Figure B- 11.

2. Another area block, indicating that this area is connected to another area. See

Figure B-12.

3. A door unlock block, indicating that this area is connected to another area via

a locked door. See Figure B-8.

Regardless of what its input is, an Area will try to generate anything at its input.

If its input returns successfully., that indicates that the player is guaranteed to be able

to reach this area. so the area itself can then return a success message.

B.10.2 Output

Again, there are only a few blocks that can include an area block as their inputs.

Spawn blocks, door unlock blocks, and other area blocks are the only blocks that

can attempt to generate an area. As output, an area block will return all items and

relationships necessary to reach that area. Additionally, the area block will return an

area connection relationship if necessary to connect it to its output block.

Important note: Because an area allows multiple blocks to include it as an

input, it has to be very careful about when to deallocate any of its inputs. Right

now. the first block to attempt to generate an area block becomes 'bound" to the

block and receives the appropriate output from the area. Subsequently. any blocks

that attempt to generate the same area block will receive a success message but an

empty list of items and relationships to spawn. Subsequently, the area will only

deallocate its inputs if the block 'bound" to it tells it to.

105

B.10.3 Expected Properties

An area block does not expect the database items to have any properties.

B.10.4 Solvability

The input blocks to an area guarantee that the area is reachable from the player's start

location. Since the area then generates the relevant connection relationships to ensure

that any output areas are also reachable from it, it enforces the same guarantee on its

outputs. Since a successfully generated area is guaranteed to be reachable from the

player's start location, any items spawned in the area are guaranteed to be accessible.

B. 11 Composing Building Blocks

Each building block is designed to be completely abstracted. so that the composition

of any number of building blocks will appear to act and behave like a single block.

One common example of composing multiple blocks to act like one block is the

common pattern of cascading an insertion block and an unboxing block as shown

in Figure B-6. As was mentioned in Section B.5. even this cascaded block does not

always produce relationships actually necessary for solving a puzzle. For instance,

the cascaded block will generate a 'box" for the output item, but if the output item

is carryable by the player, then the generated box is not necessary to transport the

output item, meaning the system generated a superfluous item.

If the designer wanted to generate a more strict 'Container" puzzle that actually

ensured that the generated box was required for the puzzle's solution, she might

choose to create another composed building block like the one in Figure B-13. This

composed block uses filters to ensure that neither input to a combine block is carryable

by the player and therefore a container must be used to transport the ingredients to

the same location.

While this 'Combine Container" block in Figure B-13 looks complex. once con-

structed, it can be thought of as just another building block as in Figure B-14. Com-

106

1 nplo Block
I nserti on Unboxing Filter

Block Block carryable~false
Box Combine

lnput BlockBlk
Inrgredlient 2 FilterBlc

I npt Block caryable-false

Figure B-13: A full 'Container" puzzle block built out of existing building blocks

posing building blocks in this way improves generality and grants the designer greater

control over the generated puzzles.

107

Box
I nput B Iock

Ingredient 1 Combine Contair

*nu Blck Block

Ingred ient 2

Input Block

Figure B-14: A simpler representation of the composed block in Figure B-13

108

Bibliography

11] Tarn Adams and Zach Adams. Slaves to armok: God of blood chapter ii: Dwarf
fortress. [Online], 2006.

12] Calvin Ashmore. Key and lock puzzles in procedural gameplay. Master's thesis,
Georgia Institute of Technology. April 2006.

13] Kate Compton and Michael Mateas. Procedural level design for platform games.
In Proceedings of th Second Artificial Inteffigenac and Interactive Digital Enter-
tainmeint Inrnationn Conference (AIIDE), June 2006.

14] Jonathon Doran and Ian Parberry. A prototype quest generator based on a
structural analysis of quests from four mmorpgs. In Proceedings of the pand
International Workshop on Procedural Content Generation in Games, PCGames
'11. pages 1:1 1:8, New York, NY. USA. 2011. ACM.

15] Joris Dormans. Level design as model transformation: a strategy for automated
content generation. In Proceedings of the 2nd International Workshop on Pro-
cedural Content Generation in Games, PCGames '11. pages 2:1-2:8. New York,
NY. USA, 2011. ACM.

16] Singapore-MIT GAMBIT Game Lab. Symon. [Online], 2010.

|7] Singapore-MIT GAMBIT Game Lab. Stranded in singapore. [Online], 2011

18] Edmund McMillen and Florian Himsl. The binding of isaac. 2011.

19] Microsoft. Minesweeper. 1990.

[10] Mojang. Minecraft, 2011.

[11] http: //upload.wikimedia.org/wikipedia/en/l/17/RogueScreen Shot_
CAR. PNG. Accessed April 16, 2013.

112] http: //spelunkyworld. com/images/spelunky-pc-screen.png. Accessed
April 16. 2013.

[13] http: //gambit.mit.edu/images/stranded4. jpg. Accessed April 20, 2013.

114] http://gambit.mit.edu/images/symon2. jpg. Accessed April 20, 2013.

109

115] Michael Toy, Glenn Wichman, Ken Arnold, and Jon Lane. Rogue. 1980.

116] Giovanni Viglietta. Gaming is a hard job, but someone has to do it! CCRR,
abs/1201.4995. 2012.

117] Derek Yu. Spelunky. [Online], 2009.

110

