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Abstract

In this thesis, I developed a material segmentation and classification system that takes
in images of an object and identifies the material composition of the object's surface.

The 3D surface is first segmented into regions that likely contain the same material,
using color as a heuristic measure. The material classification of each region is then
based on the cosine lobe model. The cosine lobe model is our adopted reflectance
model, which allows for a simple approximation of a material's reflectance properties,
which then serves as the material's unique signature.
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Chapter 1

Introduction

Classifying materials - wood, plastic, fabric, etc. - has always been a popular prob-

lem in the field of computer vision. It is also a challenging problem, because the

appearance of materials can change significantly under different viewing and lighting

conditions. Fully representing a material requires a multi-dimensional function and

a large collection of data points. Regardless, much research was done to take on this

challenge, because material classification is useful for many scientific applications.

In this paper, I will describe the development of a material segmentation and

classification system. One particular application that we aim to work toward is the

material classification of apparel and other consumer products. Knowledge about a

product's material can be very useful, especially for online shopping where a customer

is not physically there to inspect the product. Another application that the project

will contribute to is a computer graphics problem - the ability to generate accurate

shaders for all common materials. In other words, rendering programs would be able

to produce an accurate, realistic rendering of any material under any light condition;

the only required user input would be the specification of the desired material. While

this application does not involve classification, it does require a way to distinguish

between materials, which is a discussed topic for this project.

We approach the problem of material classification by using computer vision and

machine learning techniques to infer material types from images of objects. This

involves gathering a training set that covers a sufficient variety of materials. This
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is a plausible task, because we are targeting manufactured objects, which tend to

draw from a small set of common materials. We also simplify the representation

of a material, by adopting a simple reflectance model that approximates the multi-

dimensional function mentioned previously.

Specifically, the three goals of my thesis project are the following:

1. Determine specifications for a training set of materials, where each material is

distinguished by its unique reflectance properties.

2. Design and implement a system capable of segmenting a test object into distinct,

classifiable material regions.

3. Use the training set to perform per-region material classification.

The third goal will be discussed in the theoretical sense, and will be tested on real

data in the future.

1.1 Overview

In this paper, we will thoroughly describe the specific steps of our material classifica-

tion system. Chapter 2 includes background information and previous work related

to the ideas in the project. Chapter 3 summarizes our overall approach to building

the classification system. Chapter 4 and Chapter 5 describe the preliminary research

we did, before working with 3D data. The ideas established in these two chapters ap-

ply in a straight-forward manner to the 3D case, and are therefore worth discussing.

Chapters 6 and 7 describe how we represent reflectance and how we fit data to our

reflectance model. These procedures aim to create unique identifiers for materials and

to provide a framework for classification. Chapter 8 describes the process of point

cloud segmentation. Chapter 9 describes the final classification step, which is the step

that all our previous ideas have been building toward. Finally, Chapter 10 discusses

how these ideas can be applied to a working experimental system in the future.
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Chapter 2

Background and Previous Work

There is a great amount of research accomplished in the fields of image segmentation,

BRDF data collection, and reflectance models. In this chapter, we will discuss some

of the work and its relevance to our particular project goals.

2.1 Various Image Segmentation Algorithms

One of the first steps in our material classification system is to segment our data into

regions that are likely to be of the same material. Grouping related pixels together can

greatly decrease the number of components that must be considered in subsequent

processing steps. If we use similarity in color as a heuristic, this task becomes an

image segmentation problem.

2.1.1 Mean-shift Segmentation

Mean-shift segmentation [3] is a popular clustering-based algorithm. Most of the

computation is done in the (x, y, f(x, y)) domain, where f(x, y) is the pixel value at

location (x, y) in the image segmentation case. The segmentation procedure can be

described, on a high level, as the following steps:

1. Randomly select a region of interest in the (x, y, f(x, y)) domain, of a predeter-

mined size.
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2. Compute the centroid of the data belonging to this region.

3. Shift the region so that its center is at the location of the centroid.

4. Repeat Steps 1 - 3 until the desired amount of segmentation is achieved.

This procedure will naturally cause neighboring pixels of similar color to cluster

together. However, the mean-shift segmentation method is computationally intensive.

Iteratively computing the centroid, or the local maximum of density over a particular

region, requires much processing time. Therefore, for this project, we have chosen

to use Felzenszwalb's graph-based segmentation method, as described in the next

section.

2.1.2 Segmentation by Felzenszwalb and Huttenlocher

The image segmentation algorithm presented by Felzenszwalb and Huttenlocher [4] is

widely used for its efficiency and simplicity. The graph-based method begins by repre-

senting each pixel in the image as a single-entity component. Our initial edge weights

are equal to the color difference, or variability, between adjacent pixels (Figure 2-1).

At each step, the variability between every two adjacent components is compared to

each component's inner variability in RGB space. If the inter-component variability is

lower, the two components will merge as one. Through this iterative merging process,

the number of components decreases while the average component size increases. In

the end, the different colors and/or textures of the image are segmented appropri-

ately into different components. A preference for smaller or larger components can

be adjusted through the parameter k. A larger value of k indicates a preference for

creating larger components.

A good quality of Felzenszwalb's algorithm is that it follows a global merging

criterion. The decision to merge is not based on local gradients across pixels, but

rather on gradients across components. Each component possesses some amount

of inner variability, and this amount is compared to the variability between this

component and a second, adjacent component. To understand this, consider the

20



edge-weight(co, c1) = color-difference(co, cl)

C0 C1

Figure 2-1: The initial edge weight for co and ci in single-image Felzenszwalb seg-

mentation.

synthetic image in Figure 2-2(a). The bottom half of this synthetic image contains a

gradient from white to black. One might expect that naive segmentation algorithms

would keep the gradient area divided into different components. However, as shown in

Figure 2-2(b), Felzenszwalb's algorithm merges the entire gradient area into a single

component. For the common case, this is the result that we want. With its global

properties, Felzenszwalb's algorithm can achieve this result, because the variability

within the white-to-black gradient is very gradual and evenly spread. For the same

reason, the gradient area is not merged with the white area in the synthetic image.

The variability between the two areas is larger than the variability within the gradient

area, so they are determined to be two distinct components.

Figure 2-3 shows the segmentation of a real captured image. The randomly gen-

erated colors in the result clearly mark the individual regions. It is evident that the

left side of the sneaker has been incorrectly merged with the background. While it

is true that the input image should have been more thoroughly lighted, this example

represents the common case where a single image does not contain all the information

necessary to detect all edges. To tackle this problem, our approach uses multiple input

images for the process. As demonstrated in Chapter 4, this increases the robustness

of the segmentation.
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Figure 2-2: (a) A synthetic image whose top half contains a gray box against a
white background and whose bottom half contains a white-to-black gradient. (b) The
Felzenszwalb segmentation of the synthetic image. The three resulting components
are shown in different colors.

Figure 2-3: Felzenszwalb segmentation of
Segmentation result for k = 10.

a colorful shoe. Left: Input image. Right:

22



2.2 BRDF Representation and Data Collection

In this project, we will distinguish between materials by their unique reflectance

properties. Therefore, we need ways to collect this reflectance data, as well as to

present this data in a simple, convenient form. This section describes some related

previous work.

2.2.1 Extraction of Shape and BRDFs by Goldman et al.

Goldman et al. [5] developed a method that retrieves both shape and per-pixel BRDF

samples from a set of photographs taken from the same camera angle but under

different illuminating angles. The BRDF is a quantitative measure of a material's

reflectance properties, and will be further discussed later in this paper. The method

by Goldman et al. is based on the assumption that many real world surfaces consist of

relatively few distinct materials, which they call fundamental materials. Then, every

surface can be modeled as a weighted mixture of such materials. This produces a

simple reflectance model, which also allows for a simpler shape retrieval process that

requires only a small amount of scanning.

While Goldman et al. introduce great ideas regarding BRDF retrieval, their re-

flectance model involves several complications. For example, user input is required

to provide specific weight constraints for each fundamental material. Additionally,

there are cases where a surface can be described by more than one linear combina-

tion of fundamental materials. In these cases, it is difficult to uniquely identify the

surface. Finally, because accurate shape is retrievable due to the recent advances in

3D scanning, we would prefer a method that focuses solely on the BRDF aspect.

2.2.2 A Data-Driven Reflectance Model by Matusik et al.

Matusik et al. [8] develops a reflectance model that relies on a minimal number

of assumptions and is heavily defined by real data. After gathering 100 spheres of

different materials, a series of images of each sphere is captured, with a stationary

camera and an orbiting light source. Then, each pixel of the sphere will serve as
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a separate BRDF sample for the corresponding material. This process produces a

dataset that contains the densely sampled BRDF for each of the 100 materials.

This dataset is called the MERL BRDF database, and appears to be the most

complete BRDF dataset available. Unfortunately, it does not cover many materials

that we would like to represent and detect. Additionally, we prefer a reflectance

model that can both represent new training materials and provide a framework for

classifying test materials, without the need to densely sample the BRDF.

One such reflectance model is Lafortune et al.'s cosine lobe model [1], which we

have implemented for this project. Chapter 6 describes this model in full detail.
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Chapter 3

Approach

I was given the wonderful opportunity to do my thesis work with Google Research.

With the help from my team and supervisor, I developed a three-step approach to

building a material classification and segmentation system. We will briefly describe

each step in this chapter, and expand with further detail in the later chapters.

3.1 Data Collection

3.1.1 The Material Coverage in the Training Set

Our training set contains various fabrics, including polyester, wool, leather, cotton,

faux suede, and velvet. We acquired this set of fabrics from Room&Board and www.

f abric. com, both of which provided samples or swatches at little or no cost.

In addition to fabrics, we also collected various tile samples from Home Depot

and www. cooltiles. com. These samples include glass, slate, vinyl, sandstone, metal,

wood, and ceramic.

3.1.2 The Representation of Materials

We capture approximately 50 images of each material sample, covering eight viewing

angles and six lighting angles. From these images, we can generate a 3D point cloud

that is complete with surface normal information.
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Given the known world locations of our camera and lights, it is then possible

to compute the local lighting angles and viewing angle at each point in the point

cloud. In addition, our 50 images contain color information for each point, observed

under certain sets of viewing and lighting conditions. This is a sufficient amount of

information for us to fit into a reflectance model. In particular, we are using the

cosine lobe model, which allows us to represent a material's reflective properties with

only thirteen numerical values. These thirteen values can serve as the material's

unique signature, or feature vector, in our training set. We will go into more detail

in Chapter 6.

3.1.3 Point Cloud Generation

Point cloud generation is not one of the steps that are emphasized in this work, as I

was not directly involved with its development. However, it is still a very important

component of the project, because point clouds are a major part of the data we

collect. Furthermore, many ideas were developed under the assumption that a point

cloud of the object could be gathered. Therefore, I will briefly describe the procedure

for point cloud generation.

As described by Scharstein et al. [10], 3D surface acquisition can be achieved

by a system consisting of one projector and one or more cameras. All devices are

angled toward the object of interest, with overlapping fields of view. Then, a series of

gray code patterns [9] (Figure 3-1) are projected onto the object, providing a unique

encoding of the projected image column and row. The cameras observe which gray

code occurs at each pixel. For a given gray code value, the pixel location will vary

with the camera viewpoint, allowing stereo correspondences to be established. In this

way, a calibrated projector and one or more cameras can be used to estimate depth

via triangulation.

To further improve accuracy, a repeating "phase" pattern can be used in combina-

tion with gray codes. Scharstein et al. used a sequence of sinusoidal patterns, while

Giihring [7] demonstrated a high-accuracy method that uses hard-edged stripes with

sub-pixel center detection.
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Figure 3-1: The gray code pattern. Each column contains a unique code. This struc-
tured light can be projected onto an object to determine correspondences between
two cameras.

From the inter-camera correspondences, it is possible to compute the 3D points

of the object's surface, which populate the desired point cloud. Neighboring points

can then be combined to form surface mesh patches.

3.2 A Color-Based 3D Segmentation

Now that we have a training set, we need to develop a procedure for processing an

unknown test object and classifying its material content. Note that in the common

case, different parts of a test object can be composed of different materials. In order

to classify these materials, we can follow a bottom-up approach, a top-down approach,

or a combination of the two.

The bottom-up approach can involve per-point material classification. After clas-

sifying each point in the point cloud as a material, we can then smooth the material

regions by eliminating obvious discontinuities. However, the problem in this approach

is that there is simply not enough information in a single point to make an accurate

judgment about its material content. The little information there is will also be quite

susceptible to noise.

Therefore, we apply a top-down approach, where we first determine a segmentation

of the point cloud into regions that likely contain the same material. Per-region

material classification will be much more reliable, as there is much more data to work

with.
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We identify these regions by performing color-based segmentation. The main

reasoning behind using color information is that if a continuous region of points share

a common color and/or texture, this region is likely to be made of the same material.

We will use a modification of Felzenszwalb's segmentation algorithm that takes in

multiple color observations per point. In Chapter 4, we demonstrate the effectiveness

of this modified algorithm in the 2D case where the inputs are multiple images taken

of the object under a constant viewing angle and varying lighting angles. Then, in

Chapter 8, we will apply the same ideas to the 3D case, where we must segment a

point cloud.

3.3 Per-Region Material Classification

The final step is to classify each segmented region as a particular material. It is useful

to interpret each region as a subset of points in the point cloud. We will fit each

region to the cosine lobe model, similar to how we gathered data for our training set.

The fitting process will again produce thirteen parameter values, which will ideally

uniquely represent the material of the region. We can then perform a nearest-neighbor

classification - we can go through all the known material entries in our training set,

and locate the material that possesses the most similar parameter values. Of course,

the confidence value of the classification is dependent on the number of points in

the region, because a greater amount of (good) data leads to greater accuracy. The

confidence value is also dependent on the amount of distance between the parameters

of the test region and those of the nearest neighbor.
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Chapter 4

Image Stack Segmentation

4.1 Introduction

As mentioned in Section 2.1.2, using a single image of the object for segmentation is

usually insufficient for an accurate separation of visibly different regions. We extend

Felzenszwalb's algorithm by modifying it to accept multiple input images. We call this

modified approach image stack segmentation. If the input images are appropriately

selected, they will provide significantly more information regarding the true edges of

the object. In this chapter, we will experiment with different methods that utilize

this extra information to effectively improve segmentation results.

4.2 Setup

Our setup for image stack segmentation involves (1) a turntable, (2) a stationary

camera pointed toward the center of the table, (3) a small tray suspended above the

center of the table, and (4) two light sources affixed to the edge of the table. One

light source is positioned below the tray and is angled at approximately 30 degrees

above the horizontal. The other is positioned above the tray, and is angled at 30

degrees below.
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Figure 4-1: A subset of the image stack collected for the sneaker. Only the angle of
illumination is varied for each image.

4.3 Image Acquisition

We aim to expose all true edges of the object, by capturing multiple images under

varying lighting angles. We begin by positioning an object on the tray and turning

on one of the light sources. Images are captured by the stationary camera as the

turntable spins and the light source consequently rotates about the object. The same

procedure is done for the other light source. Around 50 images are captured per

rotation per light. Figure 4-1 shows a subset of the image stack collected for the

sneaker.

It is helpful to discuss the properties of this image stack. First, both top and

bottom light sources are used in order to fully expose the edges. Second, each image

in the stack is mostly dark, but contains great detail in a certain portion of the object.

Such images are achievable by using point lights. Assuming that we have ways to

distinguish dark areas from the object foreground and that we have enough images

per rotation, it is possible to produce a very accurate segmentation of the object.

4.4 Combining the Information - Weight Metrics

Because we are now using multiple input images, we need a way to combine all the

information and use it effectively in our segmentation process. How do we calculate

the initial edge weights if they depend on RGB differences that vary from image to
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edge-weight (c., c1 ) = color diff erence(co, c1 )

CO Ci Co Ci C0  C1

First Second Third
image image image

Figure 4-2: The initial edge weight for co and ci in image stack segmentation, where
the mean metric is used and the stack size is three.

image?

We experimented with three different distance metrics for determining the initial

edge weights. Figure 4-2 shows one possible metric that utilizes the mean. Letting co

and ci be two adjacent pixel locations, our initial edge weight is equal to the average

color distance between co and ci, calculated over the image stack. Of course, other

possible distance metrics include those that utilize the median or the maximum.

4.5 Other Adjustments - Edge Pixel Skipping and

Filtering

For our initial edge weight calculations, we provide an option to ignore pixels that are

very close to 0 or 255. Since we are using point light sources, our input images can

contain many dark areas that have little information. In these areas, the true colors

are not accurately detected and the inter-component RGB distances are not reliable.

Therefore, skipping over these dark areas will provide more accurate weights for the

segmentation algorithm. It is a similar case for the pixels close to 255 - we want to

ignore these pixels, because they are likely to have been overly saturated by the light

sources, and do not reflect the true colors of the object.

Lastly, we experimented with bilateral filtering. This is an image filter that blurs
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areas of low contrast but preserves areas of high contrast. Consequently, it can be

used to dampen the tiny variations within the same texture while maintaining the

true edges of the image. We have considered applying bilateral filtering on our input

images as a pre-processing step, as an attempt to eliminate the tiny details that could

potentially confuse the segmentation. Although it is a little effective, the improvement

is not worth the extra computation time. We have decided that our segmentation

results can be refined through other methods.

4.6 Results For Image Stack Segmentation

Results are shown in Figure 4-3. The segmentation uses approximately 100 images,

one of which is shown in the first column. The second and third columns show the

same segmentation in different colors. In order to generate the colors for Column 2,

we go through each region from the segmentation, and retrieve the locations of pixels

that belong to the region. We then look up the RGB values of these pixels in one of

the input images, and calculate the average color for the region. Column 2 displays

the regions in their respective average colors. Column 3, on the other hand, displays

them in random colors.

The two visualizations are useful in different ways. The average-color visualization

brings out any sign of over-merging. Over-merging refers to the case when areas of

visibly different colors are incorrectly merged as one region during the segmentation.

Over-merged regions are easily detected because their average colors do not reflect

the true colors in the input image.

The random-color visualization is better for under-merging detection. Under-

merging occurs when adjacent areas of the same color/texture remain as separate

regions throughout the segmentation procedure. Because the region boundaries in

the random-color visualization are very defined, it is easy to observe under-merging

when comparing against a raw input image.
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Figure 4-3: Results of image stack segmentation. The rows, from top to bottom, show
the segmentations of (1) a sneaker, (2) a wooden pepper shaker on top of a ceramic
bowl, and (3) a rubber hemisphere on top of a matte sphere. The columns, from left
to right, show (1) one of the input images, (2) segmentation result where regions are
in their average colors, and (3) the same segmentation where regions are randomly
colored to clearly show boundaries.
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4.6.1 Segmentation Issues

One issue is the occurrence of under-merging on both the background and the object.

However, it is better to under-merge than to over-merge, because the latter case causes

a loss of detail. We must keep in mind that the segmentation is a preparatory step

for per-region material classification. We want to ensure that each region contains at

most one material and texture. That said, we will tackle the under-merging issue in

Chapter 5.
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Chapter 5

HAC For Further Region Merging

5.1 Introduction

We introduce another procedure that targets the under-merging issue discussed previ-

ously. We apply hierarchical agglomerative clustering (HAC) to further merge similar

regions together.

HAC is a bottom-up approach for building a hierarchy of clusters. In our case,

each segmented region starts as its own unique cluster. Similar to the segmentation

algorithm, the goal is to merge clusters by following a particular distance metric. One

common metric is Euclidean distance. For example, if we are clustering 2D points and

we have three points {(0, 0), (0, 1), (3, 3)}, the first two points will have a smaller

Euclidean distance and are therefore more likely to merge than the other pairs of

points. The decision to merge depends on the value of the similarity threshold.

With C representing our set of clusters, the process involves the following steps:

1. Go through the pairs of clusters in C, and locate p, the pair with the smallest

distance.

2. If dist(p) < t, where t is the similarity threshold, merge the two clusters of p

into a new, single cluster ce,. More specifically, create a new cluster cnes, and

record a mapping from this cluster to the IDs of the two original clusters.

3. Remove the two original clusters from C, and add cew to C.
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4. Repeat steps 1 - 3 until all pairs have distances greater than t.

There are different clustering modes, each with a unique decision rule for merging.

Complete linkage mode merges clusters co and ci based on the maximum distance

found between two inner clusters, such that one is contained in co and the other

is contained in c1 . This mode provides the strictest form of clustering, because a

single pair of high dissimilarity will prevent the two clusters from merging, regardless

of how similar the other pairs are. This strictness can be beneficial for our case,

where over-merging should be strongly avoided. Average group linkage mode merges

clusters based on the average distance calculated, and is a more balanced form of

clustering. Finally, centroid mode uses not the information on the inner clusters of

co and ci, but rather the information on co and ci themselves. Specifically, centroid

mode works under the assumption that every newly merged cluster is represented in

weighted terms of its original two clusters. For example, if clusters are represented

as numerical vectors, the merged representative vector can be a weighted average of

the original two.

5.2 The Region Clustering Implementation

5.2.1 Inputs For Clustering

As mentioned before, each of our initial clusters will represent a region that has been

determined by our segmentation process. The representation will be in the form of a

color intensity strip. By the term color intensity strip, we are referring to a region's

collection of average intensities for the image stack. This is shown in Figure 5-1,

where each row corresponds to a different region's intensity strip. A region's average

intensity is calculated for each image in the image stack. A typical intensity strip is

mostly dark, except for one or two peaks in color. These peaks correspond to the

images where the region is most exposed to the light source during the turntable spin.

Along with the intensity strips, the clustering algorithm also takes in region sizes.

The sizes influence the cluster weights, as explained in the next sections. Average
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Figure 5-1: A plot of region intensities across the image stack/sequence for the
sneaker. The rows map to different segmented regions, while the columns map to
different frames of the light spin. The peaks of color for each region correspond to
the frames where the region is most directly exposed to light. The left peak is caused
by the higher light source and the right peak is caused by the lower light source.
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Figure 5-2: The mean image for the sneaker. The color for each pixel in the mean
image is an average over all images in the image stack. Region colors are extracted
from the mean image and used for visualizing clustering results.

region colors are the third input, and are gathered for visualization purposes. The

difference between these average colors and the average colors from the intensity strip

is that the former ones are based on the mean image. The mean image consists of

pixels averaged across the entire image stack (Figure 5-2).

5.2.2 Cluster Representation

Each initial cluster stores a region's intensity strip in the form of an RGB vector.

The length of the vector is consistent, and corresponds to the number of images in

the image stack.
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5.2.3 Merged Cluster Representation

When two clusters co and ci merge, how is the merging represented? In our imple-

mentation, the newly merged cluster will have a feature vector equal to the weighted

average of the feature vectors of co and c1. The weighting will be based on their

region sizes, as shown in (5.1). The expressions so and s, are the region sizes of co

and ci, respectively.

fve - ± fo+ fV1  (5.1)
80 + S1 S + Si

5.2.4 Distance Metrics

We provide two distance metrics for computing similarity.

Sum of squared differences Given two clusters, we look up their vector represen-

tations and calculate their squared RGB distance:

n

ssd(fvo, f i) S (fvo[i] - fv 1 [i]) 2  (5.2)
i=O

Expression (5.2) consists of a summation of individual differences for every image

index. We now calculate the mean image difference, which will be the distance metric.

1
dist(fvo, fvi) -SSD(fvo, fvi) (5.3)

n

Cosine similarity Treating clusters as high-dimensional vectors, cosine similarity

is the measure of the cosine of the angle between them. A high cosine value indicates a

high level of similarity between the clusters. The distance metric is then the expression

in (5.5).

f vo fv1sim(f vo, fvI) f vof (5.4)

dist(fvo, f vi) = 1 - sim(fvo, fyi) (5.5)
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Figure 5-3: A plot of the same region intensities, now organized. Similar regions are
now clustered together.

5.2.5 Region Clustering Results

Figure 5-3 shows the same region intensity plot as Figure 5-1, but in a different

arrangement. This arrangement reflects a post-clustering order, where regions ending

up in the same cluster are displayed together. As a result, the colors in this plot

appear more organized than the scattered colors in the previous plot.

The right side of Figure 5-4 is a distance matrix. For any row i and column j,
the intensity at (i, j) reflects the RGB distance between regions i and j. A higher

intensity indicates a greater distance. Along the diagonal are squares that represent

the formed clusters. A cluster's size, i.e. the number of regions it contains, is equal to

the width and height of its square. A cluster's collection of region colors is also shown

within the square. This visualization provides a good tool for evaluating the clustering

accuracy. Incorrect clustering is detected when a square contains inconsistent colors.
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Figure 5-4: The plot on the left is identical to the one in Figure 5-3. It is shown
again here in order to provide a visual mapping from region to cluster. On the right
is a distance matrix whose diagonal squares represent the formed clusters, in both
size and average color. One can see the region-to-cluster correlation by scanning any
row across these two images. This clustering is the result of using cosine similarity
in average group linkage mode, with a similarity threshold of 0.85.
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Figure 5-5: A clustering result for the wooden salt shaker and ceramic bowl, using
the sum-of-squared-differences metric in average group linkage mode with t = 0.87.
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Figure 5-6: Another clustering result for the salt shaker and ceramic bowl, now using
the SSD metric in centroid mode. This is also t = 0.87. Observe that centroid mode
produces less consistent clusters, such as the big brown/gray cluster shown in the
right half of the distance matrix.
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Figure 5-7: A direct comparison between pre-clustering and post-clustering segmen-
tations. Parameters are k = 10, t = 0.90, and complete linkage mode. The pre-
clustering images are the same results from Figure 4-3, but object masks have been
applied to remove some of the background regions (now in gray). For the sneaker, the
number of regions has reduced from 320 to 127. For the pepper shaker and ceramic
bowl, it has reduced from 152 to 66. For the spherical objects, 65 to 27. We have
removed almost two-thirds of the regions, with no significant sign of over-merging.
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Chapter 6

Representing Reflectance

The reflectance properties of a material can be thoroughly represented by the mate-

rial's bidirectional reflectance distribution function, or BRDF. This function describes

how a light is reflected off an opaque surface, given an incoming light direction and

an outgoing light direction. Specifically, for a point on the surface, it is the ratio of

the reflected light intensity to the incident light intensity.

By densely sampling a range of incoming and outgoing light angles and calculat-

ing their corresponding BRDFs, we can build an accurate reflectance model for the

material. Rendering programs, such as POV-Ray or Mitsuba Renderer, can then use

this model to synthetically render images of the material. The only inputs needed for

the rendering process are (1) the positions of the viewer and the light source, (2) the

intensity of the light source, and (3) the diffuse color of the material.

However, collecting the full BRDF of a material is very time-consuming, as we

would have to densely sample a whole hemisphere's worth of incident and exitant

angles. There are currently a few BRDF data sets available to the public, but they

cover only a small range of materials. In this paper, we explore a simplified reflectance

model that relies on the approximation of a few nonlinear parameters rather than on

dense sampling. This simplified model represents the materials fairly accurately, with

the additional bonus that it allows us to have very simple training data for future

classification.
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6.1 A Simplified Reflectance Model

6.1.1 Assumptions

In order to produce a simplified reflectance model, we have made a few assumptions

regarding reflectance.

1. Our model assumes isotropic reflection. For the purposes of this paper, isotropic

reflection refers to the property that the intensity of light reflected remains

unchanged as the exitant angle rotates about the incident angle, or vice versa.

2. For the diffuse component, the intensity of light reflected is dependent only on

the (up) components of the exitant angle and of the incident angle. In other

words, the diffuse color observed by a stationary viewer will remain the same

even as the light source rotates about the observed point's surface normal.

It is important to note that our use of the term isotropic reflection is different

from some other papers. While our usage is consistent with Lafortune et al. [1], the

term has also been used by Matusik et al. [8] as the property where the intensity

of reflected light remains unchanged as the exitant angle rotates about the surface

normal. Assumption (1) implies classes of symmetry that include those implied by

Matusik et al., and is therefore a stronger statement.

6.1.2 Model Specifications

Our model consists of cosine lobes, which are essentially cosine functions raised to a

high power:

f (u, v) = pC cos' a (6.1)

In this representation, f,(u, v) is the approximated BRDF for incident angle u

and exitant angle v. The term ps expresses the maximum albedo, or the reflecting

power of the lobe, and is between 0 and 1 if the normalization factor C, is assigned

to be ". The term ps and the exponent n determine the size and shape of the lobe.

46



The function in (6.1) can also be represented as a dot product of ur and v, where

urn is the mirrored incident angle. Then, by applying singular value decomposition,

we develop the expression in (6.3). To learn more about this derivation, please see

the work by LaFortune et al. [1].

f,(u,v) = PsCs[U. . V]n (6.2)

fr(u, v) = ps[CuXv, + CYYV Cuv] (6.3)

As Lafortune et al. also describe, the BRDF can be sufficiently represented as a

combination of three or more cosine lobes. In their paper, they use three lobes to

represent the specular component of the observed color, and one lobe to represent the

diffuse component. We will follow this setup.

The full expression for our model is shown in (6.6). The BRDF approximations,

frspecular(U, v) and fr,diffuse(U, v), act as weights for the specular component and the

diffuse component, respectively. The fr,specular(u, v) term is a summation of three

cosine lobes, each in the form of (6.3). The fr,diffuse(U, v) term contains a scalar

cosine function, involving only values in the i direction. The p terms have been

absorbed into the other parameters.

frspecular(U, v) = [Cx,uxvx + CY'uvYo + Cz2,iuzv]" (6.4)

fr,diffuse(U, v) = Cd(uvZ)ldiff (6.5)

COlOrobserved - frspecular (u, v)colorspecular + fr,dif fuse (u, v)COlOrdif fuse (6.6)
fr.specular(U, v) + fr,diffuse(U, v)

Certain constraints can be made on these terms in order to enforce our assump-

tions from Section 6.1.1. First, applying the constraint Cx = C, on the fr,specular(U, v)
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Known Parameters Unknown Parameters

u C.,,y, for all i E {1, 2, 3}
v C, for all i E {1, 2, 3}

CO1OTobserved nspecular,i for all i E {1, 2, 3}
COlOTspecular

Cd
ndif f use

COl OT dif f use

Table 6.1: The known and unknown parameters of our reflectance model.

term causes each component in the summation to be symmetric in x and y. Addition-

ally, we know that each component is a function of the cosine of the angle between the

incident and exitant angles. Combining these two conditions, we can conclude that

fr,specular(u, v) remains unchanged as the exitant angle rotates about the incident an-

gle, or vice versa. This is equivalent to assumption (1). Furthermore, assumption (2)

is reflected in the fdif fuse (u, v) term. The expression for fr,dif fuse (u, v) is achieved

by applying the constraint Cx = C, 0, so that only values in the direction matter.

Since the coordinate axes are aligned locally to the point's surface normal, tangent,

and bitangent, we can further conclude that fr,diffuse(U, v) remains unchanged as the

light source rotates about the point's surface normal. In other words, we conclude

that assumption (2) holds.

6.1.3 The Known Parameters of the Model

It is important to state explicitly which parameters are known and which parameters

are unknown. This information is given in Table 6.1. Of course, we know the colors

that are observed at each point. In addition, we can assume that we know u and

v, which are the local incident and exitant light angles at each point on our object.

These vectors can be retrieved from our data collection - our point cloud contains

the world coordinates of each point, and we also have the physical coordinates of our

camera and light sources.

We will now describe the method in which we transform our light vectors from the

world coordinate system to the local coordinate system for each point in our point
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n

Figure 6-1: The local coordinate system. Its axes are aligned to the normal, tangent,
and bitangent vectors.

cloud.

Notation Let ri be the unit vector that indicates the incident light direction. Let

h be the point's surface normal, and be along an adjacent edge in our triangle mesh.

From knowing these three vectors, which are expressed in world coordinates, we will

compute f), the incident light direction defined in a local coordinate system centered

at the point. This local coordinate system will have its i-, y, axes aligned to the

bitangent 6, tangent i, and h, respectively (Figure 6-1). These vectors are computed

through the following steps:

1. Compute the cross product h x 6. This will be the bitangent b, a unit vector

orthogonal to the surface normal.

2. Compute the cross product b x h. This will be the tangent t, a unit vector

orthogonal to 6 and h. The tangent t can be viewed as the "adjusted" 6 that

resulted from enforcing orthogonality between 6 and h.

Then, our expression for i will be

X ix iy iz wbX

y = 5 by 6, &Y (6.7)
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Chapter 7

Fitting Data to a Reflectance

Model

7.1 Data Format - Protocol Buffers

A major goal of this project is to design a way to fit captured data to the reflectance

model defined in Chapter 6. Our captured data will be in the form of a multi-layered

protocol buffer [6]. Figure 7-1 shows the layout of our protocol buffer design. It

contains all the 3D points in the point cloud, as well as the interpolated triangle

mesh. Although we only use the points for this project, the triangle mesh is also

included for potential future use. In addition to these components, we also have

our collection of color observations. Each color observation is an observation of a

particular 3D point, under a particular set of local camera and light angles.

Looking at the diagram in Figure 7-1, we see that the color observations are first

separated by camera view, i.e. turntable orientation. The reason for this division

is that for each camera view, there is a single set of 3D point to image coordinate

mappings. This set of mappings does not change for differing light positions. If we

had instead divided the observations based on light position, then the same set of

mappings would be stored in multiple areas of the protocol buffer. Therefore, the

camera-view-based division results in the smallest amount of redundancy.

Each camera view further expands into four components. The first component
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Figure 7-1: The layers of our protocol buffer message.
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is the camera position, which is the position of the camera adjusted according to

the current turntable orientation. The second component is the list of 3D point to

image coordinate mappings, for all 3D points that have appeared in this particular

camera view. The third component is the list of light positions. These light positions

are also adjusted according to the current turntable orientation. Finally, the fourth

component stores all the color observations. It is first divided up by light position,

so that this first level has the same number of divisions as the third component. In

other words, the areas labeled 3 and 4 in Figure 7-1 are parallel fields that contain

the same number of divisions. Then, for each light position, there is a list of the

raw color observations, corresponding to colors observed for specific 3D points and

specific pairs of camera and light positions. This list, labeled 5 in Figure 7-1, is a

parallel field to area 2. Namely, the first color observation listed in area 5 would be

for the first 3D point listed in area 2, and so on.

The fitting process should be effective because we have enough information - there

are several color observations for each point in our point cloud, each corresponding to

a different pair of camera and light positions. From the camera and light positions,

we can calculate the local incident and exitant angles, which are the i and 'L vectors

in the reflectance model. This calculation is described in Section 6.1.3. Therefore,

the information included in the protocol buffer message is enough to determine all

the known parameters of the reflectance model. The next step is then to approximate

the values of the unknown parameters of the model, through nonlinear optimization.

7.2 Nonlinear Approximation

We can use the Ceres Solver [2] to approximate the unknown parameters that are

listed in Table 6.1. The Ceres Solver is open source software that provides a nonlinear

least squares minimizer. In our specific case, we aim to compute the parameter values

that minimize the sum of squares difference between the given data and the reflectance

model.
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7.2.1 Inputs for the Ceres Solver

Our input to the Ceres Solver will be the protocol buffer message described earlier

in this chapter. The code implementation will parse through this protocol buffer and

create a list of observations, each complete with its observed color, local incident

angle, and local exitant angle. Each such observation counts as one residual block, or

one equation in our nonlinear system of equations.

7.2.2 Outputs of the Ceres Solver

The outputs of the Ceres Solver will be the optimal fitted values of our unknown

parameters. These results can also be stored as a protocol buffer (Figure 7-2). There-

fore, our training set will consist of a list of such protocol buffers. Each of these

protocol buffers will represent a certain material's reflectance properties, and will

ultimately provide a unique signature for the material.
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Figure 7-2: The protocol buffer message that stores fitting results. This is also the
structure of entries in the training set.
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Chapter 8

Point Cloud Segmentation

A typical object consists of multiple material regions, each of which we aim to classify.

Since our fitting process works on one material at a time, we need a way to distinguish

between these regions prior to data fitting. As mentioned earlier, one method is to

perform color-based segmentation, as regions of similar color are likely to be of the

same material.

In Chapter 4, we discussed the novel idea of image stack segmentation, which takes

in multiple observations of an object and combines them to produce an accurate seg-

mentation. This idea is applied to the first of two methods discussed in the next

section. As for the second method, there is a simple mapping from the 2D case to

the 3D case - pixel locations are instead 3D points in the point cloud, and adjacent

pixels are instead vertices of adjacent triangles in the triangular mesh. Therefore,

segmentation can be performed in a standard fashion. For both methods, the HAC

process for region clustering (Chapter 5) can be applied for further refinement. How-

ever, there are still new complications that we need to consider for the point cloud

case.

8.1 Various Methods

Unlike the light spin sequence where the only varying parameter was the light angle,

we now also have to consider the varying turntable angles. Figures 8-1, 8-2, and 8-3
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show texture images captured for all six lighting angles and all eight turntable angles,

for a starfruit, an orange, and a robot-shaped toy, respectively. Each point in the

point cloud appears for one or more turntable angles. Cases where the point would

not appear would be when (1) the point's surface normal is more than ninety degrees

apart from the camera angle and when (2) the point is occluded by another part of

the object. For each turntable angle for which it does appear, its color is observed

under six different light angles.

This six-element sequence qualifies as an image stack for image stack segmentation.

Consequently, we can produce a different image segmentation result for each turntable

angle for which this point has appeared. Figures 8-4, 8-5, and 8-6 show example

segmentations for all turntable angles.

How do we then combine all these results to produce the global segmentation of

the point cloud? Before we discuss some possible methods, it is helpful to clarify

what information is available to us.

1. Each 3D point belongs to an average of three or four image segments. Each of

these segments corresponds to a certain turntable angle.

2. Each image segment has a computable average color.

For further clarification, we call a segmented region of pixels an image segment,

and a segmented region of 3D points a point cloud segment.
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Figure 8-1: Texture images of a starfruit, covering all six lighting angles and all eight
turntable angles.
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Figure 8-2: Texture images of an orange, covering all six lighting angles and all eight
turntable angles.
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Figure 8-3: Texture images of a robot toy, covering all six lighting angles and all eight
turntable angles.
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Figure 8-4: Segmentations for all orientations of a starfruit. First column: Original
image. Second column: Single-image segmentation. Third, fourth, fifth columns:
Image-stack segmentation with the mean metric, median metric, and max metric,
respectively. Note that overall, image-stack segmentation detects true edges a little
better than single image segmentation.
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Figure 8-5: Segmentations for all orientations of an orange. First column: Original

image. Second column: Single-image segmentation. Third, fourth, fifth columns:
Image-stack segmentation with the mean metric, median metric, and max metric,
respectively.
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Figure 8-6: Segmentations for all orientations of a robot toy. First column: Original
image. Second column: Single-image segmentation. Third, fourth, fifth columns:
Image-stack segmentation with the mean metric, median metric, and max metric,
respectively.
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8.1.1 Method 1

Let P be a queue containing the points in the point cloud. We use the term Rfi

to refer to the ith image segment that point p belongs to. Additionally, the term

c(R ) refers to the average region color of Rp. Then, Method 1 involves the following

procedure:

1. Pop a point p off the queue P.

2. Set URP equal to RP.

3. For i E {2, ..., RP }, set URp equal to URP u RP if c(RI)-c(RI) < t, where t is

an adjustable parameter that determines the strictness of our region merging.

4. Initialize set S to 0. The set S will be a growing region of the point cloud.

5. For every 3D point r that lies in URP:

(a) Add r to S. Then, remove r from the queue P.

(b) Remove r from all image segments in R . In other words, remove r from

all the image segments it appears in.

6. Add S to our set of point cloud segments.

7. Repeat steps 1 - 5, until P becomes empty.

At the end of this procedure, every point will be assigned to exactly one point

cloud segment, resulting in a full segmentation of the point cloud. Steps 3 - 5 use the

theory that if any two points a and b share at least one image segment, it is likely

that they should belong to the same point cloud segment. Furthermore, if two image

segments have overlapping points and very similar average colors, their points should

belong to the same point cloud segment.

As explained in Section 4.6.1, the over-merging of regions is worse than the under-

merging of regions, since we need to be certain that we are not fitting data for more

than one material at a time. In theory, Method 1 should not over-merge, as long as
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the individual image segmentations had been strict. The subsequent merging of image

segments in Step 3, which is based on average colors, should also not cause a problem

under the assumption that a typical object does not contain a very complicated

material composition.

8.1.2 Method 2

Method 2 is a simpler method that does not involve stack segmentation. Instead, it

depends on mappings from the 2D case to the 3D case. Specifically, the vertices of

our segmentation graph are now 3D points instead of pixels, and the edges of our

graph are now sides of triangles in the triangular mesh. In addition to arranging

these mappings, one new complication is the assignment of colors to our points.

As explained earlier, each point has appeared for one or more turntable angles.

For each such turntable angle, it has appeared in six different colors corresponding to

the six different light sources. What is a good way, then, to assign a single color to

the point? One simple way would be to use the average color, or the color averaged

over all the observations of the point. Then, we can apply the standard single-image

Felzenszwalb segmentation method.

Method 2 can be more concretely defined as the following steps:

1. Let G be the graph that we will segment.

2. Set the vertices of G to points in the point cloud.

3. For each pair of vertices, add an edge between them if they map to points that

share a triangle in the mesh.

4. For each vertex v C G, compute c(v), the color of v averaged over all color

observations of v.

5. Run the standard Felzenszwalb segmentation on G, using differences in c(v) as

the distance metric.

6. Re-map the vertices back to their corresponding points, to finalize a full seg-

mentation of the point cloud.
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In theory, Method 2 would be less error-resilient than Method 1, as the color av-

eraging in Step 4 simplifies our available data by a significant amount. We performed

color averaging in Method 1 as well, but it was a region-based averaging. Because

pixels that ended up in the same region were assumed to have similar colors already,

averaging over these colors did not result in a big loss of information. Therefore,

in comparison, Method 1 takes better advantage of the data that we have, at the

expense of being more complex.
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Chapter 9

The Classification Step

9.1 Procedure

We are finally prepared to classify test materials. The full procedure is as follows:

1. Perform image capture to produce the Dataset protocol buffer for the test ob-

ject. This protocol buffer includes both point cloud data and color observations.

2. Perform point cloud segmentation to generate {SI, S2 , ..., S,}, where Si is a

region of the point cloud that is likely to be made of the same material.

3. For i E f{1, 2, ... , n}:

(a) Feed Si into the Ceres Solver. The Ceres Solver will fit the data to a

reflectance model, and generate t, the fitted parameter values.

(b) Go through the training set, and determine the entry g that contains

parameter values closest to t.

(c) Classify region Si as material m, where m is the material that g represents.

At the end of this procedure, every point in the point cloud will be classified as

some material. Of course, there are more considerations to be made regarding the

accuracy of this classification.
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9.2 Classification Accuracy

9.2.1 Region Size

The confidence value of the classification of a particular region is dependent on the

number of points in the region. If there are only a few points in the region, there

probably isn't enough data for the fitting process to produce an accurate reflectance

model for the region. Assuming that the majority of the data is reliable, accuracy

should increase as the amount of available data increases.

One way to avoid classifications of small regions is to detect the region sizes prior

to classification. If the size is lower than a predetermined threshold, simply mark the

region as unknown.

9.2.2 Distance in the Feature Vector Space

Another sign of classification inaccuracy is a large distance between the fitted param-

eter values of the test region and those of its nearest neighbor entry in the training

set. When a large distance occurs, it is more than possible that the test material is

simply not covered by the training set.

A similar problematic case is when two or more entries in the training set are

equally close to a test region's fitted values. Which entry represents the true material?

Finding a way to resolve such conflicts would be part of the future work for this

project.
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Chapter 10

Future Work

10.1 Fitting Real Data

If given the opportunity to work further on this project, a definite task would be

to run our fitting process on the collection of various fabrics and tiles that we have

gathered. We should then test our fitting process on real objects, and evaluate the

system's effectiveness in material classification. We want empirical evidence that

using the cosine lobe model as a reflectance model does allow us to produce unique

and consistent signatures for materials.

We expect the discovery of several overlooked cases, simply because there are

many factors that are correlated with classification accuracy. In addition to the cases

mentioned in Section 9.2 regarding the implications of region sizes and distances, our

data might not be reliable in the first place. For example, our color observations

could contain too many shadows.

10.2 Applying HAC

We should also experiment with applying HAC (hierarchical agglomerative clustering)

to the point cloud segmentation. As described in Chapter 5, performing additional

region merging with HAC greatly decreases the number of segmented regions, without

signs of over-merging. There are two advantages to having fewer regions - (1) fewer
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runs of the fitting process are required and (2) each region now contains more data

points, which increases the robustness of the fitting process. Therefore, in the ideal

sense, applying HAC advances the classification in both efficiency and accuracy.
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Chapter 11

Contributions

In conclusion, this paper described the development of a material segmentation and

classification framework, which includes the following contributions:

1. Developed a robust procedure for multi-image and 3D segmentation.

2. Designed simple and compact data structures, in the form of a protocol buffer,

to store raw observations and material feature vectors in the training set.

3. Implemented an optimization procedure that allows the BRDF to be approxi-

mated with only thirteen numerical values.

4. Developed a material classification procedure that encompasses all of the con-

tributions listed above.
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