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Abstract

With more 3D printable materials being invented, 3D printers nowadays could repli-
cate not only geometries, but also appearance and physical properties. On the soft-
ware side, the tight coupling between geometry and material specification, and the
lack of tools in specifying materials volumetrically, however, hinder the full usage of
the multi-material capability of 3D printers. The heavy dependency on traditional
modeling software also makes casual users, who are becoming one of the most impor-
tant user groups, unwelcome in this rising area.

This thesis aims to solve the above problems by proposing fab trees for creating
and combining procedural material specifications defined in OpenFL, a language for
fabrication similar to the shading language for rendering. The fab tree representation
allows users 1) to decouple material specification from geometry; hence, to be able
to reuse the created materials on different models; 2) to easily create complicated
materials systematically; 3) to have enough freedom to design materials procedurally,
and fully utilize the functionality of today's multi-material 3D printers. In addition, I
provide a fully functional user interface to explore desired visualization methods and
user interactions for casual users in the 3D printing context.

Thesis Supervisor: Wojciech Matusik
Title: Associate Professor
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Chapter 1

Introduction

3D printing technology has been called "a third industrial revolution" by The Economist

magazine. In contrast to traditional subtractive manufacturing technologies, such as

moulding, 3D printing builds models by laying out materials layer by layer. This gives

fine control to every "voxel" of the printed model, and requires much less preparation

time, space, or technical knowledge on the part of users.

Nowadays, 3D printers are no longer limited to printing prototypes in research labs

or big design firms. As the technology emerges, 3D printers can print models with

very high resolution and with various materials. They are used in printing medical

devices, engineering parts, optical devices, and even human tissues. As the price

drops, 3D printers become more and more available to casual users. People can order

3D printed jewelry and toys online and get them shipped to their homes. Designers

design clothes, lamp shades, and shoes with 3D printers.

Despite the advances in material science and hardware, the workflow on the soft-

ware side, however, has stayed underexplored. In a traditional workflow, users start

by generating a 3D model with CAD software. If they want to print a model with

multiple materials, users have to split the model into separate parts, and convert each

part to an STL format. This conversion only preserves the geometric information of

the model. The models are then imported in a printer-specific user interface. Users

assign a material to each part manually.

In traditional modeling, only the appearance on the model surface is represented.
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'I
Figure 1-1: An example of a possible material specification. Blue and green indicate
two different kinds of materials.

Directly readapting traditional modeling to doing material specification for 3D print-

ing leaves materials inside model volumes unrepresented. This hinders the full usage

of the capability of 3D printing. For example, users might want to specify some in-

ner structures with a stiffer material to support the soft outer model. Alternatively,

users might want to have a lighter material distributed across the model to modify

its weight or center of mass.

The software workflow tightly couples material specification with modeling. Users

have to remodel every time to apply the same material specification on a different

model. For example, for a simple grid design as shown in Figure 1-1, the pipeline

right now requires users to split a model into a huge number of cube meshes, and

assign each cube one material. The operation is tedious. If users want to apply

the above material specification on a different model, they would have to redo the

same operations. This workflow is especially unwelcome to casual users with limited

modeling experience.

1.1 Approach

In this thesis, I use a fab tree representation for designing materials. This repre-

sentation decouples material specifications from geometries, thus allowing users to

easily apply the designed materials on different models. The leaf nodes are volumet-

ric material specifications defined procedurally using OpenFL, a language similar to

the shading language in rendering. I provide a small collection of leaf nodes, such as

18



uniform composite materials and noise patterns. Leaf nodes are combined by internal

nodes through structures, blending, and interpolation. For instance, I include linear

gradient, add, and mask nodes. Each node has a set of parameters to which users

could bind different values.

I provide a web-based interface that lets users apply the fab-tree-designed mate-

rials to models. The interface is designed specifically for casual users with limited

modeling experience. Users can easily apply a library of predefined material speci-

fications on a model they desire. The interface visualizes material specifications on

model surfaces. I provide a planar-cut mode, where users can slice through a model

with a plane to view the inner material specification.

1.2 Contributions

The fab tree representation has the following advantages:

1. Material specification is decoupled from geometry. Users can reuse the created

materials on different models without remodeling.

2. Materials are designed procedurally. Any given position within a volume is

defined with a material composition. This procedural material specification

can fully utilize the functionality of today's 3D printers.

3. Creating materials is more systematic. Users can easily create complicated

materials through combining simpler fab trees, instead of writing a new program

from scratch.

In addition, I provide a fully functional user interface to explore desired visualiza-

tion methods and user interactions for casual users in the 3D printing context.

1.3 Thesis Overview

In Chapter 2, I introduce 3D printing in more depth. I compare my work to previous

work in procedural shading and solid texturing in computer graphics, and to func-
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tional graded materials in material science and mechanical engineering. In addition,

I include an explanation of the OpenFab project, in particular, OpenFL. Chapter 3

describes the fab tree nodes, and shows the corresponding materials rendered on a

unit cube. Chapter 4 demonstrates the user interface and workflow. I also explain

some features, such as color visualization for materials and planar-cut view mode.

System and implementation details are described in Chapter 5. Chapter 6 evaluates

the performance, and shows more rendered results. I sum up the work and suggest

future directions in Chapter 7.
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Chapter 2

Related Work

This thesis extends work in 3D printing and procedural shading. I give a more

detailed introduction to today's multi-material 3D printers and software pipelines in

2.1. In 2.2, I introduce previous work in procedural shading, which serves as a main

inspiration for my work. Some of the fab tree materials are inspired by previous

work in procedural solid textures, which are introduced in 2.3. 2.4 explains similar

attempts for designing 3D printable materials in mechanical engineering and material

science. In the last subsection 2.5, I explain OpenFab, the 3D printing framework

this thesis is based on.

2.1 3D Printing

There are several product lines that support multi-material or multi-color 3D print-

ers. Objet manufactured the world's first multi-material 3D printer, the Objet260

Connex. The Objet260 Connex can handle up to 51 composite materials, simulating

anything from rubber to transparency to rigid ABS-grade plastics. The ZPrinter 450

from 3DSystems can support 180,000 colors with two print heads. ZPrinter 650 can

support 390,000 colors with five print heads. The MakerBot Replicator supports dual

extruders that can print models with 2 colors.

These multi-material 3D printing technologies enable people to use them in ways

that were not imagined before. In fashion, dedicated jewelry, dresses and footwear
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can be 3D printed. In architecture and interior design, 3D printers can build from

realistic prototypes to usable lamps and furniture. In medicine, 3D printing can be

used to print lattices for growing tissues, dental plaster-models, and artificial limbs.

In manufacturing, rapid prototyping with 3D printing can save a great amount of

modeling and shipping time. The produced prototypes are more akin to their 3D

designs. In film production, 3D printed figures can better match the appearance of

real or animated characters.

3D printing has had a fast growth in popularity among casual users in recent

years. With services such as Shapeways and Ponoko, people can order 3D printed

models online, and get them shipped within weeks. Free online CAD libraries, such

as GrabCAD, provides thousands of printable models for people to download. Online

tools such as nervous system help users to design more customized models.

The current 3D printing workflow starts with users modeling in a traditional

CAD/CAM software. CAD/CAM software have been widely used in the professional

design and manufacturing context for over thirty years. Most well-known commercial

software packages include Rhinoceros 3D, Solidworks, Autodesk Maya, and Auto-

CAD. There are also many free and open-source packages, such as Blender. Most

CAD/CAM software provides a rich set of features; however, it is hard to use with-

out professional training.

Objet recently released plug-ins for Solidworks and several other CAD/CAM soft-

ware packages. The plug-in, while saving users from switching between applications,

does not change the underlying workflow. Generating material specifications relies on

geometry modeling. 3DSystems' ZPrinter series provide user interfaces which support

models with colors, but color specifications are limited to surfaces.

2.2 Procedural Shading

The Shade Trees paper by Cook [3] introduced the concept of programmable shading

to the realistic rendering community. Shade trees represent programmable shaders

as nodes in a tree, and they can be combined together to generate more complicated
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shadings. Shade trees are widely adapted in professional rendering pipeline, such as

RenderMan. The shade tree serves as a strong inspiration to my work.

Grabli et al. [5] adapt programmable shaders to the stylization of strokes in

line drawings. Their programmable shaders are used to control color, texture and

thickness of strokes. Lopez-Moren et al. [10] adapt the shade tree approach for

vector graphics to depict stylized materials, giving control to material attributes like

shading and reflections.

2.3 Procedural Solid Texture

In computer graphics, solid textures are used to perform high-quality sub-surface

scattering, and efficient internal surface rendering for fracturing objects. Different

algorithms are used to synthesize solid textures. Pietroni et al. survey solid texture

synthesis methods in [11]. My work is most related to procedural solid texturing,

which synthesizes textures as a function of coordinates and a set of tuning parameters.

Cook in his paper [3] define 3D noise functions for creating realistic solid patterns.

Culter et al. [4] developed a scripting language to procedurally authoring layered,

solid models using a tetrahedral representation. Previous procedural solid textures

are used for rendering purposes. The output of the fab trees can be used to generate

printable models directly. The fab tree approach is also a more systematical way for

designing materials.

2.4 Functionally Graded Materials

To address varying material composition within a volume, in material science and

mechanical engineering, there has been prior work on functionally graded materials

(FGM). Jackson [7] has proposed a volumetric representation based on tetrahedra

and voxels in 2000. MIT's three-dimensional printing group describes a system using

signed distance filed for representing geometry, and based on that, represent material

specifications as a composition function [9] [13]. The system decouples material speci-
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fication from geometry, and is more flexible and systematic in generating complicated

material specifications.

2.5 OpenFab

The OpenFab pipeline [12] offers a programming model for procedurally specify-

ing material of printable objects, and synthesizing the final voxels of material at full

printer resolution. This pipeline provides efficient storage and communication, as well

as resolution independence for different hardware and output contexts. Fablets pro-

cedurally modify the geometry and define material composition. Fablets are defined

in OpenFL, a domain-specific language, similar to the shading language in rendering.

The pipeline is designed to progressively stream output to the printer with minimal

pre-computation and with only a small slab of the volume kept in memory at any one

time.
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Chapter 3

Fab Trees

Materials are created by combining fab nodes into fab trees. The collection of fab

nodes I choose include a small number of leaf fab nodes (3.1). These leaf nodes repre-

sent uniform materials and some natural noise patterns. The leaf nodes are combined

by internal nodes (3.2) through designed structures, blending or parameter interpo-

lation. In order to make materials fit geometry better, I also provide a collection of

"mapping" nodes, marked in color red in the diagrams in this chapter.

3.1 Leaf Nodes

3.1.1 Uniform Material

Single Material SingleMaterial represents a uniform material with one base

material. The node takes the material ID of a base material as its variable input.

Figure 3-1 shows the rendered results on a unit cube with three different base materials

- Material 0, 1 and 2. The color scheme is explained further in 4.2.2.

Constant Composition ConstantComposition represents uniform composite ma-

terials, that are defined by specifying the percentage of each base material. In the

example in Figure 3-2, materialA, materialB and materialC are base material IDs.
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(a) (b) (c) (d)

Figure 3-1: Fab tree node SingleMaterial. For the three rendered results on the
unit cube, mateiral = Material 0 in (b), Material 1 in (c), and Material 2 in (d).

lateriaiB ConstantComposition
percentB
materfaic

(a) (b) (c) (d)

Figure 3-2: Fab tree node ConstantComposition. For the three rendered results on

the unit cube, materialA = Material 0, materialB = Material 1, and materialC =
Material 2. In (b), percentA = 0.25, percentB = 0.75. In (c), percentA = 0.50,
percentB = 0.50. In (d), percentA = 0.75, percentB = 0.25.

percentA and percentB represent the percentages of materialA and materialB.

percentA + percentB < 1

percentC = 1 - percentA - percentB

For the three rendered results in Figure 3-2, the percentage for materialC is 0.

The percentage for materialA, from left to right, is 0.25, 0.5, and 0.75; 0.75, 0.5, and

0.25 for materialB.

3.1.2 Noise

Noise is the texture primitive in computer graphics. When combined with math

functions, noise can generate interesting and realistic-looking textures. I here use

Perlin noise [3] as the primitive to generate speckle- and marble-looking materials.

Speckle Speckle takes two input material nodes, materialA and materialB. octave

is an integer, and scale is a double.
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Figure 3-3: Fab tree node PerlinNoise. For the three rendered results on the right,
materialA = Material 0, materialB = Material 1, scale = 4. octave is 1 in (b), 2

in ( c ), and 4 in (d).

The Speckle fab node first scales the geometry by scale,

Pne, = scale P

Then it computes the turbulence by

octave-1 perlinnoise(2 - Q)
turbulence(Q) = Y

2ii=O

The turbulence is adjusted to fit the 0 to 1 range,

turbulence'(Q) = clamp(0.5 - turbulence(Q) + 0.5, 0, 1)

materialA is assigned with percentage turbulence'(Pnew), and materialB with

percentage 1 - turbulence'(Pnew).

Figure 3-3 shows the rendered results with materialA set to Material 0, materialB

set to Material 1, scale set to 4, and octave set to 1, 2, 4 respectively from left to

right.

Marble Marble takes the same set of input variables and nodes as Speckle. It uses

the sin function to mimic the oscillation appearance in marbles.

marble(Q) = 0.5 - sin(Qv + turbulence(Q)) + 0.5

materialA is assigned with percentage marble(Pnew) and materialB with 1 -
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Figure 3-4: Fab tree node Marble. For the rendered result on the right, materialA
= Material 2, materialB = Material 0, scale = 7, octave = 4.

marble(Pnew).

Figure 3-4 shows the rendered result with materialA set to Material 0, materialB

set to Material 2, scale set to 7, and octave set to 4.

3.2 Internal Nodes

3.2.1 Regular Structures

Grid Grid represents a brick wall pattern. The pattern consists of bricks with

materialA and materialB, and gaps with material-space. of f set is the offset in

x-direction of the odd horizontal rows from the even ones. widthA is the width of

bricks with materialA; respectively widthB for bricks with materialB. height is the

height of each brick. spacing is the size of gaps.

Figure 3-5b shows the rendered result of a wall of equal-sized bricks. When chang-

ing materialA to Marble, and adjusts the widths of bricks, I get a wall in Figure

3-5d.

To pack the bricks circularly for a tube, I simply add a PolarMapping node on top

of the Grid node. PolarMapping maps the original position in Cartesian coordinate

system into Polar coordinate system.

2 - atan2(Py, PX) P 2  p2
PolarMapping(P) =( , ,

PI 2

See Figure 3-6 for an example.
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Figure 3-5: Fab tree node Grid. For the result on the left, materialA = Material
0, materialB = Material 1, material-space = Material 2, spacing= 0.01, offset
= 0.05, height = 0.09, widthA = 0.08, widthB = 0.08. For the result on the right,
materialA =Marble as defined in 3-4, materialB = Material 1, spacing= 0.01,
of f set = 0.05, height = 0.09, widthA = 0.2, widthB = 0.02.

material mapping

Grid *"A

(a) (b)

Figure 3-6: Fab tree node GridMap. The Map node takes Grid defined in Figure 3-5b
as the material, and uses PolarMapping to map the position before passing into
Grid.

So far, the bricks are packed in the xy-plane. To generate a 3D grid, I add a

SimpleGrid node to combine Grid. SimpleGrid, besides taking the width, height

and materials, takes an additional mapping node, mapping. It switches the x and

z-plane, and offset the x and y-coordinate for the odd rows. See Figure 3-7 for the

rendered result.

Foam Foam represents a material structure that contains regular holes of a different

material from the main structure material. Figure 3-8 shows two examples of foams

with different hole sizes and structure materials.

To generate more interesting foam structures, I add a Map node on top of Foam.

See Figure 3-9a for the fab tree. The Map node takes a mapping node, which uses
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ofst SimpleGrid

materialA materialspace mapping

Grid SingleMaterial2

mappingA mappingB
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Figure 3-7: A 3D grid created using Grid. The Grid node is the same as the one in
3-5a. SimpleGrid is a simplified version of Grid with one material instead of two.
materialA is set to Grid, material-space = Material 2, spacing= 0.01, of f set
= 0.05, height = 0.09 same as in the Grid node. The function node switches the
z-plane and x-plane, and then shifts the x and y-coordinate by of f set.

horzontaltgW
eria-gap Foamhorizontalt

verticaljradius

matenalmain materi -space

SiMngl~tral 4ige~ral_
(a) (b) (c)

Figure 3-8: Fab tree node Foam. For the rendered result on a unit cube in (b), I
have horizontal-gap = 0.05, vertical-gap = 0.05, horizontal-radius = 0.07,
vertical-radius = 0.1, material-main is Material 0, and material-space is Ma-

terial 2. For the result in (c), horizontal-gap = 0.02, vertical-gap = 0.02,
horizontal-radius = 0.03, vertical-radius = 0.3, material-main is Material
1, and material-space is Material 2.
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Figure 3-9: Fab tree node FoamMap. For (b) and (d), material points to the
foam structure in 3-8b; for (c), material points to the foam structure in 3-8c.
PerlinMapping uses Perlin noise to remap the position before passing it into the
Foam node. To see the detailed mathematical definitions, refer to the context.

Perlin Noise to remap the position before passing it into Foam.

Let pn stand for perlinnoise, for the example in Figure 3-9b, mapping is defined

as

mappingx(P) pn(Px, Py) + pnr(1 - P, 1 - Py)

mappingy (P) = pn(Px, Py) + pnr(Px, 1 - Py)

mappingz(P) = Pz

In Figure 3-9c,

mappingx(P) = pn(Px, Py)(1 - Px) + pn(1 - P, 1 - Py)P

mappingy (P) = pn(Px, Py)(1 - Py) + pnr(1 - P2, 1 - Py)Py

mapping,,(P) = Pz

And in Figure 3-9d,

mappingx (P) = pn(Px, Py)(1 - Px) + pn(I - P2, Py)P

mappingy(P) = P

mappingz(P) = Pz

I can stack these Perlin foam structures together using the Pattern node. The

results are shown in Figure 3-10.
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Figure 3-10: Fab tree node Pattern. material points to the each FoamMap in Figure
3-9 respectively. unit defines the size of the material block. Here unit = 0.4.

3.2.2 Recursive Structures

The following two nodes are defined recursively. They demonstrate the capability of

fab trees to create fractal- and L-system-like structures.

SpaceDivider SpaceDivider, at each step, picks a plane and splits the volume

into two using function isInGap. The node uses function getNewPos to transform

positions. The divided volumes recursively call SpaceDivider to further divide.

In Figure 3-11a, the tree uses a straight line in the picked plane to divide. The

recursion level is set to 9, and the width of the dividing lines is 0.03. See 3-11b for

the rendered result.

The tree in Figure 3-11c uses sin curves to divide. The gap lines are curved like

tree branches. For the rendered result in Figure 3-11d, the recursion level is set to 6,

and the width of the dividing lines is 0.03.

Tree The Tree node represents a tree pattern. At each level, the node generates

six branches, and simultaneously divides the volume into six sub-volumes centered by

each branch. Each sub-volume then recursively calls Tree to keep generating tree-like

structure.

branch-angle defines the angle between each adjacent branches, and branch-width

defines the width of the initial branch. For the rendered result in Figure 3-12,

branch-angle is set to -, with 8 recursion levels.
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isinGap getNewPos

Perlin SingleMatera2
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Perlin SingleMaterial2
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Figure 3-11: Fab tree node SpaceDivider. For the result on the left, materialA
Material 0, materialB = Material 1. gap-width = 0.03, and recursion-depth = 9.
For the result on the right, materialA = Material 0, materialB = Marble as defined
in 3-4. gap-width = 0.03, and recursion-depth = 6.

ffiranch_ 
Tree

branch_angle

material-tree material other

SingeMaterial SingleMaterial2

(a) (b)

Figure 3-12: Fab tree node Tree. branch-angle = P, branch-width = 0.03, and8'
recursion-depth = 8. material-tree is set to Material 0. material-other is set
to Material 2.
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Figure 3-13: Fab tree node LinearGradient. For the two rendered results on the
right, materialA = Material 1, materialB = Material 0. direction (1, 0,0) for
(b) and 0) for (c).

3.2.3 Interpolation in Object Space

LinearGradient LinearGradient represents blending of two materials, materialA

and materialB along a vector, d.

linearMapping(P) = clamp(d- P, 0, 1)

materialA has percentage 1 - linearMapping(P), and materialB has percent-

age linearMapping(P). See Figure 3-13 for examples of LinearGradient with two

different direction vectors blending Material 0 and Material 1.

RadialGradient RadialGradient blends two materials, materialA and materialB

in the radial direction using

radialMapping(P) = clamp(IPI, 0, 1)

materialA is set with percentage radialMapping(P), and materialB with per-

centage 1 - radialMapping(P).

Figure 3-14a shows the fab tree of RadialGradient blending from Material 1 to

Material 0. Figure 3-14c shows the fab tree of RadialGradient blending from Marble

to Material 0. The rendered results are shown in 3-14c and 3-14d.
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Figure 3-14: Fab tree node RadialGradient. For the result on the left, materialA
= Material 0, materialB = Material 1. For the result on the right, materialA =

Material 0, materialB = Marble as defined in 3-4.

-dk aH
materialmain materialmask materialmain materialmask

(a) (b) (c) (d)

Figure 3-15: Fab tree node Mask. The fab tree node Tree is the same as defined
in Figure 3-12. LinearGradient is the same as defined in Figure 3-13a with the
direction vector set as (0, 1, 0). Foam is the same as defined in Figure 3-8c. For (b),
mask-materialID is set as Material 0. For (d), mask-material-ID is set as Material
2.

Mask Mask uses one material as a mask to mask out the other material. The node

takes two nodes material-mask and material-main, and a variable mask-material-ID.

The percentage of base material mask-material-ID determines the percentage of

material-main in the result material.

See Figure 3-15 for two examples using the Tree node as defined in Figure 3-12.

The example on the left uses Material 0 as the mask to mask out a linear gradient

material; and the example on the right uses Material 2 as the mask to mask out a

foam material.

Add Add adds two materials together, and rescales the composition to make the

percentages of each base material add up to 1. See Figure 3-16 for an example of

adding Mask and Maski defined in Figure 3-15.
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Figure 3-16: Fab tree node Add. Add takes two materials, materialA and materialB,
and adds them up together. Mask is defined in Figure 3-15a, and Maski is defined in
Figure 3-15c.

3.2.4 Interpolation in Parameter Space

Besides blending, I provide parameter interpolation to give more node-specific controls

to interpolation. The ParameterInterpolation node takes two nodes, a volume fab

node interpolation and a mapping node interpolatable. Different from its normal

counterpart fab node, interpolation fab node contains a set of variables and nodes

that are interpolatable. interpolation takes a blending node, mapping, to blend the

values of those interpolatable variables. It then passes in the interpolated variables

to interpolatable, and evaluates the materials within a volume.

Figure 3-17 gives an example of parameter interpolation for two grid material

specifications as defined in Figure 1-1. A normal Grid fab node contains variables

spacing, height, offset, widthA, widthB, and three volume fab nodes materialA,

materialB and material-space. The GridInterpolatable node has spacing, height,

of f set, materialB and material-space fixed. GridInterpolation uses LinearMapping

in the (1,0,0) direction to interpolate widthA, widthB, and materialA.

Figure 3-18 gives an example of interpolating two foams, defined in Figure 3-8, in a

radial direction. All variables of the two foams are interpolated using RadialMapping.

These interpolation nodes in object space and parameter space allow users to easily

create more complicated materials from simple nodes, and give users fine control on

the final result. Users with little experience can quickly adapt a material on their

model by updating the parameters.
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SingleMaterial arble

(a)
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Figure 3-17: Fab tree node ParameterInterpolation interpolating the two Grid in
3-5. mapping = LinearMapping in the x-direction.GridInterpolatable is a func-
tion node. materialB = Material 1, material-space = Material 2, spacing=
0.01, off set = 0.05, height = 0.09. GridInterpolation is a volume node.
materialA-begin = Material 0, widthA-begin = 0.08, widthB-begin = 0.08;
materialA-end = Material 1, widthA-end = 0.2, widthB-end = 0.02.

interpolation interpolatable

Foaminterpolation

mapping begin end

a ) Foa

(a) (b)

Figure 3-18: Fab tree node ParameterInterpolation interpolating the two Foam fab
nodes in Figure 3-8.
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Chapter 4

User Interface and Workflow

I implement the user interface for specifying and visualizing fab tree materials. The

user interface is implemented as a browser plugin, and is interactive. After loading

a model, users can select a fab tree material from an user-defined list. The model is

automatically visualized with the material on the surface. To view the material inside

of the volume, users can enter the planar-cut mode. In this chapter, I first explain

the user interface workfiow in 4.1. I explain the features, including planar-cut mode,

material composition visualization scheme, and post processing for anti-aliasing, in

4.2.

4.1 Workflow

Users start by picking the material list, marked in red in Figure 4-1. In the screenshot,

I use three materials from Stratasys Objet500 Connex for demonstration. The fab

tree list is loaded on the left side of the page. The set of fab trees are read from

the local directory, and could be easily modified by users. The selected fab tree is

highlighted in light gray. The rendered model is at center of the page. Users can

rotate the model to view from different angles. The model is first rendered with the

default material, SingleMaterial. Users change materials by clicking on a fab tree

listed on the left. The model is updated with the new material specification within

seconds.
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material list
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GradientWlthCon"roPoirts
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Figure 4-1: Layout of the user interface. Material list is on the top of the page,
demonstrating the base materials and colors they are rendered with. Fab tree list is
on the left side of the page. It lists the fab trees loaded from the local directory. Users
can pick the fab tree by clicking the icon. The selected fab tree is highlighted in light
gray. The rendered model is at the center of the page. Users can rotate the model in
real time. Planar-cut slider is on the right of the page. Users drag the slider to slice
through the volume of the model.
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Figure 4-2: Planar-cut view for the pig model. The first row has step 4, and the
second row has step 10. From left to right, the material is SingleMaterial with base
Material 0, SingleMaterial with base Material 1, and Marble. The artifact on the
back of the pig is caused by non-consistent face normal directions in the input model.

4.2 Features

To provide better user experience, I add three features. Planar-cut view mode enables

users to visualize the materials inside of the model volume by slicing through the

model with a plane. I develop a color scheme based on Lab* color space to visualize

material compositions. This scheme can be more intuitively understood by users.

Last, to remove jagged edges, I add a FXAA post processing step.

4.2.1 Planar-cut View Mode

Planar-cut view mode allows users to view materials inside of a model. The mode is

controlled by the slider on the right of the page. Users can drag the slider to slice

through the model as a clipping plane perpendicular to the viewing angle in real time.

See Figure 4-2 for screenshots of the planar-cut mode.
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Figure 4-3: Demonstration of material composition visualization in Lab* color space.

4.2.2 Material Composition Visualization in Lab* Color Space

Since human's eyes are not good at decomposing colors into red, blue and green,

I use Lab* color space [6] to provide more intuitive color visualization for material

compositions. See Figure 4-3 for an illustration of different material compositions

visualized in Lab* color space.

Material 2 is visualized as L*, the lightness of the color. Material 0 is visualized

with large b* and small a* as green, and Material 1 is visualized with large a* and

small b*, as pink red. The higher the percentage Material 2 in the composition

the darker the color is. The higher the percentage Material 0 in the composition,

the greener and colder the color is. The higher the percentage Material 1 in the

composition, the redder and warmer the color is. If Material 0 and 1 have the same

percentage, the composition is visualized in a yellow color.

4.2.3 FXAA Post Processing

The rendering with WebGL gives jagged edges. See Figure 4-4 for an example. I use

Fast Approximate Anti-Aliasing (FXAA) [8] to smooth out the jagged edges in real

time. FXAA is added as an additional rendering pass, and is fast to compute.
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Figure 4-4: Before and after FXAA post processing on the rendering of the pig's tail.
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Chapter 5

Implementation

This chapter explains implementation details of fab tree generation and evaluation,

user interface, and the communication between the backend and frontend. I give an

overview of the system architecture in 5.1. In that same subsection, I explain each

modules from external dependency and library import in the backend to rendering in

the frontend. In 5.2, I explain fab tree generation and evaluation in detail.

5.1 System

The frontend user interface is a webpage, and the fab tree backend is a browser

plugin written with Netscape Plugin Application Programming Interface (NPAPI).

The frontend and backend communicate through the Plug-in API layer. Figure 5-1

shows the system architecture.

5.1.1 External Dependency

External dependencies are marked in green in the diagram. I use THREE.js [2], a

JavaScript library built on top of WebGL, for rendering. WebGL is a JavaScript API

for rendering 2D and 3D interactive graphics within browsers. WebGL is developed

based on OpenGL ES 2.0. JQuery UI is a common package for building user interface

in a browser. It provides a rich set of widgets. Firebreath [1] is a library built on top
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Figure 5-1: System architecture for Crumb.
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of the NPAPI for building browser plugins.

5.1.2 Library Import

The frontend passes the location of model and fab tree libraries along with a callback

function to the backend through Plug-in API. Plug-in API then starts a new thread

for importing libraries. After finishing importing, the callback is used to notify the

frontend. This asynchronous design allows the frontend and backend jobs to run in

parallel.

The library files are written in JSON. The backend reads in the libraries as

CrumbShapeLibrary and FabTreeTemplateLibrary, marked in red in the diagram.

For each shape in the library, a CrumbShape object is created, and assigned a unique

ID. Workspace uses the ID to hash the object. Similarly, for each fab tree node, a

FabTreeNode object is created. Each FabTreeNode has a unique ID, which is later

used for generating fablets. FabTreeState keeps a hash table of all FabTreeNode

objects, and compiled fablets. Initially only the default fab tree is compiled.

5.1.3 Model Geometry Rendering

CrumbShape contains vertices of the mesh, indices of the vertices on each triangular

face, and texture coordinates for vertices on each face. When a query of the ge-

ometry is made from the frontend, the Plug-in API starts a new thread converting

the queried CrumbShape object to a Boost VariantMap, that is later converted to a

JavaScript object by Firebreath. When the thread is finished, the system uses the

passed-in callback to to pass back the JavaScript object. The frontend then creates

a THREE.Geometry for rendering.

5.1.4 Model Appearance Rendering

Selecting a fab tree from the fab tree list on the user interface triggers a call to

the API for evaluating the appearance on the model surface. Workspace first finds

the Crumbbject for the current model, and reassigns the selected FabTreeNode to
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CrumbFablet. The system evaluates the fablet on the surface of the model, and

generates a default 600-by-600 texture. The texture is encoded as a Base64 image,

and passed back to the frontend. The user interface uses the image as the texture for

rendering the mesh.

5.1.5 Planar-cut Mode Rendering

When users move the planar-cut slider on the right of the user interface, the user

interface enters the planar-cut mode. The slider has 20 steps with each step of size

. Step 0 refers to the plane closest to camera while touching the bounding box of

the model, and Step 1 refers to the plane farthest away from the camera.

The user interface first uses the value of the slider to calculate the depth of the

plane perpendicular to the view angle. The user interface then generates a quad as the

intersection of the plane and the bounding box of the model. The quad is assigned

with texture coordinates, and passed to the backend. The backend evaluates the

material composition on the quad, and returns a texture.

The user interface sets the camera nearest depth to the depth of the plane. It

first renders the scene, and stores the scene in a buffer. It then renders the quad with

the returned texture and stores that in a buffer. In the next rendering pass, it uses

stencil buffer to clip the quad, so that only the part inside of the model is showing.

The stencil is used to mask out the rendered quad, and the opposite stencil is used

to mask out the rendered scene.

5.2 Fab Tree Generation and Evaluation

Fab trees are used to generate fablet material specifications. Fab trees are formed

by fab tree nodes. Each fab tree node is defined by an OpenFL code snippet and

a metafile. To generate a valid fablet, the system traverses the tree to concatenate

the code snippets together in a meaningful way. The generated fablet file is then

compiled, and evaluated in real time to generate rendered results on models.
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5.2.1 OpenFL Snippets

There are two types of fab nodes - volume and mapping. The code snippets for

mapping nodes include a collection of functions without any restrictions; however, for

volume nodes, the system requires a function which takes a 3D position as input, and

outputs a material composition.

The following is an example of the code snippet singlematerial.fab for the

volume SingleMaterial fab node:

MaterialComposition SingleMaterial(double3 pos) {

MaterialComposition mc;

initializeMaterialComposition(mc);

setMaterialQuantity(mc, material, 1);

return mc;

MaterialComposition is an array indexed by material IDs. It stores the percent-

age for each material. initializeMaterialComposition initializes the whole array

to 0. setMaterialQuantity assigns a particular material with a percentage.

SingleMaterial defines a uniform material with one base material. The returned

material composition is 1 for the specified base material, material, and 0 otherwhere.

The value for material is assigned in the metafile single-material. j son, which is

further explained in 5.2.2.

The following is the code snippet for LinearGradient.

MaterialComposition LinearGradient(double3 pos) {

MaterialComposition mc;

double t = linearMapping(pos);

mc = materialA(pos) * t + materialB(pos) * (1 - t);

return mc;

}
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The function LinearGradient uses linearMapping to project the input position

onto an ID variable t. t is used as the weight to linearly combine material com-

positions of materialA and materialB at position pos. materialA and materialB

are volume nodes here that take a position and return a material composition. The

returned material compositions are treated as vectors with k dimensions, while k is

the number of base materials.

5.2.2 Metafile Specification

There are five fields in each metafile.

" name defines the name of the fab tree node. It is later displayed in the user

interface.

" type describes the type of the node. There are two supported types - volume

and mapping. Volume nodes describe material compositions within a volume.

Mapping nodes contain a collection of helper functions.

" variables is an array of global variables used in OpenFL code snippets. It

binds values to variables. The supported types of variables include material,

float, double, int, boolean, float3, and double3.

" functions is an array that specifies the names and filenames of functions in

the code snippets. The first one in the list is considered as the main function.

" nodes is an array of fab tree node references used in the code snippets.

See the following metafile single-material. json for SingleMaterial.

"name" : "SingleMaterial",

"type" : "volume",

"variables" [

{

"name" :"material",
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"type" : "material",

"value" 0

}

"functions" [

"name": "SingleMaterial",

"filename": "single-material.fab"

}

"nodes" : [

]

}

SingleMaterial is the most basic leaf node. See Figure 3-1 for an illustration of

the fab tree node SingleMaterial. The code snippet does not make references to

any other node; hence the nodes field in the metafile is empty. There is one variable,

material, which is assigned with Material 0. There is one function, SingleMaterial,

defined in file single-material.fab.

LinearGradient is an internal node. See Figure 3-13. LinearGradient makes ref-

erences to three nodes: two volume nodes, materialA and materialB, and one map-

ping node, linearMapping. materialA is assigned with SingleMaterial. materialB

is assigned with SingleMateriall. linearMapping is assigned with MapTolD-x that

takes a position and returns its x-coordinate. linear-gradient . j son is as below.

{
"name" : "LinearGradient",

"type" : "volume",

"nodes": [

{

"name": "materialA",
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"type": "volume",

"value": "SingleMaterial"

{

"name": "materialB",

"type": "volume",

"value": "SingleMateriall"

{

"name": "linearMapping",

"type": "map",

"value": "MapTolDx"

}

"variables": [

1,

"functions": [

{

"name": "LinearGradient",

"filename": "linear-gradient .fab"

}

]

5.2.3 Fablet Concatenation

To generate a valid fablet, the system traverses the fab tree using references in the

metafiles, and concatenates the code snippets in . f ab files. OpenFL does not support

structs or scopes by the time this work is done; therefore, the system generates an ID

for each fab node to identify them. All function and variable names in each fab node

is concatenated with the ID. See the generated fablet for LinearGradient as follows.
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fablet LinearGradient {

@uniform Material material_12;

@uniform Material material1;

double MapTolD-x_13(double3 pos) {

return clamp(pos[O], 0, 1);

}

MaterialComposition SingleMaterialI2(double3 pos) {

MaterialComposition mc;

initializeMaterialComposition(mc);

setMaterialQuantity(mc, material_12, 1);

return mc;

}

MaterialComposition SingleMaterialIl(double3 pos) {

MaterialComposition mc;

initializeMaterialComposition(mc);

setMaterialQuantity(mc, material_Ii, 1);

return mc;

}

MaterialComposition LinearGradientIO(double3 pos) {

MaterialComposition mc;

double t = MapTolD-xI3(pos);

t = clamp(t, 0, 1);

mc = SingleMaterialIl(pos) * t + SingleMaterial_12(pos) * (1-t);

return mc;

}

53



LinearGradient_10
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Figure 5-2: Fab tree for LinearGradient with generated IDs.

@Surface(double3 pos, double3 normal) {

return pos;

}

@Volume(double3 pos) {

return LinearGradientIO(pos);

}

}

All functions and variables for LinearGradient are concatenated with ID 10. Its

fab node references are substituted with the right function names; e.g. linearGradient

is substituted with MapTo1D_x_13, and materialA with SingleMaterial_Ii.

See Figure 5-2 for an illustration of the LinearGradient fab tree with ID marked.

The system first assigns LinearGradient with ID IO, SingleMaterial with Ii,

SingleMateriall with 12, and MapTolD_x with 13. Node reference materialA is re-

placed with SingleMaterialIl, materialB with SingleMaterial 12, and linearMapping

with MapTo1D_x_13.

5.2.4 Fablet Evaluation

The generated fablets are compiled with the OpenFL compiler to generate . f abo

files. The system first binds values specified in metafiles to the uniform variables

simultaneously. When a query at a given position is made, the system then binds
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Figure 5-3: Illustration for generating the texture for the surface of a cube model.
The triangle being evaluated is highlighted in red both on the 3D cube and on the
texture plane. The system checks all pixels in the bounding box of the triangle on the
texture plane. and finds the corresponding 3D position in the 3D cube. The system
queries the compiled fablet to get the material composition at the position, translates
that composition to a color, and stores in the texture. On the right is a more detailed
view of the generated texture with multiple triangles. Only the boundaries are marked
with colors.

the position to the fablet's varying variable, and runs the compiled fablet to get the

material composition at the queried position.

5.2.5 Texture Generation

A texture is generated for visualizing the material composition on the surface or for a

cutting plane. For each triangular face on the surface of a mesh, the system samples

in its texture coordinate space. See Figure 5-3a for an illustration. The system first

finds the bounding box of the 2D triangle, and then samples 12 points to see if at least

2 of them fall in the triangle. If yes, the system uses the barycentric coordinates to

find its corresponding 3D position, and queries the compiled fablet to get its material

composition. The material composition then is translated to color using the color

scheme explained in 4.2.2. The resulting texture is used for rendering.
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Chapter 6

Results

In this chapter, I give an evaluation of the performance at each stage of the system.

I also show some rendered results.

6.1 Performance

All experiments are run on MacBook Pro with 2.4 GHz Intel Core 2 Duo processor

and 4 GB memory. The graphics card is NVIDIA GeForce 320M 256 MB. The system

is Mac OS X 10.8.2, and the browser is Mozilla Firefox 22.0.

6.1.1 Geometry Importing and Conversion

I tested geometry importing and conversion performance on three models of different

sizes. The cube model contains eight vertices and twelve faces. The pig model contains

606 vertices and 1208 faces. The dinosaur model contains 2309 vertices and 4587

faces.

I measure five operations in this stage. For these operations, I use three labels,

b, f, and bf, where b stands for backend operations, f stands for frontend operations,

and bf stands for operations both in the backend and frontend.

1. Importing Model (b) - reading the model from the local system in the back-

end;
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Cube (12) Pig (1208) Dinosaur (4587)
Importing model (b) 0.381 ms 16,608 ms 18.166 ms
Importing model (bf) 5 ms 7 ms 24 ms

Conversion to VariantMap (b) 0.979 ms 72.448 ms 276.889 ms

Conversion to JavaScript object (bf) 102 ms 3592 ms 21726 ms

Creating THREE.js Geometry (f) 3 ms 12 ms 80 ms
Total 110 ms 3612 ms 21830 ms

Table 6.1: Performance on importing model of different sizes. The number in the
brackets behind the model names refers to the number of faces in the model. b
stands backend, f stands for frontend, and bf stands for backend and frontend.

2. Importing Model (bf) - sending a request from the frontend to the backend

to import a model, and sending back an acknowledgement from the backend to

the frontend that the model has been read;

3. Conversion to VariantMap (b) - converting the imported model to Boost

VariantMap (a format the Firebreath API requires for converting to an JavaScript

object later);

4. Conversion to JavaScript object (bf) - sending a request from the frontend

to the backend to get the geometry of the model, and sending back the geometry

as a JavaScript object from the backend to the frontend;

5. Creating THREE.js Geometry - creating a THREE.js geometry object for

rendering.

Operation 1 is part of Operation 2. Operation 3 is part of Operation 4. See Table

6.1 for the measured time of each operation on the three models.

The bottleneck in this stage is the conversion to a JavaScript object within Fire-

breath. This step constitutes 92.7% for small models, and more than 99% for large

models. It takes 110 ms to import a cube model, and more than 21 seconds to import

a dinosaur model with 4587 faces.
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SingleM. Marble LinearG. Foam Tree

Importing 0.309 ms 0.264 ms 0.213 ms 0.333 ms 0.326 ms

Generation 0.425 ms 0.416 ms 0.287 ms 0.302 ms 0.314 ms

Compiling 1879.99 ms 2065.63 ms 1773.2 ms 1789.22 ms 1870.93 ms
Evaluation 3225.61 ms 3829.29 ms 3148.75 ms 2998.45 ms 3230.35 ms
Total 5106.334 ms 5895.6 ms 4922.45 ms 4788.305 ms 5101.92 ms

Table 6.2: Performance on importing and generating fab trees.

6.1.2 Fab Tree Importing and Generation

This stage is for reading in the fab tree specification and preparing it for generating

the texture later. I test the performance on five different fab trees - SingleMaterial,

Marble, LinearGradient, Foam, and Tree. These fab trees are explained in Figure

3-1, 3-4, 3-13, 3-8 and 3-12, respectively. SingleMaterial and Marble are trees of a

single node. LinearGradient, Foam and Tree have two levels.

This stage breaks down to 4 operations:

1. Importing - importing a fab tree from JSON metafiles and fablet snippets in

the local directory.

2. Generation - generating a compilable fablet for the fab tree by concatenating

fablet snippets together.

3. Compiling - compiling the generated fablet into a .fabo format.

4. Evaluation - evaluating the .fabo format, and binding the initial uniform vari-

ables.

All these operations happen in the backend. See Table 6.2 for the measured time

of each operation on the five selected fab trees.

Compiling and evaluating constitute more than 99% of the total operation time

for all fab trees. Given that the complexity of fablets are similar, the operation time

for compiling and evaluation between different models differs less than 0.2 ms. The

total time for importing and generating fab trees is around 5 seconds.
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SingleM. Marble LinearG. Foam Tree
Cube 200 x200 411.768 ms 486.119 ms 441.451 ms 403.872 ms 517.182 ms
Cube 600x600 3527.6 ms 4128.62 ms 3785.18 ms 3451.06 ms 4407.26 ms
Pig 200 x 200 674.661 ms 729.686 ms 689.829 ms 620.753 ms 776.26 ms
Pig 600 x 600 3548.38 ms 4132.28 ms 3884.4 ms 3476.04 ms 4445.13 ms
Dino. 200 x 200 901.574 ms 1043.42 ms 975.041 ms 891.488 ms 1086.73 ms
Dino. 600x600 3642.34 ms 4238.33 ms 3980.31 ms 3604.53 ms 4531.56 ms

Table 6.3: Performance on texture generation for different fab trees on different mod-
els with different texture sizes.

6.1.3 Texture Generation

For visualizing the material specification defined by a fab tree, I evaluate the fab tree

on the surface of a model, and generate a texture image. I test the three models

mentioned above with two different texture sizes, 200x200 and 600x600. Cube has

12 faces, pig 1208 faces and dinosaur 4587 faces. I use the same set of fab trees as

above. The performance is shown in Table 6.3.

For the same fab tree on the same model, the time on generating textures is

linear with respect to the texture size. The complexity of fab trees matters to the

performance. For simple fab trees, such as SingleMaterial and Foam, it takes 3.6

seconds to generate a 600 x600 texture for the dinosaur model, but around 4.5 seconds

for more complicated fab tree such as Tree. The model sizes affect the performance

within 0.25 seconds given the models I pick.

For the user interface, I use textures of size 600 x 600. The time spent on generating

the texture is roughly 0.7 of that spent on importing and generating fab trees.

6.2 Rendered Results

I show a set of results generated with the system. Figure 6-1 shows a pig model with

three different foam materials. The foam materials are defined as in Figure 3-8 and

3-18. The same foam materials are applied on a dinosaur model in Figure 6-2.

The parametrization method I provide can generate discontinuities along the edges

of triangles on the surface for larger models. See Figure 6-2 for examples along the
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(a) (b) (c)

Figure 6-1: The "pig" model with three different foam materials

N N

(b) (c)

Figure 6-2: The "dinosaur" model with three different foam materials.

(a) (b)

Figure 6-3: Buildings with a marble material and a grid material.
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neck of the dinosaur. Since the sizes of triangles on the mesh does not correspond to

the sizes on the texture plane, the resolution of the generated texture is limited by

the largest triangle. This results as inconsistent resolution across the volume. In the

future, the system should provide a better parametrization component for assigning

texture coordinates.

Figure 6-3 shows two different building models with a marble texture, and a grid

texture. The marble texture is defined as in Figure 3-4, and grid is defined as in

Figure 1-1 but with ConstantComposition instead of SingleMaterial. The left

building model has 2328 vertices and 4460 faces. The right building model has 246

vertices and 274 faces.

Aliasing artifact is present in the building example on the right. This is caused

by only querying one 3D position for one pixel in the texture image. In the future,

multiple sampling is needed for preserving high-frequency component in the texture.
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Chapter 7

Conclusions and Future Work

In this thesis, I borrow inspiration from shade trees in rendering, and introduce fab

trees to procedurally design materials for 3D printing purposes. I also provide an

user interface for users to interactively specify and visualize materials on 3D models.

In 7.1, I summarize the contributions. In 7.2, I discuss the limitations to my work,

while outlining some of the possible future directions.

7.1 Conclusions

In this thesis, I provide a set of base nodes, including uniform materials and noise

patterns, and internal nodes to combine the base nodes into a more complicated tree

through designed structures, blending, and parameter interpolation. The volumetric

material specification is represented in OpenFL, a language that procedurally defines

material composition for any given 3D position in a volume.

In addition, I provide a web user interface to visualize created fab trees on any

given 3D model in real time. When a fab tree is selected, the appearance on the

surface of the model is evaluated in the backend and passed into the user interface

as a texture. In order to view the material specification inside the volume, the user

interface supports a planar-cut view mode. Users can drag a slider to slice through

the model with the plane perpendicular to the view direction.

Compared to the current 3D printing software pipeline, the fab tree representation
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gives users freedom to decouple material specification from geometry. They can reap-

ply their designed materials on different models. Generating complicated materials

is more systematic and approachable. The system allows users to fully utilize the

capabilities of today's 3D printers.

7.2 Future Work

There are several limitations to the work presented in the thesis. First, the perfor-

mance of the system is not optimal. For more complicated fab tree materials, the

evaluation time for the generated fablets constitutes the performance. In the planar-

cut mode, with the stencil buffer approach, the system evaluates many points that

might not be inside the model. In the future, this could be improved by having the

frontend generating the intersected planar geometries and passing them to the back-

end to get evaluated. To reduce evaluation delay, the system can cache 20 planes

for the given view angle, thereby allowing users to slice through the model more

seamlessly.

Second, I have only tried to build the system on Mac OS X as a Firefox plugin.

Having more platform and browser supports can be future work.

Third, users can not share their designed materials easily. In the future, I can

adapt the server-client architecture. Users can then build fab trees, and share them

online with others. More domain- and usage-specific fab trees can be created.

Fourth, this work only supports designing materials in the volume space, and that

are not geometry-aware. By the time this thesis is written, OpenFL also supports

surface offsets and sign distance functions. In the future, I would like to include

boundary-aware fab tree nodes and surface-texturing fab tree nodes. Surface offsets

can be visualized with bump maps.

Last, the user interface does not support exporting the generated material spec-

ification to a print-ready format. In the future, the user interface can be connected

to the Fabricator, part of the OpenFab project. So after users are content with their

creation, they can print their models with their designed materials on a 3D printer

64



right away.
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