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Abstract. Electrical resonators are widely used in quantum information
processing, by engineering an electromagnetic interaction with qubits based
on real or virtual exchange of microwave photons. This interaction relies
on strong coupling between the qubits’ transition dipole moments and the
vacuum fluctuations of the resonator in the same manner as cavity quantum
electrodynamics (QED), and has consequently come to be called ‘circuit QED’
(cQED). Great strides in the control of quantum information have already
been made experimentally using this idea. However, the central role played by
photon exchange induced by quantum fluctuations in cQED does result in some
characteristic limitations. In this paper, we discuss an alternative method for
coupling qubits electromagnetically via a resonator, in which no photons are
exchanged, and where the resonator need not have strong quantum fluctuations.
Instead, the interaction can be viewed in terms of classical, effective ‘forces’
exerted by the qubits on the resonator, and the resulting resonator dynamics
used to produce qubit entanglement are purely classical in nature. We show
how this type of interaction is similar to that encountered in the manipulation of
atomic ion qubits, and we exploit this analogy to construct two-qubit entangling
operations that are largely insensitive to thermal or other noise in the resonator,
and to its quality factor. These operations are also extensible to larger numbers
of qubits, allowing interactions to be selectively generated among any desired
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subset of those coupled to a single resonator. Our proposal is potentially
applicable to a variety of physical qubit modalities, including superconducting
and semiconducting solid-state qubits, trapped molecular ions, and possibly even
electron spins in solids.
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1. Introduction

Microwave electrical resonators are already an important tool for manipulating quantum
information using electromagnetic interactions [1]. As a means of quantum information storage
or communication, they are used or proposed in a variety of schemes [2] involving, for example,
trapped molecular ions [3], neutral polar molecules [4], Rydberg atoms [5–9], superconducting
Josephson-junction qubits [10–13], and electron spins in solids [14, 15]. In nearly all of these
cases, the resonator is used in a way familiar from optical cavity quantum electrodynamics
[9, 16], in which the qubits exchange real or virtual photons with it, and where the figure of
merit is the speed with which this exchange occurs (or equivalently, the strength of the coherent
coupling between the qubit’s transition dipole moment and the resonator’s vacuum fluctuations).
In fact, many of the seminal cavity quantum electrodynamics (QED) results have been replicated
in a circuit environment, a field now known as circuit QED [10–13] (cQED).

Just as with its optical predecessor, cQED for a single qubit interacting with a resonator
can be approximately described by the Jaynes–Cummings model1, with the Hamiltonian
[10, 11]

Ĥ JC =
h̄ωq

2
σ̂ z

q + h̄ωr

(
â†â +

1

2

)
+ Ĥ⊥, (1)

where h̄ωq is the energy splitting between the qubit’s two states |e〉 and |g〉, whose Hilbert
space is acted on by σ̂ z

q , and â is the annihilation operator for photons of a resonator mode
with frequency ωr described by the photon number states |n〉 such that â|0〉 = 0. The transverse
interaction is given in the rotating-wave approximation by

Ĥ⊥ ≈ h̄g⊥

(
âσ̂ +

q + â†σ̂−

q

)
(2)

1 See, for example, [17].
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where σ̂±

q ≡ (σ̂ x
q ± iσ̂ y

q )/2 are the qubit raising and lowering operators, and equation (2) holds
approximately as long as the coupling is not too strong: g⊥ � ωr, ωq. The coupling strength has
the generic form: h̄g⊥ = µqδFrms, where µq ≡ 〈g|µ̂q|e〉 is the qubit’s transition dipole moment
(µ̂q is the appropriate electric or magnetic dipole moment operator for the qubit), and δFrms is
the rms amplitude of the resonator’s electric or magnetic field vacuum fluctuations. Equation (2)
then describes an exchange of photons between the qubit and the resonator mode, via interaction
between the resonator field and the qubit’s dipole moment.

If the detuning between resonator and qubit 1q ≡ ωr − ωq is much smaller than g⊥, Rabi
flopping at frequency g⊥ (described in the frequency domain by the vacuum Rabi splitting)
can occur between the states |e, 0〉 and |g, 1〉, corresponding to the coherent exchange of a
single photon between qubit and resonator. This can also be viewed as an exchange of one
bit of quantum information (encoded in the resonator mode’s Hilbert space spanned by the
Fock states |0〉 and |1〉), which can then be transferred to another qubit coupled to the same
resonator [18]. Achieving high fidelity in this transfer, however, requires extremely high Q for
the resonator, since the photon spends at least a time of order the Rabi period stored inside
it. To relax this requirement, most cQED is performed instead in the regime of large detuning
1q � g⊥, known as the dispersive limit, where the effective coupling, to second order in Ĥ⊥, is
≈ g2

⊥
/1q. Although g⊥ must be made larger by a factor 1q/g⊥ � 1 compared to the resonant

case to achieve the same operation speed, the time spent by the photon in the resonator is
effectively reduced to 1−1

q ; this can be viewed as virtual photon exchange, in the sense that
the photon moves to a different energy by entering the resonator, but only for a time consistent
with the uncertainty principle. The detuning also provides a natural means of controlling the
effective qubit–resonator interaction, since in most cases the transition dipole µq of the qubit is
not dynamically adjustable, whereas its energy splitting h̄ωq often is2.

This cQED paradigm has been extremely fruitful for quantum information processing
(QIP), and has already been used to demonstrate many important QIP functions including
complete multi-qubit algorithms [24, 25]. In some cases it is already the basis for envisioned
scaling to much larger systems [26–28]. In spite of its great success in the QIP area, however,
cQED also has some characteristic limitations when used in this context. For example, when
a qubit is engineered to have a large transition dipole so that it can have strong g⊥ for cQED,
it necessarily becomes more sensitive to its electromagnetic environment (i.e. it can couple
to spurious environmental modes as well as the desired resonator mode) [29]. In addition,
since cQED effectively uses quantum states of the resonator to store or transport quantum
information, its protocols are quite sensitive to the presence of spurious photon populations
in the resonator (including in some cases those in higher modes) which are often encountered
in these experiments [30–32], and also to a lesser extent its quality factor Q. Next, although
adjustment of the detuning 1q does provide effective control of the relevant interactions in
experiments to date, it does not in general allow a very strong suppression of the coupling when
it is intended to be off, since it scales only as ∼1/1q; furthermore, the adjustability of the
qubit energy required for this control necessarily implies that the qubits are sensitive to noise
in whatever parameter is used for this adjustment (e.g. charge or flux noise, or noise in the
external bias itself) [21–23]. Finally, since in the dispersive limit of cQED interaction with a

2 An exception to this is [19], where the qubit’s intrinsic electromagnetic coupling can be adjusted independently
of the cavity. Also, an alternative method for achieving tunability is to keep the coupling to the cavity on with the
detuning fixed at a large value, and use the resulting weak, static coupling in conjunction with a strong driving
field [20–23].
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qubit requires exchanging a virtual photon with it, direct N -qubit interactions get exponentially
weaker as N increases. This implies that sequential, pairwise interaction between qubits will
likely remain the best way to achieve N -qubit entanglement in cQED, even when all of the N
qubits are coupled to the same resonator. In this case one must take care when scheduling the
various ramps of the qubit energies, since whenever any two qubits come close to resonance
with each other they must both be very far detuned from the resonator to avoid spurious
entanglement.

In this paper, we describe an alternative approach for coupling qubits and electrical
resonators via electromagnetic interactions, which does not involve any photon exchange
between them, and therefore largely avoids these limitations. In contrast to the transverse
interaction Ĥ⊥ of cQED (cf equation (2)), we will show how one can generically realize a
‘longitudinal’ interaction3 of the form

Ĥ || ≈ h̄g||(ûσ̂ z
q ), (3)

where û ≡ (â + â†)/
√

2 is the dimensionless resonator coordinate. This interaction energy, being
linearly proportional to the ‘position’ of the resonator, constitutes an effective force acting on
it which depends on the qubit’s internal state (via the operator σ̂ z

q ). Our proposal is built on
an analogy between this interaction and demonstrated methods [40, 41] developed by Mølmer
and Sørensen [42, 43] and Milburn et al, [44] for entangling trapped atomic ions via qubit-
state dependent forces acting on their collective center-of-mass vibrational modes (whose role
is played here by the microwave resonator mode). In contrast to cQED as described above,
our scheme involves only quasiclassical resonator states (whose quantum fluctuations can be
small), under the influence of effectively classical, qubit-state-dependent forces4. As a result,
the resonator dynamics which drive the gate operations are classical and macroscopic in nature,
do not depend at all on the qubit frequency ωq, and are insensitive to thermal or other fluctuations
and damping. In addition, because the interaction does not rely on photon exchange, all of the
qubits coupled to the same resonator can be entangled in the same amount of time it takes
to entangle only two of them, and any subset of the qubits can be similarly entangled with
negligible effects on the others.

In section 2 below, we describe the general qubit–resonator system under consideration.
Section 3 contains a detailed description of how entangling operations can be achieved between
qubits coupled to a common resonator, without any real or virtual exchange of photons. In
section 4 we consider in detail the leading sources of error in two-qubit entangling operations,
and evaluate these errors for a variety of different physical qubit modalities, which are
tabulated in table 1. We conclude in section 5 with a summary of the differences between our
proposal and cQED. Appendix A gives a comparison between our proposal and the analogous
trapped-ion gates on which it is based, appendices B and C describe certain aspects of the

3 Qubit–resonator or qubit–qubit couplings with longitudinal character have been considered previously in various
forms: in [33–35] for superconducting charge qubits, in [36–38] for superconducting flux qubits, and in [39] as a
way to measure geometric phases of a resonator.
4 Qubit-state-dependent resonator displacements can also be realized in the dispersive limit of cQED by driving
the resonator and using the qubit-induced dispersive frequency shift of the resonator to achieve a state-dependent
result. In [45, 46] this effect was used for manipulation or measurement of a resonator state by a single qubit.
This is distinct from our proposal, in that it involves virtual exchange of photons and can be viewed as a nonlinear
response of the system to a resonator drive. By contrast, in the present work the force on the resonator is explicitly
qubit-state-dependent, the system remains linear, and only the qubits are driven.
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Table 1. Selected examples of two-qubit controlled-π gate parameters (details
for each system are contained in appendix D). For transmission-line resonators,
L r and Cr are effective values for a given longitudinal mode. The results for gate
errors shown are the thermal photon-number dephasing rate 0φ (equation (25))
(which is present due to the coupling even when no two-qubit gates are being
driven), the gate time tπ (equation (19)), the state-dependent displacement error
εδα (equation (21)) and the resonator fluctuation error εδη+ (equation (24)).
The total two-qubit error is defined as: ε2qb ≡ 20φtπ + εδα + εδη+ . This does not
include single-qubit errors unrelated to the coupling (e.g. T1 relaxation for
the superconducting qubits or charge-noise dephasing for the quantum dots).
The quantity 1hm is the minimum detuning to the next higher oscillator mode
(assuming it has the same Lamb–Dicke parameter as the fundamental), such
that the associated error εhm 6 0.1 × ε2qb (equation (C.1)). In all cases we
take a resonator temperature of Tr = 40 mK, corresponding to n̄ = 0.4, 0.03,

4 × 10−6, 10−8 for ωr/2π = 1, 3, 10, 15 GHz. Note that both donor spins in Si
and NV centers in diamond do not themselves require low temperatures, but
here they are required to suppress errors due to classical, thermal resonator
fluctuations (cf equations (24) and (25)).

Qubit type Q ωr/2π (GHz) L r (pH) Cr (pF) η−

0 (×103) δm(×103) m

Flux 25000 10 250 0.84 4.5 64 100
[57, 58] 106 10 500 0.46 3.4 12 6

106 1 30 nH 0.84 1.4 2.9 2
Transmon 50000 10 250 0.84 1.4 14 50
[73] 106 10 250 0.84 1.4 6.2 10

106 3 1500 1.8 1.1 2.2 2
S-T QDs 25000 15 100 nHa 1.1 fF 3.0 33 60
[60–63] 106 15 30 nHa 3.7 fF 1.7 6.6 8
CaCl+ [3] 106 1 1000 nHa 25 fF 0.14 1.1 30
31P–28Si [64] 107 1 100b 250 0.014 0.14 50
NV [65] 107 1 100b 250 0.028 0.13 10

Qubit type 0−1
φ (ms) tπ (ns) εδα (×103) εδη+ (×103) ε2qb (×103) 1hm (GHz) Nγ

Flux 8.4 160 0.015 2.0 2.0 2.3 2600
[57, 58] 0.76 51 10−9 0.27 0.34 3.5 5200

0.23 700 2 × 10−8 2.0 5.0 0.03 3.1 × 106

Transmon 126 360 0.053 4.5 4.6 0.4 104

[73] 6.3 160 7 × 10−8 0.51 0.53 0.9 104

0.10 300 3 × 10−8 1.5 4.5 0.07 2.0 × 105

S-T QDs 3.0 120 0.20 3.8 4.0 1.4 2.5
[60–63] 0.83 80 5 × 10−7 0.47 0.57 1.4 8.5
CaCl+ [3] 25s 27µs 0.0032 5.1 5.1 0.01 2.4 × 109

31P–28Si [64] 2 × 107s 350µs 0.005 4.0 4.0 0.5 MHz 2.4 × 109

NV [65] 2s 78µs 6 × 10−5 4.4 4.5 0.8 MHz 2.4 × 109

a Impedances this high require the use of high-kinetic-inductance materials [29, 74–78]. Limits on achievable
resonator Q and impedance for these materials are as yet unknown.
b Impedances this low may not be achievable in a transmission-line resonator.
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gate error calculations, and appendix D concerns the assumptions and parameter values used to
evaluate the gate errors shown in table 1.

2. General qubit–resonator system

We first consider a single qubit coupled to a microwave resonator, using the circuits of
figures 1(a) and (b) to describe capacitive and inductive qubit/resonator coupling, respectively.
These two circuits are chosen to be exactly dual [47–52] to each other, so that they are governed
by equations of identical form, and the solution for one case can be mapped directly to the
other using the transformation: Q ↔ 8, C ↔ L , V ↔ I, Y ↔ Z . In each of these circuits, the
qubit is described by the eigenenergies E g

q (p) and E e
q(p) of its energy eigenstates |g〉 and |e〉,

respectively, which are assumed to be functions of a parameter p

Ĥ q ≡ E g
q (p)|g〉〈g| + E e

q(p)|e〉〈e|

=
1
2 [E+

q (p) Î + E−

q (p)σ̂ z
q ], (4)

where E±

q (p) ≡ E e
q(p) ± E g

q (p) and Î , σ̂ z
q are Pauli operators in the qubit Hilbert space. In

figure 1(a), we have p → Qq, which can be viewed as an induced offset charge bias for the
qubit; in figure 1(b) we have p → 8q, which can be viewed as an external flux bias for the
qubit. Figure 1(c) shows schematically energies Eq(Qq) applicable to the circuit of figure 1(a)
by solid red and blue lines for the qubit states |g〉 and |e〉, respectively. Note that we focus
here on the case where equation (4) holds even when p is time-dependent, so that E g

q (p) and
E e

q(p) can be treated as classical potential energies in the context of the resonator dynamics.
In this situation, any interaction with the qubit involving only the variable p cannot induce
transitions between |g〉 and |e〉 and therefore cannot involve any photon exchange, and can have
no transverse (dispersive) character of the form of equation (2).5 In this case, as illustrated in
(c) and discussed in detail below, the dynamical electrical properties of the qubits (for small
excursions of p about a quasistatic bias point) can be described using the linear circuit elements
shown in the shaded ovals.

The qubit–resonator interaction of interest here is represented generically by the coupling
elements Cc and Lc in figures 1(a) and (b), respectively, which looking out from the resonator
form a capacitive (a) or inductive (b) divider with the qubit. When the qubit/resonator coupling
is zero (i.e. Cc in (a) replaced by an open or Lc in (b) replaced by a short), p is determined only
by the external bias of the qubit (Vb or Ib); for finite coupling, however, p acquires a contribution
proportional to the resonator field. Figure 2 shows schematically a number of implementations
of the proposed coupling, for different physical qubit modalities, which can be described by one
or the other of figure 1(a) and (b) (see appendix D for details). For the superconducting qubit
examples of figures 2(a) (transmon [10–13]) and 2(b) (flux qubit [57–59]) which have both been
demonstrated extensively in a cQED architecture, we also show a direct comparison between

5 In the case when Eq(p) are only adiabatic eigenenergies, and |e〉–|g〉 transitions can be driven by time-dependent
p via nonadiabatic effects, a nonzero transverse interaction is present. The coupling scheme we discuss in this work
can still be used in this case as long as the transverse component of the interaction is made sufficiently small by,
for example, using large 1q.
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Figure 1. Electromagnetic qubit/resonator coupling without exchange of
photons. (a) shows the electric circuit analyzed in detail; (b) is its exact
dual [47–52], governed by equations of identical form. The resonator in both
cases is indicated in the circuit schematic by a blue color; its damping, and the
associated fluctuations, are modeled in (a) via Rr and the Langevin noise source
δVr, and in (b) by Gr and δ Ir. In (a), the canonical coordinates of the circuit
Qb, Qc, Qr are known as loop charges [53], each of which is associated with an
irreducible loop of the circuit as illustrated by the dashed red lines. The circuit
of (b) is described using a dual representation in terms of the node flux variables
8b, 8c, 8r indicated by the red dots, whose sign relative to ground is defined
by the branch orientations shown with black arrows. The qubit in each case is
indicated by a shaded oval, and is described in our model by its eigenenergies
Eq(p), with p ∈ Qq, 8q, which function as effective potentials to which the
resonator is coupled. An example of these energies and their dependence on p
is shown in (c) for the electric case p → Qq by red and blue lines for |g〉 and
|e〉, respectively. In equation (6), we expand Eq(Qq) in excursions δQq about a
quasistatic bias point Qq0, as illustrated in (c). This expansion can be described
by the circuit elements in the shaded oval of (a): the linear slope dEq/dQq is
the voltage across the qubit, and the curvature d2 Eq/dQ2

q is the inverse of its
effective capacitance C−1

q . The former is the basis of our proposal for multiqubit
gates, and results in an effective force on the resonator which displaces its equi-
librium position by a (qubit-state-dependent) amount CcVq (cf equation (7)), as
illustrated in (c) for two different qubit bias points A and B. At point A we have
V e,g

q = 0, and there is no force or displacement, while B illustrates the nonzero
case. Dual statements to these can be made about the inductive case shown in
(b). In our proposed gate operations, we modulate the force by modulating the
qubit bias point, an example of which is illustrated in (c) by the curved arrow
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Figure 1. (Continued) going from A→B→C→A, and so on. Note that the effect
of the second order term associated with C−1

q (or its dual, inductive analogue) has
previously been exploited as the basis for qubit–resonator interactions [54–56],
but in the context of our proposal it contributes only a higher-order source of
potential errors which we address in section 4 below.

that case which uses a transverse coupling of the form of equation (2), and our proposal, which
has no transverse coupling and can be described by equation (3)6.

To analyze our proposed qubit/resonator coupling in detail, we consider specifically the
capacitively coupled circuit of figure 1(a) for definiteness, since the corresponding results for
the inductive circuit of 1(b) can then be obtained using a duality transformation [47–52]. We
write its classical potential energy in terms of the loop charges Qb, Qc, Qr shown in the figure
by dashed red lines (for the moment taking the damping resistance Rr and associated noise
fluctuations δVr to be zero), which play the role of canonical position variables in a Lagrangian
description of the circuit [53]

U (Qr, Qc, Qb) = Eq(0) +
(Qr − Qc)

2

2Cr
+

Q2
c

2Cc
+

Q2
b

2Cb
+

∫ Qq

0
Vq(Q ′

q) dQ ′

q︸ ︷︷ ︸
Eq(Qq)−Eq(0)

−

∫ Qb

0
Vb(Q ′

b) dQ ′

b,

(5)

where Qq ≡ Qb + Qc, Vq(Qq) ≡ dEq/dQq is the voltage across the qubit, Vb(Qb) is defined as
the bias voltage for which the source has supplied a charge Qb. The last two terms are the
potential energies of the qubit and the source, respectively, and can be viewed as work done by
(or on) the source as Vb is turned up from zero. Note that the magnetic circuit of figure 1(b) is
described correspondingly in a dual representation where node fluxes play the role of position
variables [53].

We now seek to expand equation (5) in deviations of the charges Qn (n ∈ b, c, r) about
their minimum-energy, quasistatic solutions Qn0, which are given formally by: Qb0 = Cb(Vb −

Vq), Qc0 = −CcVq, Qr0 = Qc0 (these solutions must be obtained self-consistently since Vq

depends implicitly on Qq). We now expand the qubit energy about this bias point, writing:
Qn ≡ Qn0 + δQn:

Eq(Qq0 + δQq) ≈ Eq(Qq0) + VqδQq +
δQ2

q

2Cq
+ · · · , (6)

where the linear term is proportional to the qubit voltage Vq, and the quadratic term can be
written in terms of an effective dynamic capacitance of the qubit Cq ≡ (d2 Eq/dQ2

q)
−1 (also

known as ‘quantum capacitance’ [54–56]), both of which are evaluated at Qq0. As illustrated in
figure 1(a), this expansion allows us to view the potential energy of the qubit in a circuit context

6 Note that in figure 1(b) an inductive divider is used to couple the qubit to the resonator, rather than mutual
inductances shown in the examples of figures 2(a) and (b); this allows us to retain an exact duality with the
capacitive circuit of figure 1(a) so that our results can be applied to both cases. The use of mutual inductances
can be accounted for with minor modifications to the results presented here.

New Journal of Physics 15 (2013) 123011 (http://www.njp.org/)

http://www.njp.org/


9

a)

b)

d)

e)
L

R

+

c)

qE e

qΦ

g

qE
e

qΦ

g

qE

e

qQ

g

qE
e

qQ

g

qE

e

qΦ

g

f)
qE

e

qΦ
g

M

M M

longitudinal transverse (cQED)

Cc

Figure 2. Examples of physical qubits coupled to resonators in the manner
of our proposal. For each case we show a schematic of the equivalent circuit
with the qubit in black, resonator in light blue, and the coupling element in red
(note that the qubit bias connections are not shown). Next to each case are the
corresponding energies E g

q (p) and E e
q(p) (see appendix D for details). Panels

(a) and (b) are the transmon [10–13] and flux qubit [57–59], respectively, both of
which have been extensively demonstrated in a cQED architecture. The left side
of these panels shows our proposed longitudinal coupling for these cases, which
can be described by the circuit of figure 1(b). The corresponding cQED circuits
for these same qubits are shown for comparison on the right side of these panels.
The inductors inside the qubits represent the usual geometrical loop inductances,
which are typically neglected since they are much smaller than the Josephson
inductances of the JJs. They are shown here only to illustrate mutual inductive
coupling between qubit and resonator. Panels (c)–(f) show how our scheme can
also be applied to a number of other qubit modalities: (c) singlet–triplet double
quantum dot [60–63]; (d) polar molecular ion [3], where the third curve (shown
in magenta) corresponds to the two degenerate J = 1, mJ = ±1 levels; (e) 31P
coupled electron and nuclear spins in 28Si [64], where we show only one nuclear
spin orientation. The splitting at zero field is due to hyperfine coupling; and (f)
nitrogen-vacancy center in diamond [65], with a fixed transverse magnetic field,
as a function of an additional longitudinal field. The third (magenta) curve shows
the two degenerate levels which become mS = 0 in the limit of large longitudinal
field.
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(for small excursions about Qq0) as a voltage source Vq in parallel with the capacitance Cq (in
the dual magnetic case of figure 1(b) this becomes a series current source Iq and inductance Lq).
We emphasize that Vq and Cq depend on both the internal state of the qubit, and its bias Qq0,
though we have suppressed explicit notation of this dependence for clarity.

Of the three δQn, only δQr is an independent dynamical variable, since it couples to
an inductance (the effective ‘mass’ for a fictitious particle whose ‘position’ is δQr [51–53]),
while δQb and δQc are deterministically related to δQr. To determine these relations, we
hold Vb and δQr fixed and minimize U with respect to δQc and δQb, to obtain: δQb = 0 and
δQr/Cr = δQc(C−1

r + C−1
c + C−1

q ). Combining this with equations (5) and (6), integrating by
parts, and re-expressing the result in terms of Qr, we find

U (Qr) = Eq(Qq0) +
(Qr + CcVq)

2

2C ′
r

, (7)

where we have defined the quantities

C ′

r ≡ Cr +
CcCq

Cc + Cq
,

ωr ≡
1√
L rC ′

r

, Yr ≡

√
C ′

r

L r
=

1

Zr
.

(8)

The quantity C ′

r is the effective total capacitance of the resonator, which is just Cr in parallel with
the series combination Cc and Cq as can be seen from figure 1(a) (Cb does not contribute to this
because the qubit voltage is fixed at Vq independent of the resonator voltage, so that no charge is
induced on Cb by small signals on the resonator). Note that when Cc → 0, equations (7) and (8)
reduce to the sum of the uncoupled qubit and resonator potential energies as expected. Also, as
required by the total energy conservation expressed in equation (5), the classical potential energy
of the coupled system at the resonator’s equilibrium position is simply Eq(Qq0), independent of
the qubit bias point Qq0.

From equations (7) and (8) we see that the leading-order effect of the coupling can be
viewed as a displacement of the resonator mode’s equilibrium ‘position’ by a qubit-state-
dependent amount CcVq, as illustrated in figure 1(c). This displacement can be associated
with an effective ‘force’ VqCc/C ′

r exerted by the qubit on the oscillator (as described by
equation (3) above), whose ‘spring constant’ is 1/C ′

r. The next order effect arises from the
qubit’s dynamic capacitance Cq [54–56], which is in general qubit-state-dependent, and can
therefore induce small state-dependent shifts in the resonator’s frequency and impedance
according to equations (8); these shifts can be a potential source of gate errors, as we discuss in
detail below in section 4.

3. Controlled-phase gate with quasiclassical forces

The form of equation (7) and its interpretation in terms of a qubit state-dependent force on the
resonator suggests an analogy with techniques developed for trapped atomic ions, in which
state-dependent light forces acting on the atomic center-of-mass motion (analogous to the
resonator in our case) produce entangling operations on the internal states of the atoms. We now
show how similar entangling gates can be implemented in our system based on this analogy
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(discussed in more detail in appendix A). Following [40–44], we describe the oscillator in terms
of a dimensionless classical field amplitude7: α = 〈û + iv̂〉, where

û ≡
Q̂r

√
h̄Yr

=
â + â†

√
2

,

v̂ ≡
8̂r

√
h̄ Zr

=
â − â†

i
√

2

(9)

and 8r is the canonical momentum of the oscillator such that [û, v̂] = i. The quantity α is a
c-number for a pure coherent state, while in the presence of thermal or other classical field
fluctuations it can be written as a diagonal density matrix (e.g. using the Glauber–Sudarshan
P-representation [17]). If we now include N qubits in our system which can be coupled to the
resonator, in general all resonator and qubit quantities become operators in the 2N -dimensional
qubit Hilbert space, which henceforth we indicate with the usual caret operator notation: α → α̂,
ωr → ω̂r, Zr → Ẑr, Yr → Ŷr, Eq → Êq, Vq → V̂q, C−1

q → Ĉ−1
q ). However, in the case of interest

to us here, where equation (4) holds (i.e. there is no transverse coupling), all of these operators
are diagonal in the qubit Hilbert space (and commute with the individual qubit Hamiltonians).

For our gate operations, we will exploit the qubit-state-dependent classical dynamics of the
resonator, described by the operator α̂, while the qubit state dependences of ω̂r and Ẑr implied by
equation (8) are higher-order effects which we will consider as perturbations only, in section 4.
To that end, we separate out the latter explicitly with the notation

ω̂r ≡ ω̃r(1 + δω̂r),

Ẑr ≡ Z̃r(1 + δ Ẑr),
(10)

where the tilde is defined by: X̃ r ≡ Tr[ρm X̂ r], with ρm ≡ Î2N /2N the completely mixed state of
the N qubits, and Îd is the d-dimensional identity matrix. This definition separates the average
qubit-induced renormalization of the resonator frequency and impedance from the small qubit-
state-dependent corrections to this which we will consider as potential sources of error in
section 4. We can now write the equation of motion for the oscillator with quality factor Q as 8

dα̂

dτ
= −i(1 + δω̂r)[α̂ − η̂] −

α̂ − α̂∗

2Q
, (11)

where τ ≡ ω̃rt , we have made the following replacements in equations (9) above: Zr = 1/Yr →

Z̃r = 1/Ỹr, and the dimensionless, qubit-state-dependent force η̂ and frequency shift δω̂r

7 As long as equation (4) holds, a purely classical treatment of the resonator field is valid without approximation
(provided, of course, that the resonator’s initial state is itself classical).
8 Equation (11) fully describes the classical dynamics of interest here as long as the qubit-induced effective
force on the resonator is linear (i.e. our truncation to second order of the expansion of equation (6) is valid).
Third and higher-order terms in Eq produce a purely classical nonlinearity, which is negligible in the cases
considered here. For comparison, in cQED the breakdown of the linear dispersive approximation and the onset
of the Jaynes–Cummings nonlinearity become important as the resonator drive is increased [66].
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can be written

η̂ ≡

N∑
i=1

[(η− + δη−)σ̂ z
i + (η+ + δη+) Îi ],

δω̂r ≡

N∑
i=1

δω−

r σ̂ z
i ,

(12)

where i ∈ 1 . . . N indexes the qubits, σ̂ z
i and Îi are the Pauli-z and identity operator for qubit i ,

and

η±
≈

CcV ±

q

2
√

h̄Ỹr

,

δω−

r ≈
βrβ

−

q

4
,

βr ≡
Cc

Cc + Cr
, β̂q ≡

Cc

Cc + Ĉq

(13)

using the notation X±
≡ [〈e|X̂ |e〉 ± 〈g|X̂ |g〉] with X̂ a single-qubit operator. For the sake of

clarity we have assumed all N qubits and coupling elements are identical (though the method
we propose does not require this), and we have retained only the leading-order term in δω−

r � 1
(we will see in table 1 below that this is a very good approximation). Note that there is no
nonzero δω+

r because of our definition of ω̃r (cf equation (10)). The quantities δη± are Langevin
noise terms, with δη− due to qubit bias noise, and δη+ associated with the finite resonator Q. In
our model (figure 1a) the latter comes from the Johnson–Nyquist noise δVr of the resistance Rr

(Q = Zr/Rr). The resulting dimensionless noise power spectral density of the fluctuating force
δη+ can be written

Sδη+(�) =
C2

r ω̃r

h̄Ỹr

〈δVr(t)δVr(t
′)〉ω

=
2�

Q
coth

(
�τc

2

)
, (14)

where the brackets denote an environment average, the subscript ω indicates a Fourier trans-
form, � ≡ ω/ω̃r is dimensionless frequency and τc ≡ h̄ω̃r/kBTr with Tr the effective resonator
mode temperature.

To produce a gate which entangles a particular subset of the qubits coupled to a single
resonator, we modulate the bias points of those qubits, as illustrated in figure 1(c), while
leaving the other (bystander) qubits alone. This modulation results in an oscillatory force on
the resonator η̂ = η̂0 sin(ωmt) which depends on the joint state of the qubits being modulated,
and not on the state of the bystander qubits. Following the trapped-ion case [40, 42, 43], we
choose a modulation frequency ωm close to resonance with a particular resonator mode, whose
field (described by the classical, complex α) begins to follow a qubit-state-dependent path in
its u, v phase space, as illustrated in figure 3. Each amplitude in the qubits’ Hilbert space
then begins to accrue a geometric phase associated with the phase-space area enclosed by the
corresponding oscillator path: φ̂g = Im[

∮
α̂∗dα̂] (recall that the operator notation here refers
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Figure 3. Oscillator phase space trajectories due to classical ‘forces’ exerted by
two qubits. Trajectories are shown in a frame rotating at ω̃r, and the area enclosed
within each path, indicated by solid lines (|gg〉—blue, |eg〉,|ge〉—black,
|ee〉—red) is the geometric phase acquired by that amplitude of the qubits’
internal-state wavefunction. Dashed arrows show the displacements of |ee〉
and |gg〉 relative to |ge〉, |eg〉, to make a connection between the general
case considered here where 〈eg|η̂|eg〉, 〈ge|η̂|ge〉 6= 0, and the usual situation
in the trapped-ion case 〈eg|η̂|eg〉, 〈ge|η̂|ge〉 = 0 [40–43]. (a) In the ideal case
(Q → ∞, δω̂r = 0), the paths are closed. The inset shows the high-frequency
component of the response due to the counter-rotating term in equation (15).
(b) For finite Q, δω̂r, the trajectories are no longer closed, such that at the end
of the gate a nonzero total oscillator displacement δα−

q is entangled with the
qubits’ internal state. The inset shows the components δu±

q , δv−

q of this residual
displacement (δv+

q = 0 because δω+
r = 0); finite decay results in a shrinking

radius of the path with time, producing finite δu−

q at the end of the gate, and finite
δω̂r makes the modulation detuning δm weakly qubit-state-dependent, producing
a nonzero δv−

q . (c) modified gate sequence where either the force is reversed, or
the qubits are inverted, in the middle of the gate, such that at the end of the gate
the spurious entanglement between qubits and oscillator is removed.
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only to the qubit Hilbert space; the resonator field is being treated as a classical, complex number
in each dimension of this space). Neglecting for the moment the finite Q, fluctuations δη± and
frequency shift δω−

r , and taking the modulation to be turned on at τ = 0 with the oscillator in
the state α0 and not entangled with the qubit(s), we find (in a frame rotating at �m ≡ ωm/ω̃r)

α̂ = ÎNα0 eiδmτ + iη̂ac

[
(�m eiδmτ

− 1) −
δm

2
(ei2�mτ + 1)

]
,

η̂ac ≡
η̂0

δm(2 + δm)
,

(15)

where the detuning δm of the modulation is defined according to: ωm ≡ ω̃r(1 + δm).9 In
equation (15), the first term is free evolution, and the second and third terms can be viewed as the
co- and counter-rotating components of the oscillator response, respectively, due to the effective
force η̂ac. These oscillator dynamics in phase space, for a two-qubit system, are illustrated in
figure 3(a).

Note that the effective force η̂ac is inversely proportional to the detuning δm between
the modulation frequency and the oscillator resonance, such that even if the resonator has
additional internal modes, a single, desired mode can be selectively excited by tuning
sufficiently close to resonance with it. We show in appendix C that this selectivity is more
than sufficient to completely neglect spurious excitation of other modes in practical cases. It
also allows multiple modes of the resonator to be used intentionally, in parallel, if they are
reasonably well-separated and the resonator is linear. This makes it possible in principle both
to perform entangling operations simultaneously on multiple, distinct subsets of the qubits
coupled to a single resonator, or to perform much faster operations on a single subset of those
qubits.

Qubit state-dependent forces necessarily result in entanglement between the qubits’
internal states and the resonator mode field, as shown in figure 3 for the two-qubit case.
Although this type of entanglement has interesting applications in its own right, in this work our
goal is purely to entangle the qubits with each other, leaving no qubit–resonator entanglement
(which could be a source of qubit decoherence) after the operation. Figure 3(a) illustrates how
this can be achieved, following the atomic case [42–44]. The phase space trajectories of the
oscillator are close to circular in the ideal case (due to a beating between the modulation-induced
force and the resonant component of the oscillator’s response to it) such that at certain times they
all return to the initial point, and the entanglement of the oscillator with the qubits vanishes; if
the modulation is turned off at one of these times, the net result is a state-dependent phase shift
of the qubits only. The times τ at which this occurs are defined by the conditions

δmτ

2π
= m,

τ

2π
=

k

2
, (16)

9 It is also possible to simply turn a force on for a fixed time, with no oscillatory component. Such a scheme was
considered for trapped ions in [67], and related methods for superconducting qubits were proposed in [33–35, 38].
Compared to our proposal, these techniques require much larger η to achieve the same gate speed (larger by a factor
δ−1

m ), and they also provide no discrimination between the desired resonator mode and higher modes. In addition,
they are sensitive to much lower noise frequencies near dc, as opposed to our scheme which is sensitive only to
noise near the resonator frequency or its harmonics (as discussed in section 4).
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where m, k are integers with k > 2m, and the resulting two-qubit state-dependent geometric
phase is given by (neglecting overall phases):

φ̂g =
2πm

δ2
m(2 + δm)

[(η−

0 )2σ̂ z
1 σ̂ z

2 + 2η−

0 η+
0(σ̂

z
1 + σ̂ z

2 )]. (17)

A controlled-π gate, sufficient in combination with single-qubit gates for universal quantum
operations, is implemented (in addition to the single-qubit phase shifts given by the second term
in equation (17), which one would need to correct using single-qubit rotations) if we choose

η−

0 = δm

√
2 + δm

4m
(18)

in a total gate time τπ (to leading order in δ−1
m ) of

τπ

2π
≈

√
m

2(η−

0 )2
≈

δm

2(η−

0 )2
(19)

when equations (16) and (18) are satisfied.
Before discussing realistic errors in these operations in the next section, we highlight the

qualitative distinction between the type of coupling we have been discussing and that used in
cQED [10–13]. This can be compactly expressed by writing the effective coupling strength in
both cases as the time-derivative of the two-qubit conditional phase (for our gates, the first term
of equation (17))

h̄
dφc

dt
≈


β2

r

2δm
×

1

2
Cr(V −

q )2 this work,

β2
r

2δq
× h̄ωr

Zr

Rq
cQED,

(20)

where in the latter case δq ≡ 1q/ωr is the dimensionless qubit–resonator detuning, and Rq ≡

h/4e2 is the superconducting resistance quantum. Notice that for our gate the energy scale of
the effective interaction is purely classical and completely independent of the qubit frequency
ωq, since it is based only on deterministic, classical, driven resonator dynamics. By contrast,
the cQED effective interaction energy is explicitly quantum, with the factor Zr/Rq describing
zero-point fluctuations of the resonator ground state (inductive coupling in cQED would give
the inverse of this factor, Rq/Zr), and it depends explicitly on the detuning between qubit and
resonator 1q. These features are a natural consequence of virtual photon exchange between
qubit and resonator driven by vacuum fluctuations.

Because of this strongly quantum nature of the interaction in cQED, any classical
fluctuations of the resonator must be negligible compared to its zero-point quantum fluctuations
if high-fidelity operations are to be performed. As described in [30], the passage of a single
spurious photon through any strongly coupled resonator mode during a quantum operation
effectively makes a projective measurement of all the qubits coupled to it. Such fluctuations
of the resonator are the inevitable result of photon exchange with transmission lines [30, 32]
and qubits [68, 69] to which it is coupled, which often have a significantly higher effective
temperature than the bath to which the experiment is nominally anchored. Thus, extremely
careful filtering over a wide frequency range is necessary to suppress these fluctuation-induced
errors in cQED [30]. By contrast, we will show that for our gates resonator fluctuations have
only a higher-order effect, and only the specific mode near the modulation frequency contributes
to this effect.
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4. Two-qubit gate fidelity

In this section we evaluate sources of error in our two-qubit controlled phase gate. The results
obtained in this section are tabulated in table 1 for a number of different physical qubit
modalities and parameter assumptions. We begin with the effect illustrated in figure 3(b),
spurious entanglement between qubits and resonator at the end of the gate in the form of
a residual qubit-state-dependent oscillator displacement δα−

q . The two mechanisms which
produce this type of entanglement are finite resonator Q, and the state-dependent frequency
shift δω̂r (induced by a state-dependent Cq or Lq). As shown in figure 3(b), resonator decay
causes the radius of the phase-space trajectory to shrink with time, while δω̂r effectively
produces a detuning δm (and corresponding evolution rate around the paths in phase space)
which is qubit-state-dependent. These result in the spurious displacements illustrated in the
inset: δu−

q ∼O(1/Q) and δv−

q ∼O(δω−

r ), respectively.
Since both of these displacements result from classical and deterministic dynamics,

however, we can strongly suppress them using the scheme shown in figure 3(c). We divide the
gate excitation into two periods of equal duration (each of which satisfies equations (16)), and
we switch the sign of the effective force ηac between these two periods (alternatively, one could
insert π -pulses to invert the qubits instead). This simple procedure works like a spin-echo, in the
sense that the classical modifications to the trajectories cancel out at the end of the operation,
removing the leading terms of order ∼O(1/Q),O(δω−

r ) in the final displacement. The resulting
gate error is, to leading order in the small quantities δm, η−

0 , Q−1, δω−

r and n̄ (see appendix B)

εδα ≈
mx4

4

[
1 + 2n̄ + 2m

(
2πδω−

r

x

)2
]

, (21)

where x ≡ π/(Qη−

0 ) and m includes both halves of the gate. As we show in table 1, the result
is essentially negligible compared to other error sources for all of the cases considered.

The more important potential source of errors is fluctuations of the qubits or resonator,
which can produce single-qubit dephasing and fluctuations of the controlled-phase imparted
during the entangling operation. One example of this is noise local to the qubits themselves,
such as the ubiquitous 1/f charge and flux noise encountered in superconducting circuits [70].
Such noise is particularly important for qubits that do not have a degeneracy point like that
shown by point A in figure 1(c) (where V −

q = 0 or I −

q = 0) and are therefore sensitive to low
noise frequencies (e.g. singlet–triplet quantum dots [60–63]). Dynamical decoupling techniques
have been extensively developed to suppress this sensitivity [71, 72], the simplest example of
which is the spin-echo [70]. In our gate of figure 3(c) this could be naturally implemented by
replacing the reversal of the gate force ηac in the middle of the controlled-π gate with a π -pulse
on each qubit, exchanging the roles of |g〉 and |e〉 (similar to [63]). Since these errors are entirely
independent of our proposed method, we will not discuss them further here.

Higher-frequency noise (i.e. fluctuations during the gates), however, is an important source
of error which we now consider. Assuming small fluctuations δη± of the force about the desired
values, the system will accrue an additional geometric phase

δφg ≈ 2
∫

{δη−[η+(σ̂ z
1 + σ̂ z

2 ) + η−σ̂ z
1 σ̂ z

2 ] + δη+[η−(σ̂ z
1 + σ̂ z

2 )]} dτ, (22)

where the three terms are: single- and two-qubit phase errors due to fluctuations of the state-
dependent force (predominantly qubit bias noise), and single-qubit errors due to oscillator
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fluctuations (qubit bias noise can also contribute to this if V +
q 6= 0 or I +

q 6= 0). The resulting
contributions to the average error can then be expressed in terms of mean square phase
fluctuation amplitudes of the form

〈δφ2
g〉 ∼

∫
Sδη+(�)|η−(�)|2d�, (23)

where Sδη+(�) is a dimensionless noise power spectral density (of the fluctuations δη+

corresponding to the third term in equation (22)), η−(�) is the Fourier transform of the time-
dependent gate force η−(τ ), which is a peaked function centered on �m, of width ∼(2τπ)−1

and amplitude ∼η−

0 τπ . Since the gate forces η± oscillate at the frequency ωm, only noise which
occurs at or near this high frequency (or to a lesser extent its harmonics) will produce errors
[71, 72]. Because of this, in nearly all cases low-frequency qubit bias noise (e.g. 1/f charge
or flux noise) can be ignored for our gates, allowing us to neglect the contributions of the
fluctuations δη− associated with the first two terms in equation (22).

The dominant source of high frequency noise in our model is then the thermal oscillator
noise, which appears in δη+, and which can become quite important as the Q of the oscillator is
reduced. Using equations (14) and (23), we obtain the average error (per qubit)

εδη+ ∼
π

√
2m Qη−

0

coth
τc

2
. (24)

These errors will tend to restrict how small the resonator mode Q can be10. Note, however, that
fluctuations of other resonator modes can be neglected; as described in appendix C, even the
driven excursions of higher modes are negligible (at the error rates of interest here) due to the
spectroscopic selectivity associated with driving the system near a specific, chosen mode.

In addition to the geometric phase errors just discussed in the controlled-phase gate,
thermal resonator fluctuations can also produce direct dephasing of the qubits even when there
is no gate modulation, if δω−

r is nonzero. This occurs because a qubit-state-dependent frequency
shift of the resonator can also be viewed as an effective qubit frequency splitting ω′

q that
depends on the resonator photon number n: ω′

q = ωq + 2nδω−

r [10, 11]. For a thermal photon
number distribution at temperature Tr with mean photon number n̄, each qubit then experiences
dephasing at the rate [10, 11]11

0φ ≈ 16ω̃rn̄Q(δω−

r )2. (25)

Notice that this dephasing rate increases with increasing resonator Q, as the discrete resonator
frequencies associated with different photon number states become more resolved [10, 11]. This
will tend to restrict how large the resonator Q can be.

Using equations (21), (24) and (25), we list in table 1 the parameter values and resulting
gate errors for a number of specific examples, chosen to illustrate the utility of our scheme
over a range of physical qubit modalities, resonator Qs, resonance frequencies and thermal
photon populations n̄. Note that in some cases two-qubit error rates as low as 10−3 are still
achievable with n̄ as high as 0.4 (for a 1 GHz resonator at 40 mK) and Q as low as 25 000,

10 Note that in the absence of transverse coupling, noise at ωq does not induce the usual enhanced spontaneous
decay (Purcell effect) encountered in circuit QED [73].
11 By contrast, a coherent state in the resonator with a given mean photon number does not cause qubit decoherence
in our system (as it would in cQED due to quantum fluctuations of n) since the corresponding classical dynamics
on which our gate is based are deterministic and fully taken into account by our analysis.
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showing the robustness of our technique against resonator fluctuations and decay. For state-
of-the-art experimental values such as: Q ∼ 106 [79] and n̄ ∼ 10−3 [32], even lower error rates
∼10−4 become accessible (provided of course that single-qubit errors unrelated to the operations
considered here are not the limiting factor).

We note in this context that while very high resonator Qs of 106 or greater are at
present difficult to achieve in planar geometries at the single-photon level required for cQED
implementations, this difficulty is substantially reduced at higher resonator powers (∼103–104

photons) where parasitic, lossy defects become saturated [79]. Given that our proposed method
is in principle not affected by a coherent initial resonator state, one might consider the prospect
of intentionally driving the resonator to increase the effective Q for gate operations (note,
however, that the thermal fluctuation errors discussed above associated with Tr would also
result from a nonzero effective temperature of an additional drive field). The simplest way to
accomplish this would be to drive the resonator instead of the qubits, and use the qubit/resonator
coupling to accomplish the modulation of η̂ for the gate. In table 1 we list the quantity Nγ ,
the resonator photon number required to produce by itself the full qubit bias swing (via its
coupling to the qubits) assumed for each set of gate parameters. In most cases, these values are
comparable to or larger than the ∼103–104 photons typically necessary to saturate the resonator
loss in current experiments 12.

5. Conclusion

We have described an alternative method for coupling qubits and resonators which is
qualitatively distinct from the current circuit QED paradigm. Unlike cQED, in which real or
virtual photon exchange between qubits and resonator mediates the interaction [10–13], our
proposal is based on a first-order, longitudinal coupling which does not involve any photon
exchange, and which relies on purely classical dynamics of the resonator. We have shown
how this coupling can be understood as a qubit-state-dependent effective force acting on the
resonator, in a manner analogous to that which has been engineered between the internal spin
states and center-of-mass vibrational modes of trapped atomic ions [40–44]. Our method has
some potentially advantageous features when compared with cQED: first, since no photons
are exchanged between qubits and resonator, there is no Purcell effect [73] and the qubits’
excited-state lifetimes are decoupled both from the qubit–resonator detuning, and from the
resonator Q. In fact, our method does not require the qubits to have any nonzero transition dipole
moment at all, which opens the possibility of qubit designs that are intrinsically decoupled and
therefore potentially much longer-lived [29]. The lack of photon exchange also implies that
the coupling is independent of qubit frequency, which allows all qubits that have a degeneracy
point to be biased at that point, so that they can remain insensitive to low-frequency noise
even during quantum operations. Limitations associated with using the detuning between qubits
and cavities to control the couplings [26–28] are largely removed, in particular with regard to

12 One disadvantage of this scheme is that by driving the resonator, all qubits connected to it would necessarily
become entangled. In architectures where this would be a problem, an alternative method would be to drive the
resonator with a separate, resonant drive (i.e. at ω̃r) to saturate its loss, while driving only the desired qubits at
ωm; to avoid spurious entanglement from the resonant drive in conjunction with a nonzero δω−

r , one would need to
invert the sign of this resonant drive in the middle of the gate, resulting in a classical ‘echo’ similar to the method
discussed above and shown in figure 3(c).
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on/off coupling ratios and to implementation of complex, highly interconnected, many-qubit
systems. Next, unlike in cQED where gate operations are linearly sensitive to the presence of
spurious photons in any resonator mode coupled to the qubits [10, 11, 30–32], our scheme is
only sensitive to occupation of a single, spectroscopically selected resonator mode, in higher
order, such that it can tolerate substantial thermal occupation of that mode (up to n̄ = 0.4 was
considered in table 1) before significant errors occur. This mitigates the need for an extremely
low effective resonator temperature and/or a high resonator frequency (i.e. Tr � h̄ωr/kB). Also,
since a classical drive field in the resonator does not produce errors in our gates, it may even
be possible to intentionally drive it into the regime where high Q is much easier to achieve
than in the single-photon limit required for cQED [79]. Third, because our coupling scheme
gives an effective interaction ∝ (η

∑
i σ̂ z

i )2 [42, 43], its strength does not decrease as the
number of interacting qubits increases, in principle enabling multiqubit interactions or joint
measurements to be implemented directly [80]. By contrast, in cQED, multiqubit interactions
must either be engineered by cascading or combining pairwise interactions [24, 25, 81–84] or
using weaker, higher-order multiqubit couplings involving more than one virtual exchange of
photons with the resonator. Multiqubit interactions may be of interest, for example, in cluster-
state generation [85], quantum simulation of Fermionic systems [86], or syndrome extraction
in quantum error-correction schemes such as surface codes [87] and low-density parity check
codes [88]. Finally, our scheme can also be used as a QND readout technique: one simply
modulates the qubit bias at the oscillator resonance, such that the field amplitude and/or phase to
which the oscillator rings up depends on the state of the qubit. Such a readout has the important
advantage that it does not suffer from the dressed dephasing effects encountered in conventional
dispersive readout in cQED [89].
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Note added in proof. An error-suppression method closely related to that shown in figure 3(c)
was recently demonstrated for trapped atomic ions in Hayes et al (2012 Phys. Rev. Lett. 109
020503).

Appendix A. Comparison with trapped-ion gates

In laser cooling and manipulation of trapped atomic ions, the internal states of the ions are
coupled to their center-of-mass motion by the photon recoil momentum h̄k associated with the
(state-dependent) absorption of a photon with wavevector k. This coupling occurs in one of
two ways: (i) via Rayleigh scattering of laser photons tuned near resonance with an electronic
transition from an incident laser wavevector kL to k′, which imparts a recoil momentum
h̄(kL − k′) (radiation pressure) and can be used to implement dissipative laser cooling of the
atomic motion [90]; or (ii) via coherent (stimulated) scattering far from resonance, also known
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as the ac Stark shift or light shift, which can be used to realize essentially non-dissipative forces
with internal-state-dependence [40, 41, 91]. Our proposal is the analogue of the latter case13.

The method we have presented, although broadly similar to the so-called
Mølmer–Sørensen [42, 43] and ‘ZZ’ gates [40] used for trapped ions, has some impor-
tant and favorable differences from those gates. For example, in our proposal, the resonator
modes are nearly (though not completely) independent of the qubits, so that adding more
qubits does not generate additional nearby collective modes which must be avoided as in the
case of trapped ions. Also, in the ion case the equivalent controlled-phase interaction requires
the ions to be in magnetic field sensitive states (in order to be sensitive to the spin-dependent
optical forces used for the gates), which produces inevitable dephasing [40]. By contrast, in our
proposal, although the states used must also be field-sensitive for the resonator to experience
the required forces, in many cases the sign of this sensitivity is oscillating at a high frequency,
such that dephasing due to low-frequency noise will be strongly suppressed. See, for example,
figure 1(c) where during a gate the qubit bias point would be oscillating symmetrically about the
symmetry point marked A; for noise frequencies much smaller than the modulation frequency
(which is ∼GHz for the examples considered here) the bias modulation will be averaged out,
and the system will remain first-order insensitive to the noise. Put another way, the dominant
noise sensitivity occurs only at the modulation frequency, and not near dc, as described by
equation (23) (of course, this can only be the case for qubits with a field-insensitive symmetry
point about which to modulate). Although alternative methods for ions have been demonstrated
that use states without field sensitivity [41–43], they have additional complications which limit
the gate speed, fidelity, and number of ions that can be entangled [42, 43]. Finally, although the
schemes used for ions are nominally insensitive to the state of the resonator, they still require
a small Lamb–Dicke parameter, meaning that the ions must be localized to a much smaller
region than the laser wavelength to avoid sampling a spatially dependent force [42, 43]. This
can be particularly challenging in the context of the ubiquitous heating observed in ion traps,
which causes η to increase in time, in the absence of active laser cooling [93]. In our case,
although η is also a small parameter (in the expansion of Eq(p)), this expansion does not
break down as in the atomic case; in fact, most of the error sources we have discussed actually
decrease with larger η. In the expansion of equation (6), we included terms up to second order
in the resonator displacement δQr, and for the parameters in table 1 the errors associated with
the second order term (cf equations (21) and (25)) are already small enough for low error
rates, and the higher-order terms can almost always be neglected completely. One possible
exception to this would be associated with the presence of a strong quartic term in the qubit
energy; this results in a modulation of ωr at twice the input modulation frequency, which then
parametrically excites the oscillator. We have simulated this effect, and it is negligible for the
parameters considered here, though it is possible it could become important in some cases.

Appendix B. Spurious state-dependent resonator displacements

We seek to estimate the gate error that results when a nonzero entanglement between qubit state
and oscillator displacement δα−

q remains at the end of the gate. We can bound this error using

the fidelity [94] between the desired qubit density matrix after the gate ρ
qb
f and the trace over

13 There is also an analogy with our system for case (i), which allows resolved-sideband cooling of the resonator.
Sidebands of this kind have in fact been observed in a superconducting circuit in [92].
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resonator states of the actual total density matrix after the gate ρ tot
f

14:

εδα ≈ 1 −

(
Tr

[√
(ρ

qb
f )1/2Trr[ρ tot

f ](ρqb
f )1/2

])2

,

ρ tot
f ≡ D†

q

[
ρ

qb
f ⊗ D†(α0 + δα+

q )ρ
r
th D(α0 + δα+

q )
]

Dq, (B.1)

Dq ≡ D

[
+
δα−

q

2

]
|gg〉〈gg| + D

[
−

δα−

q

2

]
|ee〉〈ee|,

where ρr
th is a thermal resonator state with temperature Tr, D(δα) is the displacement operator

in u, v phase space for (complex) displacement δα, and Dq performs the state dependent
displacement shown in figure 3(b). As an approximate worst case estimate, we take: ρ

qb
f =

[|gg〉 + |ee〉][〈gg| + 〈ee|]/2, and find (using the results of [96])

εδα ≈
|δα−

q |
2

4
(1 + 2n̄) (B.2)

to leading order in δα−

q and n̄ ≈ exp (−h̄ωr/kBTr), the mean thermal photon number in the
resonator, and independent of α0 + δα+

q .
To evaluate the displacement δα−

q due to nonzero resonator damping and finite δω−

r , we
first renormalize the oscillator resonance frequency to account for the usual Q-induced shift

ω̃r → ω̃r

√
1 −

1

4Q2
(B.3)

and correspondingly renormalize the dimensionless time τ (equation (11)), modulation
frequency ωm, detuning δm and the conditions for m and k (equation (16)). The result, obtained
by integrating equation (11) analytically for the gate shown in figure 3(c) and expanding the
result to leading order in the small quantities δm, η−

0 , Q−1, δω−

r , is

|δα−

q |
2
≈ mx4

[
1 + 2m

(
2πδω−

r

x

)2
]

, (B.4)

where x ≡ π/(Qη−

0 ) and m now includes both halves of the gate. Combination of
equations (B.2) and (B.4) yields equation (21).

Appendix C. Spurious excitation of higher resonator modes

In the presence of the gate modulation force, higher modes in the resonator [31, 73] will
necessarily also be displaced by interaction with the qubits, according to their effective
capacitance (inductance for the magnetic case of figure 1(b)) and geometrical coupling factors.
The resulting (state-dependent) excursions of these modes do not in general decouple from the
qubit at the same time as the fundamental mode (cf figure 3), leaving a spurious entanglement
between the qubits and the higher modes at the end of the gate. However, just as in the
atomic case [42–44], the excursions of higher modes are suppressed by their detuning from

14 By defining the error in this way, we are neglecting any long-term quantum coherence of the oscillator, and
assuming that its coupling to the environment will produce decay to a statistical mixture of coherent states, the
so-called ‘pointer states’ of the system [95].
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the modulation, since the effective force in the rotating frame is inversely proportional to
that detuning (cf equation (15)). Using equation (B.2) for the error due to a state dependent
excursion δα−

k of mode k with frequency ωr,k ≡ fkωr, and taking δα−

k to be ∼η−

ac,k the effective
Lamb–Dicke parameter for that mode (cf equation (15)), we obtain the following estimate for
the error due to excitation of higher modes:

εhm ∼
(η−

0,k)
2(1 + 2n̄)

2
(
1 − f −2

k

)2 . (C.1)

Using this result, we list in table 1 the minimum separation 1hm from the fundamental to the
next higher mode, assuming that η−

0,k = η−

0 , which would give rise to an error εhm one tenth of
the total error from all other sources. In all cases 1hm < ωr, indicating these errors are unlikely
to be significant in practical cases.

One interesting possibility to consider in this context is that if the higher modes of the
resonator are all commensurate with the fundamental (as is the case in an ideal transmission-
line resonator), all of the higher modes will decouple from the qubits at the same time as the
fundamental. Since the geometric phases of all modes add together, this means that one could
in principle implement a much faster gate by exciting many modes simultaneously using a
modulation waveform which contains higher harmonics. The complication with this idea for
real systems is that the higher modes are never quite commensurate with the fundamental, for
example due to the reactance of the input coupling elements. To make this work, one would
then need an appropriately tailored modulation waveform which selectively excites only those
higher modes that are close enough to commensurate with the fundamental to keep the resulting
errors low.

Appendix D. Details on error estimates in table 1

D.1. Superconducting qubits

For the transmon qubit (figure 2(a)), we take ωq(8b0 = 0)/2π = 15 GHz, which gives L−

q =

L+
q/2 = −2(80/π)2/h̄ωq = −87.4 nH. We assume a modulation excursion δ8ac = 0.280,

corresponding to ωq(0.280) = 13.5 GHz. For the flux qubit (figure 2(b)), we take EJ/h =

200 GHz, EC/h = 5.7 GHz, and α(8b0) = 0.74. This gives ωq(8b0)/2π = 4.73 GHz and L−

q =

15.9 nH, L+
q = 0 15. We assume a modulation amplitude of δ8ac = 0.180, corresponding

to α(0.180) = 0.70 and ωq(0.180) = 7.8 GHz. For both flux and transmon qubits we take
Lc = 25 pH.16 Also for both of these cases we must consider the effect of junction asymmetry in
the dc SQUID (defined by the area asymmetry parameter: AJ ≡ 2(A1 − A2)/(A1 + A2)), which
produces a spurious coupling between external flux and the SQUID plasma mode. For the limit
Lc � L J satisfied here, we find the matrix element for the modulation to couple to the first
excited vibrational state of the plasma mode: MA ≈ (δ8ac/80)AJ

√
π/4h̄ωq. We then have a

maximal probability in this excited state of ∼ (π/4)(δ8ac/80)
2 A2

J (ωq/(ωq − ωm))2. Thus, for
AJ < 0.05 and δ8ac < 0.280, this error is at the 10−4 level or below. This calculation also gives

15 For the flux qubit calculations, we use the numerical methods described in [29].
16 With dc SQUID junction capacitances of CJ ∼ 3fF this gives a plasma frequency for the circulating mode of
1/2π

√
LcCJ/2 = 0.8 THz, so that the driving considered here will negligibly excite it.
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Figure D.1. Orientation of vector qubits driven by rotating fields. (a) Trapped
molecular ion qubits, and (b) electron spin qubits driven by a rotating field
Em or Bm, respectively, whose rotation plane contains the resonator mode field
direction; in both cases the dipole orientation follows the modulation field. In
(c), the NV center spin triplet is driven by a rotating magnetic field Bm whose
rotation plane contains the resonator mode field (Br) direction; the orientation
(quantization axis) of the NV center is determined by the crystal, and is also
contained in the modulation field’s rotation plane.

a residual, direct Jaynes–Cummings type coupling between dc SQUID plasma mode and the
resonator: g ≈ ωqβr AJ

√
Zr/8RQ, which can be neglected in the cases considered here.

D.2. Singlet–triplet coupled quantum dots

Figure 2(c): The singlet–triplet coupled quantum dots (and molecular ions below) are biased
with a voltage, rather than a charge, so that: Cb, Cc � Cq (the opposite limit from the
superconducting qubit cases). In this limit, the voltages across Cb, Cc can be neglected, and
Vq ≈ Vb. The quasicharge is then: Qq ≈ dE−/dVq evaluated at Vb. The displacement of the
resonator in equation (7) is then CqVb and instead of equations (6) and (12), we have: η−

0 ≡

(dE−/dVq)/(2
√

h̄Yr), C−

q ≡ d2 E−/dV 2
q , and δω−

r /ωr ≈ −C−

q /(2Cr). For the quantum dots we
use the parameters of [60, 61], with a tunneling amplitude of tc = 23 µeV. We take an exchange
energy J for each qubit which oscillates from ∼1 to ∼2.5 µ eV, corresponding to electrode
voltages from −0.7 to −0.4 mV, dE−/dVe from 0.002 to 0.01e, and C−

q = 2C+
q ∼1 to 10 aF.

D.3. Trapped molecular ions

Figure 2(d): the trapped polar molecular ions of [3] have a vector dipole moment, associated here
primarily with the J = 1 excited molecular rotational manifold with sublevels mJ = −1, 0, 1
which are degenerate at zero electric field. An electric field shifts the J = 1, mJ = ±1 levels
down, so that a qubit can be realized with the J = 0, mJ = 0 and J = 1, mJ = 0 states. We
therefore cannot simply oscillate the electric field through zero, since the mJ = 0 state will
undergo Majorana-like transitions to the mJ = ±1 states near zero field (equivalently, the
induced dipole’s orientation will not ‘follow’ the applied field). Instead, we can use a rotating
electric field Em with angular frequency ωm, whose plane of rotation contains the resonator
mode field axis as shown in figure D.1(a). In this case, as long as the rotation is not too fast,
the molecular dipole will follow it, resulting in an oscillating projection of the dipole along the
resonator mode field. The effect of the rotation can be expressed via Larmor’s theorem as an
effective magnetic field along the rotation axis: Brot = h̄ωm/γJ=1 where γJ=1 is the gyromagnetic
ratio of the J = 1 manifold. As long as the rotation is turned on and off slowly, and we restrict
ourselves to h̄ωm . EmJ=0 − EmJ=±1, the states will transform adiabatically.
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With this in mind, we take Em = 2.5 kV cm−1, corresponding to a differential stark shift
between the J = 0, mJ = 0 and J = 1, mJ = 0 rotational states from their zero-field splitting of
9 to ∼13 GHz, and a splitting between J = 1, mJ = 0 and J = 1, mJ = ±1 of ∼ 3 GHz; we take
a distance l = 1 µm between the qubits and modulation electrodes, so that Vb ∼ Eml.

Finally, although the rotation at constant field magnitude Em does not couple the J = 0,
mJ = 0 to the J = 1 manifold, there is a residual direct Jaynes–Cummings type coupling
between the resonator and the J = 0 ↔ J = 1 transition, given by: h̄g ≈ (d01/ l)

√
h̄Yr/Cr =

0.4 MHz (d01 ≈ 2.5 × 10−29 Cm is the transition dipole between J = 0 and 1); this produces a
negligible effect at the large qubit–resonator detunings &10 GHz considered here.

D.4. Donor electron spins in Si

Figure 2(e): Similar to the case of quantum dots and molecular ions which are biased with
a voltage or electric field rather than a charge, an electron spin is biased with a magnetic
field rather than a flux. In this case, we have: η−

0 ≡ (dE−/dIq)/(2
√

h̄ Zr), L−

q ≡ d2 E−/dI 2
q

and δω−

r /ωr ≈ −L−

q /(2L r). We take a circular loop of diameter d = 50 nm connected to the
resonator, with the spin at its center, so that the field at the spin is given by: Bm = µ0 Iq/d.
As in the case of molecular ions, a rotating field (turned on and off slowly) must be used to
avoid Majorana transitions between spin orientations (figure D.1(b)), whose rotation frequency
in this case should be less than the Larmor frequency ωL = γe Bm/h̄. For our modulation at
1 GHz, we then select a field amplitude of Bm = 1000 G, corresponding to ωL/2π = 2.8 GHz.
At this field, the hyperfine splitting of ≈117 MHz [97] produces a negligible L−

q ≈ 10−22H.
Our chosen parameters Q = 107, d = 50 nm and Bm = 1000 G, while arguably not completely
implausible, are admittedly extreme. The very weak interaction with a single spin dictates that
such parameters are required for favorable gate parameters. One way to relax these requirements
to some extent would be to implement a multiturn coil (it would need to be at the ∼100 nm scale)
to increase the coupling, or to use an ensemble of spins as a qubit.

D.5. Nitrogen vacancy centers in diamond

Figure 2(f): this case is similar to the electron spin just discussed, except that the system is a
spin triplet with S = 1, and the mS = 0 state is shifted relative to the mS = ±1 states due to
crystal-field and magnetic-dipole interactions by 2.88 GHz [98]. The axis of this internal field
is fixed by the crystal, so that the alignment of the states cannot follow the external modulation
field direction for weak fields. However, if we align the resonator mode field along the NV
center’s crystal axis, and use a modulation field rotation plane that also contains this axis
(figure D.1(c)), we can still realize the desired effect (we take as above Bm = 1000 G). When
the modulation field Bm is along the crystal axis, the resonator field produces a linear Zeeman
shift of the mS = ±1 states; when the modulation field is perpendicular to the axis, it mixes
all three sublevels, producing a large enough avoided crossing that the mS = ±1 states can be
nearly adiabatically transformed into each other by the modulation, and we can use them as our
two qubit states (note that in experiments, the S = 0, mS = 0 state is typically used as |g〉). As
above, this can be fully accounted for using an effective field associated with the rotation. As
long as the modulation frequency is not too large, and the modulation is as above turned on and
off slowly, nonadiabatic transitions can be neglected at the error levels of interest here.
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[18] Sillanpää M A, Park J I and Simmonds R W 2007 Coherent quantum state storage and transfer between two

phase qubits via a resonant cavity Nature 449 438–42
[19] Srinivasan S J, Hoffman A J, Gambetta J M and Houck A A 2011 Tunable coupling in circuit quantum

electrodynamics using a superconducting charge qubit with a v-shaped energy level diagram Phys. Rev.
Lett. 106 083601

[20] de Groot P C, Lisenfeld J, Schouten R N, Ashhab S, Lupascu A, Harmans C J P M and Mooij J E 2010
Selective darkening of degenerate transitions demonstrated with two superconducting quantum bits Nature
Phys. 6 763–6

[21] Chow J M et al 2011 Simple all-microwave entangling gate for fixed-frequency superconducting qubits
Phys. Rev. Lett. 107 080502

New Journal of Physics 15 (2013) 123011 (http://www.njp.org/)

http://dx.doi.org/10.1088/0034-4885/74/10/104401
http://dx.doi.org/10.1103/RevModPhys.85.623
http://dx.doi.org/10.1103/PhysRevA.83.012311
http://dx.doi.org/10.1038/nphys386
http://dx.doi.org/10.1103/PhysRevLett.108.063004
http://dx.doi.org/10.1103/PhysRevA.82.053832
http://dx.doi.org/10.1103/PhysRevA.79.040304
http://dx.doi.org/10.1103/PhysRevLett.92.063601
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1103/PhysRevLett.94.123602
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1103/PhysRevLett.105.140501
http://dx.doi.org/10.1103/PhysRevB.84.060501
http://dx.doi.org/10.1088/0953-4075/38/9/007
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1103/PhysRevLett.106.083601
http://dx.doi.org/10.1038/nphys1733
http://dx.doi.org/10.1103/PhysRevLett.107.080502
http://www.njp.org/


26

[22] Leek P J, Filipp S, Maurer P, Baur M, Bianchetti R, Fink J M, Göppl M, Steffen L and Wallraff A 2009 Using
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