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Graphs are closely related to quantum error-correcting codes: every stabilizer code is lo-
cally equivalent to a graph code, and every codeword stabilized code can be described by
a graph and a classical code. For the construction of good quantum codes of relatively
large block length, concatenated quantum codes and their generalizations play an impor-
tant role. We develop a systematic method for constructing concatenated quantum codes
based on “graph concatenation”, where graphs representing the inner and outer codes are
concatenated via a simple graph operation called “generalized local complementation.” Our
method applies to both binary and non-binary concatenated quantum codes as well as their
generalizations.

I. INTRODUCTION

The discovery of quantum error-correcting codes (QECCs) and the theory of fault-tolerant
quantum computation (FTQC) have greatly improved the long-term prospects for quantum com-
munication and computation technology. This general QECC-FTQC framework leads to a re-
markable threshold theorem, which indicates that noise likely poses no fundamental barrier to the
performance of large-scale quantum computations [1].

Stabilizer codes, a quantum analogue of classical additive codes, are the most important class
of QECCs [2, 3]. These codes have dominated the study of QECC-FTQC for the past ten years
because of their simple construction based on Abelian groups. The recently introduced codeword
stabilized (CWS) quantum codes framework [4–6] provides a unified way of constructing a larger
class of quantum codes, both stabilizer and nonadditive codes. Based on the CWS framework,
many nonadditive codes which outperform stabilizer codes in terms of coding parameters, have
been constructed.

Graphs are closely related to QECCs. It has been shown that every stabilizer code is local
Clifford equivalent to a graph code [7, 8]. The basic ingredients of a graph code are a graph and
a finite Abelian group from which the code can explicitly be obtained [9]. Every CWS code also
has a canonical form, where it can be fully characterized by a graph G and a classical code C [4, 5].
So a CWS quantum code Q is usually denoted by Q = (G, C). When the classical code C is linear,
Q is a graph code; therefore, graph codes, and hence stabilizer codes, are special cases of CWS
codes. FIG. 1 demonstrates the relationship between all quantum codes, CWS codes and graph
(stabilizer) codes.

For the construction of good QECCs of relatively large block length and good asymptotical
performance, concatenated quantum codes and their generalizations play an important role [1, 2,
10, 11]. Combined with the CWS framework, families of good quantum codes, both stabilizer
and nonadditive, have been constructed [10, 11]. Concatenated quantum codes also play a central
role in FTQC, and the proof of the threshold theorem [1, 12–15]. Given the intimate relations
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FIG. 1: Quantum codes

between graphs and quantum codes, a question that arises naturally is whether there is a graphical
description for concatenated quantum codes and their generalizations. Moreover, if there were such
a description, for the case where both the inner and outer codes are CWS codes, the next question
is whether the corresponding graph captures the “quantum nature” of the concatenated code.

Previously, some related results on graph codes have been obtained. For instance, concatenation
of graph codes may be described graphically by adding some auxiliary vertices. However, it remains
unclear what the final graph after removing those auxiliary vertices will look like [16]. The known
examples of generalized concatenated codes only provide graphical descriptions in the case where
the outer code is of a special form [10, 11]. However, none of these previous works provides a
general systematic graphical description for constructing concatenated quantum codes. Lack of
such a description seems to indicate that using graphs to describe quantum codes was a very
restricted approach. This issue will be addressed in the present work by developing a systematic
method for constructing concatenated quantum codes based on a graph operation called “graph
concatenation.”

To be more precise, we construct the concatenated quantum code

Qc = Qin ⊏ Qout, (1)

where the inner code Qin = (Gin, Cin) and the outer code Qout = (Gout, Cout) are both CWS codes.
We require Cin to be linear, but Cout can be either linear or nonlinear. Since Cin is linear, Qin is a
graph (stabilizer) code. We can then denote the parameters of Qin by [[n, k, d]]p. For simplicity,
throughout the paper we assume that p is a prime number. When Qin encodes k qupits, the
corresponding outer code Qout of length n

′ must be a subspace of the Hilbert space H⊗n′

pk
, i.e., we

can denote the parameters of Qout by ((n′,K ′, d′))pk . When Cout is linear, then Qout is a graph

(stabilizer) code that can also be denoted by [[n′, k′, d′]]pk , where K
′ = pkk

′
.

We now state our main result.
Main Result: The concatenated quantum code Qc can also be described as a CWS code, i.e.,

Qc = (Gc, Cc), (2)

and Qc can be constructed via the following way:

Qc = Qin ⊏ Qout

= (Gin, Cin) ⊏ (Gout, Cout)
= (Gin ⊏ Gout, Cin ⊏ Cout), (3)

where Cc = Cin ⊏ Cout is the classical concatenated code with the inner code Cin and the outer code
Cout, and the graph concatenation Gin ⊏ Gout in Eq. (3) gives the graph Gc. And, we show that Gc
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can be obtained by concatenating Gin and Gout via a simple graph operation called “generalized local
complementation.”

The main advantage of constructing concatenated quantum codes via Eq. (3) is that the “quan-
tum part” of this construction is fully characterized by the graph concatenation Gin ⊏ Gout. Pro-
viding the rule for performing this graph concatenation, the problem of constructing concate-
nated quantum codes becomes purely classical, i.e., constructing the classical concatenated code
Cin ⊏ Cout. Despite the restriction that Cin must be linear, our method of graph concatenation can
be applied to very general situations: both binary and non-binary concatenated quantum codes,
and their generalizations.

This paper is organized as follows. In Sec. II, we give a simple example which informally
demonstrates the rule of graph concatenation via generalized local complementation. In Sec. III,
we review definitions of graph states, CWS codes, and graph codes. In Sec. IV, for a simple case
that the inner code encodes only a single qupit (i.e., k = 1) and the outer code is also a graph code,
we provide a description of graph concatenation based on the algebraic structure of stabilizers. We
prove our main result in Sec. V. In Sec. VI, we discuss the application of our main result to the
situation of the generalized concatenated quantum codes. A final discussion and conclusion is given
in Sec. VII.

II. A SIMPLE EXAMPLE AND THE RULE

In this section we give a simple example to demonstrate the idea of our main result given by
Eq. (3). We first recall how to describe a CWS code by a graph and a classical code; then we

demonstrate how to represent a concatenated quantum code as an encoding graph G{enc}
c with

some auxiliary vertices. Finally, we show how to obtain the graph Gc of the concatenated code
Qc = (Gc, Cc), via “generalized local complementation” and removal of the auxiliary vertices.

A. The graph and the encoding circuit of a CWS code

Let us start by taking the outer code to be a simple n = 3 binary CWS quantum code Qout =
(Gout, Cout), where Gout is a triangle given in FIG. 2A. Gout defines a unique quantum stabilizer
state, which we denote |ψ〉Gout . Cout is a classical binary code of length 3, and can be either linear
or nonlinear. A basis of the CWS code Qout can then be chosen as {Zcout |ψ〉Gout}, for all the
codewords cout ∈ Cout [4].

If Cout is linear, then Qout is a graph (stabilizer) code. The name “graph code” is chosen due to
the fact that there is a graphical way to represent the code Qout, which gives both the information
of Gout and Cout [9].

To show how to represent Cout graphically, let us first recall the encoding circuit of Qout =
(Gout, Cout). We use the standard quantum circuit notations, for instance as those given in [1]. For

a CWS code, in general the encoding can be done by first performing a classical encoder C
{enc}
out

which encodes the classical code Cout and then a graph encoder G
{enc}
out which encodes the graph

state corresponding to the graph Gout [4] as shown in the top left circuit of FIG. 3. Here q1, q2, q3
denote qubits 1, 2, 3 in FIG. 2A, respectively.

Let us now take Cout = {000, 111} which is linear and gives a [[3, 1, 1]] stabilizer code. In this

case, the classical encoder C
{enc}
out which encodes

0 → 000, 1 → 111 (4)
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FIG. 2: A [[3, 1, 1]] graph code.

can be implemented by adding an input qubit q0 and performing controlled-NOT gates with control
qubit q0 and target qubits q1, q2, q3, followed by measuring q0 in the Pauli X basis (which can be
done by applying a Hadamard gate on q0 and then measuring in the Pauli Z basis) as shown in
the top right circuit of FIG. 3. Throughout the paper we always assume that we get the desired
measurement outcome (if not, we just need to perform some local Pauli operations according to
the actual measurement outcome).

|q1〉

C
{enc}
out

G
{enc}
out

|q2〉

|q3〉

|q0〉 • • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q1〉 ⊕

G
{enc}
out

|q2〉 ⊕

|q3〉 ⊕

|q0〉 • • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q1〉 ⊕ H • •

|q2〉 ⊕ H • •

|q3〉 ⊕ H • •

|q0〉 • • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q1〉

G
{enc}
out

•

|q2〉 •

|q3〉 •

FIG. 3: Encoding circuit for the [[3, 1, 1]] outer code.

The graph encoder G
{enc}
out consists of three Hadamard gates on q1, q2, q3 and three controlled-

Z gates between them (controlled-Z gates are applied whenever the corresponding vertices are
adjacent in graph FIG. 2A), as shown in the bottom left circuit of FIG. 3. Now it is clear that we

can “move” the classical encoder C
{enc}
out to the right of the graph encoder G

{enc}
out by replacing each

controlled-NOT by a controlled-Z, as shown in the bottom right circuit of FIG. 3.
In the following we use the convention to modify the encoding circuit by applying a Hadamard

gate on the auxiliary qubit q0 before applying the classical encoder as shown by the left circuit of
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FIG. 5. This modification can be viewed as “a basis change” of the input qubit q0, i.e., what the

“classical encoder” C
{enc}
out does is then

+ → 000, − → 111, (5)

where ± are the labels of the quantum states

|±〉 = 1√
2
(|0〉 ± |1〉) . (6)

This change of basis yields a non-classical encoding circuit, yet we know that it does not make
any difference for the quantum code because by this new encoding circuit we obtain the same code
space as before. We adopt this convention throughout the paper: for any CWS code Q = (G, C), we
always assume that the “classical encoder” C{enc} maps “classical strings” in the {|+〉, |−〉} basis
to “classical codewords” in the {|0〉, |1〉} basis. We will see later that this convention naturally
leads to a simple rule for graph concatenation.

Moreover, for any [[n, k, d]] CWS code Q = (G, C) with linear C (i.e., Q is a graph code), the
encoding of Q can be applied by first performing the graph encoder G{enc}, and then the classical
encoder C{enc} as follows: use k input qubits; apply Hadamard on each of the k qubits; replace
each controlled-NOT gate performed in the original classical encoder C{enc} with a controlled-Z
gate; finally measure each of the k auxiliary qubits in the Pauli X basis.

This encoding circuit can be represented graphically: add the k input qubits as k new vertices
to the graph G; whenever a controlled-Z is applied in the encoding circuit between an input vertex
v and a vertex v′ of G, add an edge between them [9]. The corresponding graph representing the
graph code Q = (G, C) is denoted by GC .

Therefore, for the outer code Qout = (Gout, Cout) with graph Gout given in FIG. 2A, where
Cout = {000, 111} is linear, we can insert the input qubit q0 as a new vertex (denoted by 0) to
the graph G (the middle white vertex in FIG. 2B). We then add the edges between 0 and 1, 2, 3
according to the encoding circuit given by the bottom right circuit in FIG. 3 (see FIG. 2B). This
graph is then denoted by GCout

out . There are two types of vertices in GCout
out : the input vertices (the

middle white vertex); and the output vertices (vertices 1, 2, 3).

B. The encoding graph of a concatenated quantum code

Now we consider the inner code Qin = (Gin, Cin). Notice that due to our restriction for Eq. (3),
Cin must be linear. So Qin is a graph code and has a graph representation GCin

in . For simplicity we
take Qin be a [[2, 1, 1]] stabilizer code, which is represented by the graph of FIG. 4A on the vertices
1, 4, 5. (The subgraph of the vertices 4, 5 represents Gin, and 1 is the input qubit describing the
classical encoder of Cin; hence, Cin = {00, 11}.)

To construct the concatenated code Qc = Qin ⊏ Qout, since the outer code has length n′ = 3,
we must take three copies of Gin, to encode qubits 1, 2, 3 as shown in FIG. 4A. The graphical
representation of the concatenation procedure is shown in FIG. 4B. Here, in the outer code, the
middle white vertex is encoded into vertices 1, 2, 3. Then each of these vertices is encoded using
the inner code: vertex 1 into vertices 4, 5; vertex 2 into vertices 6, 7; and vertex 3 into vertices 8, 9.

We call this graphical representation of the concatenated code Qc with a linear Cout the encoding
graph of Qc and denote it by GCout{enc}

Qc
. We have three types of vertices in GCout{enc}

Qc
: the input

vertices (the middle white vertex in our example); auxiliary vertices which are in the subgraph
Gout (vertices 1, 2, 3); and output vertices which are in the copies of Gin (vertices 4, 5, 6, 7, 8, 9). In

general, if Cout is nonlinear, similarly we can have an encoding graph of Qc and denote it by G{enc}
Qc

,
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FIG. 4: Concatenated graph code.

which in our example is the subgraph of FIG. 4B without the middle white vertex. Therefore, we

only have two types of vertices in G{enc}
Qc

: the auxiliary vertices (vertices 1, 2, 3); and the output
vertices(vertices 4, 5, 6, 7, 8, 9).

The encoding circuit of the concatenated code Qc is given by the right circuit in FIG. 5, where

G
{enc}
in denotes the graph encoder for the graph of the inner code Gin. To obtain this encoding

circuit, we should recall our convention of adding a Hadamard gate before performing the classical
encoder.

|q0〉 H • • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q1〉

G
{enc}
out

•

|q2〉 •

|q3〉 •

|q0〉 H • • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q1〉

G
{enc}
out

• H • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q2〉 • H • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q3〉 • H • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q4〉
G

{enc}
in

•

|q5〉 •

|q6〉
G

{enc}
in

•

|q7〉 •

|q8〉
G

{enc}
in

•

|q9〉 •

FIG. 5: Encoding circuit for the concatenated code with linear outer code.

In general, if Cout is nonlinear, the encoding circuit of the concatenated code Qc is given by the

right circuit in FIG. 6, where G
{enc}
in denotes the graph encoder for the graph of the inner code Gin.

Again, note that we add a Hadamard gate before performing the classical encoder. Also, we need

to keep in mind that the “classical encoder” C
{enc}
out maps “classical strings” in the {|+〉, |−〉} basis

to “classical codewords” in the {|0〉, |1〉} basis.
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|q1〉

C
{enc}
out

G
{enc}
out

|q2〉

|q3〉

|q1〉

C
{enc}
out

G
{enc}
out

H • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q2〉 H • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q3〉 H • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q4〉
G

{enc}
in

•

|q5〉 •

|q6〉
G

{enc}
in

•

|q7〉 •

|q8〉
G

{enc}
in

•

|q9〉 •

FIG. 6: Encoding circuit for the concatenated code with a general outer code.

C. The rule of the generalized local complementation for graph concatenation

As shown in Sec. IIB, given a concatenated quantum code Qc = Qin ⊏ Qout with a CWS
outer code Qout = (Gout, Cout) and a graph inner code Qout = (Gout, Cout), it is easy to get the

encoding graph G{enc}
Qc

. We claim (and will show later in Sec. V) that the concatenated quantum
code Qc = Qin ⊏ Qout can also be described as a CWS code Qc = (Gc, Cc). Therefore, the real
description that we want for the concatenated code Qc is a graph Gc and a classical code Cc such
that Qc = (Gc, Cc). Also, we want the classical code be given by the “classical concatenation” of
the classical code of the inner and outer code, i.e., Cc = Cin ⊏ Cout, so that the quantum part
can be fully taken care of by the graph concatenation Gc = Gin ⊏ Gout. Furthermore, this graph

concatenation should be given by some simple graph operations on the encoding graph G{enc}
Qc

, i.e.,
we want a general rule which gives

G{enc}
Qc

→ Gc, (7)

or

GCout{enc}
Qc

→ GCc
c , (8)

if the outer code is also a graph code. As discussed in the main result, such a general rule does
exist and we call it “generalized local complementation.”

In this section, we demonstrate the rule of generalized local complementation for graph con-
catenation by a simple example, starting from the encoding graph given by FIG. 4B. Keep in mind
that we want

Cc = Cin ⊏ Cout = {00, 11} ⊏ {000, 111} = {00 00 00, 11 11 11}. (9)

Remark 1 To obtain the graph Gc (or GCc
c ) from FIG. 4B, a naive way is to calculate the stabilizer

state |ψ〉 of the output vertices after performing Pauli X measurements on all the input and the
auxiliary vertices in the encoding circuit (given by the right graph of FIG. 6 or the right graph
of FIG. 5), and then to represent it as a graph state (or a graph code). Notice that in general it
might not be possible to represent the very code as a graph Gc (or GCc

c ) does not necessarily exist.
Indeed, any stabilizer state is local Clifford equivalent to a graph state (which is not necessarily
unique), any any stabilizer code is local Clifford equivalent to a graph code, and any CWS code is
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local Clifford equivalent to a standard form given by a graph and a classical code. However, for a
general CWS code, those local Clifford operations transform both the graph and the classical code
[5]. Therefore, it is not clear that such a graph Gc exists such that the classical code is obtained by
concatenation, i.e., Cc = Cin ⊏ Cout.

Now we specify the rule of generalized local complementation: given a graph G, for any vertex i,
denote the set of its adjacent vertices by N(i). Also let S be a subset of vertices disjoint from N(i).
A generalized local complementation on i with respect to S is to replace the bipartite subgraph
induced on N(i) ∪ S with its complement.

For an example, the generalized local complementation of the graph shown by FIG. 7A on
vertex 1 with respect to S = {6, 7} results in the graph shown by FIG. 7B. Here N(1) = {2, 3, 4}.
The generalized local complementation replaces the bipartite subgraph of vertices {2, 3, 4, 6, 7} and
edges {(3, 6), (4, 7)} with its complement (i.e. another bipartite subgraph of vertices {2, 3, 4, 6, 7}
and edges {(2, 6), (4, 6), (2, 7), (3, 7)}).

FIG. 7: Generalized local complementation

Now we are ready to specify the rule of graph concatenation in terms of generalized local

complementation. (Recall that our goal is to obtain Gc from G{enc}
Qc

, or GCc
c from GCout{enc}

Qc
.)

Procedure 1 (Graph Concatenation via Generalized Local Complementation)

1. Given the graph G{enc}
Qc

(or GCout{enc}
Qc

), for each auxiliary vertex i, define Si to be the set of
all output vertices which are adjacent to i.

2. For each auxiliary vertex i, delete all the edges which connect i to vertices in Si.

3. For each auxiliary vertex i, perform generalized local complementation on i with respect to
Si. Note that the order in which we apply those generalized local complementations does not
matter since the whole procedure on all auxiliary vertices finally gives the same graph.

4. Remove all the auxiliary vertices.

To demonstrate the above rules, let us start from the encoding graph given in FIG. 4B for the
concatenated quantum code with the outer code [[3, 1, 1]] given in FIG. 2B and the inner code
[[2, 1, 1]] given in FIG. 4A. For convenience we redraw FIG. 4B in FIG. 8A. Now from FIG. 8A we
get S1 = {4, 5}, S2 = {6, 7}, and S3 = {8, 9}. Deleting all the edges which connect each auxiliary
vertex i and vertices in Si (for i = 1, 2, 3) results in FIG. 8B. Performing local complementation
on auxiliary vertex 1 with respect to S1 = {4, 5} leads to FIG. 8C, where we use dashed blue lines
to show the edges that we add between output and auxiliary vertices, and solid black lines to show
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FIG. 8: Generalized local complementation for graph concatenation

other edges. Performing local complementation in FIG. 8C on auxiliary vertex 2 with respect to
S2 = {6, 7} leads to FIG. 8D, and performing local complementation in FIG. 8D on auxiliary vertex
3 with respect to S3 = {8, 9} leads to FIG. 8E. Removing all the auxiliary vertices in FIG. 8E gives
FIG. 8F, which is the graph GCc

c .
From FIG. 8F one can easily see that the rule for concatenation of the classical codes given in

Eq. (9) holds. In general, the outer classical code Cout is nonlinear, so we do not have the input
vertices in the encoding graph of the concatenated code. However, we can still go through the whole
procedure of the generalized local complementations on auxiliary vertices to obtain the graph Gc.
In our example this procedure is demonstrated by subgraphs of FIG. 8A through FIG. 8F without
the middle white vertex.

III. GRAPH STATES, CWS CODES, AND GRAPH CODES

In this section we review the stabilizer formalism to fix our notation especially in the non-binary
case; then we define CWS codes, graph codes, and finally describe their encoding circuits.

A. The generalized Pauli group

Let p be a prime number and Fp be the field of p elements. A qupit is a p-level quantum system
whose Hilbert space is represented by the orthonormal basis {|r〉 : r ∈ Fp} = {|0〉, |1〉, . . . , |p− 1〉}.
Let ω = e2πi/p be a p-th root of unity. The (generalized) Pauli matrices X and Z are defined as
follows.

X|r〉 = |r + 1 mod p〉, (10)
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Z|r〉 = ωr|r〉. (11)

It is clear that Xp = Zp = I, and then we can consider the operators Xa and Zb where a, b ∈ Fp.
We have ZbXa = ωabXaZb; therefore, XaZb and Xa′Zb′ commute iff ab′ − ba′ = 0 (see e.g. [20]
for more details).

The group generated by the (generalized) Pauli matrices X and Z is {ωcXaZb : a, b, c ∈ Fp}
and is called the (generalized) Pauli group. Notice that, in the binary case (p = 2) the Pauli group
is generated by Pauli matrices σx and σz together with iI (i =

√
−1).

Let n be an arbitrary positive integer. For vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in Fn
p

define

Xa = Xa1 ⊗ · · · ⊗Xan (12)

and

Zb = Zb1 ⊗ · · · ⊗ Zbn . (13)

Again, two Pauli matrices XaZb and Xa′
Zb′

commute if and only if ab′ − a′b = 0, where cd =
c1d1 + · · ·+ cndn is the usual inner product on Fn

p .

For simplicity, a Pauli operator XaZb is denoted by the vector (a |b) of length 2n. Thus two
Pauli operators XaZb and Xa′

Zb′
commute iff their corresponding vectors are orthogonal with

respect to the “symplectic inner product” defined by

(a |b) ∗ (a′ |b′) = ab′ − a′b. (14)

B. Stabilizer states

It is easy to see that for a Pauli matrix g = ωcXaZb, gp = I. (In the case p = 2, the statement
might only be true after replacing G by ig in order to get g2 = I. Having this in mind, there is no
true difference between the binary and non-binary case in the rest of the paper.) Therefore, the
eigenvalues of g are all p-th root of unity. In fact, if (a |b) is non-zero, then for any i, ωi is an
eigenvalue of g, and the multiplicity of each of these p eigenvalues is equal to pn−1 [20].

Now suppose g1 = ωc1Xa1

Zb1

, . . . , gk = ωckXak

Zbk

are k Pauli matrices which pairwise com-
mute and such that the subgroup generated by any k − 1 of them does not contain the other
one. Additionally, we require that the group generated by g1, . . . , gk does not contain a non-trivial
multiple of identity. Since g1, . . . , gk commute, they can be diagonalized simultaneously.

Lemma 1 The common eigenspace of all gi’s with eigenvalue 1 is a pn−k-dimensional subspace.

This lemma is a well-known fact in the binary case [1], and a proof for the non-binary case can
be found in [20].

Representing the operators g1, . . . , gk by the vectors of length 2n, we obtain the k× (2n) matrix

M =




a1 b1

a2 b2

...
...

ak bk


 , (15)
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of rank k (because gi is not in the subgroup generated by the rest of gj ’s). The rows of M are
mutually orthogonal with respect to the symplectic inner product (see Eq. (14)).

If we consider n generators, or equivalently an n × (2n) full-rank self-orthogonal matrix M ,
Lemma 1 implies that the common eigenspace of all gi’s with eigenvalue 1 is a one-dimensional
subspace. Hence there is a unique (up to a scaler) non-zero vector |ψ〉 such that gi|ψ〉 = |ψ〉. In
fact, if we consider the group S generated by the gi’s, for any h ∈ S we have h|ψ〉 = |ψ〉. The
group S, which is a maximal Abelian subgroup of the Pauli group modulo its center, is called a
stabilizer group, and the state |ψ〉 is called a stabilizer state.

Notice that for a stabilizer state |ψ〉, its stabilizer group S is unique; however, {g1, . . . , gn} is
just some set of generators of S. Suppose {h1, . . . , hn} is another generating set of S. Then for
any i there is uij ∈ Fp such that hi = gui1

1 · · · guin
n . As a result, the vector corresponding to hi is

equal to (ui1, . . . , uin)M .

Lemma 2 Any set of generators of the stabilizer group S with k generators can be represented by
a matrix UM , where U is an invertible k × k matrix.

C. Clifford group

The Clifford group is the normalizer of the Pauli group. In the binary case, it is well-known that
the Clifford group is generated by the Hadamard gate, the phase gate, and the controlled-NOT
gate [17]. A characterization of the Clifford group in the non-binary case can be found in [18].

Clifford operators are important in the stabilizer formalism because they send any stabilizer
state to a stabilizer state. Suppose |ψ〉 is a stabilizer state with the stabilizer group S. Also, let
L be a Clifford operator. For any g ∈ S we have (LgL†)L|ψ〉 = L|ψ〉. On the other hand, LgL†

is in LSL† which is a subgroup of the Pauli group since L is a Clifford operator. In fact, LSL†

is a maximal Abelian subgroup of the Pauli group whose corresponding stabilizer state is L|ψ〉.
Therefore, Clifford operators send stabilizer states to stabilizer states.

Based on the characterization of the Clifford group [17, 18], for any two stabilizer states |ψ〉
and |ψ′〉 there is a Clifford operator L such that L|ψ〉 = |ψ′〉. However, it does not mean that all
the stabilizer states are the same in the point of view of quantum coding theory since the operator
L may completely change the entanglement of a state. But if we assume that L = L1 ⊗ · · · ⊗ Ln

is a local Clifford operator (L is the tensor product of n one-qupit Clifford operators), then the
entanglement of |ψ〉 and L|ψ〉 are the same. Based on this idea, two stabilizer states are called
“local Clifford equivalent” if they are equivalent under the action of the local Clifford group.

For the encoding circuits, we need only two Clifford operators which we describe next. Define
the vector

|r̂〉 = 1√
p

p−1∑

s=0

ω−rs|s〉, (16)

for any r ∈ Fp. |r̂〉 is an eigenvector ofX, i.e., X|r̂〉 = ωr|r̂〉, and {|0̂〉, . . . , |p̂− 1〉} is an orthonormal
basis. Therefore, the operator

H|r̂〉 = |r〉, (17)

which is called the (generalized) Hadamard gate, is unitary. By definition HXH† = Z. Also, it is
easy to see that HZH† = X†. Hence, H is in the Clifford group. Using the above relations the
proof of the following lemma is easy.
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Lemma 3 Suppose |ψ〉 is a stabilizer state whose stabilizer group is represented by the n × (2n)
matrix M . Thus, the matrix representation of the stabilizer state Hi|ψ〉 (Hadamard gate is applied
on the i-th qupit) is obtained from M by exchanging the i-th and (n + i)-th columns and then
multiplying the i-th column by −1.

The next operator is a two-qupit gate which is called controlled-Z and is defined by

Cz|r〉|s〉 = |r〉Zr|s〉 = Zs|r〉|s〉 = ωrs|r〉|s〉. (18)

We have

CzX ⊗ IC†
z = X ⊗ Z,

CzI ⊗XC†
z = Z ⊗X,

CzZ ⊗ IC†
z = Z ⊗ I,

CzI ⊗ ZC†
z = I ⊗ Z, (19)

and thus by definition Cz is in the Clifford group.

Lemma 4 Suppose |ψ〉 is a stabilizer state whose stabilizer group is represented by the n × (2n)
matrix M . Thus, the matrix representation of the stabilizer state Cij

z |ψ〉 (the controlled-Z gate is
applied on the i-th and j-th qupits) is obtained from M by adding column i to column n + j, and
column j to column n+ i.

D. Graph states

In the following we consider graphs whose edges are labeled by non-zero elements of Fp. Con-
sidering the adjacency matrix of a graph G, we can represent it by a symmetric matrix over Fp with
zero diagonal. Suppose G is such a matrix of size n× n. Then M = (In |G) is a full-rank n× (2n)
matrix, and all of its rows are mutually orthogonal with respect to the symplectic inner product;
therefore, M represents a stabilizer group which corresponds to a stabilizer state. Such a stabilizer
state is called a graph state, which we denote by |ψ〉G . It is well-known that any stabilizer state
is local Clifford equivalent to a graph state [20], so to study the properties of stabilizer states it is
sufficient to restrict ourselves to graph states.

Graph states can be generated easily using only Hadamard and controlled-Z gates,

Lemma 5 The graph state corresponding to the graph with adjacency matrix G = (gij) on n
vertices can be generated by the following circuit. Prepare n qupits in the state |0〉, apply H† to
every one of them, and then for any i, j apply C

gij
z on qupits i and j.

Proof: The initial state of the n qupits is |0〉 · · · |0〉, which is a stabilizer state with the stabilizer
group {Za : a ∈ Fn

p}. This stabilizer group corresponds to the matrix M0 = (0n | In). According

to Lemma 3, after applying H† gates the matrix M0 will be changed to M1 = (In | 0). Also, by
Lemma 4, applying C

gij
z on qupits i and j corresponds to adding columns i and j multiplied by

gij to columns n+ j and n+ i, respectively. Since the first block of M1 is identity, this operation
is the same as to add gij to the entries ij and ji of the second block. Therefore, at the end we
obtain the matrix M2 = (In |G). �
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E. Measurement on graph states

Suppose we have a graph state |ψ〉G which corresponds to the graph G with adjacency matrix
G, and we measure its (say) last qupit in the standard basis and get |0〉. We claim that the state
after the measurement (without the measured qubit) is also a graph state whose corresponding
graph is obtained from G by removing the last vertex. To see this fact precisely notice that since
(In |G) represents the stabilizer group of |ψ〉G , for any i, we have XeiZgi |ψ〉G = |ψ〉G , where all
coordinates of ei are 0 except the i-th one which is 1, and gi is the i-th row of G. Let

|ψ〉G =

p−1∑

r=0

αr|φr〉|r〉, (20)

and for 1 ≤ i ≤ n − 1 let g′
i and e′i be the vectors of length n − 1 obtained from gi and e′i,

respectively, by deleting the last coordinate. Thus we have

|ψ〉G = XeiZgi |ψ〉G =

p−1∑

r=0

αrZ
ginXe′iZg′

i |φr〉|r〉 =
p−1∑

r=0

αr

(
ωrginXe′iZg′

i |φr〉
)
|r〉. (21)

As a result Xe′iZg′
i |φ0〉 = |φ0〉, which means that |φ0〉 is a stabilizer state with the stabilizer group

generated by Xe′iZg′
i , 1 ≤ i ≤ n−1, and the matrix representation of these generators is (In−1 |G′)

where G′ is the adjacency matrix of the graph obtained from G by removing its last vertex.

F. CWS codes and graph codes

A CWS code ((n,K, d))p is described by a graph G with n vertices and edges labeled by Fp,
together with a classical code C which consists of K vectors in Fn

p . Such a code is denoted by
Q = (G, C) [4–6].

If the classical code C is linear, then Q is a graph (stabilizer) code [4–6]. The parameters of
such a graph code Q = (G, C) are [[n, k, d]]p, where the classical code C consists of K = pk vectors
in Fn

p that are indexed by the elements of Fk
p. This [[n, k, d]]p graph code encodes k qupits into n

qupits in the following way. Suppose |ψ〉G is the graph state corresponding to G. To encode a state
of the form H† ⊗ · · · ⊗H†|r1 . . . rk〉 we first find the classical codeword α ∈ C which is indexed by
r1 . . . rk, and then encode H† ⊗ · · · ⊗H†|r1 . . . rk〉 into Zα|ψ〉G [21]. Since C is a linear code, it is
a linear subspace of Fn

p . We can then represent C by k basis vectors α1, . . . ,αk. In this case, the

state H† ⊗ · · · ⊗H†|r1 . . . rk〉 is encoded into Zr1α1+···+rkαk |ψ〉G .
The encoding circuit of a [[n, k, d]] graph code is simple, as shown in the following procedure.

Procedure 2 (Encoding circuit for a graph code)

1. First generate the graph state |ψ〉G using the circuit described in Lemma 5.

2. For any 1 ≤ i ≤ k apply H† on qi, where q1, . . . , qk are the qupits that we want to encode.

3. For any 1 ≤ j ≤ n apply C
αij
z on qi and the j-th qupit of |ψ〉G , where αij is the j-th coordinate

of αi.

4. Apply H to q1, . . . , qk.

5. Measure q1, . . . , qk in the computational basis.
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For example, the encoding circuit of the graph code with a triangle graph and the classical code
{000, 111} can be found in the left circuit of FIG. 5. (Notice that in the binary case H† = H.)

In general, for a graph code Q = (G, C) the encoding circuit can be represented graphically,
and the corresponding graph is denoted by GC : consider the graph G, for any 1 ≤ i ≤ k add a
vertex (input vertices), attach it to the vertices of G (called the output vertices), and label the
edge between this vertex and the j-th vertex of G by αij . For example, FIG. 2B gives the graph
GC , where G is a triangle and C = {000, 111}.

Remark 2 The encoding circuit corresponding to the graph code with graphical representation GC

is related to the circuit that generates the graph state |ψ〉GC corresponding to the graph GC . To see
this, notice that the steps 1,2, 3 in Procedure 2 indeed give such a graph encoder.

To find the logical X and Z operators of an additive graph code we first describe the stabilizer
group of the logical |0 . . . 0〉L state. Notice that

|0 . . . 0〉 = 1√
pk

∑

r1,...,rk

H† ⊗ · · · ⊗H†|r1 . . . rk〉, (22)

and then

|0 . . . 0〉L =
1√
pk

∑

r1,...,rk

Zr1α1+···+rkαk |ψ〉G . (23)

Therefore, all operators Zαi are in the stabilizer group of |0 . . . 0〉L, and the logical Z operators
are described by the rows of the matrix




0 α1
...

...
0 αk


 . (24)

Since the vectors αi are linearly independent, without loss of generality (by a change of basis for
the classical code and reordering the qupits), we may assume that the first block of the second part
of this matrix is Ik. So we assume that the matrix (Ik A), where A is of size k× (n− k) describes
a basis for C, and the logical Z operators are

(
0 Ik A

)
. (25)

Assume that

G =

(
G1 B
BT G2

)
, (26)

where G1, G2, and B are of size k × k, (n − k)× (n− k), and k × (n − k), respectively. Then the
stabilizer group of the state |ψ〉G is represented by

(
Ik 0 G1 B
0 In−k BT G2

)
. (27)

Now note that for any 1 ≤ i, j ≤ k, (Zαi)(XejZgj) = ωδij (XejZgj )(Zαi), where δij is the Kronecker
delta function. On the other hand, the code space is invariant under XejZgj . Therefore, the logical
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X operators can be described by the matrix

(
Ik 0 G1 B

)
. (28)

Also, it is not hard to see that the Pauli matrices corresponding to the rows of

(
−AT In−k −ATG1 +BT −ATB +G2

)
, (29)

commute with both logical X and logical Z operators. Therefore, the additive graph code Q is
described by the stabilizer group

S =

(
0 0 Ik A

−AT In−k −ATG1 +BT −ATB +G2

)
, (30)

logical Z operators

Z =
(
0 0 Ik A

)
, (31)

and logical X operators

X =
(
Ik 0 G1 B

)
. (32)

G. Summary of notations

Before going into the detailed proof of the main result, we summarize our notation. Let Q =
(G, C) be a CWS code. If C is linear, then Q is a graph code, where the code has a graphical
representation denoted by GC . The concatenation of two CWS quantum codes Qin = (Gin, Cin) and
Qout = (Gout, Cout) is denoted by Qc = Qin ⊏ Qout.

See Table I for the rest of notations.

C the classical code

C the generator matrix of the classical code C, if C is linear

C{enc} the encoder of the classical code C

G the graph corresponding to the graph state |ψ〉G
G the adjacency matrix of the graph G (G = (gij))

GC the graph representing the graph code Q, if C is linear

G{enc} the encoding circuit of the graph G

G{enc}
Qc

the encoding graph of the concatenated code Qc

GCout{enc}
Qc

the encoding graph of the concatenated code Qc, if Cout is linear

TABLE I: Notations

Most of the notations have already been given in Sec. III, except for G{enc}
Qc

and GCout{enc}
Qc

, which
are discussed in Sec. IIB and will be explained in more details in Sec. V.
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IV. CONCATENATION OF GRAPH CODES

In this section, we prove our main result in a simple case, where the inner code encodes only a
single qupit and the outer code is a graph code. In this situation, we can algebraically obtain the
graph and the classical code of the concatenated code using the stabilizer formalism. Although we
will prove our main result in the general case in Sec. V, we believe that the proof given in this
section is easily accessible to those who are familiar with the stabilizer formalism.

Suppose the inner code Qin = (Gin, Cin) encodes only a single qupit, i.e., Qin is an [[n, 1, d]]p
code. Then from the discussion in Sec. III F, it follows that

Gin =

(
0 y

yT H ′

)
, (33)

and

Cin = {0, (1 b)}, (34)

i.e.,

Cin = (1 b), (35)

where both y and b are vectors of length n − 1. (Notice that Qin encodes one qupit; thus, Cin is
one-dimensional.)

SinceQin encodes one qupit, the corresponding outer code Qout = (Gout, Cout) is an ((n′,K ′, d′))p
code. In this section we assume that Cout is linear, so Qout is a graph code with parameters
[[n′, k′, d′]]p, where K

′ = pk
′
. Then from the discussion in Sec. III F, we have

Gout =

(
G1 B

BT G2

)
, (36)

and the rows of

Cout = (Ik′ A) (37)

form a basis for Cout.
Thus by Eqs. (30)–(32) the stabilizer group of Qin is

Sin =

(
0 0 1 b

−bT In−1 yT −bTy+H ′

)
, (38)

its logical operator Z is given by

Zin =
(
0 0 1 b

)
, (39)

and its logical operator X is given by

Xin =
(
1 0 | 0 y

)
. (40)

The concatenated code Qc = Qin ⊏ Qout is a quantum code which encodes k′ qupits into nn′
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qupits as follows; it first encodes k′ qupits into n′ qupits using Qout, and then encodes any of the
n′ qupits into n qupits based on Qin.

The main result of this section is given by the following theorem, which states that the con-
catenated code Qc = Qin ⊏ Qout is also a graph code. The corresponding adjacency matrix of the
graph and the generator matrix of the classical code can be computed directly from the adjacency
matrices and the generator matrices of the inner and outer codes.

Theorem 1 Suppose Qout = (Gout, Cout) and Qin = (Gin, Cin) are [[n′, k′, d′]]p and [[n, k, d]]p graph
codes, respectively, (where k = 1) as described by Eqs. (33)–(37). Then the concatenated code
Qc = Qin ⊏ Qout = (Gc, Cc) is a graph code described by the graph Gc with adjacency matrix

Gc = Gin ⊗ In′ +

(
1

bT

)
(1 b)⊗Gout, (41)

and the classical code with generator matrix

Cc = (1 b)⊗ (Ik′ A), (42)

i.e., the classical code is obtained by concatenation as well:

Cc = Cin ⊏ Cout. (43)

Proof: Let us first show that a basis of Cc is described by Eq. (42). To find Zc, the logical Z
operators of Qc, we should first consider the logical Z operators of Qout, and then replace any Pauli
matrix X and Z of those operators with the logical X and Z operators of Qin. For example, if the
logical Z operator acting on the first encoded qupit in Qout is Z(1,1,0,...,0), the logical Z operator
acting on the first qupit in Qc is Z((1,b),(1,b),0...0) because by Eq. (39) the logical Z operator of
Qin is Z(1,b). Therefore, by changing the order of qubits we can represent this Pauli matrix by

the vector
(
0 (1 b)⊗ (1, 1, 0, . . . , 0)

)
, where the zero before the vertical line is actually a zero

vector. Now since the logical Z operators of Qout are represented by rows of Eq. (31), we have

Zc =
(
0 (1 b)⊗ (Ik′ A)

)
. (44)

Equivalently, (1 b)⊗ (Ik′ A) is a basis for the linear code Cc.
Analogously, we compute for the logical X operators of Qc:

Xc =
(
(1 0)⊗ (Ik′ 0) (0 y)⊗ (Ik′ 0) + (1 b)⊗ (G1 B)

)
(45)

=
(
Ik 0 G1 B b⊗ (G1B) + y ⊗ (Ik′ 0)

)
. (46)

It remains to compute the stabilizer group. The first n′ rows of Sc are obtained from rows of
Sout (Eq. (30)) by replacing any X and Z with the logical X and Z of the inner code. For the next
(n−1)n′ rows note that, g2, . . . , gn which are the Pauli matrices corresponding to the rows 2, . . . , n
of Sin commute with the logical X and Z of the inner code. In fact, they are in the stabilizer group
of the code space (spanned by the states |0〉, . . . , |p − 1〉 states). Now since we replace any of the
n′ qupits of Qout with a state in the code space of Qin, each block of n qupits in Qc should be
stabilized by g2, . . . , gn. As a result, Sc = (M N ), where
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M =



(1 0)⊗

(
0 0

−AT In′−k′

)

(−bT In−1)⊗ In′


 =




0 0 0

−AT In′−k′ 0

−bT ⊗
(
Ik′

0

)
−bT ⊗

(
0

In′−k′

)
I(n−1)n′


 , (47)

and

N =



(0 y)⊗

(
0 0

−AT In′−k′

)
+ (1 b)⊗

(
Ik′ A

−ATG1 +BT −ATB +G2

)

(yT − bTy +H ′)⊗ In′


 . (48)

Now to complete the proof of Theorem 1 it is sufficient to show that the stabilizer group, and
the logical X and Z operators of the graph code described by Eqs. (41) and (42) are given by
Eqs. (44)–(48). We compute these matrices using the construction given by Eqs. (30)–(32).

First of all, the classical part of the code is given by (Ik′ B), where B = (A b ⊗ (Ik′ A));
therefore, the logical Z operators of the code are the same as Eq. (44).

The block from of matrix Gc of Eq. (41) is given by

Gc =

(
K1 W

W T K2

)
, (49)

where K1 = G1, W = (B y ⊗ (Ik′ 0) + b⊗ (G1 B)) and

K2 =




G2 y ⊗ (0 In′−k′) + b⊗ (BT G2)

yT ⊗
(

0

In′−k′

)
+ bT ⊗

(
B

G2

)
H ′ ⊗ In′ + bTb⊗G2


 . (50)

Hence, the logical X operator of the graph code is

(
Ik′ 0 | K1 W

)
=
(
Ik′ 0 | K1 B y ⊗ (Ik′ 0) + b⊗ (G1 B)

)
, (51)

which is the same as Eq. (45).
The stabilizer group of the graph code is given by

(
0 0 Ik′ B

−BT Inn′−k′ −BTK1 +W T −BTW +K2

)
. (52)

By Lemma 2 this matrix describes the same group as Sc = (M |N ) because we have

Sc =




Ik′ 0 0

0 In′−k′ 0

0 −bT ⊗
(

0

In′−k′

)
I(n−1)n′




(
0 0 Ik′ B

−BT Inn′−k′ −BTK1 +W T −BTW +K2

)
. (53)

�

Notice that from Eq. (41), the adjacency matrix Gc does not depend on the classical code of the
outer code (Cout), which indicates that Theorem 1 could also be true even if Cout is nonlinear (in
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this case Eq. (42) does no longer apply, but Eq. (43) may still hold). As the stabilizer formalism
can no longer be used to handle this case, we need an alternative proof technique which will be
presented in the next section. This new technique is based on analyzing the encoding circuit of the
concatenated code. It can easily be extended to more general cases, such as nonlinear outer codes,
k > 1, and even to generalized concatenated quantum codes.

V. GRAPH CONCATENATION BY GENERALIZED LOCAL COMPLEMENTATION

In this section we prove our main result based on analyzing the encoding circuits of the con-
catenated code. We start with an alternative proof for Theorem 1 in Sec. VA for the simple case
that the inner code encodes only a single qupits, and the outer code is a graph code. This proof is
based on the rule of “generalized local complementation.” Then in Sec. VB, we show that the rule
of “generalized local complementation” can be directly applied to the case that the outer code is a
general CWS code, which is beyond the result of Theorem 1. In Sec. VC, we discuss the case where
the inner code encodes more than one qupit (i.e., k > 1); we show that the rule of “generalized
local complementation” given in Sec. VA also applies directly to this case, and hence completes
the proof of the main result.

A. Alterantive proof for Theorem 1

Recall our main goal: suppose we have two graph codes Qout = (Gout, Cout) and Qin = (Qin, Cin)
given by Eqs. (33)–(37), where Qin encodes a single qupit. Let Qc = Qin ⊏ Qout denote the
concatenation of the inner code Qin and the outer code Qout. We would like to show that Qc =
(Qc, Cc), where Qc and Cc are given in Eqs. (41) and (42), respectively.

In Sec. VA1, we first specify the encoding circuit of the concatenated code Qc, then we give the

graphical interpretation of this circuit and define the encoding graph GCout{enc}
Qc

of the concatenated
code Qc. Then in Sec. VA2 we define the rule of “generalized local complementation” on a graph;
we show how the encoding circuit of the concatenated code Qc can be interpreted as generalized
local complementation on the encoding graph, and how we can obtain the graph code GCc

c from the

encoding graph GCout{enc}
Qc

; finally we show that Qc and Cc are exactly those given in Eqs. (41) and
(42), thereby completing the proof.

1. Encoding circuit and encoding graph for the concatenated code

We have already discussed the encoding circuit of a concatenated code in Sec. IIB. Here we
state it more formally.

Procedure 3 (Encoding circuit for Qc with a graph outer code and an inner code encoding a
single qupit)

1. Apply the encoding circuit of Qout that encodes k′ qupits into n′ qupits which we call
q1, . . . , qn′, as given by Procedure 2.

2. Apply n′ copies of the circuit that gives the graph state corresponding to Gin.

3. Apply H† on all qupits q1, . . . , qn′.

4. Apply the corresponding controlled-Z operators between these qupits and the graph states of
Gin.
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5. Apply H on q1, . . . , qn′.

6. Measure q1, . . . , qn′ in the computational basis.

For an example, see the right circuit of FIG. 5.
As discussed in Sec. IIB, Procedure 3 can be represented by a graph which is denoted by

GCout{enc}
Qc

. This graph is constructed as follows: Step 1 corresponds to the graph GCout
out ; Step 2

corresponds to adding a copy of the graph Gin for each vertex qi of the graph Gout, then we have a
graph on n′ + k′ + nn′ vertices; Steps 3, 4, 5 encode the n′ qupits of the outer code into n′ copies
of the inner code, so we just add edges and labels according to controlled-Z gates that are applied
between these n′ qupits and the graph states of Gin.

For an example of the encoding graph GCout{enc}
Qc

, see FIG. 4B. (The corresponding encoding
circuit is given by the right circuit of FIG. 5.)

2. Graph concatenation via Generalized Local Complementation

We now give a graphical interpretation of Steps 3, 4, 5 given in Procedure 3. Notice that for
1 ≤ i ≤ n′ we apply H† to qupit qi, then the corresponding controlled-Z operations between qi
and the i-th copy of the graph state Gin, and finally H on qi. We show that each of these n′ steps
is equivalent to a generalized local complementation on the graph.

Definition 1 (Generalized Local Complementation) Suppose F = (fij) is the adjacency matrix of
a graph F , i is a vertex of F , and fi is the i-th row of F . Also, let v be a vector whose coordinates
are indexed by the vertices of F such that v is zero on i and its neighbors, i.e., vj = 0 if j = i
or fij 6= 0. Then the generalized local complementation at (i,v) is the operation which sends F to
F + vT fi + fTi v.

Notice that, since v is zero on the neighbors of i, for any j and k either (vT fi)jk or (fTi v)jk is
equal to zero.

To get an idea on why we call this operation the generalized local complementation, let us
consider the binary case. In this special case v corresponds to a subset of vertices (j belongs to
this set iff vj = 1). Then this operation is the same as to replace the bipartite graph induced on
the neighbors of i and the vertices in v with its complement. (For an example, see FIG. 7.)

Theorem 2 (Encoding circuit interpreted as generalized local complementation) Consider a circuit
which corresponds to a graph F with the adjacency matrix F . Let i be a vertex of F (or equivalently
a qupit in the circuit), and let v be a vector which is zero on i and its neighbors. Suppose we change
the circuit by applying H† on the i-th qupit, C

vj
z (vj is the j-th coordinate of v) on the qupits i and

j, for any j, and then H on the i-th qupit. Then the resulting circuit is equivalent to the graph F
after the generalized local complementation at (i,v).

Proof: For simplicity assume i = 1, and let f1 = (0 s), where f1 is the first row of F . Also,
let v = (0 v′), and F ′ be the graph obtaining from F by removing its first vertex (and F ′ its
adjacency matrix). Then the stabilizer group corresponding to the circuit is represented by

( I |F ) =

(
1 0 0 s

0 I sT F ′

)
. (54)
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Then based on the translation of the action of the Hadamard gate and controlled-Z gate on the
stabilizer group (Lemmas 3 and 4), we can compute that stabilizer group after applying those gates
as follows:

(
1 0 0 s

0 I sT F ′

)
H†

−→
(

0 0 −1 s

sT I 0 F ′

)
C1,v′

z−→
(

0 0 −1 s

sT I v′T F ′ + sTv′

)
(55)

H−→
(

1 0 0 s

−v′T I sT F ′ + sTv′

)
(56)

Now to relate this stabilizer group to a graph, we change the set of generators by multiplying the
above matrix by

(
1 0

v′T 1

)
, (57)

which gives

(
1 0 0 s

0 I sT F ′ + sTv′ + v′T s

)
. (58)

Hence, the adjacency matrix F of the graph is changed to F + vT fi + fTi v. �

A direct corollary of Theorem 2 is the following:

Corollary 1 Qc = (Gc, Cc), and the graph GCc
c can be obtained from the encoding graph GCout{enc}

Qc

via Procedure 1.

Notice that Corollary 1 proves our main result in the case that the inner code encodes a single
qupit and the outer code is linear.

Also, note that the resulting graph of Corollary 1 is consistent with the one given by Theorem 1
since they both compute the same graph. In other words, the adjacency matrix of the graph GCc

c

constructed via Corollary 1 is given by Theorem 1.

Theorem 3 The graph GCc
c given by Corollary 1 is equal to the graph given by Eqs. (41) and (42).

Proof: Here we briefly describe a proof only for the binary case, and for the validity of Eq. (41).
This proof can simply be captured for the more general setting.

Based on Procedure 1, the graph on which we apply the generalized local complementation
operators has the following subgraphs: Gout with auxiliary vertices {1, . . . , n′}; and a copy of Gin

with vertex set Vi for each auxiliary vertex 1 ≤ i ≤ n′. Then for each 1 ≤ i ≤ n′ we apply the
generalized local complementation on i with respect to Si ⊆ Vi which is defined based on the
classical inner code.

Fact 1 Eq. (41) describes the unique graph on the vertex set
⋃

i Vi with the following structure:

1. The induced subgraph on Vi, for every i, is isomorphic to Gin.

2. For every i 6= j, there is no edge between vertices in Vi and Vj \ Sj.

3. For every i 6= j, there is an edge between vertices v ∈ Si and w ∈ Sj iff i and j are connected
in Gout.
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Clearly the graph with these properties is unique. Also, it is clear that Eq. (41) represents this
unique graph.

Based on this fact, we will show that the graph resulting from Procedure 1 has the above
structure.

Fact 2 During Procedure 1 the changes on the subgraph induced on
⋃
Vi happen only among ver-

tices v ∈ Si and w ∈ Sj for i 6= j. As a result, the final graph of Procedure 1 satisfies properties 1
and 2 of Fact 1.

This is simply because in the generalized local complementations we never touch vertices in
Vi \ Si. Furthermore,in each step, Si is disjoint from N(i) (the neighbors of vertex i), so there is
no change in the subgraph induced on the vertex set Si.

Fact 3 In Procedure 1, suppose we have applied the generalized local complementation on vertices
1, 2, . . . , l, for some 1 ≤ l ≤ n′. Then for any choice of vi ∈ Si, for 1 ≤ i ≤ l, the induced subgraph
on vertices {v1, . . . , vl} ∪ {l + 1, . . . , n′} is isomorphic to Gout.

This fact can be proved by a simple induction on l.
Now we can prove the theorem. The resulting graph of Procedure 1 is a graph on the vertex set⋃

i Vi. According to Fact 2, this graph satisfies properties 1 and 2 of Fact 1. Property 3 of Fact 1
also holds based on Fact 3. Therefore, by the uniqueness of the graph described in Fact 1, we are
done. �

We illustrate the graph obtained by generalized local complementation for the code [[25, 1, 9]]
which can be obtained by self-concatenation of the code [[5, 1, 3]]. As a graph code, the code
[[5, 1, 3]] can be described by a pentagon corresponding to the output nodes and a central input
node that is connected to all output nodes. Using auxiliary nodes, the concatenated code [[25, 1, 9]]
is show as the left graph in FIG. 9.

FIG. 9: Self-concatenation of the code [[5, 1, 3]] yielding a code [[25, 1, 9]].

The outer code is given by the large pentagon with green/light dots and dashed lines. The five
copies of the inner code correspond to the small pentagons with black dots and solid lines. The
final graph is shown on the right of FIG. 9. The five solid black pentagons remain, and any vertex
in a small pentagon is connected with blue/dashed lines to any vertex of the neighboring pentagons
as well as the central input node.

The situation for the self-concatenation of Steane’s code [[7, 1, 3]], which can be realized as a
cube, is shown in FIG. 10.
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FIG. 10: Self-concatenation of Steane’s code [[7, 1, 3]] yielding a code [[49, 1, 9]].

B. A general outer code

In this section we consider the case when the outer code is nonadditive. The advantage of
Theorem 2 is that it directly applies to this case as well.

Procedure 4 (Encoding circuit for Qc with a general outer code and an inner code encoding a
single qupit)

1. Apply the encoding circuit of Qout that encodes K ′ states into n′ qupits which we call
q1, . . . , qn′.

2. Apply n′ copies of the circuit that gives the graph state corresponding to Gin.

3. Apply H† on all qupits q1, . . . , qn′.

4. Apply the corresponding controlled-Z operators between these qupits and the graph states of
Gin.

5. Apply H on q1, . . . , qn′.

6. Measure q1, . . . , qn′ in the computational basis.

For an example, see the right circuit of FIG. 6.
Notice that Theorem 2 deals with Steps 3, 4, 5 in Procedure 4, which are exactly the same as

Steps 3, 4, 5 as in Procedure 3. Therefore, whether Cout is linear or not does not actually matter.
Consequently, Corollary 1, and thus the main result hold even for nonlinear outer codes.

C. The case k > 1

Theorem 2 can also be directly applied to the case when the inner code encodes more than one
qupit. Again, to see this we only need to specify the encoding circuit of Qc.

Procedure 5 (Encoding circuit for Qc with a general outer code and an inner code encoding k
qupits)

1. Apply the encoding circuit of Qout that encodes K
′ states (or kk′ qupits if Cout is linear) into

kn′ qupits which we call q1, . . . , qkn′.
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2. Apply n′ copies of the circuit that gives the graph state corresponding to Gin.

3. Apply H† on all qupits q1, . . . , qkn′.

4. Apply the corresponding controlled-Z operators between these qupits and the graph states of
Gin.

5. Apply H on q1, . . . , qkn′.

6. Measure q1, . . . , qkn′ in the computational basis.

Note that Steps 3, 4, 5 remain the same as those given in Procedure 3. Consequently, Corollary 1,
and hence our main result hold for the case of k > 1.

For an example, the left graph of FIG. 11 is the encoding graph GCout{enc}
Qc

of the concatenated
code Qc with a [[4, 2, 2]]2 inner code, and a [[4, 2, 2]]22 outer code. Note that we decompose the
outer code into two copies of a qubit code [[4, 2, 2]]2. Hence there are kn′ = 2 × 4 = 8 auxiliary

vertices (green/light vertices) in GCout{enc}
Qc

. The corresponding encoding circuit is given by the
middle circuit in FIG. 11, where “/” on each line indicates that there is a set of qubits, not just
one. For instance, the line corresponding to |q0〉 represents the 4 input qubits (4 white vertices in
the left graph of FIG. 11 ), the line corresponding to |q1〉 represents the 8 auxiliary qubits, and
the line corresponding to |q2〉 represents the 4 output qubits of a single inner code Qin. The graph

GCc
c of the concatenated code Qc can be obtained from the encoding graph GCout{enc}

Qc
by applying

Corollary 1. The result is shown as the right graph in FIG. 11. The blue/dashed lines are the
edges obtained by generalized local complementation.

|q0〉 / H • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q1〉 / G
{enc}
out

• H • • • • H
LL������ ________

�������

_ _ _ _ _ _ _ _

��
��
��
�

|q2〉 / G
{enc}
in

•

|q3〉 / G
{enc}
in

•

|q4〉 / G
{enc}
in

•

|q5〉 / G
{enc}
in

•

FIG. 11: Graphs and encoding circuit for the concatenated [[16, 4, 4]]2 code obtained by concatenating an
inner code [[4, 2, 2]]2 with an outer code [[4, 2, 2]]22.

VI. GENERALIZED CONCATENATED CODES

In this section, we discuss the application of our main result to the case of generalized con-
catenated quantum codes (GCQCs). The construction of GCQCs has been recently introduced in
[10, 11]. It resulted in many new QECCS, both stabilizer codes and nonadditive codes.

A GCQC is derived from an inner quantum code Q(0)
in = ((n, q1q2 · · · qr, d1))p, which is first

partitioned into q1 mutually orthogonal subcodes Q(1)
in{i1}

(0 ≤ i1 ≤ q1 − 1), where each Q(1)
in{i1}

is

an ((n, q2 · · · qr, d2))p code. Then each Q(1)
in{i1}

is partitioned into q2 mutually orthogonal subcodes

Q(2)
in{i1i2}

(0 ≤ i2 ≤ q2 − 1), where each Q(2)
in{i1i2}

has parameters ((n, q3 · · · qr, d3))p, and so on.
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Finally, each Q(r−2)
in{i1i2...ir−2}

is partitioned into qr−1 mutually orthogonal subcodes Q(r−1)
in{i1i2...ir−1}

=

((n, qr, dr))p for 0 ≤ ir−1 ≤ qr−1 − 1. Thus

Q(0)
in =

q1−1⊕

i1=0

Q(1)
in{i1}

, Q(1)
in{i1}

=

q2−1⊕

i2=0

Q(2)
in{i1i2}

, . . . , (59)

and d1 ≤ d2 ≤ . . . ≤ dr. In addition, we take as outer codes a collection of r quantum codes

Q(1)
out, . . . ,Q

(r)
out, where Q(j)

out is an ((n′,K ′
j , d

′
j))qj code over the Hilbert space H⊗n′

qj .

The generalized concatenated code Qgc is a quantum code in the Hilbert space H⊗nn′

q of di-
mension K ′ = K ′

1K
′
2 · · ·K ′

r. The detailed construction of Qgc can be found in [11]. Here we only
emphasize that the essence of the “generalization”, which is different from the usual concatenated
quantum codes, is that the outer code is actually a product of r outer codes, and the inner code
is nest-decomposed to specify how those product of outer codes are encoded into each inner code.
Therefore, similar to a concatenated code Qc, a GCQC Qgc with a graph inner code

Q(0)
in = (G(0)

in , C
(0)
in ) (60)

and r CWS outer codes

Q(j)
out = (G(j)

out, C
(j)
out) (61)

naturally has an encoding graph, denoted by G{enc}
Qgc

, and the corresponding encoding circuit is
given by the following procedure.

Procedure 6 (Encoding circuit for generalized concatenated code Qgc)

1. Apply the encoding circuits of Q(j)
out

that encodes K ′
j states (or k′j logp qj qupits if C(j)

out
is

linear) into n′ logp qj qupits which we call q1, . . . , qn′ logp qj .

2. Apply n′ copies of the circuit that gives the graph state corresponding to Gin.

3. For each j = 1, . . . , r, apply H† on all qupits q1, . . . , qn′ logp qj .

4. Apply the corresponding controlled-Z operators between these qupits and the graph states of
Gin.

5. For each j = 1, . . . , r, apply H on q1, . . . , qn′ logp qj .

6. For each j = 1, . . . , r, measure q1, . . . , qn′ logp qj in the computational basis.

Notice that Steps 3, 4, 5 remain the same as those given in Procedure 3. Consequently, a similar
result as in Corollary 1 holds for constructing GCQCs as well.

Corollary 2 Qgc = (Ggc, Cgc), where Ggc can be obtained for the encoding graph G{enc}
Qgc

via Proce-

dure 1 and Cgc is the classical generalized concatenated code with inner code C(0)
in

(with correspond-

ing decomposition given by the decomposition of Q(0)
in

, see [11] for details) and the outer codes C(j)
out

(j = 1, . . . , r).



26

For an example, the left graph of FIG. 12 is the encoding graph GC
(0)
out{enc}

Qgc
of the GCQC Qgc

with a [[4, 2, 2]]2 inner code code that is decomposed into two copies of a code [[4, 1, 2]]2 . There
are two different outer codes [[4, 4, 1]]2 and [[4, 2, 2]]2 . Note that there are 4 + 2 = 6 input vertices
(white vertices) and 8 auxiliary vertices (green/light vertices). The corresponding encoding circuit
is given by the middle circuit in FIG. 12, where “/” on each line means that the line actually
represents a set of qubits. For instance, the line corresponding to |q00〉 represents the 4 input
qubits of the [[4, 4, 1]]2 outer code, the line corresponding to |q01〉 represents the 2 input qubits
of the [[4, 2, 2]]2 outer code, the lines corresponding to |q10〉 and |q11〉 represents the 4 auxiliary
qubits of the [[4, 4, 1]]2 and the [[4, 2, 2]]2 outer codes, respectively, and the line corresponding to

|q2〉 represents the 4 output vertices in a single Qin. To obtain the graph GCgc
gc of the concatenated

code Qgc from the encoding graph GC
(0)
out{enc}

Qgc
apply Corollary 2. The result is shown as the right

graph in FIG. 11.
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|q11〉 / G
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|q2〉 / G
{enc}
in

• •

|q3〉 / G
{enc}
in

• •

|q4〉 / G
{enc}
in

• •

|q5〉 / G
{enc}
in

• •

FIG. 12: Graphs and encoding circuit for the generalized concatenated [[16, 6, 2]]2 code, derived from an
inner code [[4, 2, 2]]2 and outer codes [[4, 2, 2]]2 and [[4, 4, 1]]2.

VII. CONCLUSION AND DISCUSSION

In this paper we develop a systematic method for constructing concatenated quantum codes
based on “graph concatenation”, where graphs representing the inner and outer codes are concate-
nated via a simple graph operation called “generalized local complementation.” The outer code is
chosen from a large class of quantum codes, called CWS codes, which includes all the stabilizer
codes as well as many good nonadditive codes. The inner code is chosen to be a stabilizer code. De-
spite the restriction that the inner code must be a stabilizer code, our result applies to very general
situations—both binary and nonbinary concatenated quantum codes, and their generalizations.

Our results indicate that graphs indeed capture the “quantum part” of the QECCs. Once
the graph part is taken care of, the construction of quantum code is reduced to a pure classical
problem. This was essentially the idea of the CWS framework (i.e., the problem of constructing
a CWS quantum code is reduced to the problem of finding a classical code with error patterns
induced by a given graph). Here we have demonstrated that this idea extends to the construction
of (generalized) concatenated quantum codes as well (i.e., to construct (generalized) concatenated
quantum codes, given the rule of graph concatenation, one only needs to construct the (generalized)
classical concatenated codes). We believe that our results shed light on the further understanding
of the role that graphs play in the field of quantum error correction and other related areas in
quantum information theory.
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