
MIT Open Access Articles

Energy-Aware Hardware Implementation of Network Coding

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Angelopoulos, Georgios, Muriel Medard, and Anantha P. Chandrakasan. “Energy-Aware
Hardware Implementation of Network Coding.” Lecture Notes in Computer Science (2011): 137–
144.

As Published: http://dx.doi.org/10.1007/978-3-642-23041-7_14

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/86040

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/86040
http://creativecommons.org/licenses/by-nc-sa/4.0/

Energy-Aware Hardware Implementation of
Network Coding

Georgios Angelopoulos, Muriel Médard, and Anantha P. Chandrakasan

Massachusetts Institute of Technology,
Mass. Av. 77, 02139 Cambridge, US

{georgios,medard,anantha}@mit.edu

Abstract. In the last few years, Network Coding (NC) has been shown
to provide several advantages, both in theory and in practice. However,
its applicability to battery-operated systems under strict power con-
straints has not been proven yet, since most implementations are based
on high-end CPUs and GPUs. This work represents the first effort to
bridge NC theory with real-world, low-power applications. In this paper,
we provide a detailed analysis on the energy consumption of NC, based
on VLSI design measurements, and an approach for specifying optimal
algorithmic parameters, such as field size, minimizing the required energy
for both transmission and coding of data. Our custom, energy-aware NC
accelerator proves the feasibility of incorporating NC into modern, low-
power systems; the proposed architecture achieves a coding throughput
of 80MB/s (60MB/s), while consuming 22uW (12.5mW) for the encoding
(decoding) process.

Keywords: Network Coding VLSI Implementation, Energy Optimiza-
tion of Network Coding, Network Coding for Mobile Applications

1 Introduction

Network Coding (NC), initially introduced in 2000 by Ahlswede et al. [2], has
received extensive research attention in the Information Theory and Networking
community. The revolutionary idea of NC is to allow intermediate nodes within
a network to mix or code previously received or locally generated packets to-
gether and let the final destinations decode the mixtures. Some of the reported
advantages of NC are throughput gains, increase in data robustness, security
and better utilization of network resources [7, 9, 4]. However, coding complexity
and energy cost should be carefully examined in order to make these advantages
practical, especially when low-power applications are considered, such as Body
Area Networks (BANs).

In the literature, a few papers deal with implementation issues of NC, and
almost all of them use high-performance CPUs or GPUs, focusing on the max-
imum achievable throughput, without analyzing the energy trade-offs of incor-
porating NC into a system architecture. For instance, in [14] a 3.6 GHz Xeon
Dual-Core processor is used to perform NC, achieving a coding throughput of

approximately 5MB/s, while, for similar settings, in [3] NC is implemented using
a 800MHz Celeron CPU, achieving a throughput of 44MB/s. In addition, in [5]
a special type of systematic NC over GF(2) is implemented, both on a cell phone
and a laptop, achieving maximum reported throughput of 40MB/s and 1.5GB/s,
respectively. However, the authors do not consider the energy analysis neither of
the coding process, nor of the implications that the specific algorithmic param-
eters may have in the total system’s energy; for instance, a possible increase in
packet retransmissions due to linear dependent packets. Authors in [8, 12, 10, 13]
make use of multi-core CPUs and GPUs to speed up both encoding and decoding
of NC. While remarkable effort is required to achieve this coding performance,
the power budget of these approaches is in the order of 100 to 500W, number
which is generally prohibitive for low-power systems. Finally, an iPhone is used
as the implementation device in reference [11] , where a maximum throughput
of 420 KB/s is reported, while NC is responsible for approximately 33% of the
reduction in the total battery life-time.

Although high-end CPUs and GPUs have been successfully used as platforms
for implementing NC in previous works, as more and more mobile devices, sensors
and other battery-operated systems are used, the need of a highly efficient and
optimized implementation of NC is required. To the best of our knowledge, none
of prior works deal with the energy analysis of a custom VLSI implementation of
NC. In this paper, we provide a detailed analysis for incorporating NC into a low-
power system architecture, giving insight on the trade-offs between algorithmic
complexity, energy consumption and coding performance. We also propose an
architecture of a custom accelerator, capable of performing NC while consuming
tiny amounts of power, dictated by the strict energy constraints of modern low-
power systems. Some possible target applications of our analysis and design
may be low-power wireless sensor and mobile networks. Our energy-scalable,
ultra low-power NC accelerator consumes 22uW (12.5mW), achieving a coding
throughput of 80MB/s (60MB/s), for the encoding (decoding) process, showing
that NC can be incorporated successfully into modern low-power systems.

This work is organized as follows. In Section 2, we briefly describe the encod-
ing and decoding procedure of NC, while in Section 3, we cover in more detail
some of the Galois field fundamentals. In Section 4, we present an approach for
modeling the required energy of NC based on hardware (VLSI) simulation results
and we analyze how different values of algorithmic parameters affect the total
system’s energy. Finally, in Section 5, we present our implementation’s results
and in Section 6, conclusions are summarized.

2 Network Coding Overview

Assume that a node has to transmit n packets, P = [P1, . . . , Pn], each of L
bits length. If the node uses Random Linear Network Coding (RLNC) [6], it
will first create n linear combinations of them, and then will transmit the result
of the coding process. More specifically, q consecutive bits in each packet are
considered to form a symbol over the field GF(2q), resulting in L/q symbols per

packet. The node randomly generates n sets of coefficients, C = [C1, . . . , Cn],
each of them associated with a specific coded packet Xi. The coded packets X
are generated with a matrix multiplication: X = C ∗P. As soon as a node has
received n linear independent coded packets, it can start the decoding process,
which is actually a problem of solving n equations with n unknowns, recovering
the original packets.

Operations like addition, multiplication and division over GF are involved in
the en-/decoding process. As a result, for an energy efficient implementation of
NC, a detailed examination of these operations should be done in advance.

3 Galois Field Fundamentals

In this Section, we provide a brief description of the most important concepts
of Abstract Algebra related to NC. Our description serves only the purpose of
explaining the decisions made during the design steps; for a more mathematically
rigorous approach readers are referred to Algebra books.

A field F is a set of at least two elements, with the operations ⊗ and ∗ (often
called addition and multiplication), satisfying certain properties. One of these
properties is that F is closed under the two operations, meaning that when an
operation is applied to some elements of F, the result will also be an element of
this field. The number of elements in F is called order and, when this number is
finite, the field is called finite field, denoted also as Galois field (GF). For any
prime number p, it is always defined a GF with order p, represented as GF(p),
having exactly p elements: GF(p)={0,1, . . . , p-1}. We can also create a GF(pq),
for any q>0, called extension field of GF(p). The definition of field size is often
used to characterize the size of a field, denoted as q, where q = logpp

q. Ele-
ments from GF(pq) are usually considered and treated as vectors [aq−1, . . . , a0]
or polynomials of degree at most (q-1) with coefficients from GF(p). Finally, all
GFs contain a zero, an identity and a primitive element, and have at least one
primitive polynomial of degree q associated with them.

The representation basis of the elements in a field is a crucial aspect, deter-
mining the efficiency and complexity of the implementation of different arith-
metic operations. There are several representation bases; the more popular among
them are the standard (or polynomial) and the normal basis. The standard basis
is the set of elements Ω = {1, ω, ω2, . . . , ωq−1}, where ω is a primitive element of

the field GF(pq), while the normal basis is the set Ψ = {ψ,ψp, ψp2

, . . . , ψpq−1},
where ψ is a generator of the basis. Although the normal basis is more suitable
for multiplying two numbers, we choose for our implementation to work entirely
on the standard basis in order to avoid conversions when data are exchanged
between the accelerator and other hardware modules, because standard basis
represents numbers in the same way as fixed-point representation does.

In general, GFs play an important role in many communication systems,
such as FEC and cryptographic schemes. Since digital computing machines use
Boolean logic, the binary field GF(2)={0, 1}, and its extension fields GF(2q),

are widely used, due to the direct map between their elements and the Boolean
values. In the rest of this work we consider only binary fields.

3.1 Addition over Galois Fields

As mentioned previously, each element from GF(2q) can be represented as a
q-bit vector or polynomial of degree (q-1). Adding two elements is equivalent
of adding the coordinates of each vector, or adding the two polynomials, using
GF(2) arithmetic. This means that the implementation of addition over GF(2q)
corresponds simply to a bit-wise XOR operation. Table 1 summarizes the area,
power and delay requirements of a standard (a q-bit carry ripple adder) and a
GF adder. In this table, area is calculated as the required number of gates, power

Table 1: Comparison between standard and Galois Field arithmetic

q-bit arithmetic Area Power Delay

Addition
Standard 5q 5q 2q + 1

Galois Field q q 1

Multiplication
Standard 6q2 − 8q 6q2 − 8q 3q − 2

Galois Field 2q2 + 2q 2q2 + 2q 4q

is approximated to be analogous to area and delay is considered the maximum
time for each operation, assuming that AND, OR and XOR gates have the same
area, power and delay.

3.2 Multiplication over Galois Fields

Using standard basis representation, multiplication over GF(2q) of two elements,
b and c, can be computed as: D(x) = (B(x)C(x)) modp(x), where p(x) is prim-
itive polynomial of the field. As we see, GF multiplication is equivalent of poly-
nomial multiplication followed by polynomial modulo reduction. These two op-
erations can be performed separately, leading to fully parallel, modular and
standard multiplication architectures.

In general, there are several ways to implement a GF multiplication and the
resulting performance is highly dependent on the underlying hardware platform.
In previous implementations of NC, logarithmic look-up tables and iterative ap-
proaches have been used because of the CPU-based approaches. In this work,
trying to minimize the energy consumption of NC, we use a custom, low-power
GF multiplier. A widely used algorithm in cryptographic and error correction
applications for GF multiplication is Rijndael’s algorithm. Our architecture im-
plements a modified version of this algorithm, computing the product of two
elements in one clock cycle and having no pipeline stages. The reason for such a

choice is that our design aims an ultra low-power operation; direct implementa-
tion of the iterative Rijndael’s algorithm would result in approximately q times
less critical path delay, but also in larger overall power consumption. Table 1
summarizes area, power and delay requirements of a standard q-bit array and
our GF multiplier.

4 Energy Modeling and Optimization of NC

In the following paragraphs, we try to model the energy consumed during the
encoding process and specify optimum algorithmic parameters, such as field size,
taking into consideration the total system’s energy (the results presented in the
following paragraphs have been obtained after modeling every circuit component
using Verilog, synthesizing and performing post-layout simulations, with a 65nm
TSMC process, using standard VLSI CAD tools, such as SPICE). Our main focus
is on the encoding, since NC does not follow the end-to-end coding paradigm;
intermediate nodes are allowed to re-encode packets without decoding them first,
and only final destination nodes have to decode the mixtures.

The encoding process is equivalent of generating a new packet as a linear
combination of the existing blocks, weighted according to some random coef-
ficients. Assume that a source wants to transmit n packets, each of length L
bits, using RLNC over GF(2q). The required energy per packet for the encoding
process is:

ECOD = nELFSR +
L

q
(nEMULT + (n− 1)EADD) , (1)

where EMULT and EADD is the energy consumed per multiplication and ad-
dition, respectively, and ELFSR is the energy consumed for generating a q-bit
coefficient using a LFSR (Linear Feedback Shift Register). In Fig. 1a is shown
how the choice of field size affects the energy for each operation. In this com-
parison, we keep the processing data rate same, since, doubling the field size q
results in doubling the critical path delay of the GF multiplier, which is used as
the reference time period for our circuits; in other words, the ratio of the number
of processed bit per operation over the required time for each operation, remains
constant.

Furthermore, apart from the processing energy, field size also affects the
probability of two coded packets being linearly dependent. It can be shown that
the expected number of transmitted packets until receiving n linear independent
combinations, using RLNC over GF(2q), is given by the following formula:

n̄ =

n∑
i=1

1

1− (1
2q)i

. (2)

Now it becomes clear that a small field size lowers the required processing energy
but results in extra retransmitted packets, increasing the total system’s energy.

(a) (b)

Fig. 1: a) Energy per operation for different values of q. b) Normalized total sys-
tem’s energy of a node transmitting 8 coded packets, using RLNC over GF(2q).

This trade-off can be further explained by examining the expected total system
energy (ETOT), given by:

ETOT = n̄(ECOD + ETX) , (3)

where ETX is the transmission energy per packet. In Fig. 1b, the total normal-
ized system energy, including both coding for NC and transmission energy, is
plotted, assuming that 8 packets are coded together, each of 1KB length, and a
transmission energy per bit of 200pJ/bit [1]. Examining the plot we confirm that,
when a small field size is used, the total system’s energy in dominated by the
extra RF energy due to packet retransmissions. However, as field size becomes
large, increased energy is required for performing the coding process, without
significantly affecting the expected number of transmitted packets, resulting in
higher system’s energy consumption.

5 Energy-Aware NC Accelerator

In the following paragraphs we present the results of our energy-aware VLSI
implementation of NC, giving its architecture but not focusing in the low-level,
circuit-related details. Given our target low-power applications, the number of
packets encoded together is expected to be relatively small; in our analysis, we
assume that up to 8 packets can be coded together, each of length 1KB. Based
on the analysis of the previous Section, we use GF(28) arithmetic, since field size
of 8 appears to be the optimum operation point. Our NC encoder architecture is
shown in Fig. 2. It is a parallel implementation of the encoding process, making
use of standard low-power VLSI techniques, such as clock gating, parallelism and
voltage scaling, to reduce power consumption and achieve energy scalability.

We also design a custom accelerator performing the decoding process. A stan-
dard Gauss-Jordan elimination algorithm is implemented, capable of transform-
ing the coefficients’ matrix into row echelon form after receiving every packet.

Fig. 2: Block diagram of the NC encoder.

The same GF adder and multiplier modules, discussed previously, are used also
in the decoder. For calculating the inverse value of an element, look-up tables
are used. The reasons for using look-up tables in the inversion and not in the
multiplication process are, first, that the multiplication requires look-up tables of
q2 elements and, second, that the GF inversion algorithm is more complex and
energy consuming than the multiplication one. Our hardware implementation
results, using a TSMC 65nm process, are shown in Table 2 (reported numbers
for the NC encoder are post-layout measurements, while for the NC decoder are
post-synthesis).

Table 2: Implementation results of our energy-aware, custom NC accelerator.

NC Encoder NC Decoder

Supply Voltage 0.4V 1.0V 1.0V

Frequency 10 MHz 250 MHz 50 MHz

Throughput 80 MB/s 2 GB/s 60 MB/s

Power 22.15 uW 10.98 mW 12.5 mW

6 Conclusions

It has been shown that Network Coding can provide several advantages to a
network, but it is associated with an extra energy cost. In this paper, we pro-
vide an energy analysis of NC, especially useful to power constrained networks.
We answer the question of how much energy is required for incorporating NC
into a system architecture, using a custom and optimized implementation. With
detailed energy modeling of the required NC operations, based on custom VLSI
measurement, we optimize the trade-offs between coding performance, compu-
tational complexity and energy consumption. By designing, to the best of our

knowledge, the first energy-aware VLSI NC accelerator and specifying optimum
algorithmic parameters, we believe that a further step is made to bridge NC
with real-world, low-power applications, such as sensor and mobile networks.

7 Acknowledgment

The authors would like to thank X. Shi, P. Nadeau and A. Paidimarri for useful
discussions on Network Coding and RF design. This material is based upon
work supported by the Georgia Institute of Technology Under Award Number:
017894-010.

References

1. A. P. Chandrakasan, N. Verma, D. C. Daly: Ultralow-power electronics for biomed-
ical applications. Annu. Rev. Biomed Eng 10, 247–274 (2008)

2. R. Ahlswede, N. Cai, S. R. Li, R. Yeung: Network Information Flow. Information
Theory, IEEE Transactions on 46(4), 1204 –1216 (Jul 2000)

3. S. Chachulski, M. Jennings, S. Katti, D. Katabi: Trading structure for randomness
in wireless opportunistic routing. SIGCOMM Comput. Commun. Rev. 37, 169–180
(August 2007)

4. C. Fragouli, E. Soljanin : Network Coding Fundamentals. Now Publisher, pp. 1–133
(January 2007)

5. J. Heide, M. Pedersen, F. Fitzek, T. Larsen: Network coding for mobile devices
- systematic binary random rateless codes. In Workshop on Cooperative Mobile
Networks, 2009. ICC09 IEEE, (June 2009)

6. T. Ho, R. Koetter, M. Medard, D. Karger, M. Effros: The benefits of coding over
routing in a randomized setting. In Proc. of IEEE ISIT’03. (July 2003)

7. S. Katti, et al.: XORS in the air: practical wireless Network cCoding. IEEE/ACM
Trans. Netw. 16, 497–510 (June 2008)

8. H. Li, Q. Huan-Yan: Parallelized Network Coding with SIMD instruction sets.
In Proc. of International Symposium on Computer Science and Computational
Technology, 2008. ISCSCT’08. vol. 1, pp. 364 –369 (Dec 2008)

9. D. S. Lun, M. Médard, R. Koetter, M. Effros: On coding for reliable communication
over packet networks. CoRR abs/cs/0510070 (2005)

10. H. Shojania, B. Li, X. Wang: Nuclei: GPU-accelerated Many-core Network Coding.
In: INFOCOM 2009, IEEE. pp. 459 –467 (April 2009)

11. H. Shojania, B. Li: Random Network Coding on the iPhone: Fact or Fiction?, In
Proc. of the 18th Int. Workshop on Network and Oper. Systems Support for Digital
Audio and Video. pp. 37–42. NOSSDAV ’09, ACM, New York, NY, USA (2009)

12. P. Vingelmann, P. Zanaty, F. Fitzek, H. Charaf: Implementation of Random Linear
Network Coding on openGL-enabled graphics cards. In European Wireless Con-
ference, 2009. EW 2009. pp. 118 –123 (May 2009)

13. P. Vingelmann, Frank H. P. Fitzek : Implementation of Random Linear Network
Coding using NVIDIA’s CUDA toolkit. In: Networks for Grid Applications, Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecommu-
nications Engineering, vol. 25, pp. 131–138. Springer Berlin Heidelberg (2010)

14. M. Wang, B. Li: How practical is network coding? In Proc. of 14th IEEE Int.
Workshop on QoS, IWQoS 2006, pp. 274 –278 (June 2006)

