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Summary 

 

Cardiogenesis in mammals requires exquisite control of gene expression and faulty regulation 

of transcriptional programs underpins congenital heart disease (CHD), the most common defect 

among live births. Similarly, many adult cardiac diseases involve transcriptional changes and 

sometimes have a developmental basis.  Long non-coding RNAs (lncRNAs) are a novel class of 

transcripts that regulate cellular processes by controlling gene expression; however, detailed 

insights into their biological and mechanistic functions are only beginning to emerge. Here, we 

discuss recent findings suggesting that lncRNAs are important factors in regulation of 

mammalian cardiogenesis and in the pathogenesis of CHD as well as adult cardiac disease. We 

also outline potential methodological and conceptual considerations for future studies of 

lncRNAs in the heart and other contexts. 
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Introduction 
The human genome project has opened the door for understanding development and disease at 

an unprecedented level. Once referred to as dark matter or “junk DNA”, it is now thought that up 

to 90% of the human genome is actively transcribed and produces many different types of 

transcripts including protein-coding and non-coding RNA (Carninci et al, 2005; Kapranov et al, 

2007; ENCODE Project Consortium et al, 2012). Non-coding RNAs have been broadly 

classified according to transcript length as small and long non-coding RNAs, where long non-

coding RNAs (lncRNAs) are considered to be greater than 200 nucleotides and can comprise 

up to thousands of nucleotides. The biological and mechanistic functions of different small non-

coding RNA species have been extensively reviewed (Matera et al, 2007; Carthew & 

Sontheimer, 2009; Malone & Hannon, 2009; Ghildiyal & Zamore, 2009; Castel & Martienssen, 

2013). Much less is known, however, about the functions of lncRNAs, an apparently 

heterogeneous class of RNA molecules with emerging biological functions. 

 

LncRNAs are pervasively transcribed throughout the genome and the resulting transcripts 

display remarkable similarities to classical mRNAs in that they are transcribed by RNA 

Polymerase II (RNAP2) and are generally, but not always, alternatively spliced, 5’-capped, and 

polyadenylated (Derrien et al, 2012). In contrast to protein-coding genes, lncRNAs have limited 

coding potential as indicated by the lack of protein domains or significant open reading frames 

(ORFs). Moreover, lncRNAs display random codon usage and no significant bias towards silent 

nucleotide substitutions underscoring their low protein-coding potential; and these transcripts 

are rarely translated despite their engagement with ribosomes in some cases (Cabili et al, 2011; 

Lin et al, 2011; Ulitsky et al, 2011; Bánfai et al, 2012). Based largely on these criteria, a large 

number of lncRNA have been identified across eukaryotes, thousands of them in mouse and 

human (Ulitsky et al, 2011; Derrien et al, 2012). Remarkably, lncRNAs appear to be rapidly 

evolving and generally display low levels of sequence conservation. About one-third of all 

human lncRNAs have arisen only within the primate lineage (Derrien et al, 2012), while only a 

small subgroup of lncRNAs appear to be maintained throughout a range of species with 

conservation being generally most evident in their promoter regions (Chodroff et al, 2010; 

Ulitsky et al, 2011). Together, these data suggest that regulation of lncRNA expression patterns 

is important for the function of this class of transcripts.    

 

Based on their genomic location, lncRNAs can be further grouped into different classes of 

transcripts (Ulitsky et al, 2011; Derrien et al, 2012) (Figure 1A). For example, long intergenic (or 
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intervening) non-coding RNAs (lincRNAs) are located between coding or non-coding genes, and 

do not overlap the exons of other genes. lncRNA loci can also reside within the introns of 

protein-coding genes. Natural antisense transcripts (NATs) are produced from the opposite 

strand of a coding (or non-coding gene) but their transcription start site is located downstream 

relative to that of the coding gene, and these transcripts often display at least partial overlap 

with the coding sequence of the corresponding mRNA. LncRNAs are highly versatile in that they 

can partially base-pair with other RNA templates to form duplexes or with DNA which can lead 

to the formation of triplex structures (Figure 1B). Moreover, these transcripts can interact with a 

diverse repertoire of proteins. Thus, lncRNAs are thought to possess tremendous regulatory 

potential. 

 

In general, lncRNAs can act in cis to regulate neighboring genes or in trans to modulate 

expression of their target genes by employing a wide range of molecular mechanisms. For 

example, a subclass of lncRNAs with apparent enhancer-like activity, termed ncRNA-activating 

(ncRNA-a), has recently been found to activate neighboring genes in cis using a mechanism 

involving DNA-looping between the lncRNA and its target gene (Orom et al, 2010; Lai et al, 

2013). Evidence also indicates that a subset of lncRNAs regulates gene expression by acting in 

trans as recruiters or decoys for chromatin modifiers and transcription factors to activate or 

silence genes (Rinn et al, 2007; Khalil et al, 2009; Tsai et al, 2010; Ng et al, 2012; Klattenhoff et 

al, 2013; Grote et al, 2013). Notably, despite the lack of sequence conservation among 

lncRNAs, interactions with RNA binding proteins including Polycomb and Trithorax group 

members have been widely conserved between mouse and human (Guttman & Rinn, 2012). 

Alternatively, some lncRNAs have been reported to function as microRNA sponges, titrating 

these small transcripts away from their respective mRNA target (Cesana et al, 2011; Wang et 

al, 2013). LncRNAs have also been reported to influence mRNA splicing, translation, or 

degradation by binding to mRNAs or protein components of RNP complexes (Tripathi et al, 

2010; Yoon et al, 2012; Gong & Maquat, 2011). Thus, lncRNAs have roles in transcriptional and 

post-transcriptional gene regulatory events. Consequently, the biological functions of lncRNAs 

as well as their mechanisms of action are expected to be diverse and will require a great deal of 

functional sub-classification in the future.  

 

While most predicted lncRNAs await functional characterization, there are clear examples 

demonstrating prominent roles for these transcripts in a variety of cellular processes including 

dosage compensation (e.g. X chromosome inactivation), imprinting, regulation of cell cycle, and 
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apoptosis (Lee & Bartolomei, 2013; Rinn & Chang, 2012). Moreover, lncRNAs have been 

shown to play roles in somatic cell differentiation programs as well as maintenance of cell fate 

(Guttman et al, 2011; Hu et al, 2011; Kretz et al, 2012; 2013). Thus, lncRNAs may represent a 

new layer of regulation in differentiation and lineage commitment. Consistent with these broad 

roles, this class of transcripts has also been implicated as contributing factors to diseases with 

developmental components such as cancer and neurological disorders (Ponting et al, 2009; 

Wapinski & Chang, 2011; Mercer & Mattick, 2013; Batista & Chang, 2013; Ng et al, 2013). The 

emerging links between lncRNAs and disease as well as their tissue-specific expression 

patterns indicate that lncRNAs comprise a core transcriptional regulatory circuitry with master 

regulators and further suggest that they represent new molecules for targeted therapy.  

 

Mammalian heart development is a tightly regulated process requiring exquisite control of 

transcriptional programs. Consistent with this idea, disruption of transcriptional networks 

underpins congenital heart disease (CHD) and certain forms of adult cardiac disease (Bruneau, 

2008; Srivastava, 2006a). In fact, heart disease is the leading cause of morbidity and mortality 

worldwide (WHO 2011) with dramatic effects on the life quality of patients as well as on the 

health care system. Thus, dissecting the transcriptional regulatory principles that govern heart 

development and tissue homeostasis in the adult heart is of great interest to developmental and 

molecular biologists as well as clinicians. While it is known that the activities of DNA binding 

transcription factors, chromatin regulators, and signaling molecules converge to control tissue 

specific gene expression programs during heart development (Olson, 2006; Srivastava, 2006b; 

Chang & Bruneau, 2012; Bruneau, 2013), it is likely that non-coding transcripts also contribute 

to this highly orchestrated process. For example, members of the class of small non-coding 

RNAs such as miRNAs have critical roles in fine-tuning gene expression patterns during heart 

development (Cordes & Srivastava, 2009; Liu & Olson, 2010). Of particular interest is the recent 

discovery of lncRNAs that function in cardiac lineage commitment and heart development, 

revealing an additional layer of complexity (Klattenhoff et al, 2013; Grote et al, 2013). Although 

a general picture is emerging, we are only beginning to understand the implications of lncRNA 

regulation in heart development and cardiac-related disease. Here, we discuss the newly 

emerging roles of lncRNAs and cite specific examples in the context of heart development and 

cardiac disease as well as present considerations for the identification of additional lncRNA 

regulators of this process from a methodological and conceptual point of view.  

 

Heart development is regulated by tight control of gene expression patterns 
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Heart development requires the concurrent differentiation of multiple cell types that must 

organize into a complex structure. This process necessitates tight control of gene expression 

patterns in a temporal and spatial manner (Srivastava, 2006b). In most species, the primitive 

heart is established by concordant expression of a highly conserved core cardiac transcription 

factor network (Olson, 2006; McCulley & Black, 2012). However, more complex structures such 

as those that comprise the multi-chambered mammalian heart may require additional species-

specific regulatory factors. For example, the Drosophila heart is shaped as a relatively simple 

linear tube consisting of three sections that transport the hemolymph along the anterior-

posterior body axis: heart proper, posterior aorta, and anterior aorta, with the beating heart 

proper being separated from the aorta by a cardiovascular valve (Medioni et al, 2009; Seyres et 

al, 2012) (Figure 2A). Mammalian heart development begins with formation of an analogous 

structure in embryogenesis, yet the developing heart undergoes a series of complex 

movements, rotations and subsequent refinement, resulting in a four-chambered heart with 

distinct in- and outflow tracts, cardiac valves separating the different compartments, and a 

mature conduction system (Harvey, 2002; Srivastava, 2006b; Vincent & Buckingham, 2010) 

(Figure 2B).  

 

Despite the distinct structural differences between the simple Drosophila heart and the more 

complex mammalian heart, the core transcription factor network is highly conserved between 

both organisms (Reim & Frasch, 2010) (Figure 2C). In fact, Drosophila heart development has 

been used as a model to identify novel gene interactions leading to human heart disease (Qian 

et al, 2011; Qian & Bodmer, 2012). Mutations affecting cardiac transcription factors are often 

causative for congenital heart defects (Bruneau, 2008; McCulley & Black, 2012). For example, 

mutations in GATA4 or NKX2.5, members of the core cardiac transcription factor network, lead 

to atrial and ventricular septum defects and Tetralogy of Fallot. While the binding of sequence 

specific transcription factors to gene regulatory elements such as promoters and distal 

enhancers drive heart development, it has become increasingly clear that additional 

mechanisms contribute to fine-tuning the cardiac regulatory network. For example, microRNAs 

(e.g. miR-1, -126, -138, -143, -145) have roles in cardiogenic processes including angiogenesis, 

establishment of cardiac cell polarity, development of the cardiac conduction system, cardiac 

patterning, or smooth muscle cell differentiation, respectively, and in many cases these miRNAs 

regulate and interact with the core cardiac transcriptional network (Cordes & Srivastava, 2009; 

Liu & Olson, 2010). Notably, some miRNAs have been shown to play analogous roles in 

Drosophila heart development (Nguyen & Frasch, 2006). Despite the similarities between lower 
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eukaryotes such as Drosophila and more complex organisms, the mechanisms that give rise to 

the additional complexity of heart formation and function in mammals are not well understood. 

Given the recent identification of thousands of lncRNAs and their unique representation and 

tissue specific expression across organisms, these transcripts may signify a new class of 

regulatory molecules in cardiac development, and their functions may represent key distinctions 

that give rise to the more complex sub-structures of the mammalian heart. 

 

LncRNAs function to regulate developmental transitions in cardiac commitment 

LncRNAs have emerged as potent regulators of gene expression and may represent an 

important part of what distinguishes higher organisms from simpler eukaryotes. While unicellular 

organisms dedicate the majority of their genome to protein-coding sequence (~73 percent in S. 

cerevisiae), this fraction decreases significantly in multicellular organisms such as Drosophila 

(~18 percent), and coding sequences represent only a minor fraction of DNA in mammals (e.g. 

~2-3 percent in humans) (Taft et al, 2007) (Figure 2D). Thus, it has been hypothesized that the 

ratio of non-coding compared to protein-coding transcripts in the genome, rather than the overall 

number of protein-coding genes, underpins organismal complexity. While this idea remains to 

be tested, the total number of lncRNAs transcripts increases dramatically from Drosophila to 

human (Figure 2E). For example, while mice and humans have thousands of putative lncRNA 

genes (Ponjavic et al, 2007; Ulitsky et al, 2011; Derrien et al, 2012; Sigova et al, 2013), recent 

estimates suggest that there are 17 (Tupy et al, 2005) and possibly upwards of ~1,000 lncRNA 

transcripts in Drosophila (Young et al, 2012), ~170 loci in C. elegans that specify ~272 lincRNAs 

(Nam & Bartel, 2012), and ~600 loci that produce ~700 transcripts in zebrafish (Ulitsky et al, 

2011; Pauli et al, 2012).  There are several caveats to this analysis however, as numbers of 

putative lncRNAs or subclasses such as lincRNAs can vary widely among studies given that 

different criteria are used to identify these transcripts in each case. Furthermore, the 

transcriptomes of lower eukaryotes have not been as thoroughly analyzed compared to mouse 

and human. Nevertheless, lncRNAs across multi-cellular organisms often display expression 

patterns that are highly tissue-specific, suggesting that at least some of these transcripts have 

roles in developmental processes (Cabili et al, 2011; Derrien et al, 2012). For example, many 

lncRNAs are expressed dynamically at specific developmental stages during cardiomyocyte 

differentiation (Wamstad et al, 2012). Indeed, two recent studies identified lncRNAs in mouse 

with functions in commitment to the cardiac lineage and heart development (Klattenhoff et al, 

2013; Grote et al, 2013), opening the door to the possibility that lncRNAs represent new modes 

of developmental regulation.  
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Braveheart, a lncRNA required for the specification of a common cardiac progenitor 

The lncRNA Braveheart (Bvht, AK143260) was discovered in mouse based on its unique 

expression pattern. Bvht is expressed at early developmental stages in mouse embryonic stem 

cells (mESCs) and also abundantly in the adult heart relative to other differentiated tissues 

suggesting that this lncRNA may be important for specification of the cardiac lineage. 

Consistent with this idea, depletion of Bvht in mESCs impaired formation of cardiomyocytes in 

multiple in vitro differentiation assays (Klattenhoff et al, 2013). Heart development involves the 

specification of cardiac progenitor cells within the lateral plate mesoderm. MESP1, an essential 

transcription factor that is conserved in vertebrates and some non-vertebrate chordate species 

(Saga et al, 1996; 1999; 2000; Satou et al, 2004; Kriegmair et al, 2013), marks the earliest 

known cardiac population during development as well as tissues that contribute to head 

mesenchyme (Bondue et al, 2008; Lindsley et al, 2008; David et al, 2008). MESP1 progenitors 

have the capacity to specify all cell types of the heart, including cardiomyocytes, endothelial 

cells, and cardiac smooth muscle cells. Notably, using an in vitro cardiomyocyte differentiation 

system, the investigators found that Bvht is required for induction of MesP1 and its downstream 

targets including the core cardiac transcription factors Gata4, Gata6, Hand1, Hand2, Tbx2, and 

Nkx2.5, among others. In contrast, mesoderm markers such as Brachyury and Eomes were 

expressed normally at early stages of differentiation and remained expressed upon loss of Bvht. 

Notably, both BRACHYURY and EOMES are necessary for proper induction of MesP1 (Costello 

et al, 2011; David et al, 2011). Together, these data suggested that Bvht is necessary for the 

transition from nascent to cardiac mesoderm.  

 

LncRNAs can function in trans by interacting with chromatin modifiers to mediate changes in 

gene expression (Guttman & Rinn, 2012). Notably, Bvht was found to interact with SUZ12, a 

core component of the Polycomb repressive complex 2 (PRC2) and loss of the lncRNA resulted 

in a failure to activate the cardiac gene expression program. Many of the transcription factors in 

the core cardiac network are targets of PRC2 mediated repression in ESCs and differentiation 

toward specific lineages requires the selective loss of PRC2 at subsets of these genes (Boyer et 

al, 2006). Upon Bvht depletion, PRC2 and its associated repressive modification H3K27me3 

remained enriched at the promoters of critical genes in the cardiovascular network, including 

MesP1, Gata6, Hand1, Hand2, and Nkx2.5. Thus, Bvht may function as a molecular decoy to 

regulate expression of the core cardiac network (Figure 3A). However, whether Bvht regulates 

expression of the core cardiac network directly via its PRC2 binding activity or if it employs 
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additional molecular mechanisms to promote cardiac commitment remains an open question.  

 

While in vitro ESC-based cardiomyocyte differentiation recapitulates many of the stages of 

gastrulation and specification of the cardiac lineage (Kattman et al, 2007; 2011; Wamstad et al, 

2012), it will also be critical to determine the function of Bvht during development on an 

organismal level. A conserved Bvht transcript was not identified in rat or human suggesting that 

it is a rapidly evolving transcript (Klattenhoff et al, 2013). Although evidence of a transcript in rat 

and human is lacking, there is some DNA sequence conservation at syntenic sites among the 

three organisms making Bvht a particularly interesting example to study in terms of genomic 

evolution. 

 

Fendrr, a lncRNA necessary for heart and body wall development in mice. 

The lncRNA Fendrr (Foxf1 adjacent non-coding developmental regulatory RNA; 

ENSMUSG00000097336) was recently identified in mouse as a potential regulator of heart 

development by virtue of its specific expression in the lateral plate mesoderm (Grote et al, 

2013). The lateral plate mesoderm gives rise to the heart and structures of the ventral body wall. 

Loss of Fendrr resulted in embryonic lethality in mice (~E13.5) and null embryos displayed open 

ventral body wall defects and hypoplastic ventricles, resulting in impaired heart function. 

Expression of a subset of cardiac transcription factors, Nkx2.5 and Gata6, was increased in 

Fendrr loss of function hearts accompanied by corresponding changes in H3K4me3 levels at 

their promoters, whereas other members of the core cardiac network, such as Gata4 and Tbx5, 

showed no changes. The Fendrr gene is proximal to Foxf1a, a gene that codes for a 

transcription factor involved in mesoderm formation. Consistent with a partial cis regulatory role 

for Fendrr, Foxf1a was also ectopically expressed in null animals. Fendrr interacted with PRC2 

components as well as WDR5, a member of TrxG/MLL complex, to regulate mesoderm specific 

genes. These results suggested that Fendrr regulates the balance between repressive and 

activating marks at key genes during development (Figure 3B), although it is not clear if both 

complexes simultaneously interact with the non-coding transcript. The authors suggest that 

targeting these complexes to specific genomic sites is in part mediated through interactions 

between predicted unstructured regions of Fendrr and DNA; however, this idea needs to be 

further experimentally tested. Interestingly, a syntenic transcript exists in the human genome 

(ENSG00000268388) suggesting a conserved role for Fendrr in human heart development.  
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The interaction of Fendrr with multiple chromatin modifier complexes appears to be an emerging 

theme in lncRNA biology. For example, the lncRNA HOTAIR interacts with the PRC2 complex 

via its 5’ end and with the H3K4 demethylase LSD1 via its 3’ end, the Kcnq1ot1 lncRNA binds to 

both PRC2 and G9a (catalyzing the repressive H3K9 methylation mark), and the ANRIL lncRNA 

interacts with PRC1 and PRC2 (Mercer & Mattick, 2013). These observations are consistent 

with suggestions that lncRNAs act as dynamic modular scaffolds in a range of species (Guttman 

& Rinn, 2012; Spitale et al, 2011), potentially even adapting their binding capacities through 

conformation switches despite their lack of sequence conservation. In the case of Fendrr it will 

be important to test whether both the PRC2 as well as TrxG/MLL binding activities contribute 

directly to target gene regulation and how these functions are controlled molecularly. On a 

biological level, it will be necessary to dissect the developmental pathways regulated by Fendrr, 

since it seems to affect specific and distinct sub-populations within the lateral plate mesoderm.  

	  
There are a hundreds, if not thousands, of additional putative lncRNAs that are expressed 

during cardiogenesis, and in many cases even in a cell type-specific manner (Wamstad et al, 

2012). While Bvht and Fendrr appear to function through epigenetic regulation of developmental 

gene expression programs, further detailed analyses of these individual candidates is expected 

to lead to the identification of additional lncRNAs with diverse functions in cardiovascular 

development. Dissecting how the expression of lncRNAs is regulated in a tissue-specific 

manner will be necessary in order to integrate these non-coding transcripts into the 

transcriptional regulatory circuitry that governs cardiogenesis.  Similarly to protein-coding genes, 

lncRNAs appear to be regulated by cell type specific transcription factors. For example, in 

mESCs, a large subset of expressed lncRNAs is bound at their promoters by the key 

pluripotency regulators OCT4, SOX2, and NANOG (Guttman et al, 2011). Thus, it will also be of 

considerable interest to identify the set of transcription factors that regulate cardiac-specific 

lncRNAs in order to integrate this new class of regulators into the transcriptional regulatory 

circuitry of heart development. 

 

Cardiac disease and lncRNAs 

Mutations in key core cardiac transcription factors are causative for congenital heart disease 

and some adult cardiac-related diseases such as those that affect the heart muscle as well as 

the electrical circuits required for proper conduction. Given that lncRNAs appear to contribute to 

the regulation of cardiac networks, these transcripts are also expected to contribute to cardiac-

related pathologies. Because many cardiac-related conditions are heritable, recent efforts to 
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identify potential new disease loci for cardiovascular diseases have relied in part on genome 

wide association studies (GWAS). The principle of GWAS is to analyze variations in nucleotide 

sequence, referred to as single nucleotide polymorphisms (SNPs), within a population of 

individuals that are afflicted with a particular condition as a means to identify new disease loci 

(Kathiresan & Srivastava, 2012). Notably, 93% of GWAS hits fall outside protein-coding regions 

and emerging evidence indicates that non-coding DNA, including distal regulatory elements as 

well as lncRNA genes that do not overlap known protein-coding genes, is enriched for disease 

SNPs (Maurano et al, 2012). In support of this idea, a number of lncRNAs have been implicated 

in adult cardiac disease by analysis of genetic variation among individuals with cardiac traits. 

Other examples of lncRNAs implicated in cardiac disease include natural antisense transcripts 

(NATs) that are transcribed in the opposite direction of critical heart development and structural 

genes suggesting that these NATs can impact the expression of key cardiac genes.    

 

MIAT, a lncRNA associated with myocardial infarction 

MIAT (myocardial infarction associated transcript) or Gomafu/RNCR2 was identified by GWAS 

as a risk factor associated with patients having suffered myocardial infarction (Ishii et al, 2006). 

Several variants were identified as significantly associated with higher susceptibility to 

myocardial infarction compared to controls. In fact, a particular SNP was associated with 

increased transcription of MIAT. MIAT accumulates in the nucleus in specific nuclear bodies and 

displays high expression levels in the central nervous system and lower levels in other tissues 

(Ishii et al, 2006; Sone et al, 2007; Tsuiji et al, 2011). It has also been implicated in retinal cell 

specification in the mouse (Rapicavoli et al, 2010) and may have a role in splicing regulation 

(Tsuiji et al, 2011), however MIAT’s molecular role in myocardial infarction remains unknown. In 

some cases of cardiac disease, such as primary cardiomyopathy, the heart is directly affected, 

while in other cases cardiac disease results indirectly from conditions such as diabetes and 

inflammation, which increase the risk for developing atherosclerosis and coronary artery 

disease and eventually myocardial infarction. Consequently, the identification and functional 

validation of lncRNAs with roles in complex traits will be an added challenge. 

 

SRA, a bi-functional transcript implicated in dilated cardiomyopathy 

The steroid receptor RNA activator 1 (SRA1) gene generates both steroid receptor RNA 

activator protein (SRAP) as well as several noncoding SRA transcripts, depending on 

alternative transcription start site usage and alternative splicing (Cooper et al, 2011; Colley & 

Leedman, 2011). SRA1 non-coding transcripts act as co-activators of nuclear receptor signaling 
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in a ligand-dependent manner and are involved in regulating skeletal muscle differentiation by 

co-regulation of the muscle development gene MyoD (Caretti et al, 2006). The identification of 

genome wide significant SNPs coupled with linkage disequilibrium mapping implicated three co-

segregating genes including HBEFG, IK, and SRA1 as determinants of human dilated 

cardiomyopathy (Friedrichs et al, 2009). Consistent with this finding, depletion of any one of 

these three genes in zebrafish led to contractile defects in the animals. While there is a clear 

function for the SRA1 protein in several cellular processes, the contributions of the alternatively 

spliced non-coding transcripts must be independently addressed, as a function for the putative 

lncRNA has not been established.  

 

Natural antisense transcripts in cardiac disease 

Natural antisense transcripts (NATs) are non-coding RNAs transcribed on the opposite strand of 

a given protein or non-coding gene and often partially overlap with its exon sequence 

distinguishing this class from lincRNAs (see Figure 1A). While antisense transcription is a widely 

employed mechanism for regulating gene expression in eukaryotes from plants, to fungi, to 

mammals (Derrien et al, 2012; Zhang et al, 2012), we are only beginning to understand the 

functions of these transcripts. NATs often, but not always, regulate the expression of their 

corresponding sense RNA and may employ different molecular mechanisms to do so. This 

mode of regulation is particularly important given that gene dosage is critical for proper heart 

development and function. In some cases, the act of transcription rather than the lncRNA itself 

may be necessary to exert the functional consequences. Here, we consider the following 

examples of NAT lncRNAs that have been implicated in aspects of cardiac disease.  

 

The INK4/ARF locus comprises three tumor suppressor genes; INK4A, ARF, and INK4B, that 

have important roles in cell cycle regulation.  The INK4 locus is subject to Polycomb-mediated 

regulation under normal conditions, however, how Polycomb complexes are recruited to this 

locus was not known. This question is of particular interest because expression of these genes 

is disrupted in many human cancers. ANRIL (antisense noncoding RNA in the INK4 locus, also 

P15 antisense RNA or CDKN2B antisense RNA) is expressed from the opposite strand and 

antisense to INK4B. Notably, ANRIL appears to interact with SUZ12, a core subunit of the 

PRC2 complex and with the CBX7 component of the PRC1 complex and mediates epigenetic 

silencing of INK4 in cis (Kotake et al, 2011; Yap et al, 2010) (Figure 3C). ANRIL is expressed in 

immune cells, smooth muscle cells, and endothelium. A risk haplotype is associated with the 

region encompassing ANRIL for coronary disease, stroke, type 2 diabetes, as well as some 
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cancers (Burd et al, 2010; Pasmant et al, 2011). In fact, some of the SNPs identified by GWAS 

appear to affect splicing of ANIRL transcripts (Burd et al, 2010). While it is not yet clear how 

regulation of INK4a/INK4b or its antisense transcript ANRIL contributes to risk of cardiovascular 

disease, isoforms containing exons proximal to the INK4/ARF locus correlated with disease risk. 

Thus, understanding how ANRIL is regulated under normal and disease conditions will be an 

important next step toward understanding its function in controlling the expression of critical 

genes in the INK4 locus. 

 

Congenital heart disease as well as certain types of adult cardiac diseases can result from 

defects in the structural components of the heart, which are important for contraction and 

conduction functions. Alpha- and beta cardiac myosin heavy chains (MYH6 and MYH7, 

respectively) are part of the contractile machinery of the cardiac sarcomere. Notably, the ratio of 

MYH6 to MYH7 expression may constitute a developmentally regulated switch that correlates 

with heart maturation and cardiac performance (Miyata et al, 2000; Pandya & Smithies, 2011). 

For example, in mouse MYH7 levels are higher in the fetal heart whereas the MYH6/MYH7 ratio 

is higher in adult cardiomyocytes. Interestingly, the proportion of these two genes is also 

regulated by certain pathophysiological stress conditions that lead to hypertrophy where the 

ratio is more similar to the fetal heart (Hang et al, 2010; Pandya et al, 2008). Moreover, 

mutations in MYH6 and MYH7 are both associated with hypertrophic cardiomyopathy 

(Granados-Riveron et al, 2010). The Myh6 and Myh7 genes are juxtaposed in the genome in a 

head to tail manner, and the switch in their levels is partly regulated by expression of Myh7 

antisense RNA in mouse (Haddad et al, 2003) (Figure 3D). The antisense lncRNA is transcribed 

across the Myh7 locus from the opposite strand and its expression negatively correlates with 

MYH7 protein abundance. One model is that antisense transcription may block elongation of 

Myh7 by RNA Polymerase II as has recently been described for the Airn lncRNA (Latos et al, 

2012).  Thus, the act of transcription may be important while the transcript itself has no function. 

Notably, a corresponding syntenic non-coding transcript appears to exist in the human genome 

(although the ratio of MYH6/MYH7 is opposite in human) suggesting that antisense transcription 

also has a conserved role in regulating this switch and that aberrant expression or mutation of 

the antisense transcript is also associated with hypertrophic conditions in human disease. Thus, 

it will be of interest to carefully dissect the role of MYH7 antisense transcription in heart 

development and cardiac hypertrophy in response to stress or injury.   
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The atrial myosin light chain gene (Alc1), which is important for sarcomere function, seems to 

be regulated by its antisense transcript at the translational level by forming RNA duplexes. 

Notably, Alc1-antisense is increased in hypertrophic ventricles in patients with Tetralogy of 

Fallot, a form of congenital heart disease, resulting in low ALC1 protein levels (Ritter et al, 

1999). However, a direct role for Alc1-antisense transcription in regulating ALC1 levels requires 

further experimental validation. Cardiac troponin I (cTNI) is also essential for normal sarcomere 

function in the adult cardiomyocyte and its expression also appears to be regulated at the 

translational level by formation of cTNI sense-antisense duplexes (Podlowski et al, 2002). While 

elevated cTNI levels are correlated with ischemia and risk of heart failure, it should be noted 

that the role of the antisense transcript in disease has not yet been evaluated.  In both of these 

cases, antisense transcripts may be important for regulating gene expression through formation 

of RNA duplexes that function as substrates for recruitment of factors that degrade the mRNA or 

by physically blocking translation of the message (Figure 3E). Notably, mRNA and lncRNA 

molecules in the cytoplasm can form imperfect base-pairs through regions of homology such as 

ALU sequences, a common repeat element found in the human genome. This type of 

interaction triggers messenger mediated decay through recruitment of the dsRNA binding 

protein STAU1 (Gong & Maquat, 2011). Alternatively, mRNA-lncRNA interactions can stabilize 

the expression of protein-coding transcripts.  For example, the lincRNA TINCR interacts with a 

range of mRNAs important for human epidermal differentiation through a 25 base pair motif call 

the TINCR box (Kretz et al, 2013). In this case, TINCR-STAU1 interactions mediate stabilization 

of the message rather than decay. Consistent with this idea, other key proteins required for 

mRNA decay (i.e. UPF1 and UPF2) do not appear to play a role. Thus, it is possible that in 

some cases antisense transcripts contain regions of homology by overlapping with exon 

sequences of the corresponding mRNA to mediate post-transcriptional regulation of a protein-

coding gene.  Given the potential mechanisms of action of antisense lncRNAs, manipulation of 

sense transcripts associated with cardiac disease may be particularly amenable to therapeutic 

intervention by small transcripts such as siRNAs or antisense oligos.  

 

While the discovery of lncRNAs in cardiac biology is only in its infancy, these examples provide 

a rationale for undertaking broad investigations to identify additional lncRNAs with roles in the 

cardiovascular system. One theme that is emerging is that the expression levels of lncRNAs 

must be tightly controlled. Similar to examples represented here, aberrant expression of several 

lncRNAs has been implicated in disease pathogenesis such as cancer progression. For 
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example, increased HOTAIR levels correlate with metastatic potential in a range of cancers 

including those of the breast, prostate, and pancreas (Wapinski & Chang, 2011).  To this end, 

mutations or aberrant expression of lncRNAs is expected to reveal new disease pathways and 

possible therapeutic targets. Clearly, the link between lncRNAs and cardiac disease 

susceptibility and pathogenesis will require intensive efforts. Even in the case of cardiac-

associated lncRNAs that display no or limited function, these transcripts could also represent a 

new class of biomarkers for diagnostics based on their specific expression patterns in normal 

and pathological conditions such as response to injury or stress.  

 

Discovering new lncRNAs with functions in cardiac biology 

Given the mounting evidence that lncRNAs play key roles in many cellular processes including 

cellular differentiation, it is intriguing that this class of transcripts has largely eluded identification 

in classical genetic screens. This result might be explained by the fact that genomes of model 

organisms generally used for genetic screens appear to contain fewer lncRNAs compared to 

mice and humans (see Figure 2E), and that these transcripts are poorly conserved across 

species. Moreover, until recently, lncRNAs have been poorly annotated so such hits in genetic 

screens would have been discarded in many cases. Furthermore, mammals display high levels 

of genetic redundancy, which often masks mutational phenotypes and may also apply in the 

case of lncRNAs. While lncRNAs are generally poorly conserved among species, functional 

redundancy may arise from transcripts that appear unrelated on a sequence level since similar 

secondary structures can be achieved by different combinations of nucleotides. Because of the 

lack of conservation, randomly occurring mutations may also be less likely to affect lncRNA 

function than mutations in protein-coding genes, making it more difficult to identify mutants in 

loss of function genetic screens. Also, given the significant structural differences in the heart 

between vertebrates and non-vertebrate species, there may be key limitations to using 

conventional genetic screens in lower eukaryotes for identifying heart-associated lncRNAs. 

Nevertheless, more recent targeted approaches using RNAi to specifically deplete lncRNAs 

have been successfully used to screen for specific phenotypes of a large number of these non-

coding transcripts (Guttman et al, 2011; Chakraborty et al, 2012). 

 

The overall low sequence conservation of lncRNAs between species suggests that lncRNAs are 

an extremely fast evolving family of regulatory molecules (Cabili et al, 2011; Ulitsky et al, 2011; 

Derrien et al, 2012). Relatively few lncRNAs have sequence homologues in other species; 

however, their promoter sequences are generally conserved significantly more than their exonic 
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sequences (Chodroff et al, 2010; Ulitsky et al, 2011), suggesting that at least in some cases the 

tissue-specific expression of a given conserved lncRNA is important. High-throughput 

sequencing efforts across different tissues, developmental stages, and pathological conditions 

are expected to reveal potential new regulators of heart development and disease. For example, 

lncRNAs that show the same stage and development specific expression patterns in a given 

species may regulate similar processes. Specifically, lncRNAs whose expression patterns 

cluster with other regulators of heart development (i.e. guilt by association) such as key 

transcription factors and signaling molecules may reveal classes of lncRNAs with functions in 

particular biological pathways. Furthermore, comparing transcriptional profiles of similar 

developmental time points among mammals may also reveal lncRNAs with conserved functions 

despite a lack of sequence conservation.  

 

Given that lncRNAs appear to be regulated by sets of transcription factors similarly to mRNA 

genes, analysis of transcriptional programs in loss of function studies may also contribute to the 

identification of lncRNAs with particular roles that are downstream of key transcription factor 

genes. Alternatively, lncRNAs whose expression changes dramatically in response to 

environmental or developmental cues might reveal new effector lncRNAs. For example, induced 

expression of MesP1, a master regulator of cardiac commitment, leads to the concomitant up-

regulation of several lncRNAs during cardiomyocyte differentiation in mouse including Fendrr 

(Klattenhoff, Scheuermann, and Boyer, unpublished), suggesting that Fendrr is a downstream 

effector of MESP1.  

 

Along these lines, it will be of interest to analyze those lncRNAs that show changes in 

expression under stress conditions or in diseased hearts in human patients. Comparisons of 

lncRNA expression patterns may reveal new biomarkers for cardiac disease since lncRNAs 

show considerable changes in expression in some human cancers and in neurological function 

and diseases (Tsai et al, 2011; Ng et al, 2013; Mattick, 2011). In some cases, functional 

analysis of candidate transcripts involved in cardiac disease identified through profiling of 

human tissues may be possible by reprogramming patient-specific cells to induced pluripotent 

stem cells (iPS) followed by in vitro differentiation into cardiac lineages. This method has been 

used to successfully to model complex neurological and metabolic diseases (Bellin et al, 2012). 

Together these studies, combined with the wealth of GWAS data available for cardiac-related 

diseases, will likely lead to the identification of additional lncRNAs that represent new loci for 

studying disease pathology as well as novel targets for therapeutic intervention.  
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Dissecting how lncRNAs exert their functions on a molecular level will require precise in vivo 

models as well as in vitro cell differentiation systems that will enable biochemical and 

biophysical studies. Given the low level of sequence conservation and protein-coding potential, 

it is possible that some lncRNA function may depend on specific secondary structures. In 

contrast, unstructured regions may be important for interaction with other nucleic acids and this 

function may be critical for targeting lncRNAs to specific genomic sites as has recently been 

suggested for Fendrr (Grote et al, 2013). To test this notion and to determine the function of 

individual RNA domains, experimental analyses of secondary structures within lncRNAs across 

different species by physical and chemical methods will be necessary. These studies will 

provide templates for mutational analyses and for studying the interactions between lncRNAs 

and proteins or other nucleic acids. It is also possible that more detailed functional studies will 

facilitate the design of small molecule drugs for therapeutic intervention.  

 

 

Conclusions 
While several thousands of putative lncRNAs have been identified in mammals, only relatively 

few have been studied in any detail. Thus, we anticipate that during the next few years the field 

will witness the discoveries of many more developmental, cellular, and molecular processes that 

are regulated by lncRNAs. The identification of lncRNAs in cardiac biology will open new doors 

to dissecting the complex gene regulatory mechanisms that drive organogenesis as well as 

tissue homeostasis, and for understanding how failure to properly regulate developmental gene 

expression programs can lead to cardiac-related diseases. Knowledge of the genetic basis of 

heart development and cardiac-related diseases is of substantial value to the medical field and 

can lead to better genetic tests for disease susceptibility and identification of candidate genes 

for therapeutic interventions. Given their emerging roles, we also expect that lncRNAs will 

feature prominently in devising new strategies for stem cell-based regenerative therapies. 

 

 

Acknowledgements 
We thank members of the Boyer lab especially Gizem Rizki for insightful discussions. J.C.S. is 

supported by an EMBO long-term fellowship. L.A.B. is a Pew Scholar in the Biomedical 

Sciences. This work was also supported in part by an Innovative Research Grant 

13IRG14680029 from the American Heart Association (L.A.B.). 



	   18	  

 

 

References  
Batista PJ & Chang HY (2013) Long Noncoding RNAs: Cellular Address Codes in Development 
and Disease. Cell 152: 1298–1307 

Bánfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE, Kundaje A, Gunawardena HP, Yu Y, 
Xie L, Krajewski K, Strahl BD, Chen X, Bickel P, Giddings MC, Brown JB & Lipovich L (2012) 
Long noncoding RNAs are rarely translated in two human cell lines. Genome Res. 22: 1646–
1657 

Bellin M, Marchetto MC, Gage FH & Mummery CL (2012) Induced pluripotent stem cells: the 
new patient? Nat. Rev. Mol. Cell Biol. 13: 713–726 

Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M & Blanpain C (2008) 
Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell 
Stem Cell 3: 69–84 

Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, 
Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA & Jaenisch R (2006) 
Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 
441: 349–353 

Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451: 943–
948 

Bruneau BG (2013) Signaling and transcriptional networks in heart development and 
regeneration. Cold Spring Harb Perspect Biol 5: a008292 

Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z & Sharpless NE (2010) Expression of linear and 
novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis 
risk. PLoS Genet. 6: e1001233 

Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A & Rinn JL (2011) Integrative 
annotation of human large intergenic noncoding RNAs reveals global properties and specific 
subclasses. Genes Dev. 25: 1915–1927 

Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman 
EP, Tapscott SJ & Sartorelli V (2006) The RNA helicases p68/p72 and the noncoding RNA SRA 
are coregulators of MyoD and skeletal muscle differentiation. Dev. Cell 11: 547–560 

Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, 
Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest ARR, 
Zavolan M, Davis MJ, Wilming LG, Aidinis V, et al (2005) The transcriptional landscape of the 
mammalian genome. Science 309: 1559–1563 

Carthew RW & Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 
136: 642–655 

Castel SE & Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in 



	   19	  

transcription, epigenetics and beyond. Nat. Rev. Genet. 14: 100–112 

Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A & 
Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a 
competing endogenous RNA. Cell 147: 358–369 

Chakraborty D, Kappei D, Theis M, Nitzsche A, Ding L, Paszkowski-Rogacz M, Surendranath V, 
Berger N, Schulz H, Saar K, Hubner N, & Buchholz F (2012) Combined RNAi and localization 
for functionally dissecting long noncoding RNAs. Nat Methods 9: 360-362 

Chang C-P & Bruneau BG (2012) Epigenetics and cardiovascular development. Annu. Rev. 
Physiol. 74: 41–68 

Chodroff RA, Goodstadt L, Sirey TM, Oliver PL, Davies KE, Green ED, Molnár Z & Ponting CP 
(2010) Long noncoding RNA genes: conservation of sequence and brain expression among 
diverse amniotes. Genome Biol. 11: R72 

Colley SM & Leedman PJ (2011) Steroid Receptor RNA Activator - A nuclear receptor 
coregulator with multiple partners: Insights and challenges. Biochimie 93: 1966–1972 

Cooper C, Vincett D, Yan Y, Hamedani MK, Myal Y & Leygue E (2011) Steroid Receptor RNA 
Activator bi-faceted genetic system: Heads or Tails? Biochimie 93: 1973–1980 

Cordes KR & Srivastava D (2009) MicroRNA regulation of cardiovascular development. Circ. 
Res. 104: 724–732 

Costello I, Pimeisl I-M, Dräger S, Bikoff EK, Robertson EJ & Arnold SJ (2011) The T-box 
transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during 
mouse gastrulation. Nat. Cell Biol. 13: 1084–1091 

David R, Brenner C, Stieber J, Schwarz F, Brunner S, Vollmer M, Mentele E, Müller-Höcker J, 
Kitajima S, Lickert H, Rupp R & Franz W-M (2008) MesP1 drives vertebrate cardiovascular 
differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat. Cell Biol. 10: 338–345 

David R, Jarsch VB, Schwarz F, Nathan P, Gegg M, Lickert H & Franz W-M (2011) Induction of 
MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell. 
Cardiovasc. Res. 92: 115–122 

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel 
A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, 
Lipovich L, Gonzalez JM, Thomas M, et al (2012) The GENCODE v7 catalog of human long 
noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22: 
1775–1789 

ENCODE Project Consortium, Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, 
Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee B-K, Pauli F, 
Rosenbloom KR, Sabo P, Safi A, Sanyal A, et al (2012) An integrated encyclopedia of DNA 
elements in the human genome. Nature 489: 57–74 

Friedrichs F, Zugck C, Rauch G-J, Ivandic B, Weichenhan D, Müller-Bardorff M, Meder B, 
Mokhtari El NE, Regitz-Zagrosek V, Hetzer R, Schäfer A, Schreiber S, Chen J, Neuhaus I, Ji R, 



	   20	  

Siemers NO, Frey N, Rottbauer W, Katus HA & Stoll M (2009) HBEGF, SRA1, and IK: Three 
cosegregating genes as determinants of cardiomyopathy. Genome Res. 19: 395–403 

Ghildiyal M & Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat. Rev. 
Genet. 10: 94–108 

Gong C & Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by 
duplexing with 3' UTRs via Alu elements. Nature 470: 284–288 

Granados-Riveron JT, Ghosh TK, Pope M, Bu'Lock F, Thornborough C, Eason J, Kirk EP, 
Fatkin D, Feneley MP, Harvey RP, Armour JAL & David Brook J (2010) Alpha-cardiac myosin 
heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart 
defects. Hum. Mol. Genet. 19: 4007–4016 

Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, 
Werber M & Herrmann BG (2013) The tissue-specific lncRNA Fendrr is an essential regulator of 
heart and body wall development in the mouse. Dev. Cell 24: 206–214 

Guttman M & Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 
482: 339–346 

Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, 
Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE & Lander ES (2011) 
lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477: 295–300 

Haddad F, Bodell PW, Qin AX, Giger JM & Baldwin KM (2003) Role of antisense RNA in 
coordinating cardiac myosin heavy chain gene switching. J. Biol. Chem. 278: 37132–37138 

Hang CT, Yang J, Han P, Cheng H-L, Shang C, Ashley E, Zhou B & Chang C-P (2010) 
Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466: 
62–67 

Harvey RP (2002) Patterning the vertebrate heart. Nat. Rev. Genet. 3: 544–556 

Hu W, Yuan B, Flygare J & Lodish HF (2011) Long noncoding RNA-mediated anti-apoptotic 
activity in murine erythroid terminal differentiation. Genes Dev. 25: 2573–2578 

Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, 
Hori M, Saito S, Nakamura Y & Tanaka T (2006) Identification of a novel non-coding RNA, 
MIAT, that confers risk of myocardial infarction. J. Hum. Genet. 51: 1087–1099 

Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, 

Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, 

Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, et al (2007) RNA maps reveal new RNA 
classes and a possible function for pervasive transcription. Science 316: 1484–1488 

Kathiresan S & Srivastava D (2012) Genetics of human cardiovascular disease. Cell 148: 1242–
1257 

Kattman SJ, Adler ED & Keller GM (2007) Specification of multipotential cardiovascular 



	   21	  

progenitor cells during embryonic stem cell differentiation and embryonic development. Trends 
Cardiovasc. Med. 17: 240–246 

Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J & Keller G (2011) 
Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation 
of mouse and human pluripotent stem cell lines. Cell Stem Cell 8: 228–240 

Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, 
Bernstein BE, van Oudenaarden A, Regev A, Lander ES & Rinn JL (2009) Many human large 
intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene 
expression. Proc. Natl. Acad. Sci. U.S.A. 106: 11667–11672 

Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, 
Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB & Boyer LA (2013) 
Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152: 
570–583 

Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M & Xiong Y (2011) Long non-
coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor 
suppressor gene. Oncogene 30: 1956–1962 

Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, 
Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GXY, Aiyer S, Raj A, Rinn JL, 
Chang HY & Khavari PA (2013) Control of somatic tissue differentiation by the long non-coding 
RNA TINCR. Nature 493: 231–235 

Kretz M, Webster DE, Flockhart RJ, Lee CS, Zehnder A, Lopez-Pajares V, Qu K, Zheng GXY, 
Chow J, Kim GE, Rinn JL, Chang HY, Siprashvili Z & Khavari PA (2012) Suppression of 
progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 26: 338–343 

Kriegmair MCM, Frenz S, Dusl M, Franz W-M, David R & Rupp RAW (2013) Cardiac 
differentiation in Xenopus is initiated by mespa. Cardiovasc. Res. 97: 454–463 

Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA & Shiekhattar R (2013) 
Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. 
Nature 494: 497–501 

Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker 
SH, Klement RM, Warczok KE, Aumayr K, Pasierbek P & Barlow DP (2012) Airn transcriptional 
overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338: 1469–1472 

Lee JT & Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health 
and disease. Cell 152: 1308–1323 

Lin MF, Jungreis I & Kellis M (2011) PhyloCSF: a comparative genomics method to distinguish 
protein coding and non-coding regions. Bioinformatics 27: i275–82 

Lindsley RC, Gill JG, Murphy TL, Langer EM, Cai M, Mashayekhi M, Wang W, Niwa N, 
Nerbonne JM, Kyba M & Murphy KM (2008) Mesp1 coordinately regulates cardiovascular fate 
restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3: 55–
68 



	   22	  

Liu N & Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev. 
Cell 18: 510–525 

Malone CD & Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136: 656–668 

Matera AG, Terns RM & Terns MP (2007) Non-coding RNAs: lessons from the small nuclear 
and small nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 8: 209–220 

Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett. 
585: 1600–1616 

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom 
R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield 
TK, Giste E, Diegel M, Bates D, et al (2012) Systematic localization of common disease-
associated variation in regulatory DNA. Science 337: 1190–1195 

McCulley DJ & Black BL (2012) Transcription factor pathways and congenital heart disease. 
Curr. Top. Dev. Biol. 100: 253–277 

Medioni C, Sénatore S, Salmand P-A, Lalevée N, Perrin L & Sémériva M (2009) The fabulous 
destiny of the Drosophila heart. Curr. Opin. Genet. Dev. 19: 518–525 

Mercer TR & Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic 
regulation. Nat. Struct. Mol. Biol. 20: 300–307 

Miyata S, Minobe W, Bristow MR & Leinwand LA (2000) Myosin heavy chain isoform expression 
in the failing and nonfailing human heart. Circ. Res. 86: 386–390 

Nam J-W & Bartel DP (2012) Long noncoding RNAs in C. elegans. Genome Res. 22: 2529–
2540 

Ng S-Y, Johnson R & Stanton LW (2012) Human long non-coding RNAs promote pluripotency 
and neuronal differentiation by association with chromatin modifiers and transcription factors. 
EMBO J. 31: 522–533 

Ng S-Y, Lin L, Soh BS & Stanton LW (2013) Long noncoding RNAs in development and disease 
of the central nervous system. Trends Genet. 

Nguyen HT & Frasch M (2006) MicroRNAs in muscle differentiation: lessons from Drosophila 
and beyond. Curr. Opin. Genet. Dev. 16: 533–539 

Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. 
Science 313: 1922–1927 

Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, 
Notredame C, Huang Q, Guigó R & Shiekhattar R (2010) Long noncoding RNAs with enhancer-
like function in human cells. Cell 143: 46–58 

Pandya K & Smithies O (2011) β-MyHC and cardiac hypertrophy: size does matter. Circ. Res. 
109: 609–610 

Pandya K, Cowhig J, Brackhan J, Kim HS, Hagaman J, Rojas M, Carter CW, Mao L, Rockman 



	   23	  

HA, Maeda N & Smithies O (2008) Discordant on/off switching of gene expression in myocytes 
during cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. U.S.A. 105: 13063–13068 

Pasmant E, Sabbagh A, Vidaud M & Bièche I (2011) ANRIL, a long, noncoding RNA, is an 
unexpected major hotspot in GWAS. FASEB J. 25: 444–448 

Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, 
Regev A & Schier AF (2012) Systematic identification of long noncoding RNAs expressed 
during zebrafish embryogenesis. Genome Res. 22: 577–591 

Podlowski S, Bramlage P, Baumann G, Morano I & Luther HP (2002) Cardiac troponin I sense-
antisense RNA duplexes in the myocardium. J. Cell. Biochem. 85: 198–207 

Ponjavic J, Ponting CP & Lunter G (2007) Functionality or transcriptional noise? Evidence for 
selection within long noncoding RNAs. Genome Res. 17: 556–565 

Ponting CP, Oliver PL & Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 
136: 629–641 

Qian L & Bodmer R (2012) Probing the polygenic basis of cardiomyopathies in Drosophila. J. 
Cell. Mol. Med. 16: 972–977 

Qian L, Wythe JD, Liu J, Cartry J, Vogler G, Mohapatra B, Otway RT, Huang Y, King IN, Maillet 
M, Zheng Y, Crawley T, Taghli-Lamallem O, Semsarian C, Dunwoodie S, Winlaw D, Harvey RP, 
Fatkin D, Towbin JA, Molkentin JD, et al (2011) Tinman/Nkx2-5 acts via miR-1 and upstream of 
Cdc42 to regulate heart function across species. J. Cell Biol. 193: 1181–1196 

Rapicavoli NA, Poth EM & Blackshaw S (2010) The long noncoding RNA RNCR2 directs mouse 
retinal cell specification. BMC Dev. Biol. 10: 49 

Reim I & Frasch M (2010) Genetic and genomic dissection of cardiogenesis in the Drosophila 
model. Pediatr Cardiol 31: 325–334 

Rinn JL & Chang HY (2012) Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 
81: 145–166 

Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, 
Farnham PJ, Segal E & Chang HY (2007) Functional demarcation of active and silent chromatin 
domains in human HOX loci by noncoding RNAs. Cell 129: 1311–1323 

Ritter O, Haase H, Schulte HD, Lange PE & Morano I (1999) Remodeling of the hypertrophied 
human myocardium by cardiac bHLH transcription factors. J. Cell. Biochem. 74: 551–561 

Saga Y, Hata N, Kobayashi S, Magnuson T, Seldin MF & Taketo MM (1996) MesP1: a novel 
basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse 
gastrulation. Development 122: 2769–2778 

Saga Y, Kitajima S & Miyagawa-Tomita S (2000) Mesp1 expression is the earliest sign of 
cardiovascular development. Trends Cardiovasc. Med. 10: 345–352 

Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki JI & Inoue T (1999) MesP1 is 



	   24	  

expressed in the heart precursor cells and required for the formation of a single heart tube. 
Development 126: 3437–3447 

Satou Y, Imai KS & Satoh N (2004) The ascidian Mesp gene specifies heart precursor cells. 
Development 131: 2533–2541 

Seyres D, Röder L & Perrin L (2012) Genes and networks regulating cardiac development and 
function in flies: genetic and functional genomic approaches. Brief Funct Genomics 11: 366–374 

Sigova AA, Mullen AC, Molinie B, Gupta S, Orlando DA, Guenther MG, Almada AE, Lin C, 
Sharp PA, Giallourakis CC & Young RA (2013) Divergent transcription of long noncoding 
RNA/mRNA gene pairs in embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 110: 2876–2881 

Sone M, Hayashi T, Tarui H, Agata K, Takeichi M & Nakagawa S (2007) The mRNA-like 
noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J. Cell. Sci. 
120: 2498–2506 

Spitale RC, Tsai M-C & Chang HY (2011) RNA templating the epigenome: long noncoding 
RNAs as molecular scaffolds. Epigenetics 6: 539–543 

Srivastava D (2006a) Genetic regulation of cardiogenesis and congenital heart disease. Annu 
Rev Pathol 1: 199–213 

Srivastava D (2006b) Making or breaking the heart: from lineage determination to 
morphogenesis. Cell 126: 1037–1048 

Taft RJ, Pheasant M & Mattick JS (2007) The relationship between non-protein-coding DNA and 
eukaryotic complexity. Bioessays 29: 288–299 

Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, 
Bubulya PA, Blencowe BJ, Prasanth SG & Prasanth KV (2010) The nuclear-retained noncoding 
RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. 
Mol. Cell 39: 925–938 

Tsai M-C, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E & Chang HY 
(2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 
329: 689–693 

Tsai M-C, Spitale RC & Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer 
progression. Cancer Res. 71: 3–7 

Tsuiji H, Yoshimoto R, Hasegawa Y, Furuno M, Yoshida M & Nakagawa S (2011) Competition 
between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and 
associates with splicing factor-1. Genes Cells 16: 479–490 

Tupy JL, Bailey AM, Dailey G, Evans-Holm M, Siebel CW, Misra S, Celniker SE & Rubin GM 
(2005) Identification of putative noncoding polyadenylated transcripts in Drosophila 
melanogaster. Proc. Natl. Acad. Sci. U.S.A. 102: 5495–5500 

Ulitsky I, Shkumatava A, Jan CH, Sive H & Bartel DP (2011) Conserved function of lincRNAs in 
vertebrate embryonic development despite rapid sequence evolution. Cell 147: 1537–1550 



	   25	  

Vincent SD & Buckingham ME (2010) How to make a heart: the origin and regulation of cardiac 
progenitor cells. Curr. Top. Dev. Biol. 90: 1–41 

Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico 
AR, Capra JA, Erwin G, Kattman SJ, Keller GM, Srivastava D, Levine SS, Pollard KS, Holloway 
AK, Boyer LA & Bruneau BG (2012) Dynamic and coordinated epigenetic regulation of 
developmental transitions in the cardiac lineage. Cell 151: 206–220 

Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X & Liu H (2013) 
Endogenous miRNA Sponge lincRNA-RoR Regulates Oct4, Nanog, and Sox2 in Human 
Embryonic Stem Cell Self-Renewal. Dev. Cell 25: 69–80 

Wapinski O & Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol. 
21: 354–361 

Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ & Zhou M-M 
(2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 
by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38: 662–674 

Yoon J-H, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, 
Becker KG & Gorospe M (2012) LincRNA-p21 suppresses target mRNA translation. Mol. Cell 
47: 648–655 

Young RS, Marques AC, Tibbit C, Haerty W, Bassett AR, Liu J-L & Ponting CP (2012) 
Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster 
genome. Genome Biol Evol 4: 427–442 

Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C, 
Wong T, Zhang H, Guo J, Li Y, Liu R, Liang W, Zhu J-K, Zhang W & Jin H (2012) Genome-wide 
analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. 
Genome Biol. 13: R20 

 

 

Figure legends 
 
Figure 1. LncRNAs are a heterogeneous class of transcripts and function to regulate 

gene expression by diverse mechanisms. A. Representative classes of long noncoding 

RNAs based on genomic location.  LncRNAs can be located and transcribed within introns of 

protein-coding genes (left), as intervening genes known as long intergenic or intervening 

noncoding RNAs (lincRNAs) that do not overlap with the exons of other genes (middle), or they 

can be located on the opposite strand of a coding or noncoding gene and transcribed in the 

antisense direction (right). B. Global mechanisms of lncRNA function. LncRNAs can function as 

molecular scaffolds by interacting with proteins such as transcription factors or components of 

chromatin modifying complexes to affect positive or negative regulation of gene expression (left 
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panel). Proposed mechanisms of action include targeting proteins to specific genomic sites such 

as promoter regions by complementary interactions with DNA. Alternatively, interactions with 

DNA may prevent the binding of specific factors to the DNA template (middle). LncRNAs can 

also base-pair with other RNA molecules such as mRNAs or may act as a sponge for miRNAs.. 

This scenario is thought to lead to post-transcriptional gene silencing (right panel).  

 

 

Figure 2. The developmental complexity of heart development varies among organisms 

despite conserved core cardiac TF network. A. Drosophila heart development begins during 

embryonic stage 11 by specification of two contralateral rows of cardiogenic mesoderm and 

formation of cardioblasts. Cardioblasts migrate towards the midline at stage 13-14 and form a 

simple linear closed tube with a central lumen by stage 16-17, subsequently differentiating into 

more mature cardiomyocytes. B. The first steps of mammalian heart development proceed in a 

very similar manner, yet the mature heart is considerably more complex with two atrial and two 

ventricular chambers, connecting the systemic and pulmonary circuits via four valves and in- 

and outgoing vessels. The earliest step of mammalian cardiogenesis involve the bilateral 

specification of cardiac progenitor cell populations from the first heart field (FHF) in the anterior 

lateral plate mesoderm, which condense into two lateral heart primordia (mouse E7.5, human 

day 15) to form the cardiac crescent. The secondary heart field (SHF) constitutes a separate 

cell population at the medial sides of the two processes of the cardiac crescent. The two 

processes of the cardiac crescent fuse to form a beating primitive linear heart tube (mouse 

E8.5, human day 21), which then undergoes rightward looping, resulting in formation of the 

early chambers (mouse E9, human day 28). During later stages, the mature shape of the heart 

is generated by differentiation of cardiac cell populations and extensive remodeling of the heart, 

resulting in four-chambered heart with distinct in- and outflow tracts, cardiac valves separating 

the different compartments, and a mature conduction system. C. The core transcription factor 

network necessary for specification of the cardiovascular lineages are conserved between 

Drosophila and mammals. D. The percentage of noncoding to protein-coding sequence 

increases with developmental complexity. Whereas S. cerevisiae dedicates most of its genome 

to protein-coding genes, only a small fraction of the genome codes for proteins in human. E. 

The total number of putative lncRNA transcripts is predicted to be significantly higher in mouse 

(~3,000 lincRNA transcripts as determined by Ponjavic et al, 2007; Sigova et al, 2013) and 

Human (~15,000 as defined by Derrien et al, 2012) as compared to lower eukaryotes such as 

Drosophila (17 based on stringent criteria in Tupy et al., 2005 to greater than 1,000 based on 
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low stringency estimates from Young et al, 2012), C. elegans (262 from Nam & Bartel, 2012), 

and zebrafish (~700 transcripts predicted from Ultisky et al, 2011 and Pauli et al, 2012). The 

number of lncRNAs varies among studies as different criteria were used to define lncRNA 

transcripts. 

 

 

Figure 3. Mechanisms of lncRNA function in heart development and cardiac disease.  

A. Braveheart is necessary for commitment to the cardiac lineage in mouse.  Bvht appears to 

function in trans through interaction with the epigenetic silencing complex PRC2 and may act as 

a decoy to antagonize its recruitment to key developmental genes during cardiomyocyte 

differentiation. Alternatively, Bvht may recruit PRC2 to gene(s) that repress the cardiac program. 

In either case, loss of Bvht leads to a failure to activate the core cardiac gene network that 

includes many TFs implicated in heart development and disease. B. Fendrr is expressed in the 

lateral plate mesoderm in mouse from which precursors for the heart and body wall are derived.  

Fendrr is proposed to function partly in cis to regulate its neighboring gene Foxf1a. Fendrr also 

functions in trans to regulate the expression of additional genes important for heart 

development. Fendrr interacted with PRC2 components as well as WDR5, a member of 

TrxG/MLL complex suggesting that Fendrr regulates the balance between repressive and 

activating marks at key genes during development. Thus, Bvht and Fendrr may represent 

examples of lncRNAs that regulate gene expression through epigenetic mechanisms. C-E. 

LncRNAs can also function as natural antisense transcripts (NATs) to affect gene expression at 

the transcriptional and post-transcriptional level. ANRIL was identified as a risk factor for 

coronary disease by GWAS. ANRIL is expressed in the opposite direction to INK4B/P15 in the 

INK4 locus.  The antisense transcript appears to recruit PRC1 and PRC2 to mediate repression 

of the INK4a/INK4b tumor suppressor locus through an epigenetic silencing mechanism (C). 

The ratio of two important sarcomere components MYH6 and MYH7 vary during development 

and in stress-induced pathological conditions. Myh6 and Myh7 genes are juxtaposed in the 

mouse genome in a head to tail fashion. An antisense lncRNA (Myh7-as) is transcribed across 

the Myh7 locus and negatively correlates with MYH7 abundance. Thus, Myh7-as transcription 

may regulate the ratio of Myh6 and Myh7 (D). Some antisense transcripts are predicted to form 

RNA duplexes with their mRNA counterpart leading to post-transcriptional regulation of the 

target message. For example, antisense transcripts to Alc1 and cNTI, two genes that code for 

important sarcomere components in cardiac muscle, form RNA duplexes with the respective 

protein-coding transcript. Alc1-antisense is increased in hypertrophic ventricles in patients with 
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Tetralogy of Fallot, whereas elevated cTNI levels are correlated with ischemia and risk of heart 

failure. In both of these cases, antisense transcripts may be important for regulating gene 

expression through formation of RNA duplexes that are substrates for recruitment of factors that 

degrade the mRNA or that physically block translation of the message. RNA-RNA interactions 

can also stabilize the mRNA in some cases (E). 
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