
MIT Open Access Articles

Lump detection with a gelsight sensor

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Xiaodan Jia, Rui Li, M. A. Srinivasan, and E. H. Adelson. “Lump Detection with a 
Gelsight Sensor.” 2013 World Haptics Conference (WHC) (n.d.).

As Published: http://dx.doi.org/10.1109/WHC.2013.6548404

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/86139

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/86139
http://creativecommons.org/licenses/by-nc-sa/4.0/


Lump Detection with a GelSight Sensor
Xiaodan (Stella) Jia⇤

Perceptual Science Group
MIT

Rui Li†

Perceptual Science Group
MIT

Mandayam A. Srinivasan‡

The Touch Lab
MIT

Edward H. Adelson§

Perceptual Science Group
MIT

ABSTRACT

A GelSight sensor is a tactile sensing device comprising a clear
elastomeric pad covered with a reflective membrane, coupled with
optics to measure the membrane’s deformations. When the pad is
pressed against an object’s surface, the membrane changes shape
in accord with mechanical and geometrical properties of the object.
Since soft tissue is more compliant than hard tissue, one can de-
tect an embedded lump by pressing the GelSight pad against the
tissue surface and observing the hump that forms over the lump.
We tested this system’s sensitivity by constructing phantoms of soft
rubber with hard embedded lumps. The system is quite sensitive;
for example it could detect a 2mm lump at a depth of 5mm. The
sensor was more sensitive than previous tactile lump detectors. It
was also better than human observers using their fingertips. Such
a capability could help in tumor screening, and could augment the
sensory information available in telemedicine or minimally invasive
surgery.

Index Terms: H.1.2 [Models and Principles]: User/Machine
System—Human Information Processing; H.5.2 [Information In-
terfaces and Presentation]: User Interface—Haptics I/O;

1 INTRODUCTION

1.1 Background
The sense of touch is important in medical diagnosis and treat-
ment. In particular, the ability to detect variations in tissue softness
through palpation is an essential component in the routine exami-
nation for breast, testicular, or prostate cancer [4]. In addition, the
ability to discriminate hard and soft tissues is an important part of
open surgery and would be helpful if it can augment the sensory
data available in minimally invasive surgery. In breast lumps exam-
ination, for example, in which the hard tissue (lump) embedded in
the soft tissues [3], tactile sensation plays a significant role in the
first stage of examination. From the clinical data in [7], [11], [12],
we can know that lumps are significantly stiffer than surrounding
tissues. Such contrast of stiffness can assist doctors in the localiza-
tion and assessment of lumps during lump examinations, when the
doctors’ fingertips are in direct contact with the tissue [6].

Detection of lumps using tactile sensors is still a challenging
problem. Gwilliam et al. [6], studied lump detection using an artifi-
cial touch sensor based on a capacitive array [13]. They constructed
phantoms of soft silicone rubber containing hard embedded balls of
various sizes and depths, and derived pressure distributions as they
pressed the sensor on the phantom. They were able to achieve sen-
sitivity somewhat greater than that of human subjects tested with
the same phantoms. We undertook a similar study using a novel
sensor, which measures the distortion of a soft elastomeric pad as it
is pressed against a surface.
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1.2 The GelSight Sensor

Figure 1: Basic principle of the Gelsight sensor. There are four
main components for the GelSight sensor: an elastomer with the
opaque reflective membrane on top, supporting plate which pro-
vides the support for the soft elastomer while pushing against the
object, optics and LEDs which provide illumination for the sen-
sor, and the camera in the back to capture the deformation images
under the illumination from different directions. Sometimes, the
optics can functions as a supporting plate as well.

Johnson and Adelson [9] and Johnson et al. [10] described a tac-
tile sensor, called Gelsight, which is based on a clear elastomeric
pad covered by a reflective membrane. A camera is placed behind
the pad and views the membrane as it is illuminated by LEDs from
various directions (see Figure 1). When the pad is pressed against a
rigid surface, the membrane takes on the surface’s 3D topography,
allowing the camera to record a shaded image indicative of that to-
pography (see Figure 2). Through the use of photometric stereo
[14], [1], the sensor can produce a detailed image of the mem-
brane’s 3D shape. As shown in Figure 2a and 2b, an Oreo cookie
is pressed against the GelSight sensor. Depending on the task, this
image can be used directly, or can be used to infer pressure distribu-
tions or other aspects of the object being probed. Johnson et al. [10]
discussed the accuracy of different reconstruction approaches and
we employ the most accurate one. In the case of lump detection,
the problem is to detect the presence of a stiffer tissue within a vol-
ume of normal tissue. As will be described, this can be detected by
measuring the change in surface geometry under increasing force.

(a) (b) (c)

Figure 2: (a) A cookie is pressed against the membrane of a Gel-
Sight sensor. (b) The membrane is distorted, as shown in this view
from beneath. (c) The cookie’s 3D shape is reconstructed using
photometric stereo and rendered at a different viewpoint. [9]



2 LUMP DETECTION

Figure 3: Physical illustration of a phantom with a spherical lump
(black) of diameter B embedded at depth D from the top.

Following Gwilliam et al. [6], we constructed phantoms using
Ecoflex 0030 silicone rubber from Smooth-On Inc. This rubber has
a Shore 00 harness of 30, and is similar to soft human tissue. Within
the phantoms we placed Delrin spheres, which we take as lumps, of
various diameters, embedded at various depths. The dimensions of
the phantoms are shown in Figure 3, and the range of lump sizes and
depths are shown in Table 1. Sizes were 2, 3, 5, 8, or 9.5mm, while
depths were 1, 2, 3, 4, 5, or 6mm. A phantom with, for example, a
3mm lump at 5mm depth is denoted as B3-D5. We also made blank
phantoms containing no lumps.

Table 1: All phatoms with lumps

[mm] Ball 2 3 5 8 9.5

Depth B2 B3 B5 B8 B9.5

1 D1 D1-B2 D1-B3 D1-B5 D1-B8 D1-B9.5
2 D2 D2-B2 D2-B3 D2-B5 D2-B8 D2-B9.5
3 D3 D3-B2 D3-B3 D3-B5 D3-B8 D3-B9.5
4 D4 D4-B2 D4-B3 D4-B5 D4-B8 D4-B9.5
5 D5 D5-B2 D5-B3 D5-B5 D5-B8 D5-B9.5
6 D6 D6-B2 D6-B3 D6-B5 D6-B8 D6-B9.5

2.1 GelSight Experiment
2.1.1 Experiment Setup
The GelSight sensor system was housed in a box and mounted on
a vertical shaft, as shown in Figure 4a. The phantom rested on a
digital scale, and the sensor was pressed against the phantom with
the desired force.

(a) (b)

Figure 4: Setup of the GelSight experiment for lump detection. (a)
Side view of the overall system. (b) Closer front view of the Gel-
Sight device and the phantom.

Figure 5 shows how the sensor is able to detect the presence
of a lump. On the left is a phantom in its resting state, with the
embedded lump shown as a black disc. The GelSight elastomeric

pad is placed above the phantom, and then pressed against it in a
downward direction. Both the phantom and the pad distort as the
pressure is applied: they bulge outward, and the interface between
them (including the reflective membrane) is deformed according to
the distribution of stiffness. Since a hard lump is less compliant
than soft tissue, it produces a hump shaped distortion in the mem-
brane. The geometry of these changes is measured by photometric
stereo and converted to a depth image. For the detailed reconstruc-
tion algorithm, please refer to [8].

Figure 5: Illustration of the GelSight sensor’s deformation when
the sensor (blue) is applied against a phantom (purple) with a lump
embedded.

Our device, shown in Figure 4, is derived from the handheld
sensor described by Johnson et al. [9]. It consists of a rectan-
gular housing (62mm⇥62mm⇥150mm) containing a Flea2 cam-
era (Point Grey Systems), as well as the lighting, the control elec-
tronics, and a circular glass plate supporting the elastomeric pad.
The plate was illuminated by 6 LEDs which are lit sequentially to
produce the images needed for photometric stereo. The pads were
made from a thermoplastic gel rubber (a styrenic block copolymer,
SST-RN, supplied by Crinnis, Inc.). They were 35mm in diameter,
4mm thick, and had softness similar to that of the phantoms. The
pads were covered with a thin membrane of the same gel rubber
mixed with fine aluminum powder, producing a coating that was
opaque, gray, and matte in appearance.

2.1.2 Approach of Using GelSight in Lump Detection
To test performance of the GelSight sensor for lump detection, we
experiment with phantoms that have lumps of different sizes em-
bedded at different depths in the tissue and with different forces
applied on each phantom. For each trial, a particular phantom was
placed below the GelSight device, and the pad was pressed against
the phantom with a given amount of force. Following, Gwilliam
et al. [6], we express the force in gram equivalent units. Table 2
shows the conversion to Newton. We also show the pressure for
each condition, estimated by dividing by the contact area of 962
mm2.

Table 2: Force and pressure applied in lump detection experiments

Force in grams [g] 500 1000 1500 2000 2500

Force in Newtons [N] 4.90 9.81 14.71 19.61 24.52

Pressure[10�3N/mm2]
over a area of 962 mm2 5.09 10.19 15.29 20.39 25.49

The depth image on a given trial can be considered to have two
components: the baseline image that results from pressing against
a blank phantom, and the distortion from baseline that is caused by
the lump. For each force, we obtained a baseline image by aver-
aging the depth images of 10 blank phantoms. Then, for further
experiments we subtracted the baseline from the observed depth
image, giving us a residual image containing the distortion caused
by the lump.

Figure 6b shows the residual images obtained with a force of
2500g, using all 30 of the phantoms, with all possible combinations



of sizes and depths. (Note that the lumps are not perfectly centered
beneath the sensor, because of random variation in the relative po-
sitioning from trial to trial. We retained this positional variation
in the depth images since it corresponds to a realistic condition in
which lump location is not exactly known). Figure 6a shows a scale
bar mapping the color into depth, and Figure 6c shows a set of 10
measurements taken with blank phantoms.

The residual images in Figure 6b clearly reveal the presence
of the lump for most of the conditions. Large lumps and shallow
depths (upper right corner) lead to prominent bulges. As the lumps
become smaller and the depth becomes greater, the bulge becomes
more subtle (lower left corner). To convert this visual impression
to a quantitative measurement, we devised a classifier that could
distinguish between blank and non-blank phantoms.

10 20 30 40 50 60

(a)

(b)

(c)

Figure 6: (a) Colorbar mapping color to the depth in millimeter. (b)
Depth images of all phantoms with 2500g force. Each row repre-
sents phantoms with lumps at different depths. From up to down,
the depths are D1, D2, D3, D4, D5, and D6, respectively. Each
column represents phantoms with lumps of different sizes. From
left to right, the size is B2, B3, B5, B8 and B9.5, respectively. (c)
Depth images of blank phantoms with 2500g force.

We found that a variety of features could be used successfully
in the classification. The particular algorithm we settled on was as
follows. We computed the residual image by subtracting the ob-
served depth image from the average image of 10 blank phantoms
at the same force. We retained all non-negative values, since the
presence of a lump is signaled by larger values over the lump. Then
we computed the mean and variance of the values taken across the
residual image. By using a standard support vector machine clas-
sifier [2] with supervised learning on the images with and without

lumps, we determined the linear decision boundary for that force
condition. For 2500g force, the boundary was

1.21mR +0.63vR = 6. (1)

where mR and vR are the mean and variance of the residual image.
For any pair of (mR, vR) above the line, the classification result is
that there is a lump present, and vice versa. Performance of the
classifier is shown and discussed in more detail in section 3.

2.2 Human Psychological Experiment
The purpose of this experiment is to see how humans perform in
the lump detection tasks. We tested the performance of human sub-
jects using the same phantoms as in the GelSight experiment. We
have 4 naive human subjects, each of which was given a few tri-
als of practice and then was asked to distinguish blank phantoms
from those with lumps. We used the method called two alterna-
tive forced choice: for each trial, the subject was presented with
two phantoms, had 12 seconds to touch the phantoms using a sin-
gle finger and choose the one containing the lump. To restrict the
amount of applied force, the phantoms were mounted on a counter-
balanced arm, which prevented the exertion of forces greater than
2000g force. The size of human fingertips is about 1/10 ⇠ 1/6 of
the contacting area between the phantom and the GelSight sensor,
or 96mm2 ⇠ 160mm2. Each subject ran 10 trials for each phantom
pair, so there are 40 trials in total for all 4 human subjects.

3 RESULTS AND DISCUSSIONS

3.1 Results for GelSight and for Human Psychophysics
Table 3 shows the results of lump detection for the GelSight sensor
with the force of 2500g. The yellow blocks indicate the conditions
under which the system could correctly distinguish between phan-
toms with and those without lumps. The system can tell whether
there is a lump in all conditions except for two involving the great-
est depth and smallest lumps: D6-B2 and D6-B3.

Table 3: Performance of the GelSight sensor in lump detection for
different depths and lump sizes. The yellow area denotes correct
detection.

[mm] Ball 2 3 5 8 9.5

Depth B2 B3 B5 B8 B9.5

1 D1 D1-B2 D1-B3 D1-B5 D1-B8 D1-B9.5
2 D2 D2-B2 D2-B3 D2-B5 D2-B8 D2-B9.5
3 D3 D3-B2 D3-B3 D3-B5 D3-B8 D3-B9.5
4 D4 D4-B2 D4-B3 D4-B5 D4-B8 D4-B9.5
5 D5 D5-B2 D5-B3 D5-B5 D5-B8 D5-B9.5
6 D6 D6-B2 D6-B3 D6-B5 D6-B8 D6-B9.5

Table 4: Performance of humans in lump detection. The yellow
area denotes correct detection.

[mm] Ball 2 3 5 8 9.5

Depth B2 B3 B5 B8 B9.5

1 D1 D1-B2 D1-B3 D1-B5 D1-B8 D1-B9.5
2 D2 D2-B2 D2-B3 D2-B5 D2-B8 D2-B9.5
3 D3 D3-B2 D3-B3 D3-B5 D3-B8 D3-B9.5
4 D4 D4-B2 D4-B3 D4-B5 D4-B8 D4-B9.5
5 D5 D5-B2 D5-B3 D5-B5 D5-B8 D5-B9.5
6 D6 D6-B2 D6-B3 D6-B5 D6-B8 D6-B9.5



Table 4 shows the performance of the human observers by aver-
aging the performance of all trials for each phantom. If each phan-
tom was detected correctly for at least 75% of the times (or 30 out
of 40 times in our experiment), we denote that the lumps can be de-
tected. As expected, there is a tradeoff between the depth and size
of the lump: for the same depth, the larger the lump size, the easier
it is to detect the lump, and for the same lump size, the smaller the
depth, the easier it is to detect the lump. A total of 11 conditions are
below threshold for human detection: for example, a lump of 2mm
could not be detected at a depth of 2mm or deeper for humans, and
a lump of 8mm could not be detected at a depth of 6mm or deeper.
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Figure 7: Performance comparisons of the GelSight sensor and hu-
mans in lump detection for (a) D3 phantoms, and (b) B5 phantoms.

Figure 7 shows the performance comparison of the GelSight sen-
sor and humans. It can be seen that the GelSight sensor is much
more sensitive than the human subjects with the same lump size
or depth. For the same lump size, e.g., 3mm, the GelSight sensor
can detect it even at a large depth of 5mm as compared to 2mm
for humans. For the same depth, e.g., 5mm, the GelSight sensor
can detect balls with size as small as 2mm as compared to 5mm for
humans. All above comparisons are done with the conditions that
the GelSight sensor applies a much smaller pressure than humans
do on the phantoms (the pressue for GelSight is about 1/8 ⇠ 1/5 of
that for humans), which makes the GelSight sensor even better in
performance compared to humans.

3.2 Performance comparison of the GelSight Sensor
and the DigiTacts Sensor
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Figure 8: Detection pressure as a function of lump depth for the
GelSight sensor and the DigiTacts sensor. (a) B5 phantoms for Gel-
Sight and B6.5 phantoms for DigiTacts. (b) B9.5 phantoms for both
GelSight and DigiTacts

Gwilliam et al. [6] introduced a lump detection experiment using
the DigiTacts II capacitive sensor. Phantoms used in their experi-
ments are similar to what we have used for testing the GelSight
sensor, but they focused their work on larger lumps with shallower
depths than we did. The smallest lumps they tested were 6.5mm

and the deepest depth tested was 3.5 mm. They did not use fixed
forces, as we did, but we can compare their sensitivity to ours by
considering the pressure required for phantoms of similar param-
eters. For example, we can compare their phantom with a 6.5mm
lump size at 3.5mm depth to our phantom of 5mm lump size at
4mm depth. In these conditions, their capacitive sensor required a
pressure of about 2.2g/mm2 for detection, whereas with ours the de-
tection pressure was below 0.5g/mm2. Thus the pressure required
with GelSight was less than 1/4 of that required with the capaci-
tive sensor. In addition, the fact that we were able to detect lumps
that were much smaller and much deeper indicates the improved
sensitivity of GelSight in this task.

3.3 Discussions on the Resulted Phantom Images

(a)

(b)

(c)

Figure 9: (a) Depth image of D3-B5 pressed with different forces
for the blank phantom. From left to right, the forces are 500g,
1000g, 1500g, 2000g, and 2500g, respectively. (b) Depth image
of D3 phantoms with lumps of different sizes pressed with 2500g
force. From left to right, the sizes of the lumps are B2, B3, B5, B8,
and B9.5 respectively. (c) Depth image of B5 phantoms with lumps
embedded at different depths pressed at 2500g force. From left to
right, the depths are D1, D2, D3, D4, D5, and D6 respectively.

3.3.1 Phantoms with different applied forces
To test whether an applied force can influence the detection re-
sults, we select phantom with medium lump size (B5) embedded
at medium depth (D3) as an illustration. Figure 9a shows the depth
images of D3-B5 applied by different forces, 500g, 1000g, 1500g,
2000g, 2500g, respectively. From all the depth images shown in
Figure 9a, we can see that the larger the force, the stronger the con-
trast in the depth image.

3.3.2 Phantoms with lumps of different sizes
To see how sizes of lumps influence the depth image, we pick
phantoms with lumps embedded at a medium depth (D3 phantoms)
while pressed with the same force (2500g force) as illustration.
From Figure 9b, it can infer that the larger the lumps are, the easier
to detect whether the lump is present or not.

3.3.3 Phantoms with lumps embedded at different depths
To see how the depths of lumps can influence the depth image, we
pick phantoms with lumps of medium size (B5 phantoms). All the
phantoms are pressed with the same force (2500g force). The depth
images are shown in Figure 9c. Simply by looking at the depth
images, the contrast of the lump from surroundings is getting less
as the depth increases.



4 CONCLUSION

In this paper we have described how a GelSight sensor, built with a
soft elastomeric pad, can be used for lump detection. When pressed
against a soft rubber phantom containing a hard embedded lump,
the membrane of the sensor distorts, exhibiting a hump that indi-
cates the presence of the lump beneath the surface. We were able to
discriminate the lump phantoms from blank phantoms even when
the lumps were 2mm in diameter and 5mm deep. This sensitivity is
substantially greater than that which was previously demonstrated
by Gwilliam et al. [6] with a capacitive sensor. In addition, it is
substantially greater than that achieved by human subjects with the
same phantoms. Our experiments were done under highly simpli-
fied conditions, and our devices form factor is inappropriate for de-
ployment in a real world setting. Nonetheless, the fact that we are
able to achieve such high sensitivities indicates that the GelSight
technology has promise for applications involving the detection of
lumps in soft tissues.
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