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We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS2)

monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved

photoluminescence (PL) mapping shows strong variations of emission when the MoS2

monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned

gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS2 emission

show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which

indicates an underlying cavity mode Purcell enhancement of the MoS2 SE rate exceeding a

factor of 70. VC 2013 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4826679]

The recent finding that a single atomic layer of transition

metal dichalcogenides can exhibit a large, direct bandgap1–4

opens the possibility of a new range of atomically thin materi-

als for electronic and electro-optic devices. Monolayer molyb-

denum disulfide (MoS2) has been used to fabricate field-effect

transistors (FETs) with a carrier-mobility of 200 cm2 V�1s�1

and On/Off ratios exceeding 108 at room temperature, compa-

rable to those obtained in graphene nanoribbon-based FETs.5

Optical studies have shown that monolayer MoS2 exhibits a

photoluminescence (PL) quantum yield that is enhanced by a

factor more than 104 compared with the bulk crystal.2,6

However, the PL efficiency of monolayer MoS2 is still very

low at �10�2 because the nonradiative recombination rate

1=snr far exceeds the spontaneous emission (SE) rate 1=sr.
2

For MoS2 monolayers on SiO2 substrates, values of snr �
100 ps and sr � 10 ns were estimated at room temperature.2,7

Here, we show that the SE efficiency of an MoS2 monolayer

can be greatly enhanced by exploiting the strong Purcell effect

in photonic crystal nanocavities to shorten the radiative

recombination time. After depositing an MoS2 monolayer

onto a planar photonic crystal (PPC) nanocavity, we observe

an enhancement of the external extracted PL intensity by a

factor of 5.4 above the background. This strong enhancement

exists even though the collection is from both the

sub-wavelength cavity mode and the surrounding focal spot

region. Taking into account this spatial averaging, we deduce

that the SE rate enhancement into the cavity mode corre-

sponds to nearly a factor of 70, in close agreement with

theory. These results indicate that by exploiting the strong

Purcell effect in optical cavities with wavelength-scale mode

volume and high quality (Q) factor, it is possible to achieve

roughly two orders of magnitude improvement in the MoS2

PL efficiency. This gain opens the door to efficient light emis-

sions from, and strong light-matter interactions with, materials

of atomic thickness.

The experiment employs PPC nanocavities fabricated in

a 138 nm thick gallium phosphide (GaP) membrane using

electron-beam lithography, dry etching, and wet chemical

undercutting of an AlGaP sacrificial layer.8 The cavity

design is a linear three-missing hole (L3) defect9 with a lat-

tice spacing a¼ 165 nm and an air-hole radius r¼ 0.3a,

yielding resonant modes in the wavelength range of 600 nm-

700 nm to overlap the PL spectrum of the monolayer MoS2.

Figure 1(a) shows a scanning electron microscope (SEM)

image of the PPC nanocavity before the deposition of MoS2.

Trenches around the PPC lattice aid in the removal of the

sacrificial layer in a hydrofluoric acid bath. The monolayer

MoS2 is prepared by mechanical exfoliation onto a

FIG. 1. (a) SEM image of the L3 PPC nanocavity before the transfer of

MoS2 monolayer. (b) Optical microscope image of the exfoliated MoS2 film

on a polymeric sacrificial substrate. The monolayer is shown in the purple

region indicated by the dashed black line. (c) Optical microscope image of a

finished device. The single-layer MoS2 is not visible, but its overlap with the

PPC cavity is verified by the above multi-layer MoS2 flake and by the fluo-

rescence mapping image shown in Fig. 2(a).a)Electronic address: englund@mit.edu

0003-6951/2013/103(18)/181119/4 VC Author(s) 2013103, 181119-1
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polymeric sacrificial substrate, as shown in the optical micro-

scope image in Fig. 1(b). Due to the optical interference,

MoS2 monolayer is clearly visible in the purple region indi-

cated by the dashed black line, which is also confirmed by a

micro-Raman spectroscopy.10 The MoS2 sheet is then trans-

ferred onto PPC nanocavities through a precision transfer

technique with the help of the polymeric sacrificial substrate,

which is removed from the final device by high-temperature

annealing.11 Figure 1(c) shows the finished device. An PPC

nanocavity is covered uniformly by the MoS2 monolayer,

which is clearly distinguished by correlating the above

multi-layer MoS2 flake.

We characterize the device on a micro-PL confocal

microscope with a 532 nm continuous-wave excitation laser,

focused to a beam diameter of �400 nm and with a power of

�50 lW. To study the modifications on the MoS2 SE, we

spatially scan the device in 50 nm steps on a piezo stage and

detect the MoS2 PL using an avalanche photodiode. Figure

2(a) shows the spatially resolved PL. By correlating it with

the SEM image shown in Fig. 1(a), we observe four individ-

ual emission profiles of MoS2 due to different substrates, as

marked in Fig. 2(a). The PL spectra of the four regions are

shown in Fig. 2(b). The result reveals that the PL collected

from region 3, where the MoS2 sheet is suspended over a

300 nm wide trench, is significantly brighter than that

obtained from region 4 on the bulk GaP membrane. This is

expected due to the suppression of the PL quantum yield by

the substrate2 and the total internal reflection of the

high-index GaP slab,12 which sharply reduces the PL collec-

tion efficiency. On both regions, the monolayer MoS2 emits

the same fluorescence spectrum centered around 660 nm due

to the direct electronic bandgap.2

On the PPC, we observe both an enhancement and a sup-

pression of the MoS2 PL emission. In region 2, due to the cou-

pling between the periodic air-holes of the PPC lattice and the

MoS2 sheet, the in-plane emission channel is inhibited by the

in-plane photonic bandgap, which overlaps with the emission

band of the monolayer MoS2. Therefore, the SE should be

re-directed into near-vertical k-vectors within the PPC light

cone.12 This SE redistribution and the higher collection effi-

ciency from the PPC lattice enhance the collection of emission

into the vertical direction via the suppression of emission into

in-plane PPC modes. Hence, the collected photon flux from

region 2 is brighter than that from the bulk GaP membrane, as

confirmed from the PL spectra. However, the PL collected

from the L3 defect (region 1) shows even brighter emission

than that from region 2. Comparing the spectra acquired from

region 1 and region 2, it is clear that this enhancement mainly

results from a greatly amplified photon flux of the two peaks

centered at the wavelengths of 655.4 nm and 656.9 nm. The

polarization dependences of the two peaks from region 1 are

then resolved by rotating a polarizer in the PL collection path

of the microscope setup. The obtained spectra are shown in

Fig. 3(a), where / denotes the angle between the cavity y-axis

and the polarization direction of the polarizer. These spectra

indicate the two peaks at 655.4 nm and 656.9 nm are resonant

modes of the L3 cavity with expected polarization and wave-

length dependences given by three-dimensional finite differ-

ence time domain simulations,13,14 which also confirm other

resonant modes at longer wavelength. Therefore, over the

FIG. 2. (a) Micro-PL spatial mapping

of the device, showing four individual

emission profiles. (b) PL spectra col-

lected from the four different locations

on the sample.

FIG. 3. (a) Polarization dependences of the cavity-coupled MoS2 PL spectra, where / denotes the angle between the cavity y-axis and the polarization direc-

tion of the polarizer. Inset: Simulated field distributions of resonant modes at 655.4 nm and 656.9 nm. (b) Spectrally resolved enhancement of PL emission cal-

culated from the PL spectra shown in (a) with / ¼ 90� and 08 (dotted line), which can be well fitted to a theoretical model considering the SE rate

modifications and coupling efficiencies (dashed line).

181119-2 Gan et al. Appl. Phys. Lett. 103, 181119 (2013)
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cavity defect region, the simultaneous suppression of SE into

in-plane PPC modes together with the cavity mode Purcell

enhancement of SE rate results in a dramatic reshaping of the

MoS2 SE, as was previously shown for single emitters15–17

and quantum wells12 in PPC cavities.

For simplicity, we designate the two resonant modes at

655.4 nm and 656.9 nm as mode 1 and mode 2, respectively.

Fitting the peaks to Lorentzian lineshapes, we find that the Q
factors of the two modes are Q0¼ 220 and 320, respectively,

which degrade from the initial Q factors of 880 and 800 of

the unloaded cavity due to the spectrally overlap with the

absorption resonance of the monolayer MoS2.2,18,19 The

simulated cavity fields of modes 1 and 2 are shown in the

inset of Fig. 3(a), which have mode volumes (Vmode) of 0.63

and 0:33ðk=nÞ3, where n is the refractive index of GaP.

To quantitatively analyze the cavity enhancement of

MoS2 SE rate, we model the coupled MoS2-cavity system by

considering the MoS2 monolayer as a collection of excitonic

dipole emitters. The exciton recombination rate is given by a

sum over radiative and non-radiative recombination rates,

C ¼ Cr þ Cnr. In our experiments, the PL intensities at the

resonant wavelengths show linear dependence on the excita-

tion power, verifying that the SE processes are far below the

saturation rate of the MoS2 sheet. Therefore, the emission

power P is proportional to PinACr=ðCr þ CnrÞ, where Pin is

the excitation power and A is the absorbance of monolayer

MoS2 at the excitation wavelength. Because Cnr � Cr in

MoS2 and the finite collection angle of optics, we can ap-

proximate for all of our experiments that P / gCr=Cnr,

where g is the collection efficiency of the PL emission.

Here, we consider the excitons as an ensemble of emitters

l in the MoS2 on a bulk substrate have a natural SE rate

C0ðkÞdk with a transition rate corresponding to the spec-

tral range from k to kþ dk. The modified SE distribution

when the MoS2 sheet is on the PPC nanocavity is given

by

CðkÞdk ¼ C0ðkÞdk½Fc;0LðkÞjwj2 þ FPC�: (1)

Here, LðkÞ ¼ 1=½1þ 4Q2ð k
kc;0
� 1Þ2� denotes the cavity’s

Lorentzian spectrum with kc;0 as the resonant wavelength,

and w ¼ E � l=jEmax k lj denotes the spatial and angular

overlaps between the emitter dipole l and the cavity field E.

The factor Fc;0 ¼ 3
4p2

Q
Vmode
ðkc;0

n Þ
3

is the maximum SE enhance-

ment (Purcell) factor of the cavity mode when the emitter

dipole is on resonance with the cavity and spatially aligned

with the cavity field. The term FPC accounts for the suppres-

sion of the SE rate by the PPC lattice and modes other than

the cavity mode.12,15

The total cavity-coupled MoS2 emission spectrum I/ðkÞ
with different polarizations / can be fitted to a model that

considers both the SE rate modifications and the collection

efficiencies of the cavity mode and averaged PPC leaky

modes. We calculate I/ðkÞ by integrating the SE rate given

in Eq. (1) over the spatial and in-plane orientation densities

of the emitter dipoles qðr; k; lÞ

I/ðkÞ ¼ C0ðkÞ
ð

dld2r½gc;0Fc;0LðkÞjwj2sinð/Þ

þ gPCFPC�qðr; k; lÞ: (2)

Here, gc;0 and gPC are the coupling efficiencies into the

objective lens of the PL emissions coupled with the cavity

mode and averaged PPC leaky modes. Due to the primarily

linear polarization dependence of the cavity modes 1 and 2,

the PL spectra shown in Fig. 3(a) with polarizations as /
¼ 0� and 908 indicate the off- and on-resonance emissions.

We calculate the spectrally resolved cavity-enhancement of

the collected emission from the two spectra, as shown in

Fig. 3(b), which is governed by

I90� ðkÞ
I0� ðkÞ

¼
gc;0

gPC

ð
dld2rFc;0LðkÞjwj2qðr; k; lÞ
ð

dld2rFPCqðr; k; lÞ
þ 1: (3)

By integrating the far-field radiations of a dipole spec-

trally on- or slightly off-resonance with the cavity mode over

the numerical aperture (NA¼ 0.95) of the objective lens,

which locates on the cavity defect, we obtain coupling effi-

ciency ratios
gc;0

gPC
for modes 1 and 2 of 87% and 73%, respec-

tively.20 The integral over the angle of the dipole l with

respective to the cavity field E equals to 1/2 due to the ran-

dom orientations of dipoles on the two-dimensional MoS2

sheet. The spatial density of the dipoles corresponds to the

excitation of a uniform MoS2 area by a Gaussian beam with

a full width at half maximum of about 400 nm in the x–y
plane. Over this excitation area, the spatial integral of

ðjE k lj=jEmax k ljÞ2 are 0.169 and 0.079 for modes 1 and 2,

respectively, as calculated from their simulated cavity fields.

With the calculated Vmode and the Q factors derived from the

experimental spectra, we calculate the maximum Purcell fac-

tor Fc,0 for modes 1 and 2 is about 26.5 and 73.8. The sup-

pression factor FPC is estimated by simulating the emission

power ratio of a dipole on the L3 cavity defect and on the

bulk membrane.15 The emission frequency of the dipole is

chosen in the photonic bandgap of PPC but off-resonance

with the cavity mode. The obtained FPC is approximately

0.4, which is close to the values found in similar PPC

structures.12,15,21 Combining the above calculations and the

Lorentzian functions LðkÞ of modes 1 and 2, the theoretical

model described in Eq. (3) shows a good fit to the experi-

mentally obtained enhancement spectrum, as shown in

Fig. 3(b).

In conclusion, we have shown that by coupling mono-

layer MoS2 to a PPC nanocavity, it is possible to dramatically

enhance its internal quantum efficiency for transitions on res-

onant with the cavity. The experimental results and theoreti-

cal calculations reveal that the maximum enhancement of the

MoS2 SE rate by the cavity modes can be higher than 70,

with a suppression factor of about 0.4 due to the PPC lattice.

In this work, the strong Purcell enhancement was limited to

the sub-wavelength size of the cavity; however, a high

Purcell enhancement across a larger area could be realized

using slow light near the bandedge of photonic crystals or

coupled cavity arrays.22 The cavity-enhanced light-matter

coupling in monolayer MoS2 indicated by the strong Purcell

effect expands the scope of solid state cavity quantum elec-

trodynamics to atomically thin materials with large bandgaps,

which has implications for a range of optical devices,

including efficient photodetectors23 and electroluminescent

181119-3 Gan et al. Appl. Phys. Lett. 103, 181119 (2013)
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systems, cavity-enhanced nonlinearities,24 and potentially

even lasers employing atomically thin gain media.
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