
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2014-005 April 9, 2014

Moebius Language Reference, Version 1.2
Gary C. Borchardt

MMööbbiiuuss
Language Reference

Version 1.2

Gary C. Borchardt

MIT Computer Science and Artificial Intelligence Laboratory

© 2014 Massachusetts Institute of Technology

1

1. Introduction
Möbius is a representation and interface language based on a subset of English. It is designed
for use as a means of encoding information and as a means of conveying information between
software components and other software components, between software components and
humans, and between data repositories and their users—human or machine.

Central to the design of Möbius is the view that language and representation are one and the
same thing—the illusive two sides of the Möbius strip.

Following is a sample Möbius expression:

travel(
 subject:vehicle "V507", adverb:named_heading north, on:road "Colton Ave",
 from:time "2007-09-27T10:08:45.418", to:time "2007-09-27T10:09:00.612").

This expression illustrates several aspects of Möbius:

• It can be used to capture simple English.
• It can include basic syntactic information.
• It can include basic semantic information.

In addition, the following are all acceptable Möbius expressions:

(blue, green, brown, black) (:name "John Hill", :age "21")

f(g(x), h(x, y)) =(x, +("2.0 m", *("1.5 m/s", "3.4 s")))

"V507 travels north on Colton Ave from 10:08:45.418 to 10:09:00.612."

As these examples illustrate, Möbius can also be used in a simplified manner to encode lists,
records, function applications, mathematical expressions and equations, strings, and other
quantities.

Möbius also has the ability to express patterns for matching. Following is another Möbius
expression:

travel(
 subject:vehicle [which, those, "vehicles"], adverb:named_heading north,
 on:road [the, "major roads"], from:time [>=("2007-09-27T10:00:00")],
 to:time [<("2007-09-27T11:00:00")])?

2

In this expression, the portions in square brackets are matching variables, including some more
programming-language-like rather than English-like constructs to specify how these variables
can be matched to other Möbius expressions.

Möbius was initially developed in 2006–2007 and has been in use and gradual refinement since
that time. Sections 5, 6 and 7 of this report describe three applications of Möbius to date. One
application of the language has been to provide support for distributed, collaborative
interpretation of English requests. This application is also described in [Katz et al., 2007]. A
second application has been that of English “wrapping” of database tables to provide support
for language-based entry and retrieval of data, reasoning, and question answering. A third
application has been to depict timestamped information and models of “what happens” during
events within the IMPACT reasoning system, using the transition space representation
described in [Borchardt, 1992] and [Borchardt, 1994]. In this application, Möbius is used to
encode relative attribute value expressions (or RAVEs), which serve as the basic building blocks
for constructing transition space specifications.

2. Language Syntax
Möbius encodes information in the form of Expressions. The following examples illustrate the
hierarchy of Expression types:

Forms have an optional Function (exit , stop , move and U-turn in the above examples) and
zero or more Arguments, each of which has an optional Label (subject:vehicle and article:
in the above examples) and a mandatory Value ("V507" , [what] and a in the above
examples). Labels have either or both a Syntactic Relation (subject and article in the above
examples) and a Semantic Category (vehicle in the above examples); several Arguments in a

Expression Form

Unit

Sentence

Phrase

Variable

Constant

Command

Statement

Question

Descriptor

Symbol follow, subject, from, and, >=

"89th Street", "10.3 m/s"

[], [what], [some, "times"]

exit()!

stop(subject:vehicle "V507").

move(subject:vehicle [what])?

U-turn(article: a)

3

Form may have the same Label. Variables contain zero or more Tags (what , some and "times"
in the above examples).

More precisely, Möbius Expressions adhere to the following syntax, where < … > indicates a
defined quantity, … | … indicates alternatives, { … }~ indicates zero or one occurrence, and { … }*
indicates zero or more occurrences:

<Expression> ::= <Form> | <Unit>
<Form> ::= <Sentence> | <Phrase>
<Sentence> ::= <Command> | <Statement> | <Question>
<Command> ::= {<Function>}~({<Argument>{, <Argument>}*}~)!
<Statement> ::= {<Function>}~({<Argument>{, <Argument>}*}~).
<Question> ::= {<Function>}~({<Argument>{, <Argument>}*}~)?
<Phrase> ::= {<Function>}~({<Argument>{, <Argument>}*}~)
<Function> ::= <Unit>
<Argument> ::= {<Label>}~ <Value>
<Label> ::= <Syntactic_Relation>: | :<Semantic_Category> |

<Syntactic_Relation>:<Semantic_Category>
 <Syntactic_Relation> ::= <Unit>
 <Semantic_Category> ::= <Unit>
 <Value> ::= <Expression>
 <Unit> ::= <Variable> | <Constant>
 <Variable> ::= [{<Tag>{, <Tag>}*}~]
 <Tag> ::= <Expression>
 <Constant> ::= <Symbol> | <Descriptor>
 <Symbol> ::= (one or more characters—alphanumeric or in `~@#$%^&*-_=+\|'<>/)
 <Descriptor> ::= "(zero or more characters with " and \ escaped as \" and \\)"

3. Language Elements

3.1 Descriptors
Descriptors are used to depict quantities that may appear in unlimited variations within an
application: numbers, addresses, times, names, coordinate locations and so forth, including
arbitrary character strings. In many situations, Descriptors and other Möbius Expressions are
intended to be aligned with language, and in these cases, the character sequence of a
Descriptor should be “readable” in the sense that its meaning is readily apparent from
inspection and its contents would not appear out of place if inserted directly into a natural
language statement. In addition, some usage conventions are adopted to simplify the
operation of code fragments that extract information from Descriptors or compare Descriptors

4

to other Descriptors. Times, for example, are typically depicted as a combined date and time of
day expression using the ISO 8601:2004 “extended format” in either the “complete
representation” (possibly extended to specify milliseconds), or an abbreviation of the complete
representation to achieve reduced granularity by omitting lower-order components. Following
are examples of times depicted in this manner:

"2014-02-05T21:06:13.548"
"2014-02-05T21:06:13"
"2014-02-05T21:06"
"2014-02-05T21"
"2014-02-05"
"2014-02"
"2014"

Numerical quantities with units are typically depicted using fixed prefixes and/or suffixes, as,
for example:

"$220.45"
"$0.99"

"34.77 m/s"
"-5 m/s"

As well, Descriptors can be used to depict free natural language expressions (generated, or yet-
to-be-parsed), or, as the need arises, natural language intermixed with Möbius, as illustrated in
the following examples:

"How fast is vehicle 509 going at 10:20:08?"
"At 2007-09-27T10:20:08, the speed of V509 is [what]?"

"The most recent speed of V509 at 10:20:08 is 30.5 m/s."

3.2 Symbols
Symbols complement Descriptors by depicting quantities that are limited within an application,
such as might be defined, instance by instance, in a lexicon or hierarchy. One use of symbols is
to depict natural language tokens: nouns, verbs, adjectives and so forth, as in the following
examples:

vehicle, road, named_heading, U-turn
travel, meet, follow, stop
short, long, medium-length
quickly, slowly
from, to, between
and, or
the, a

5

Another use of Symbols is to name a part of speech

noun, verb, adjective, adverb, preposition, conjunction, pronoun, determiner,
article, interjection

or a verb argument relationship

subject, object, indirect_object

as a means of filling the Syntactic Relation slot of a Möbius Label.

Also, Symbols are used to characterize restrictions within Möbius Variables, and in this usage,
the Symbols conform more to the style of programming language tokens:

<, <=, =, <>, >=, >
v=, ^=, @=, ~

As is the case with Descriptors, some usage conventions are adopted to simplify the operation
of code segments that manipulate Symbols. One convention is to use the underscore character
_ in place of a space character for multi-word natural language tokens, as in the above
examples named_heading and indirect_object. Hyphens and capitalization are used where
they would normally appear in natural language tokens, as in the examples medium-length and
U-turn.

3.3 Variables
Variables are used for pattern matching in Möbius. The simplest Variable is [], containing no
Tags. This Variable will match any Möbius Expression. A range of Tags and Tag varieties exist,
several of which are illustrated in the following examples:

[what, "times", >=("2011-06-09T12:00:00")]
[("122 St", "122nd St", "122nd Street")]
[those, "vehicles"]
[something, specified]
[some, literal, "expression"]

The following paragraphs describe specific functions associated with particular Tags and
varieties of Tags. Within a particular application of Möbius, there may be additional varieties of
Tags that are introduced or varieties listed here that are excluded.

what, which, some, something. A reported Variable includes the Tag what or which (used
interchangeably) and is inserted within a Question, Statement or Command to indicate
that the result of a matching operation concerning that Question, Statement or

6

Command should be presented to the requester as simply the sub-Expression matching
the reported Variable, not the entire Expression matched to the Question, Statement or
Command. Thus, the response to a request move(subject:vehicle [which])? might be
one or more vehicles such as "V246", rather than a set of Expressions such as
move(subject:vehicle "V246"). An unreported Variable does not include the Tag what
or which and is used in all other Variable contexts. Unreported Variables may optionally
include a non-functioning Tag some or something for readability.

"times", "vehicles", "expression", and other Descriptors. A consistent Variable includes
one or more Descriptors as Tags. These Tags serve as names or labels for the Variables.
Within a pattern Expression or set of related pattern Expressions that are to be
associated with a specific match, all Variables that share a common Descriptor Tag must
be mapped to the same value. A free Variable contains no Tags that are Descriptors and
is not constrained in this manner.

>=("2011-06-09T12:00:00"), ("122 St", "122nd St", "122nd Street") and other Phrases.
A restricted Variable includes one or more Phrases as Tags. These Phrases limit the
range of values that may be matched to the Variable. A one-argument Phrase Tag with
a Function <, <=, =, <>, >= or > is treated as an arithmetic restriction if its argument
can be interpreted as a number or time and a lexicographic restriction otherwise. For
example, the restriction <("8.0 m/s") will limit matching values to be Descriptors that
indicate a speed less than 8.0 meters per second (e.g., "0.25 m/s"), whereas a
restriction <("N") will limit matching values to be Descriptors that lexicographically
precede "N" (e.g., "Chicago Ave"). A parallel set of restrictions with Function v, v=, =,
v^, ^= or ^ operates on a generalization/specialization hierarchy of Symbols and
Descriptors. For example, v=(vehicle) will match any Symbol or Descriptor that is equal
to or a specialization of the Symbol vehicle. A Phrase such as ("122 St", "122nd St",
"122nd Street"), with no Function and an arbitrary number of Arguments, specifies
that the indicated Expressions are the only values that may match this Variable.

that, those, the. A referential Variable includes a Tag that, those or the. that and
those are used interchangeably to constrain a consistent Variable to match only those
values most recently matched in previous matching cycles by Variables containing any of
its Descriptor Tags. Thus, a Variable [those, "vehicles"] would be constrained to
match no values other than the values most recently matched by a Variable with
Descriptor Tag "vehicles" in previous matching cycles. The Tag the is similar, but
constrains a Variable to match only values that have been explicitly “assigned” to the
Descriptor Tag or Tags for that Variable—regardless of whether the most recent

7

matches involving Variables with those Descriptor Tags may have resulted in subsets of
the assigned sets of values in previous match cycles. A non-referential Variable does
not contain a Tag that, those or the and is unconstrained by previous match cycles or
assigned value sets for Descriptor Tags.

specified, unspecified. A specified Variable includes the Tag specified and can only be
matched to a quantity that has a finite, listable set of possible match values in the
current match cycle. For example, a specified Variable might be matched to a Form or
Constant, or it might be matched to another Variable that currently has three possible
match values. An unspecified Variable includes the Tag unspecified and can only be
matched to a quantity that does not have a finite, listable set of possible match values in
the current match cycle. For example, an unspecified Variable might be matched to
another Variable that is restricted to match Descriptors in a lexicographic range, but has
not yet been constrained to match a particular, listable subset of these values. A
Variable that is neither specified nor unspecified contains neither the Tag specified nor
the Tag unspecified and is not constrained in these ways. The Tags specified and
unspecified are typically used within pattern-action rules defined in Möbius.

literal. A literal Variable contains the Tag literal and matches Expressions at face value,
treating other Variables as constants rather than as specifications of sets of matching
values. A non-literal Variable does not contain the Tag literal and will match in the
usual manner by identifying common match values that can instantiate both itself and
the candidate matched Expression. The Tag literal is also typically used within
pattern-action rules defined in Möbius.

3.4 Phrases
Phrases are used to depict relationships between quantities. In those cases where a Phrase is
intended to be aligned with language, the Function of the Phrase will typically be a Symbol
depicting a noun, verb, adjective or adverb. The Arguments of a Phrase vary with context. For
a Phrase with a verb as its Function, the Argument Labels may have Syntactic Relations that are
verb argument relationships, like subject and object, or the Syntactic Relations may be
Symbols depicting conjunctions or prepositions, with the values of these Arguments being
other Phrases or Units, or the Syntactic Relations may be Symbols that name parts of speech,
like adverb, with the values of these Arguments being Symbols or Expressions that depict the
corresponding part of speech. The following example illustrates several varieties of Arguments
for a Phrase with a verb as its function:

move(subject:vehicle "V507", adverb: quickly, on:road "Elm St")

8

Semantic Categories, if provided within the Labels of Arguments, are typically Symbols naming
semantic classes in a predefined set or hierarchy.

Phrases intended to be aligned with language and containing a noun, adjective or adverb as
their Function will have similar Arguments, except that no Syntactic Relations depicting verb
argument relationships will appear. Following are examples of these types of Phrases:

speed(article: the, of:vehicle "V509")
associated(with:vehicle "V246")

In some cases, the Syntactic Relation of a Phrase Argument will be omitted, as, for example,
when the Argument names the quantity that is the Function of the Phrase, or it introduces a list
of quantities. Following are examples of these cases, also illustrating Phrases that have no Unit
as Function:

vehicle(article: the, :vehicle "V246")
(:road "Elm St", and:road "98th St")
(:vehicle "V246", or:vehicle "V507", or:vehicle "V509")

The Semantic Category of a Phrase Argument is also omitted in some situations. A usage
convention regarding the inclusion and omission of Semantic Category specifications is
described in Section 4.3, Language Templates.

The primary consideration taken in the construction of Phrases intended to be aligned with
language is that these Phrases should produce readable English when subjected to a simple
language generation algorithm that respects the positioning of verb arguments relative to
verbs, adjective modifiers relative to nouns, and so forth. For example, the Expression

exit(
 subject:vehicle "V002034",
 object:intersection intersection(
 article: the, of: (:road "D410", and:road "Highway 10")))

is well-formed in this sense, as a simple generation algorithm will produce the following English:

"V002034 exits the intersection of D410 and Highway 10".

3.5 Questions
Questions are used to depict relationships whose status is being requested, or specific
instances of which are being requested. Arguments within Questions follow the same forms as
Arguments within Phrases that have verbs as Functions. A yes/no Question will have no
Variables within it, as, for example:

9

be(subject:vehicle "V507", on:road "Elm St", at:time "2009-05-23T14:00:00")?

A positive response to such a Question will be a Statement of the same form, indicating a
match:

be(subject:vehicle "V507", on:road "Elm St", at:time "2009-05-23T14:00:00").

A negative response will be the absence of such a Statement, indicating no match.

A Question that requests a list of quantities will contain one or more Variables, as, for example:

be(
 subject:vehicle [some, "vehicles"], on:road "Elm St",
 at:time "2009-05-23T14:00:00")?

be(
 subject:vehicle [what], on:road "Elm St", at:time "2009-05-23T14:00:00")?

A response to the first Question might be:

be(subject:vehicle "V507", on:road "Elm St", at:time "2009-05-23T14:00:00").
be(subject:vehicle "V509", on:road "Elm St", at:time "2009-05-23T14:00:00").
be(subject:vehicle "V514", on:road "Elm St", at:time "2009-05-23T14:00:00").

while a response to the second Question might be:

"V507"
"V509"
"V514"

3.6 Statements
Statements are used to depict relationships that are asserted to be true. Arguments within
Statements follow along the lines of Arguments within Questions and Arguments within
Phrases that have verbs as Functions. Typically, a Statement will contain no Variables, as, for
example:

turn(
 subject:vehicle "V002034", adverb:turning_direction left,
 from:time "2010-12-02T14:52:35", to:time "2010-12-02T14:52:39").

In some cases, however, Variables do appear within Statements (within rule definitions, for
example).

Statements are used to represent a wide range of assertions in the Möbius language. Contents
of datasets are typically rendered as Statements, as are the responses to many Questions.

10

3.7 Commands
Commands are used to specify instructions to be carried out by a receiving party. Arguments
within Commands follow along the lines of Arguments within Questions and Statements and
Arguments within Phrases that have verbs as Functions.

Following are examples of several Commands currently supported for processing by the
IMPACT system:

open(object:database "blue")!
clear(object:table "INFERRED_EVENTS_")!
focus(
 on:vehicle "V246", from:time "2009-10-15T12:00:00",
 to:time "2009-10-15T12:15:00")!
initialize(object: event_summary(article: the))!

4. Language Usage

4.1 Grounding in Language
Möbius is designed to encode information in a manner that is closely aligned with language.
Most Möbius Expressions adhere to this intent. The principal exception is the Variable
structure, with its restriction Expressions (e.g., >("10.0 m/s")) that take the form of
programming language or mathematical constructs.

Aligning Möbius Expressions with language provides them with intrinsic meaning. When a
simple language generation algorithm is applied to Möbius Expressions—placing verbs between
subjects and objects, adjectives before nouns they modify, and so forth—then the resulting
English expressions produced by this algorithm articulate the meaning of the original Möbius
Expressions. This correspondence has many benefits:

• It makes the language easy to learn.
• It encourages consistency of use by application developers.
• It can facilitate joint development by teams of application developers.
• It can assist in the debugging of information content and communications.
• It provides the language with substantial coverage of content.
• It simplifies interactions with human users.
• It enables the language to capture both precision and ambiguity.

Given the correspondence of Möbius Expressions to English language expressions, it is not
necessary—or even advisable—to prescribe a universal mechanism by which Möbius requests

11

are “evaluated” to yield Möbius responses. As a convention, a Möbius response will typically
echo the instigating Möbius request by listing zero or more instantiations of the request, each
instantiation replacing any Variables in the request with value Expressions. The exception to
this convention concerns the handling of reported Variables—Variables that include the Tag
what or which—for which the response is a list of instantiations of that Variable only, rather
than instantiations of the entire request Expression. Within the boundaries established by
these conventions on request–response format, however, the manner in which a component
arrives at its response to a request may vary. Depending on the situation, a system might
perform a calculation, retrieve information from a data source, or consult with other systems or
humans in order to formulate a response to a received request. What matters, given the
grounding of Möbius in language, is that the response be appropriate—interpreted in human
language—given the nature of the request and the extent of that component’s knowledge and
capabilities.

4.2 Keeping It Simple
An attempt has been made to keep Möbius as simple as possible. One aspect of the language
that facilitates this is the distinction between Descriptors and Symbols. Descriptors can be used
for anything that is not tidy—values with infinite variations or having inconsistent format—
whereas Symbols can be used for small sets of values specific to the application at hand.

Syntactic Relations and Semantic Categories can be included or omitted within the Labels of
Möbius Arguments, depending on several factors including their utility in clarifying the syntactic
construction and meaning of Möbius Expressions and their utility in facilitating the matching of
Möbius Expressions. Where the intent is clear from context, nouns, verbs, adjectives and
adverbs can be placed in the Function position of Forms rather than as the first labeled
Argument to those Forms. Prepositions and conjunctions, being relatively few in number, are
used directly in the Syntactic Relation position, saving an extra level of nesting. In general,
terms with multiple meanings are tolerated, as long as their inclusion does not interfere with
matching (e.g., the Symbol object may appear as a Syntactic Relation to indicate a direct object
or elsewhere to indicate the top-most semantic category). Also, for compactness, multi-word
constructions are allowed in place of nouns (e.g., named_heading or horizontal_speed), verbs
(e.g., pick_up or not_move), prepositions (e.g., in_back_of or away_from), and so forth.

4.3 Language Templates
An extremely useful information encoding technique facilitated by Möbius is that of creating
and applying language templates. A language template is an expression that, despite having an
arbitrary level of syntactic complexity in itself, remains constant as it envelops a fixed number
of other language expressions. In Möbius, the constant and variable portions within a language

12

template are distinguished through the inclusion and omission of Semantic Categories within
Argument Labels. The following Statement is an example of a language template that has been
applied to several contained Expressions:

make(
 subject:vehicle "V507", object: U-turn(article: a),
 at:intersection intersection(
 article: the, of: (:road "95th St", and:road "Chicago Ave")),
 from:time "2008-05-12T09:55:48.817", to:time "2008-05-12T09:55:53.319").

The language template itself is that portion of the outermost Expression that extends to inner
levels in those places where there is no Semantic Category within an Argument’s Label. Where
a Semantic Category is specified in an Argument’s Label, the value position of that Argument is
an enveloped Expression, not part of the language template. For the Expression above, the
language template is:

make(
 subject:vehicle [], object: U-turn(article: a), at:intersection [],
 from:time [], to:time []).

In the notation of language templates, the “slots” for insertion of enveloped Expressions are
depicted as empty Variables ([]). In the original Expression listed above, the enveloped
Expressions are

"V507"
intersection(article: the, of: (:road "95th St", and:road "Chicago Ave"))
"2008-05-12T09:55:48.817"
"2008-05-12T09:55:53.319"

The second of these Expressions, in turn, can itself be viewed as a language template

intersection(article: the, of: (:road [], and:road []))

applied to two enveloped Expressions

"95th St"
"Chicago Ave"

Language templates are used in the encoding of relative attribute value expressions (RAVEs)
and also for English wrapping of database tables.

4.4 Support for Matching
Matching of Möbius Expressions to other Möbius Expressions is made simpler by adopting
several usage conventions. Typically, nouns are depicted in the singular (e.g., road), and verbs

13

are depicted in the infinitive (e.g., enter), except when necessary to distinguish meanings or to
prepare an Expression for algorithmic language generation. Also, the article “a”/“an” is
typically depicted as simply a .

A powerful form of matching between Möbius Expressions allows for both the reordering of
Arguments and the omission of Arguments in a pattern Expression, relative to the Expression to
which it is to be matched. Allowing for reordering and omission of Arguments has several
consequences. First, it is often not the case that the Arguments of a Möbius Expression need to
be arranged in any particular order. However, ordering does matter when an Expression is to
be generated in English. For example, listing a verb’s object before its subject can force a
language generator to produce a passive rather than active voice rendering of a statement.
Likewise, ordering prepositional phrases in an intuitive manner within an Expression can help a
language generator produce natural-sounding English renderings. Second, when allowing for
the omission of Arguments in a pattern Expression gives rise to unintended matches, it is
sometimes necessary to introduce additional Arguments in both the pattern Expression and in
the Expressions to which that pattern Expression is to be matched, so that the unintended
matches do not succeed. Finally, since the omission of Arguments in a pattern Expression can
lead to a match, negation of verbs is specified directly within the Symbols depicting verbs (e.g.,
move versus not_move), thereby assuring the absence of a match between positive and
negative forms of a statement.

5. Using Möbius in Distributed Interpretation of English Requests
One application of the Möbius language has been to represent English requests in various
stages of partial interpretation by collaborating software systems. This application is described
in [Katz et al., 2007], regarding distributed interpretation of requests submitted to mobile
phones working in collaboration with a central language server and supporting resources.
Language interpretation depends on access to relevant knowledge, and in a distributed
environment, this knowledge is also distributed. Individual components in this environment
can form partial interpretations of user-submitted requests, then relay the partially interpreted
requests to other components, which can complete the interpretation of the requests. Once a
request has been fully interpreted, it can be fulfilled, also in a collaborative manner.

As an encoding of language, Möbius can represent both the ambiguity inherent in many user-
submitted natural language requests and the precision resulting from subsequent
interpretation of those requests. The following sections describe several types of ambiguities
that can arise within natural language requests, plus corresponding ways in which Möbius
encodings of the requests can be transformed to reflect the resolution of the ambiguities from

14

interpretation of the requests. Some of these varieties of ambiguity were handled in our
application of distributed language interpretation in mobile phone environments; other
varieties described here are amenable to this approach to encoding and intercommunication,
but have not yet been addressed in our applications.

5.1 Interpreting References
Names, times and places can be specified in varying degrees of precision within user-submitted
natural language requests. A request to “Call Karen at 8 o’clock.” can be initially encoded as

call(object:human "Karen", at:time "8 o’clock"))!

by a component responsible for parsing submitted natural language requests. This component
might also replace the reference "8 o’clock" with a specific time such as "2014-01-
21T20:00:00", based on the current date and time. On the other hand, the reference to
"Karen", might have to be resolved by a different component that has access to that user’s
contact list. That component might replace "Karen" with a more specific reference like "Karen
Jones".

A similar situation can arise when pronouns are to be resolved. Suppose a submitted request is
“Where does he live?”. A component responsible for parsing this request might initially encode
the request as

live(subject:human he, at:address [what])?

If a record of items mentioned in recent requests and responses is maintained by a separate
component, however, that second component will have to resolve the reference he to a more
specific reference like "John Nelson".

Separately, descriptive references can also be interpreted and replaced. A request “Where
does Kevin Brown’s brother live?” might initially include a sub-expression brother(of:human
"Kevin Brown") which can be subsequently replaced by "David Brown".

5.2 Interpreting Abstract Terms
Distributed interpretation of natural language requests can involve replacement of abstract
terms with more specific terms, possibly in different ways by different components. For
example, a request “When did John most recently contact me?” might initially be encoded as:

contact(subject:human "John", object:human me, adverb: most_recently,
 at:time [what])?

15

then be relayed to a number of associated components, which might each form their own
interpretation of the original request. Components responsible for maintaining records of
phone calls or e-mails might replace contact with call and e-mail respectively, while a
component that maintains a calendar might replace contact with meet.

Similarly, interpretation of requests may involve the replacement of other parts of speech with
more specific terms. A request “Did Sally send me a message yesterday?” might initially
incorporate a noun message that is subsequently replaced with e-mail_message and
text_message by components responsible for maintaining records of these types of messages.
Or, interpretation of a request “Take a high-resolution picture.” might involve replacement of
high-resolution with "20 Mpixel" by a component familiar with the capabilities of an
associated camera.

5.3 Interpreting Ambiguous Expressions
Interpretation of requests can also involve larger-scale replacement of expressions in order to
resolve ambiguities. [Katz et al., 2007] argues that it is appropriate for components in a
distributed processing environment to form interpretations of requests that are consistent with
their own capabilities to respond to requests. For example, if a request “Is Mark Smith at MIT?”
is received, this request might be initially encoded as

be(subject:human "Mark Smith", at:object "MIT")?

leaving the precise semantic category of "MIT" unspecified. A component that has access to
information about physical locations of people might re-express this request as a request about
presence at a facility:

be(subject:human "Mark Smith", at:facility "MIT")?

while a component that has access to employment information might re-express this as a
request about employment:

employ(subject:organization "MIT", object:human "Mark Smith")?

In other cases, syntactic ambiguity may require multiple encodings of a request to be
maintained temporarily, pending selection and further interpretation by other components.
For example, if a request “Reschedule my meeting at 4pm.” is received, this might initially be
encoded in three forms:

reschedule(object:event meeting(determiner: my, at:time "4pm"))!
reschedule(object:event meeting(determiner: my), at:time "4pm")!
reschedule(object:event meeting(determiner: my), to:time "4pm")!

16

These encodings capture three possible interpretations of the original request, depending on
whether 4 PM is taken to be the current time of the meeting, the time at which the
rescheduling is to be done, or the new time of the meeting.

A component with access to the user’s calendar might subsequently make a determination
that, if there is already a meeting scheduled at 4 PM, the first encoding will be selected.
Otherwise, that component might discard the first encoding, then ask the user which of the
remaining two interpretations was intended.

5.4 Adding Sub-Expressions
Components in a distributed language interpretation environment can also add language
expressions to encoded requests in order to specify missing details. For example, suppose a
submitted request is to “Call Diane Taylor.”. An initial encoding of the request might be as
follows:

call(object:human "Diane Taylor")!

A component that has information about the current network connectivity of the calling device
might then add one of the following arguments to the encoded request:

... using:network VOIP_network(article: a)

... using:network cellular_network(article: a)

A separate component with information about Diane Taylor’s schedule might then add one of
the following arguments to the encoded request:

... at:phone_number home_phone_number(article: a)

... at:phone_number cell_phone_number(article: a)

... at:phone_number office_phone_number(article: a)

That same component or a separate component with access to contact phone numbers might
then replace this argument with an argument specifying a literal phone number.

6. Using Möbius to Wrap Information in Database Tables
Database tables and sets of columns within database tables often depict relationships that can
be expressed in natural language. Constructing a natural language interface to data in tables of
this sort can involve an intermediate step of “wrapping” the tables or column sets in natural
language, so that natural language statements can be used to insert data into the tables and
natural language queries can be used to extract data from the tables.

17

In other cases, database tables are created for the express purpose of storing and searching
through large sets of natural language statements. These tables can also be interfaced to
language by wrapping, associating the tables or sets of their columns with natural language
expressions.

Möbius can be used to facilitate both of these wrapping applications. Sections 6.1 through 6.3
describe three encoding schemes used within the IMPACT reasoning system for associating
database tables or sets of database table columns with natural language expressions. These
encoding schemes pair individual table columns to fields or slots within natural language
patterns. Section 6.4 describes several mechanisms used within IMPACT to map data values
that appear in these columns to corresponding natural language tokens.

6.1 Matched Expression Encoding
In the “matched expression” encoding scheme, explicitly specified language expressions are
associated with a table or set of columns. These expressions contain one or more variables
which are associated with individual columns of the table. Möbius Statements containing
Variables are used to encode ways of entering information into a table, and Möbius Questions
containing Variables are used to encode ways of retrieving information from a table. If a table
has both Statements and Questions associated with it in a matched expression encoding, then
natural language can be used both to write to the table and read from the table. If only
Questions are associated with the table, natural language can only be used to read information
from the table.

As an example, a table that records timestamped instances of vehicles being on particular roads
might have five columns: “VEHICLE”, “TIME”, “ROAD_NAME_VARIANT”, “ROAD” (canonical
name) and “ROAD_MULTILINESTRING” (geometric description). As part of creating
functionality to answer questions like “When is V234 on Indiana Ave?” and “Which cars are on
89th Street at 10 AM?”, the first three columns of this table could be wrapped with the
following Möbius Question:

be(subject:vehicle [some, "vehicle 1"], on:road [some, "road 1"],
 at:time [some, "time 1"])?

The Variables [some, "vehicle 1"], [some, "road 1"] and [some, "time 1"] would then be
associated with the columns “VEHICLE”, “ROAD_NAME_VARIANT” and “TIME”, respectively. If
the wrapping were to include only the above Question and not a corresponding Möbius
Statement as a matched expression encoding, then the wrapping would be read-only for this
table.

18

6.2 Templated Expression Encoding
The templated expression encoding makes use of language templates to distribute the
information content of language expressions among the columns of a database table. One
designated column of the table is used to store a language template—chosen independently for
each row of the table—and the remaining columns of the table are used to store values that fill
the slots in these templates, either sequentially as the slots appear within the templates or
organized into particular categories by semantic type or roles played in the surrounding
expressions.

As an example, suppose a table is to be used to store statements of observed events such as
“Human 7263 bends over from 2013-10-16T22:48:18.100 to 2013-10-16T22:48:18.700.” and
“Human 9240 takes Object 252 from Human 9209 from 2013-10-16T23:18:06.900 to 2013-10-
16T23:18:08.700.” These two events can be encoded as Möbius Statements as follows:

bend_over(subject:human "Human 7263", from:time "2013-10-16T22:48:18.100",
 to:time "2013-10-16T22:48:18.700").

take(subject:human "Human 9240", object:tangible_object "Object 252",
 from:human "Human 9209", from:time "2013-10-16T23:18:06.900",
 to:time "2013-10-16T23:18:08.700").

Treating each Statement as the application of a language template to one or more arguments,
the language templates can be extracted

bend_over(subject:human [], from:time [], to:time []).

take(subject:human [], object:tangible_object [], from:human [], from:time [],
 to:time []).

and stored in one column of the table, and the arguments

"Human 7263"
"2013-10-16T22:48:18.100"
"2013-10-16T22:48:18.700"

"Human 9240"
"Object 252"
"Human 9209"
"2013-10-16T23:18:06.900"
"2013-10-16T23:18:08.700"

can be stored in other columns, arranged sequentially or by semantic type or role played.

19

6.3 RAVE Encoding
The RAVE encoding scheme is used to store relative attribute value expressions, or RAVEs, as
described in Section 7. RAVEs can be used to express a range of language-based comparisons
involving either constant values or attributes applied to one or two objects and possibly
measured at particular time points. As such, any RAVE can be encoded using a subset of the
following nine fields, each field represented as a database table column:

predicate
primary attribute
primary object 1
primary object 2
primary time
secondary attribute
secondary object 1
secondary object 2
secondary time

Specific encodings for particular types of RAVEs (Level 1 RAVEs, Level 2 RAVEs and Level 3
RAVEs) are described in Section 7.

6.4 Relating Data Values and Language Tokens
The encoding schemes described above specify ways in which larger natural language
expressions may be decomposed into language templates or patterns combined with data
values maintained in database table columns. Using these schemes, individual Variables or
RAVE fields in the language templates or patterns are associated with individual database table
columns, and it is necessary to specify additionally how particular natural language tokens, as
values of these Variables or RAVE fields, may be matched or converted to and from individual
data values within the database table columns.

The IMPACT system provides a two-level mechanism for relating natural language tokens and
database table values. The top level of this mechanism specifies whether a constant is assumed
on either side of the association between a Variable or RAVE field, on the one hand, and a table
column, on the other. Specifying a constant value on one side of such an association can
simplify the language requests that are used or produce a more compact database
representation.

The bottom level of the association mechanism specifies how individual natural language
tokens are related to individual database values. Possibilities are:

20

• the natural language token is specified as corresponding to a Descriptor, in which case
double quotes are added to surround an individual database table value,

• the natural language token is specified as corresponding to a Symbol, in which case the
underscore character is substituted for all whitespace characters within an individual
database table value,

• additionally, the natural language token may be specified with “null conversion”, in
which case an empty text string as a database table value will be translated to the
Möbius Symbol null,

• also additionally, the natural language token may be specified as adding a particular
prefix (e.g., "$") or suffix (e.g., " m/s") to the corresponding database table value.

The above-described capabilities are currently implemented within the IMPACT system.
Additional association and conversion capabilities may be envisioned as well: number
formatting, timestamp conversions, and so forth.

7. Using Möbius to Describe Events

7.1 Relative Attribute Value Expressions
Möbius can be used to assert that an event has occurred. For example:

turn(
 subject:vehicle "V507", adverb:turning_direction left,
 at:intersection intersection(
 article: the, of: (:road "96th St", and:road "Beaufort Ave")),
 from:time "2007-09-27T09:55:16.177", to:time "2007-09-27T09:55:29.120").

Language goes deeper, though, and can also express what happens during an event, in terms of
individual states and changes of the participants. This section describes the use of Möbius to
encode states and changes in the transition space representation, as described in [Borchardt,
1992] and [Borchardt, 1994]. The following are examples of using Möbius to encode states and
changes in this manner:

equal(
 subject:attribute turning_direction(
 article: the, of:vehicle "V507", at:time "2007-09-27T09:55:21.804"),
 object:value left).

exist(
 subject:attribute speed(article: the, of:vehicle "V507"),
 at:time "2007-09-27T09:55:21.804").

21

appear(
 subject:attribute be(
 subject:vehicle "V507",
 at:intersection intersection(
 article: the, of: (:road "96th St", and:road "Beaufort Ave"))),
 between: (
 :time "2007-09-27T09:55:16.177", and:time "2007-09-27T09:55:17.865")).

These statements are called relative attribute value expressions, or RAVEs. RAVEs encode
simple pairwise comparisons expressible in language: comparisons of time-varying quantities to
reference quantities, reference quantities to reference quantities, time-varying quantities to
other time-varying quantities, or time-varying quantities to themselves at different times.
RAVEs are composed of four types of elements: objects, attributes, times, and predicates. In
the above examples, the objects are:

"V507"
left
intersection(article: the, of: (:road "96th St", and:road "Beaufort Ave"))

the attributes are:

turning_direction(article: the, of:vehicle [])
speed(article: the, of:vehicle [])
be(subject:vehicle [], at:intersection [])

the times are:

"2007-09-27T09:55:21.804"
"2007-09-27T09:55:16.177"
"2007-09-27T09:55:17.865"

and the predicates are:

equal
exist
appear

The Möbius encoding of RAVEs makes use of a two-level nesting of language templates. The
outermost language template encodes the predicate and specifies each argument as having a
Semantic Category of either attribute , value or time . The outermost template for the first
RAVE example above is:

equal(subject:attribute [], object:value []).

22

Within each argument labeled attribute, a second use of language templates appears. Here,
an attribute such as

turning_direction(article: the, of:vehicle [])

is applied to one or two objects such as

"V507"

plus a possible time Argument such as

"2007-09-27T09:55:21.804".

7.2 Level 1 RAVEs
There are four predicates at the lowest level of the transition space representation. These are:

equal
not_equal
exceed
not_exceed

This lowest level of the transition space representation depicts direct comparisons between
quantities. The quantities can be either attribute applications or values, and the comparisons
may be at specified times, or independent of time. RAVEs at the lowest level of representation
in the transition space representation are called “Level 1 RAVEs”.

The outermost language template of a Level 1 RAVE encodes the predicate and the types of
quantities being compared, attributes or values. Examples of these types of language
templates are as follows:

not_equal(subject:value [], object:value []).
exceed(subject:attribute [], object:attribute []).
not_exceed(subject:value [], object:attribute []).

An example of a Level 1 RAVE comparing a value to a value is as follows:

exceed(subject:value "15.2 deg/s", object:value "3.7 deg/s").

Attributes are based on English expressions like

the position of a vehicle
the speed of a vehicle
the turning direction of a vehicle
the distance between a vehicle and a vehicle
an object being an instance of an object

23

a vehicle being operational
a vehicle being on a road
a vehicle being at an intersection

and these are encoded as language templates in a manner that parallels their English form:

position(article: the, of:vehicle [])
speed(article: the, of:vehicle [])
turning_direction(article: the, of:vehicle [])
distance(article: the, between: (:vehicle [], and:vehicle []))
be(subject:object [], noun: instance(article: a, of:object []))
be(subject:vehicle [], adjective: operational)
be(subject:vehicle [], on:road [])
be(subject:vehicle [], at:intersection [])

Attributes apply to either one or two objects.

When there is no reference to time, the attribute’s language template is simply applied to its
objects:

equal(
 subject:attribute road_type(article: the, of:road "95th St"),
 object:value "local road").

For Level 1 RAVEs, the outermost language template does not reference time. Comparisons
that involve times do so by inserting a time Argument within an attribute application, as in the
following example:

exceed(
 subject:attribute speed(
 article: the, of:vehicle "V507", at:time "2007-09-27T10:12:12.511"),
 object:attribute speed(
 article: the, of:vehicle "V507", at:time "2007-09-27T10:12:11.948")).

When a RAVE encoding scheme is used to store a Level 1 RAVE in a database table, all nine
fields of the encoding scheme representation are used. If any of the attribute, object or time
values are not specified by a RAVE, the corresponding field values are considered to be empty
Symbols and are stored as empty text strings in the database.

7.3 Level 2 RAVEs
There are two predicates at the second level of the transition space representation:

exist
not_exist

24

Each attribute is assumed to have a null value in its range. When an attribute applied to one or
two objects does not equal the null value at a particular time, the attribute is said to exist or be
present at that time. If it does equal the null value, the attribute is said not to exist or not to be
present at that time. Existence and non-existence of attributes at particular times is encoded in
Level 2 RAVEs, which are defined in terms of corresponding Level 1 RAVEs.

Examples of Level 2 RAVEs are:

exist(
 subject:attribute be(subject:vehicle "V507", in_front_of:vehicle "V509"),
 at:time "2007-09-27T09:57:41.367").

not_exist(
 subject:attribute turning_rate(article: the, of:vehicle "V509"),
 at:time "2007-09-27T09:57:55.436").

These RAVEs utilize the following outermost language templates:

exist(subject:attribute [], at:time []).
not_exist(subject:attribute [], at:time []).

In turn, these two RAVEs correspond to the following Level 1 RAVEs:

not_equal(
 subject:attribute be(
 subject:vehicle "V507", in_front_of:vehicle "V509",
 at:time "2007-09-27T09:57:41.367"),
 object:value null).

equal(
 subject:attribute turning_rate(
 article: the, of:vehicle "V509", at:time "2007-09-27T09:57:55.436"),
 object:value null).

Level 2 RAVEs that involve attributes with function Symbol be can be rendered in an alternate
form that utilizes be or not_be at the outermost level:

be(subject:vehicle "V507", in_front_of:vehicle "V509",
 at:time "2007-09-27T09:57:41.367").
not_be(subject:vehicle "V507", in_front_of:vehicle "V509",
 at:time "2007-09-27T09:57:41.367").

When encoded in a database table using a RAVE encoding scheme, Level 2 RAVEs utilize five of
the nine fields: predicate, primary attribute, primary object 1, primary object 2, and primary
time. If the second object value is not specified by a RAVE, the corresponding field value is
considered to be an empty Symbol and is stored as an empty text string in the database.

25

7.4 Level 3 RAVEs
There are ten predicates at the third level of the transition space representation:

appear
not_appear
disappear
not_disappear
change
not_change
increase
not_increase
decrease
not_decrease

These predicates cover the range of relative changes possible for boolean, qualitative and
quantitative attributes, given the presence of a null value in the range of each attribute.

Following is an example of a Level 3 RAVE:

disappear(
 subject:attribute be(
 subject:vehicle "V509",
 at:intersection intersection(
 article: the, of: (:road "83rd St", and:road "Clinton Ave"))),
 between: (
 :time "2007-09-27T09:57:59.375", and:time "2007-09-27T09:58:01.064")).

This RAVE uses the following outermost language template:

disappear(subject:attribute [], between: (:time [], and:time [])).

Level 3 RAVEs are also defined in terms of Level 1 RAVEs. For Boolean attributes, the predicates
appear, not_appear, disappear and not_disappear are used and are defined in terms of the
attribute equaling or not equaling the null value at the beginning and end of the change
interval. For example, the following Level 3 RAVE:

appear(
 subject:attribute be(subject:vehicle "V507", on:road "Colton Ave"),
 between: (
 :time "2007-09-27T09:57:57.687", and:time "2007-09-27T09:57:58.250")).

is defined as being equivalent to the following Level 1 RAVEs:

equal(
 subject:attribute be(
 subject:vehicle "V507", on:road "Colton Ave",
 at:time "2007-09-27T09:57:57.687"),
 object:value null).

26

not_equal(
 subject:attribute be(
 subject:vehicle "V507", on:road "Colton Ave",
 at:time "2007-09-27T09:57:58.250"),
 object:value null).

For qualitative attributes, which have multiple unordered, non-null values, the predicates
appear, not_appear, disappear and not_disappear can be used, and the predicates change
and not_change can also be used in those cases where the predicate not_disappear would
apply. As an example, the following Level 3 RAVE

change(
 subject:attribute position(article: the, of:vehicle "V507"),
 between: (
 :time "2007-09-27T09:57:36.303", and:time "2007-09-27T09:57:36.865")).

is defined as being equivalent to the following Level 1 RAVEs:

not_equal(
 subject:attribute position(
 article: the, of:vehicle "V507", at:time "2007-09-27T09:57:36.303"),
 object:value null).

not_equal(
 subject:attribute position(
 article: the, of:vehicle "V507", at:time "2007-09-27T09:57:36.865"),
 object:value null).

not_equal(
 subject:attribute position(
 article: the, of:vehicle "V507", at:time "2007-09-27T09:57:36.865"),
 object:attribute position(
 article: the, of:vehicle "V507", at:time "2007-09-27T09:57:36.303")).

Finally, for quantitative attributes, which have multiple ordered, non-null values, the predicates
appear, not_appear, disappear, not_disappear, change and not_change can be used, and four
additional predicates can also be used in those cases where the predicate not_disappear would
apply: increase, not_increase, decrease and not_decrease. For example, the following Level
3 RAVE

decrease(
 subject:attribute speed(article: the, of:vehicle "V507"),
 between: (
 :time "2007-09-27T09:57:35.177", and:time "2007-09-27T09:57:35.740")).

27

is defined as being equivalent to the following Level 1 RAVEs:

not_equal(
 subject:attribute speed(
 article: the, of:vehicle "V507", at:time "2007-09-27T09:57:35.177"),
 object:value null).

not_equal(
 subject:attribute speed(
 article: the, of:vehicle "V507", at:time "2007-09-27T09:57:35.740"),
 object:value null).

exceed(
 subject:attribute speed(
 article: the, of:vehicle "V507", at:time "2007-09-27T09:57:35.177"),
 object:attribute speed(
 article: the, of:vehicle "V507", at:time "2007-09-27T09:57:35.740")).

Level 3 RAVEs that involve attributes with function Symbol be can also be rendered in an
alternate form that utilizes become, not_become, cease_to_be, or not_cease_to_be at the
outermost level:

become(subject:vehicle "V507", on:road "Colton Ave", between:
 (:time "2007-09-27T09:57:57.687", and:time "2007-09-27T09:57:58.250")).
not_become(subject:vehicle "V507", on:road "Colton Ave", between:
 (:time "2007-09-27T09:57:57.687", and:time "2007-09-27T09:57:58.250")).
cease_to_be(subject:vehicle "V507", on:road "Colton Ave", between:
 (:time "2007-09-27T09:57:57.687", and:time "2007-09-27T09:57:58.250")).
not_cease_to_be(subject:vehicle "V507", on:road "Colton Ave", between:
 (:time "2007-09-27T09:57:57.687", and:time "2007-09-27T09:57:58.250")).

When encoded in a database table using a RAVE encoding scheme, Level 3 RAVEs utilize six of
the nine fields: predicate, primary attribute, primary object 1, primary object 2, primary time
(later time) and secondary time (earlier time). If the second object value is not specified by a
RAVE, the corresponding field value is considered to be an empty Symbol and is stored as an
empty text string in the database.

7.5 Event Models
Level 1, Level 2 and Level 3 RAVEs can be used together to describe “what happens” during an
event. An event model provides such a description for an abstract event, with times and
possibly objects specified as Variables. Following is an example of an event model for turning
left or right at an intersection, using a graphical notation that condenses the underlying Möbius
Expressions:

28

29

In this event model, the vehicle first enters the intersection (being “at” the intersection
appears), then it remains at the intersection while possibly stopping and restarting, then it
turns, and then it exits the intersection. Additional constraints on the event activity are listed
beneath the changes: the turning must be in the specified direction, and various time bounds
have been placed on the intervals of the event. Event models such as this have been used
within IMPACT in support of event recognition, summarization, and related reasoning
operations.

8. References
Borchardt, G. C. (1992). “Understanding causal descriptions of physical systems.” In Proceedings

of the AAAI Tenth National Conference on Artificial Intelligence, 2–8.

Borchardt, G. C. (1994). Thinking between the Lines: Computers and the Comprehension of
Causal Descriptions, MIT Press.

Katz, B., Borchardt, G., Felshin, S., and Mora, F. (2007). “Harnessing Language in Mobile
Environments.” In Proceedings of the First IEEE International Conference on Semantic
Computing (ICSC 2007), 421–428.

