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Abstract — The fragmentation of a brittle plate subjected to dynamic biaxial loading is investi-
gated via numerical simulations. The aim is to extend our understanding of the dynamic processes
affecting fragment size distributions. A scalable computational framework based on a hybrid co-
hesive zone model description of fracture and a discontinuous Galerkinformulation is employed.
This enables large-scale simulations and, thus, the consideration of rich distributions of defects, as
well as an accurate account of the role of stress waves. We study the dependence of the fragmenta-
tion response on defect distribution, material properties, and strain rate.A scaling law describing
the dependence of fragment size on the parameters is proposed. It is found that fragmentation
exhibits two distinct regimes depending on the loading rate and material defectdistribution: one
controlled by material strength and the other one by material toughness. At low strain rates, frag-
mentation is controlled by defects, whereas at high strain rates energy balance arguments dominate
the fragmentation response.

Keywords: Biaxial tension, discontinuous Galerkin, cohesive zone model, parallel computing,
defects, energy balance, stress waves

1 Introduction

The dynamic fragmentation of brittle solids under intense loading continues to bea subject
of significant scientific and practical interest. One of the main challenges is the prediction of
the distribution of fragment sizes for general fragmentation events which encompass a vast range
of length scales, material properties, structural dimensionality, and loadingconditions. Exten-
sive experimental studies have provided a vast body of data of fragment size distributions [9, 20]
for particular configurations. Analytical and statistical theories accounting for specific relevant
mechanisms such stress wave propagation [12] and energy balance [5,6] have been successful
at predicting experimentally observed characteristic frament sizes. A recent book [8] provides a
comprehensive survey of the statistical and energy-based theories offragmentation as they apply
to rings and shells.

For more general fragmentation events and for a full consideration of thephysics of the prob-
lem, it has become customary to resort to computer simulation, [2, 22, 19, 23, 24, 10]. Numerical
approaches aim to describe all the relevant physical mechanisms of the fragmentation event, which
remain not well understood. This includes the temporal evolution of the stress waves within the
material, crack nucleation, propagation, branching and coalescence leading to the formation of
fragments.
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The first challenge in describing a fragmentation event is to determine the location within the
material where failure is more likely to initiate. In brittle materials, this normally occursat defects
such as pores, inclusions, grain boundary and triple points which act asstress concentration sites
leading to the nucleation of cracks. The location, density, and size of defects thus govern crack ini-
tiation. As pointed out by Mott during World War II, stress waves also play aprevailing role [13].
Mott developed a well-known experiment, which consists in expanding a ringcircumferentially
until it fails [12]. Owing to the one-dimensional geometry of the ring, the only operative failure
in this test is crack initiation. This provided deep understanding of the role ofcrack initiation on
the dynamics of fragmentation. Mott explained that, when a crack initiates, a release stress wave
emanates from the new free surface and propagates circumferentially along the ring, unloading
the surrounding material and protecting it from further damage [13]. Denoual et al. [3] based their
statistical theory of brittle fragmentation on this protected zone idea.

A second difficulty is the prediction of crack paths. In multi-dimensional structures, cracks
propagate and branch until they reach a free surface at the externalboundary of the body or at
another crack surface, or until the stress intensity factor at its tip falls below a critical threshold.
The evolution of a crack is strongly influenced by its surroundings. Indeed, the stress field in the
neighborhood of the crack tip, which governs crack propagation, depends upon the stress waves
released by other cracks, as well as on the presence of local defects. As a result, fragmentation of
multi-dimensional structures is governed by a complex network of interacting stress waves and by
material microstructure.

The purpose of this study is to investigate the role of stress waves and material properties in
dynamic fragmentation processes in brittle plates subject to biaxial loading at awide range of
strain rates. Toward this end, we employ an advanced computational framework based on a dis-
continuous Galerkin formulation of the continuum problem [15, 16] and Cohesive Zone Models
of fracture [17]. Although the structure and the applied loading considered are bi-dimensional,
out-of-plane responses resulting from the fragmentation process are fully accounted for in the
three dimensional numerical framework. We show that, although material properties and loading
rate significantly influence the average fragment size, a unique characteristic response of the plate
fragmentation exists. We also compare the numerical results to analytical modelsbased on energy
balance arguments [6], which helps to explain the role of the additional governing mechanisms
controlling fragmentation at low and high strain rates neglected in simplified models.

The mesh convergence of the fracture energy and fragment size distributions has long been a
recognized issue in the numerical simulation of dynamic fragmentation [11]. That study showed
the need for high mesh resolution in the unidimensional case. A unique advantage of this simula-
tion capability is its inherent parallel scalability, which enables large-scale simulation of dynamic
fragmentation and thus to obtain converged results. The study presented here also furnishes, as a
sideline, a three-dimensional convergence study of dynamic fragmentationat high loading rates.

In the next section we briefly summarize the main features of the discontinuousGalerkin, Co-
hesive Zone Model formulation and its scalable numerical implementation. Section three provides
a detail description of the driver numerical test for the dynamic fragmentation study, consisting in
the dynamic bi-axial tensile loading of a thin plate for a large range of strain rates from quasi-static
to very highly dynamic loadings. Section four is devoted to studying the numerical convergence
of the simulations where it is shown that the number of fragments and the distribution of fragment
masses are independent of the mesh if the element size is sufficiently small. In section five, the
evolution of the average fragment size with strain rate and material parameters is investigated. We
compare our results to prior one-dimensional numerical results [10], as well as analytical energy
models [5, 6] in order to underline their limitations. Finally, in section six, we expose the reasons
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for these limitations, and provide a discussion summarizing the physical mechanisms that operate
during dynamic fragmentation.

2 Numerical framework

2.1 The hybrid discontinuous Galerkin - Cohesive Zone Model formulation

2.1.1 Motivation

We adopt the scalable framework for modeling dynamic fracture and fragmentation of solids in
three dimensions presented in [17, 18]. The method is based on a combinationof a discontinuous
Galerkin (DG) formulation of the continuum problem and the Cohesive ZoneModel of fracture,
hereinafter referred to as CZM. Prior to fracture, the flux and stabilization terms arising from
the DG formulation at inter-element boundaries are enforced via interfaceelements, much like in
the conventional intrinsic cohesive element approach, albeit in a way thatguarantees consistency
and stability. Upon the onset of fracture, the traction-separation law governing the fracture pro-
cess, hereinafter referred to as TSL, becomes operative without the need to insert a new cohesive
element.

The main advantage of the method is that it avoids the need to propagate topological changes in
the mesh as cracks and fragments develop, which enables the indistinctive treatment of crack prop-
agation across processor boundaries and, thus, the scalability in parallel computations. Another
advantage of the method is that it preserves consistency and stability in the uncracked interfaces,
thus avoiding issues with wave propagation typical of intrinsic cohesive element approaches.

For completeness, we summarize the main steps of the formulation in the following.

2.1.2 Weak formulation

Let us consider the dynamic motion of a body, whose reference configuration is Ω0 at time
t0. At any time t inT = [tinitial , t f inal], the positionx of the material pointX is described by the
deformation mapping:

x = ϕ(X, t) ∀X ∈ Ω0,∀t ∈ T (1)

Its boundary surface∂Ω0 is partitioned into a Dirichlet part∂DΩ0, a Neumann part∂NΩ0, and
an internal boundary∂I Ω0, such that∂Ω0 = ∂DΩ0 ∪ ∂NΩ0 ∪ ∂I Ω0 and ∂DΩ0 ∩ ∂NΩ0 ∩ ∂I Ω0 =
/0. ∂I Ω0 can either represent a physical discontinuity (such as a fracture surface) or a numerical
discontinuity (such as the boundary between two elements of the mesh).

At an internal boundary∂I Ω0, thejumpJ•K and theaverage〈•〉 operators are defined as:

J•K = •2−•1 〈•〉= •2+•1

2
(2)

The weak formulation of the hybrid discontinuous Galerkin - CZM is [17, 18]:

∫
Ω0

(ρ0 ϕ̈ δϕ+P : ∇0δϕ)dV+α
(∫

∂I Ω0

T(JϕK) JδϕKdS

)

+(1−α)
(

−
∫

∂I Ω0

〈P〉 JδϕKNdS+
∫

∂I Ω0

JϕK⊗N : 〈 β
hs
C〉 : JδϕK⊗NdS

)

=
∫

∂NΩ0

T̄ δϕ dS ∀δϕ ∈ B0
X,∀t ∈ T

(3)
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In this expression,P is the first Piola-Kirchhoff stress tensor,β a stabilization parameter (β >
0), hs the element characteristic length,N the unit normal to the reference configuration, and
C the tangent material modulus.T is the cohesive traction, which is function of the jump in
displacements across the interface and is responsible for describing the fracture process. Following
[16], in the simulations we adoptβ = 4.

It can be observed that in the dG-CZM formulation, in addition to the classic terms correspond-
ing to the Principle of Virtual Work, surface integrals on the internal boundary ∂I Ω0 appear. Prior
to fracture (α = 0), the simulation proceeds according to the prescription of the DG terms which
enforce compatibility and equilibrium at interelement boundaries in a weak manner. Upon the
onset of fracture, the TSL describing the fracture process becomes operative (α = 1). Another
difference of the dG-CZM and the original CZM is that the fracture criterion is evaluated directly
at the interelement boundary as opposed to the bulk element quadrature points. In addition, the
dG-CZM formulation allows for partially-cracked interface elements, whereone or more quadra-
ture points satisfy the fracture criterion and the TSL becomes operative, and where the remaining
quadrature points remain uncracked. This affords purely-local sub-grid resolution of emerging
cracks.

2.1.3 Traction-Separation Law (TSL)

In this work we adopt the Camacho and Ortiz [1] linear irreversible law. It relates the cohesive
stressσcoh and the crack tip openingδcoh . σcoh is defined by the norm of the cohesive tractionT,
while δcoh is expressed by:

δcoh=
√

δ2
n+ γ2 δ2

t (4)

δn andδt are respectively the normal and tangential parts of the displacement jumps across the
interfaceJϕK. The parameterγ balances the tension and shear contributions. In the simulations,
we takeγ = 1.

Denoting the cohesive strengthσc and the critical openingδc, the cohesive stressσcoh behaves
by following:

σcoh

σc
= 1− δcoh

δc
, for δ̇coh> 0 , δcoh= δmax andD < 1 : opening (5)

σcoh

σc
= 1− δmax

δc
, for δcoh< δmax andD < 1 : closing and reopening (6)

The local damageD is related to the maximum opening. Its value is between zero and one (re-
spectively referring to null damage and complete failure):

D = min

(

δmax

δc
,1

)

(7)

The cohesive energy is the area under the curve. When fracture is complete, it is equal to the
toughnessGc =

σc δc
2 .

2.1.4 Numerical implementation

It is rather straightforward to update a usual finite element code to get to thepresent hybrid
implementation. The main technical difference lies in the definition of a suitable internal bound-

ary. When the initial domain is partitioned intoE elements

(

Ω0 ≈ Ω0h =
E⋃

e=1
Ωe

0

)

, the interior
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boundary∂I Ω0 can be composed of all the boundaries between elements:

∂I Ω0 =

(

E⋃
e=1

∂Ωe
0

)

∖

∂Ω0h (8)

The discretization in space commonly gives:

Mẍ + Rint (x) = Rext(x) (9)

whereRint andRext are internal and external force arrays,M is the lumped mass matrix andx is
the nodal coordinate array.Rint embodies the terms of both the discontinuous Galerkin and the
cohesive formulations.

Furthermore, the discretization in time is a conventional explicit integration. A second-order
central difference scheme with mass lumping is adopted. A condition on the time step is required
to guarantee stability:

∆t ≤ ∆tcr , with ∆tcr =
1

(c β)1/2

E
min
e=1

(he) (10)

whereβ is the stabilization parameter of the discontinuous Galerkin formulation,c is the wave
speed, andhe is the characteristic dimension of elemente.

3 Definition of the problem

3.1 Description of the test

We consider a thin square plate of dimensionLplate= 10cmand thickness 0.15mm. The value
of the thickness is modified when appropriate to the element size to ensure the good quality of the
mesh. Since the plate remains very thin in all the simulations, varying the thicknessdoes not af-
fect the fragmentation pattern. The material properties used as baseline in simulations correspond
to aluminum oxide AD-995: Young’s modulusE = 370GPa, Poisson ratioν = 0.22, volumetric
massρ = 3900kg.m−3, static failure strengthσc = 262MPa and toughnessGc = 50N/m. These
parameters will be modified in the following sections in order to understand theirinfluence on the
fragmentation process (c.f. table 1). The plate is subjected to biaxial tensionduring the entire
duration of the test (figure 1(a)). Initial displacements and velocities are such that the plate un-
dergoes uniform expansion with no initial propagating stress waves. We vary the strain rate from
10s−1 to 105 s−1. These boundary conditions lead to the fragmentation of the plate, as displayed
in figure 1(b).

3.2 Modeling of material heterogeneity and parametric studies

Every material is inherently heterogeneous. It may contain pores, inclusions, grain boundaries,
crystal imperfections, which we will collectively refer to as defects. Sincethey have tendency
to concentrate stresses, these defects are favorable locations for fracture initiation. Experimental
evidence [21] has shown that the failure strength of most materials follows aWeibull distribution.
We associate the failure strength of a defect to the cohesive strength of itsassociated cohesive
element. The distribution of cohesive strengths is thus given by:

F(σc) = 1−e
−
( σc−σc,min

λ

)m

(11)

σc,min is the minimum cohesive strength, which corresponds to the quasi-static failure strength.
m is a material parameter called Weibull modulus.λ is the scale parameter, and depends on the
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(a) (b)

Figure 1: (a) Plate under biaxial tension. Dashed arrows indicate the extent of initial velocity
amplitudes. Plain arrows indicate boundary conditions in displacements. (b) Fragmented plate
from which we can extract fragment masses.

material and on the geometry of the structure. In the present paper, we have tested the response of
several distributions of defects plotted in figure 2.

Figure 2: Probability density function of some of the distributions of cohesive strengths studied
(see table 1).

As part of the study, we also vary material parameters (Young’s modulus,volumetric mass,
toughness). Table 1 details each set of parameters used in the simulations.

4 Numerical convergence

We first verify the validity of the computed results through a convergence study. In the case
of fragmentation, convergence can either concern the number of fragments or the distribution
of fragment sizes. Reaching convergence may, however, be technically challenging since fine
meshes are usually required to capture the smallest fragments. We benefit from the efficiency of
the parallel implementation that the formulation detailed in section 2 provides. Running codes on
many processors allows us to increase the degrees of freedom significantly and obtain converged
results at high strain rates (up to 105/s).
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Young’s Volumetric Toughness σc,min Weibull Scale para-
modulus (GPa) mass (kg/m3) (N/m) (MPa) modulus meter (MPa)

Mat.1 370 3900 50 264 2 50
Mat.2 275 3750 50 264 2 50
Mat.3 260 3690 50 299 20 50
Mat.4 260 3690 50 305 2 500
Mat.5 370 3900 250 264 2 50
Mat.6 370 3900 50 104 2 50
Mat.7 600 3900 50 264 2 50
Mat.8 370 6327 50 264 2 50
Mat.9 370 1054 50 264 2 50
Mat.10 370 3900 50 69 2 50
Mat.11 370 3900 50 284 20 30

Table 1: Material parameters used in the simulations

A plate made of aluminum oxide AD-995 with nearly no defects (Mat.11 in table 1) ismeshed
with 8.000 to 6.000.000 degrees of freedom. We compute the average fragment size and distribu-
tion of fragment masses. Figure 3 displays the evolution of the number of fragments with degrees
of freedom, obtained foṙε = 104 s−1, in two cases: with and without dust. We name dust the
fragments composed of one or two tetrahedra, to prevent the element size todetermine fragment
size. To compare numerical results to experiments, this elimination would be necessary, since
techniques used to measure fragment sizes, have a minimum size that can be resolved. The curves
in figure 3 first increase, suggesting that every edge of the mesh is at least damaged. Then, they
slightly decrease until reaching their final value. Some edges of the mesh are broken, others are
damaged or intact. Convergence in terms of number of fragments is thus achieved for meshes with
at least 200000 degrees of freedom. To the best of our knowledge, convergence has been reached
in one dimension [11], but this is the first attempt of fragment convergencein three dimensions.

Figure 3: Evolution of the number of fragments with the degrees of freedom,for the strain rate
ε̇ = 104 s−1.

Besides, distribution of fragment masses can also be made independent from the mesh if dust
is neglected. Figure 4 plots the inverse of the cumulative density function of the normalized
fragment masses in two cases: accounting for all the fragments, and neglecting dust. Note that,
in figure 4, the x-axis involves the average fragment mass in order to compare only the shape of
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distribution of fragment mass (and not the number of fragments, already shown previously). When
dust is included in the statistics, the curves do not superimpose, whereas they are very close if dust
is neglected. This observation suggests that the shape of the distribution offragment masses is
substantially more sensitive to dust than to mesh fineness.

Figure 4: Inverse of the cumulative density function of the fragment mass intwo cases: with
and without accounting for dust (fragments composed of one or two tetrahedra). The x-axis is
normalized by the average fragment mass. Strain rate isε̇ = 104 s−1.

In summary, for fine enough meshes, the number of fragments and the shape of the fragment
mass distribution are independent from the number of degrees of freedom. We also computed the
energy dissipated into failure and observed that fine meshes are associated to dissipative features
independent of the number of degrees of freedom. All the results that willbe presented in the
following sections were computed on sufficiently fine meshes, to obtain converged values.

5 Evolution of the average fragment size with strain rate

Material parameters strongly influence the fragmentation behavior. To underline it, we con-
ducted several simulations using the materials referenced in table 1. Figure 5shows the average
fragment sizesaver for several strain rates. It exhibits an obvious dependence with respect to both
strain rate and material parameters.

In this section, we investigate if there exists a way of scaling these scattered points in order to
gather them into a representative curve. We define the normalized strain rate and the normalized
average fragment size:

¯̇ε =
ε̇

ε̇ch
ands̄=

saver

sch
(12)

whereε̇ch is the characteristic strain rate andsch is the characteristic fragment size. Initially,ε̇ch

andsch were derived for homogeneous materials with unique cohesive strengthσc [4, 24]:

ε̇ch =
σ3

c c
E2 Gc

andsch =
Gc E
σ2

c
(13)

Predictions of the average fragment size for such homogeneous materialshave been proposed by
Grady [6] and Glenn and Chudnovsky [5], who based their models on energy balance arguments.
In his key paper [6], by equating local kinetic energy and fracture energy, Grady establishes a
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Figure 5: Average fragment size evolving with strain rate in log-log axes. Nine materials are
fragmented over the rangeε̇ = 103s−1 to ε̇ = 105s−1, and two materials are fragmented over the
rangeε̇ = 10s−1 to ε̇ = 105s−1. Material parameters are detailed in table 1.

general expression of the fragment’s characteristic length scale in dynamics. In two dimensions,
it is:

s̄Gr =

(

24
¯̇ε2

)1/3

(14)

Glenn and Chudnovsky [5] generalized Grady’s derivation to quasi-static loadings. Potential
energy is prevailing in quasi-static, whereas kinetic effects are dominant indynamics. They wrote
the balance between potential, kinetic, and failure energy at the fragment scale. It led to an analyt-
ical expression of the average fragment size whose representative curve is displayed in figure 6.

Recently, using expanding ring numerical tests, Levy and Molinari [10] generalized these ex-
pressions to heterogenous materials:

ε̇ch =
σ3

c,aver c

E2 Gc
andsch =

Gc E
σ2

c,aver
f (defects) (15)

whereσc,aver is the average of the cohesive strengths,c the wave velocity,E the Young’s modu-
lus, andGc the toughness. The functionf (defects) is a semi-empirical function, expressed as the
product of two independent functionsf1 and f2. The first functionf1 is associated to the shape of
the cohesive strength distribution. It quantifies the effect of stress wave interactions. For instance,
when the left tail has an infinite slope (such as the uniform distribution), numerous cracks initiate
simultaneously when the stress reaches the weakest link’s strengthσc,min. This leads to a rapid
response during which stress waves barely interact; many fragments aregenerated independently.
On the contrary, when the left tail has a null slope (such as the normal distribution), cracks are
initiated smoothly, one after the other. Stress waves have time to interact and to release the struc-
ture; fewer fragments are generated. Therefore, similarly as the fragment sizesch, which is inverse
proportional to the number of fragments,f1 is a decreasing function of the left tail’s slope of the
cohesive strength distribution. Empirical arguments have shown thatf1 is comprised between 1
and

√
2 [10]. The second functionf2 is a decreasing function of the ratio betweenσc,aver−σc,min

andσc,aver, and is comprised between 0 and 1. It quantifies the amount of breakable defects. Given
the peak stressσpeak, the maximum number of defects that may break is the probability of finding
a cohesive strength smaller than peak stress times the number of defects. For instance, while peak
stress remains lower thanσc,aver, two distributions with the sameσc,aver may not result in the same
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number of fragments. Distributions with large standard deviation may generatemany small frag-
ments because they contain more breakable defects. Hence,f2, and a fortiorisch, are decreasing
with σc,aver−σc,min. To summarize, the functionf (defects) conveys the idea that variations of the
tail of the left slope of the distribution of cohesive strengths yield distinct fragmentation behav-
ior, and that the minimum and the average cohesive strengths constrain the maximum number of
breakable defects.

Thereafter, Levy and Molinari [10] proposed a unique empirical law to describe the evolution
of the normalized average fragment size with normalized strain rate for one-dimensional fragmen-
tation:

s̄ =
3

1+4.5 ¯̇ε
(16)

Figure 6: Normalized average fragment size ¯s function of normalized strain ratė̄ε in log-log axes.
Comparison of the present results to Grady’s, Levy and Molinari’s, andGlenn and Chudnovsky’s
models. The scaling is defined by equation 15.

Figure 6 displays these three models, along with numerical results for the plateunder biaxial
tension. The scaling defined in one-dimension brings all the computed valuesinto a reasonably
narrow range. Hence, the present numerical study extends the validity of equation 15 to quasi
two-dimensional fragmentation of heterogeneous materials subjected to tensileloadings.

By contrast, our computed values do not precisely follow energetic estimates. Apart from the
fact that we interestingly recover the -2/3 power law exponent (equation14), figure 6 highlights
significant differences. In quasi-statics, the average fragment size isabout twice Glenn and Chud-
novsky’s predictions [5], whereas it is lower by a factor of two than Grady’s characteristic size
in dynamics. These major differences are due to energetic and dynamics effects. Experimental
evidence [7] suggests that Grady’s prediction overestimates teh actual fragment size, therefore
conforting our numerical simulations.

In the following, we describe the physical mechanisms governing the low andhigh strain rate
responses, and emphasize the main reasons why energy models do not predict the average fragment
size as accurately as numerical simulations.

10



6 Strength and toughness controlled regimes

6.1 Some limitations of the energy balance arguments

Let us first derive the basic energy arguments, based on Grady’s and Glenn and Chudnovsky’s
interpretations. A fragment is supposed to be square-shaped with dimension s. We assume linear-
ity before failure. At the time of failure, the stress within the fragment isσpeakand the associated
volumetric energies are:

epot =
σ2

peak

2 E
(17)

ekin =
ρ ε̇2 s2

12
(18)

eΓ =
2 Gc

s
(19)

epot, ekin andeΓ are respectively the volumetric potential, kinetic, and failure energies.

At low strain rates, kinetic energy is negligible. Potential energy prevails, and the size of the
fragment is:

epot = eΓ ⇒ sQS=
4 Gc E

σ2
peak

(20)

By contrast, at high strain rates, potential energy is negligible, and kinetic energy controls the
process. Fragment size is the one derived by Grady in equation 14:

ekin = eΓ ⇒ sDY =

(

24Gc

ρ ε̇2

)1/3

(21)

The transition between the quasi-static and the dynamic regimes occurs at the strain rateε̇TR

such that:

sDY = sQS ⇒ ε̇TR=

√

3
8

σ3
peakc

E2 Gc
(22)

ε̇TR defines the limit between the quasi-static and the dynamic regimes, that are respectively
governed by potential and kinetic energies. One should note the correspondences with the scaling
parameters defined in section 5. The characteristic strain rateε̇ch is proportional tȯεTR, and the
characteristic sizesch has a form close tosQS. Relations 20 and 21 thus constitute a physical
interpretation of the scaling.

To verify whether these expressions are valid, we compare them to numerical simulations. Fig-
ure 7(a) represents the evolution of the average fragment size with strainrate for materials Mat.1
and Mat.9 (see table 1), along with the theoretical sizessQSandsDY. To get a plot independent from
material parameters, we normalize the strain rate byε̇TR, and the fragment size bysQS. Figure 7
underlines that the energy arguments provide good general trends. However, they do not predict
accurately the value of transitioṅεTR, and the average fragment sizesaver: at low strain rates, we
computesaver ≥ sQS, whereas at high strain rates,saver ≤ sDY. More precisely, for the specific
example displayed in figures 7, we observe thatsaver ≃ 2sQS andsaver ≃ sDY/2 (figure 7(b)). It
suggests that only half of the potential energy is converted into failure energy at low strain rates,
and that four times the local kinetic energy is consumed in failure at high strainrates. It appears
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that another source of energy provides additional energy to complete fragmentation. These obser-
vations underline the limitations of the energy arguments. The physical mechanisms involved in
energy transfers are more complex than simple energy conversions. Numerical simulations have
the ability to track the time evolution of the energies, and allow us to access more details. In
the following section, we explain the origins of these limitations raised by energymodels, and
describe qualitatively the energetic and dynamic processes involved in fragmentation.

(a) (b)

Figure 7: Fragment sizes evolving with strain rate in log-log axes for materialsMat.1 and Mat.9
(table 1).saver is the computed average fragment size,sQS andsDY are the theoretical quasi-static
and dynamic sizes. (a) Energy models only provide trends. (b) With adequate rescaling ofsQS and
sDY, we can deduce empirically the proportion of energy used in failure.

6.2 Physical mechanisms underlying energy transfers in fragmentation

The energy transfers described previously involve two fundamental assumptions: the input en-
ergy (kinetic or potential) is fully consumed in failure, and the energy transfers only occur at the
fragment scale. The first argument implies that, once a fragment is generated, it has a rigid body
motion and does not vibrate elastically, which is not necessarily true. The second argument in-
fers failure instantaneity and the absence of interactions. Indeed, in equations 17 to 22, fragment
scale is assumed independent from structure scale; the equations are written in the fragment ref-
erence frame. The energy contained in a fragment only stems from its size and the value of peak
stress at failure time. However, there exists an external source of energy, originating from energy
exchanges between the forming fragments and the plate, and occurring during the fragmentation
process. While cracks propagate and while a fragment is not fully created, it accumulates addi-
tional energy, which should appear in the energy balance. From our simulations, it is clear that
fragmentation is not an instantaneous process and that dynamic effects play a key role.

Figures 8(a) and 8(b) display the time evolution of potential, kinetic, and failure energies con-
tained in the entire plate at strain ratesε̇= 100s−1 andε̇= 105 s−1 for material Mat.9 (see table 1).
They are typical responses at low and high strain rates, and involve very distinct mechanisms.

In both plots, since the material is elastic, potential energy first increases quadratically with
time. Meanwhile, kinetic energy is constant and cohesive energy remains null. It corresponds
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(a) (b)

Figure 8: Time evolution of the volumetric energies for material Mat.9 (table 1). Left scale is
associated to volumetric potentialepot and volumetric cohesiveeΓ energies, while right scale is
associated to volumetric kinetic energyekin. Strain rate is (a)̇ε = 100s−1, and (b)ε̇ = 105s−1.

to the loading phase. Then, stress is high enough (compared to the cohesive strengths) and fail-
ure initiates. In the failure phase, cohesive and kinetic energy increase, whereas potential energy
decreases. In comparison to the loading phase, the duration of the failurephase may vary signifi-
cantly, depending on the strain rate. This results in very distinct responses.

At low strain rates (figure 8(a)), the loading phase is much longer than the failure phase . Energy
variations after peak stress occur very briefly. When the loading is quasi-static, fragmentation is
a highly dynamic process. Stress waves propagate very fast comparedto the body motion and
release quickly the structure. An extensive network of stress wave interactions establishes, and the
plate undergoes a rapid and chaotic fragmentation process. The instantaneity assumption, made in
energy models, is thus acceptable. However, the assumption which states that potential energy is
fully converted into failure energy, is not verified. While it is true that failure energy mainly stems
from potential energy and that the conversion is rapid, as highlighted by figure 8(a), potential
energy is not fully employed in failure. It is also used to accelerate the fragments and increase
their kinetic energies. Therefore, equation 20 provides a lower bound of the fragment size. The
actual fragment size is necessarily larger thansQS. In summary, wheṅε ≤ ε̇TR, peak potential
energy (which is related to the distribution of cohesive strengths) mainly governs the amount of
energy dissipated in failure. Kinetic energy at failure onset is lower than potential energy, and
plays a secondary role in energy conversion processes. The distribution of cohesive strengths
governs the global fragmentation response. As a result, we state that fragmentation is strength
controlled.

By contrast, at high strain rates (figure 8(b)), the loading phase is briefer than the failure phase.
Failure initiation is influenced by a decrease in potential energy. However,the drop is not instan-
taneous, as assumed in the energy models. Fragmentation is a time dependent process. The reason
for this lies in the ratio between stress wave velocity and material velocity (that isproportional to
the loading rate and the plate dimension). Since they are initiated almost simultaneously, defects
barely undergo any stress wave effect. The stress field evolves smoothly leading to few stress wave
interactions that grow independently from each other. The fragmentation process continues until
stress is low enough everywhere (at least smaller than the minimum cohesivestrength). Then,
the energy involved in failure has released the plate from further damage evolution, and failure is
completed. Moreover, it is obvious from figure 8(b) that peak potential energy is not high enough
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to provide this failure energy. An additional conversion of energy takesplace: kinetic energy is
indirectly employed. It is used to stretch the plate, while cracks continue growing, and potential
energy is constantly supplied. Since this second conversion requires time tooccur, energy models
do not take it into account. As a result, they underestimate fragment size. The average fragment
size that we have computed confirms this interpretation (figures 7(a) and 7(b)). Therefore, when
ε̇ ≥ ε̇TR, the governing mechanism is related to the amount of energy dissipated in each microc-
rack, and not to the cohesive strengths values. We call it the toughnesscontrolled regime.

7 Conclusion

We simulated the fragmentation of a thin plate subjected to biaxial tension, for a wide range
of strain rates. A hybrid numerical framework, coupling discontinuous Galerkin and cohesive ap-
proaches, has been used. In the context of fragmentation, the main advantage of the discontinuous
Galerkin framework is its ability to handle naturally discontinuities like fracture lines, and to be
easily parallelized. Cohesive elements are activated dynamically, as soon as local stress reaches
the cohesive strength. By defining Weibull distributions of cohesive strengths, we modeled the
micro-structural heterogeneity of the material. Varying the parameters usedin the material param-
eters (Young’s modulus, volumetric mass, toughness, minimum cohesive strength, scale parame-
ter, and Weibull modulus) allowed us to quantify their influence on fragmentation. We tackled the
issue of convergence and showed that, for fine enough meshes, the number of fragments, and the
distribution of fragment masses are independent from the number of degrees of freedom.

The study of the average fragment size and its comparison to energy modelshas revealed the
prevailing role of the dynamics of stress waves and energy transfer in fragmentation. First, we
observed that, although the average fragment size is highly dependent upon material parameters,
an adequate scaling gathered the scattered responses into a reasonabletrend. Also valid in one-
dimension, this general response is characteristic of the fragmentation of aheterogeneous plate
loaded in biaxial tension. It highlights the limitations of energy models, as well asthe existence of
two regimes, the strength and the toughness controlled regimes. The transitionhas been derived
analytically as a function of material properties.

The strength controlled regime occurs at low and intermediate strain rates. Itis dominated by
the quasi-instantaneous conversion of potential energy into failure energy. The extensive network
of stress waves accompanies this highly dynamic fragmentation response, and few fragments are
generated. The toughness controlled regime is characterized by a relatively longer fragmentation
response, and occurs at high strain rates. Since stress waves propagate at a speed close to the ma-
terial point velocities, defects barely undergo any stress wave effect.They do not interact as much
with each other and damage evolves smoothly. Both kinetic and potential energy are employed
in failure. In this toughness controlled regime, the amount of dissipated energy prevails, irrespec-
tive of the cohesive strengths values. Future work will extend these energetic considerations to a
broader class of loading conditions, including impacts.
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