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Abstract — The fragmentation of a brittle plate subjected to dynamic biaxial loading is investi-
gated via numerical simulations. The aim is to extend our understanding ofrihenit processes
affecting fragment size distributions. A scalable computational framewaskdon a hybrid co-
hesive zone model description of fracture and a discontinuous Gaferkinlation is employed.
This enables large-scale simulations and, thus, the consideration of tichudiens of defects, as
well as an accurate account of the role of stress waves. We studypeedince of the fragmenta-
tion response on defect distribution, material properties, and strainAatgaling law describing
the dependence of fragment size on the parameters is proposed. uni tfeat fragmentation
exhibits two distinct regimes depending on the loading rate and material diégedbution: one
controlled by material strength and the other one by material toughnessw Atriain rates, frag-
mentation is controlled by defects, whereas at high strain rates energg®al@uments dominate
the fragmentation response.

Keywords: Biaxial tension, discontinuous Galerkin, cohesive zone model, parafigbating,
defects, energy balance, stress waves

1 Introduction

The dynamic fragmentation of brittle solids under intense loading continues &osSodject
of significant scientific and practical interest. One of the main challenges iprédiction of
the distribution of fragment sizes for general fragmentation events whiocbnepass a vast range
of length scales, material properties, structural dimensionality, and loadingjtions. Exten-
sive experimental studies have provided a vast body of data of fragizendistributions [9, 20]
for particular configurations. Analytical and statistical theories accogritin specific relevant
mechanisms such stress wave propagation [12] and energy balan6ghfive been successful
at predicting experimentally observed characteristic frament sizes. ehatrbook [8] provides a
comprehensive survey of the statistical and energy-based theofregofentation as they apply
to rings and shells.

For more general fragmentation events and for a full consideration ghysics of the prob-
lem, it has become customary to resort to computer simulation, [2, 22, 194 2B0R Numerical
approaches aim to describe all the relevant physical mechanisms agineentation event, which
remain not well understood. This includes the temporal evolution of thessirages within the
material, crack nucleation, propagation, branching and coalescertiedda the formation of
fragments.



The first challenge in describing a fragmentation event is to determine thioloeéthin the
material where failure is more likely to initiate. In brittle materials, this normally ocatidefects
such as pores, inclusions, grain boundary and triple points which atte®s concentration sites
leading to the nucleation of cracks. The location, density, and size aftdéfeis govern crack ini-
tiation. As pointed out by Mott during World War 1l, stress waves also plpyeaailing role [13].
Mott developed a well-known experiment, which consists in expanding aciingmferentially
until it fails [12]. Owing to the one-dimensional geometry of the ring, the omigrative failure
in this test is crack initiation. This provided deep understanding of the rateagk initiation on
the dynamics of fragmentation. Mott explained that, when a crack initiatetgaseestress wave
emanates from the new free surface and propagates circumferentiaity thle ring, unloading
the surrounding material and protecting it from further damage [13]oDalret al. [3] based their
statistical theory of brittle fragmentation on this protected zone idea.

A second difficulty is the prediction of crack paths. In multi-dimensional stines, cracks
propagate and branch until they reach a free surface at the exbenmadlary of the body or at
another crack surface, or until the stress intensity factor at its tip fallsvbeleritical threshold.
The evolution of a crack is strongly influenced by its surroundings. dddthe stress field in the
neighborhood of the crack tip, which governs crack propagatiorertipupon the stress waves
released by other cracks, as well as on the presence of local d&fecigesult, fragmentation of
multi-dimensional structures is governed by a complex network of interadtiegssvaves and by
material microstructure.

The purpose of this study is to investigate the role of stress waves and rnptegarties in
dynamic fragmentation processes in brittle plates subject to biaxial loadingvettearange of
strain rates. Toward this end, we employ an advanced computational foaknbased on a dis-
continuous Galerkin formulation of the continuum problem [15, 16] andeSiwie Zone Models
of fracture [17]. Although the structure and the applied loading consitiare bi-dimensional,
out-of-plane responses resulting from the fragmentation processilyreaécounted for in the
three dimensional numerical framework. We show that, although materiérires and loading
rate significantly influence the average fragment size, a unique chidstcteesponse of the plate
fragmentation exists. We also compare the numerical results to analytical rhbadel$ on energy
balance arguments [6], which helps to explain the role of the additionakgiogemechanisms
controlling fragmentation at low and high strain rates neglected in simplified models

The mesh convergence of the fracture energy and fragment size disinhas long been a
recognized issue in the numerical simulation of dynamic fragmentation [1Ht sthdy showed
the need for high mesh resolution in the unidimensional case. A uniquetadeanf this simula-
tion capability is its inherent parallel scalability, which enables large-scaldatimu of dynamic
fragmentation and thus to obtain converged results. The study presemeedi$o furnishes, as a
sideline, a three-dimensional convergence study of dynamic fragmenaatidgh loading rates.

In the next section we briefly summarize the main features of the discontitGalaskin, Co-
hesive Zone Model formulation and its scalable numerical implementation. Séutee provides
a detail description of the driver numerical test for the dynamic fragmentatialy, consisting in
the dynamic bi-axial tensile loading of a thin plate for a large range of strags fiam quasi-static
to very highly dynamic loadings. Section four is devoted to studying the nuat@dnvergence
of the simulations where it is shown that the number of fragments and the diistnilod fragment
masses are independent of the mesh if the element size is sufficiently smadttibngive, the
evolution of the average fragment size with strain rate and material paransirestigated. We
compare our results to prior one-dimensional numerical results [10]edsgvanalytical energy
models [5, 6] in order to underline their limitations. Finally, in section six, we sggbe reasons



for these limitations, and provide a discussion summarizing the physical niscisatihat operate
during dynamic fragmentation.

2 Numerical framework

2.1 The hybrid discontinuous Galerkin - Cohesive Zone Model fomulation
2.1.1 Motivation

We adopt the scalable framework for modeling dynamic fracture and fraigitien of solids in
three dimensions presented in [17, 18]. The method is based on a combfadidiscontinuous
Galerkin (DG) formulation of the continuum problem and the Cohesive ZAéoeel of fracture,
hereinafter referred to as CZM. Prior to fracture, the flux and stabilizaBoms arising from
the DG formulation at inter-element boundaries are enforced via integfaogents, much like in
the conventional intrinsic cohesive element approach, albeit in a wagulagantees consistency
and stability. Upon the onset of fracture, the traction-separation lawrgiogethe fracture pro-
cess, hereinafter referred to as TSL, becomes operative withoue#ukta insert a new cohesive
element.

The main advantage of the method is that it avoids the need to propagate toaplatbgnges in
the mesh as cracks and fragments develop, which enables the indistirediveednt of crack prop-
agation across processor boundaries and, thus, the scalability in bepafleutations. Another
advantage of the method is that it preserves consistency and stability indfseked interfaces,
thus avoiding issues with wave propagation typical of intrinsic cohesiveezieapproaches.

For completeness, we summarize the main steps of the formulation in the following.

2.1.2 Weak formulation

Let us consider the dynamic motion of a body, whose reference coafiguris Qg at time
to. Atany time tinT = [tinitial , tfinal], the positionx of the material poinX is described by the
deformation mapping:

x=0¢(X,t) ¥YXeQoWeT Q)

Its boundary surfac@Qg is partitioned into a Dirichlet pa@pQg, a Neumann padyQg, and
an internal boundarg, Qo, such thatoQp = dp Qo U INQo U 0,Qp anddpQoNonQoN 01 Qp =
0. 0,Qp can either represent a physical discontinuity (such as a fracturgcsiibr a numerical
discontinuity (such as the boundary between two elements of the mesh).

At an internal boundarg, Qo, thejump[e]] and theaverage(e) operators are defined as:

=e2-o1  (9)="21% @
The weak formulation of the hybrid discontinuous Galerkin - CZM is [17; 18]
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In this expressionk is the first Piola-Kirchhoff stress tensd#,a stabilization parametef (>
0), hs the element characteristic lengtN, the unit normal to the reference configuration, and
C the tangent material modulusT is the cohesive traction, which is function of the jump in
displacements across the interface and is responsible for describimgdheé process. Following
[16], in the simulations we adofit= 4.

It can be observed that in the dG-CZM formulation, in addition to the classitsteorrespond-
ing to the Principle of Virtual Work, surface integrals on the internal boondd appear. Prior
to fracture @ = 0), the simulation proceeds according to the prescription of the DG terms which
enforce compatibility and equilibrium at interelement boundaries in a weak enatupon the
onset of fracture, the TSL describing the fracture process becopeative ¢ = 1). Another
difference of the dG-CZM and the original CZM is that the fracture critersoevaluated directly
at the interelement boundary as opposed to the bulk element quadraini® po addition, the
dG-CZM formulation allows for partially-cracked interface elements, wioaesor more quadra-
ture points satisfy the fracture criterion and the TSL becomes operatideylaere the remaining
guadrature points remain uncracked. This affords purely-localgsigbresolution of emerging
cracks.

2.1.3 Traction-Separation Law (TSL)

In this work we adopt the Camacho and Ortiz [1] linear irreversible lavelétes the cohesive
streso.on and the crack tip openindkon . Ocon iS defined by the norm of the cohesive tractibn

while d¢oh is expressed by:
6coh =V 6% + V2 6t2 (4)

o, and o, are respectively the normal and tangential parts of the displacement jurgss dhe
interface[¢]. The parametey balances the tension and shear contributions. In the simulations,
we takey = 1.

Denoting the cohesive strengtly and the critical openingc, the cohesive stresgon behaves
by following:

0;°h =1— %‘ , fOr 8con > 0, 8eoh = dmaxandD < 1 : opening (5)
C C
0 . .
%1 =1- g‘ax , for con < dmaxandD < 1 : closing and reopening (6)
Cc C

The local damag® is related to the maximum opening. Its value is between zero and one (re-
spectively referring to null damage and complete failure):

D = min <6’“""X, 1> 7)
O

The cohesive energy is the area under the curve. When fracturejgete, it is equal to the

toughnesS, = %%,

2.1.4 Numerical implementation

It is rather straightforward to update a usual finite element code to get torésent hybrid
implementation. The main technical difference lies in the definition of a suitablenaitbound-

E
ary. When the initial domain is partitioned inf® eIements(QO ~ Qo= U QS), the interior
e=1

N



boundaryd, Qg can be composed of all the boundaries between elements:
E
Qo = (U an> \aQOh 8)
e=1

The discretization in space commonly gives:
Mx + R (x) = R®(x) (9)

whereR™ andR® are internal and external force arraj,is the lumped mass matrix axds
the nodal coordinate arraR™ embodies the terms of both the discontinuous Galerkin and the
cohesive formulations.

Furthermore, the discretization in time is a conventional explicit integration. cArgkorder
central difference scheme with mass lumping is adopted. A condition on the timis seguired

to guarantee stability:
. 1 E

wheref is the stabilization parameter of the discontinuous Galerkin formulatios the wave
speed, antl is the characteristic dimension of element

3 Definition of the problem

3.1 Description of the test

We consider a thin square plate of dimensigpe = 10cmand thickness A5mm The value
of the thickness is modified when appropriate to the element size to ensu@oihguglity of the
mesh. Since the plate remains very thin in all the simulations, varying the thickoessot af-
fect the fragmentation pattern. The material properties used as baselimaiat®ns correspond
to aluminum oxide AD-995: Young'’s modulis= 370GPa, Poisson ratizv = 0.22, volumetric
massp = 3900kg.m~3, static failure strengtly, = 262MPaand toughnes§, = 50N/m. These
parameters will be modified in the following sections in order to understanditifisience on the
fragmentation process (c.f. table 1). The plate is subjected to biaxial tedgiorg the entire
duration of the test (figure 1(a)). Initial displacements and velocitiesiarie that the plate un-
dergoes uniform expansion with no initial propagating stress waves.avyehe strain rate from
10s'to 1 s L. These boundary conditions lead to the fragmentation of the plate, as @idplay
in figure 1(b).

3.2 Modeling of material heterogeneity and parametric studes

Every material is inherently heterogeneous. It may contain pores, ingkjsicain boundaries,
crystal imperfections, which we will collectively refer to as defects. Sithey have tendency
to concentrate stresses, these defects are favorable locationscfardraitiation. Experimental
evidence [21] has shown that the failure strength of most materials foll&Meslaull distribution.
We associate the failure strength of a defect to the cohesive strengthaskitsiated cohesive
element. The distribution of cohesive strengths is thus given by:

0C*"c.min)m

F(oc) = 1_e (5 (11)

Oc min IS the minimum cohesive strength, which corresponds to the quasi-statiefstitangth.
m is a material parameter called Weibull modulasis the scale parameter, and depends on the
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Figure 1. (a) Plate under biaxial tension. Dashed arrows indicate thetef{ténitial velocity
amplitudes. Plain arrows indicate boundary conditions in displacements.rggnented plate
from which we can extract fragment masses.

material and on the geometry of the structure. In the present paperveédsted the response of
several distributions of defects plotted in figure 2.

Mat.11
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[
T
= Mat.3
le-074 at.
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Cohesive strength(MPa)

Figure 2: Probability density function of some of the distributions of coleesfrengths studied
(see table 1).

As part of the study, we also vary material parameters (Young’'s modudlisimetric mass,
toughness). Table 1 details each set of parameters used in the simulations.

4 Numerical convergence

We first verify the validity of the computed results through a convergehays In the case
of fragmentation, convergence can either concern the number of fragroe the distribution
of fragment sizes. Reaching convergence may, however, be telthriballenging since fine
meshes are usually required to capture the smallest fragments. We bemefibé efficiency of
the parallel implementation that the formulation detailed in section 2 provides.iftuondes on
many processors allows us to increase the degrees of freedom sigihifenad obtain converged
results at high strain rates (up t0°/6).



Young's Volumetric | Toughness O¢min | Weibull | Scale para-

modulus (GPa) mass kg/nv) (N/m) (MPa) | modulus| meter (MPa)
Mat.1 370 3900 50 264 2 50
Mat.2 275 3750 50 264 2 50
Mat.3 260 3690 50 299 20 50
Mat.4 260 3690 50 305 2 500
Mat.5 370 3900 250 264 2 50
Mat.6 370 3900 50 104 2 50
Mat.7 600 3900 50 264 2 50
Mat.8 370 6327 50 264 2 50
Mat.9 370 1054 50 264 2 50
Mat.10 370 3900 50 69 2 50
Mat.11 370 3900 50 284 20 30

Table 1: Material parameters used in the simulations

A plate made of aluminum oxide AD-995 with nearly no defects (Mat.11 in table meished
with 8.000 to 6000.000 degrees of freedom. We compute the average fragment size andudistrib
tion of fragment masses. Figure 3 displays the evolution of the numbergmhénats with degrees
of freedom, obtained fog = 10* s1, in two cases: with and without dust. We name dust the
fragments composed of one or two tetrahedra, to prevent the element digeetmine fragment
size. To compare numerical results to experiments, this elimination would besaggesince
techniques used to measure fragment sizes, have a minimum size that eaalbbed. The curves
in figure 3 first increase, suggesting that every edge of the mesh issatllmaaged. Then, they
slightly decrease until reaching their final value. Some edges of the medhiaken, others are
damaged or intact. Convergence in terms of number of fragments is thusextfoe meshes with
at least 200000 degrees of freedom. To the best of our knowledgeeigence has been reached
in one dimension [11], but this is the first attempt of fragment convergenteee dimensions.

All computed fragments
600+

0 'S
€ i\ . -
[ ! L S — - -
£ o N e
L A N —
@ 400 -
S
(=
= . .
2 1 Neglecting dust-like fragments
[}
£
5 2001
2

|

0 : . -
0 2x108 4x106 6x10°

Degrees of freedom

Figure 3: Evolution of the number of fragments with the degrees of freeflunthe strain rate
£=10"s1.

Besides, distribution of fragment masses can also be made indeperaerthé mesh if dust
is neglected. Figure 4 plots the inverse of the cumulative density functioneohahmalized
fragment masses in two cases: accounting for all the fragments, andtiregldust. Note that,
in figure 4, the x-axis involves the average fragment mass in order to ceroply the shape of



distribution of fragment mass (and not the number of fragments, alreagingbreviously). When

dustis included in the statistics, the curves do not superimpose, wheegag¢hvery close if dust
is neglected. This observation suggests that the shape of the distribufi@ywfent masses is
substantially more sensitive to dust than to mesh fineness.

1

With dust Without dust
0.8 0.8
/10f = 6.10*
0.6 0.6
%5 dof = 375.10 5
? (%)
hd ;
0.41 ™ ol dof = 6.10°
— 4
dof = 150.10 dof = 375.10%
0.2 dof = 600.10* 0.2 dof = 150.10%
dof = 600.10*
04 " ..~.-"'. b - rc. = PP o e .
0 5 10 15 0 5 10 15
m/Mayer m/Mayer

Figure 4: Inverse of the cumulative density function of the fragment massdrcases: with
and without accounting for dust (fragments composed of one or two églrah The x-axis is
normalized by the average fragment mass. Strain rate-ig0* s—1.

In summary, for fine enough meshes, the number of fragments and the chtge fragment
mass distribution are independent from the number of degrees of frealfe also computed the
energy dissipated into failure and observed that fine meshes are tsdacidissipative features
independent of the number of degrees of freedom. All the results thabevifiresented in the
following sections were computed on sufficiently fine meshes, to obtain eWealues.

5 Evolution of the average fragment size with strain rate

Material parameters strongly influence the fragmentation behavior. Terlimal it, we con-
ducted several simulations using the materials referenced in table 1. Fighm/s the average
fragment sizes,yer for several strain rates. It exhibits an obvious dependence withaetgpleoth
strain rate and material parameters.

In this section, we investigate if there exists a way of scaling these scatiirgd {m order to
gather them into a representative curve. We define the normalized stegncthe normalized
average fragment size:

€ = — ands= (12)
€ch Sch

wheregg, is the characteristic strain rate aggl is the characteristic fragment size. Initialb,
ands, were derived for homogeneous materials with unique cohesive strapfth24J.
agic G.E

andse =

_ 13
E2 G, 02 (13)

élch

Predictions of the average fragment size for such homogeneous mdiavialseen proposed by
Grady [6] and Glenn and Chudnovsky [5], who based their models erggtalance arguments.
In his key paper [6], by equating local kinetic energy and fractureggnésrady establishes a
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Figure 5: Average fragment size evolving with strain rate in log-log axeisie Materials are
fragmented over the range= 10°s~1 to £ = 10°s ™1, and two materials are fragmented over the
ranget = 10s~1 to € = 10Ps~1. Material parameters are detailed in table 1.

general expression of the fragment’s characteristic length scale imtdgsaln two dimensions,
itis: 13

_ 24

== (%) 14)

Glenn and Chudnovsky [5] generalized Grady’s derivation to quasiedoadings. Potential
energy is prevailing in quasi-static, whereas kinetic effects are domindghemics. They wrote
the balance between potential, kinetic, and failure energy at the fragosdet & led to an analyt-
ical expression of the average fragment size whose representatixeis displayed in figure 6.

Recently, using expanding ring numerical tests, Levy and Molinari [£dfgalized these ex-
pressions to heterogenous materials:

. 02 yer C G.E
Ech= —o=— andssh = —— f (defects (15)
E< Gc c,aver

whereo aver is the average of the cohesive strengththe wave velocityE the Young’s modu-
lus, andG. the toughness. The functidi{defects is a semi-empirical function, expressed as the
product of two independent functioris and f,. The first functionf; is associated to the shape of
the cohesive strength distribution. It quantifies the effect of stress imeractions. For instance,
when the left tail has an infinite slope (such as the uniform distribution), mumseracks initiate
simultaneously when the stress reaches the weakest link’s streggih This leads to a rapid
response during which stress waves barely interact; many fragmernysreested independently.
On the contrary, when the left tail has a null slope (such as the normabdisin), cracks are
initiated smoothly, one after the other. Stress waves have time to interact aeldase the struc-
ture; fewer fragments are generated. Therefore, similarly as the fragiaes., which is inverse
proportional to the number of fragments, is a decreasing function of the left tail's slope of the
cohesive strength distribution. Empirical arguments have shownfihiatcomprised between 1
and+/2 [10]. The second functiof, is a decreasing function of the ratio betweRdver— Ocmin
andog aver, and is comprised between 0 and 1. It quantifies the amount of breakefbtisi Given
the peak stresspea, the maximum number of defects that may break is the probability of finding
a cohesive strength smaller than peak stress times the number of defedtstéace, while peak
stress remains lower than aver, two distributions with the sam®; aver may not result in the same



number of fragments. Distributions with large standard deviation may gemagatyg small frag-
ments because they contain more breakable defects. Hena#d a fortioriss, are decreasing
with O¢ aver— Ocmin. TO summarize, the functioh(defectg conveys the idea that variations of the
tail of the left slope of the distribution of cohesive strengths yield distiragyrfrentation behav-
ior, and that the minimum and the average cohesive strengths constrainximeumanumber of
breakable defects.

Thereafter, Levy and Molinari [10] proposed a unique empirical laweascdbe the evolution
of the normalized average fragment size with normalized strain rate fodiomenasional fragmen-

tation: 3
S= ——— (16)
1+45¢

--Mat.1 -+ Mat.6

Grady's law = Mat.2 -+ Mat.7

(theoretical, energy-based)
107

10°4
Glenn and Chudnovsky's law
(theoretical, energy-based)

Levy and Molinari's law /v
(empirical, heterogeneous ring)

Normalized average fragment size
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Figure 6: Normalized average fragment ssfanction of normalized strain ratein log-log axes.
Comparison of the present results to Grady'’s, Levy and Molinari's,Gledn and Chudnovsky’s
models. The scaling is defined by equation 15.

Figure 6 displays these three models, along with numerical results for theupldg¢e biaxial
tension. The scaling defined in one-dimension brings all the computed \vatoes reasonably
narrow range. Hence, the present numerical study extends the validityuation 15 to quasi
two-dimensional fragmentation of heterogeneous materials subjected to teaditegs.

By contrast, our computed values do not precisely follow energetic estimapest from the
fact that we interestingly recover the -2/3 power law exponent (equatiprfigure 6 highlights
significant differences. In quasi-statics, the average fragment sib®ig twice Glenn and Chud-
novsky’s predictions [5], whereas it is lower by a factor of two thandgiacharacteristic size
in dynamics. These major differences are due to energetic and dynaffieicts.efExperimental
evidence [7] suggests that Grady’s prediction overestimates teh acigahdnt size, therefore
conforting our numerical simulations.

In the following, we describe the physical mechanisms governing the lovihigihdstrain rate
responses, and emphasize the main reasons why energy models daliittpe average fragment
size as accurately as numerical simulations.

1N



6 Strength and toughness controlled regimes

6.1 Some limitations of the energy balance arguments

Let us first derive the basic energy arguments, based on Grady&l@mn and Chudnovsky’s
interpretations. A fragment is supposed to be square-shaped with dimengie assume linear-
ity before failure. At the time of failure, the stress within the fragmemtjsxand the associated
volumetric energies are:

a2

peak

= 17

€pot >E (17)
£

an =" (18)
2 G

= 19

: 19)

€pot, Ein ander are respectively the volumetric potential, kinetic, and failure energies.

At low strain rates, kinetic energy is negligible. Potential energy prevaild tlae size of the

fragment is:
4G: E
€pot = € = SQs= 270 (20)
O-peak

By contrast, at high strain rates, potential energy is negligible, and kinegig controls the
process. Fragment size is the one derived by Grady in equation 14:

(21)

24GC>1/3

€in = €r Soy <p82

The transition between the quasi-static and the dynamic regimes occurs aatheaesrr

such that: 5
. L 3 O-peakC
Soy = Sqs = 8TR—\/;E2 G. (22)

err defines the limit between the quasi-static and the dynamic regimes, that agetiesp
governed by potential and kinetic energies. One should note the conaespces with the scaling
parameters defined in section 5. The characteristic strairegiate proportional tcerg, and the
characteristic sizeg, has a form close tegs. Relations 20 and 21 thus constitute a physical
interpretation of the scaling.

To verify whether these expressions are valid, we compare them to nafrenlations. Fig-
ure 7(a) represents the evolution of the average fragment size with ttaifor materials Mat.1
and Mat.9 (see table 1), along with the theoretical sigesindspy. To get a plotindependent from
material parameters, we normalize the strain ratepy and the fragment size ksys. Figure 7
underlines that the energy arguments provide good general trenggevelo they do not predict
accurately the value of transitiaq g, and the average fragment sizge,: at low strain rates, we
computesaver > Sgs, Whereas at high strain ratesyer < Spy. More precisely, for the specific
example displayed in figures 7, we observe thakr ~ 2Sqgs and Saver ~ Spy/2 (figure 7(b)). It
suggests that only half of the potential energy is converted into failunggia low strain rates,
and that four times the local kinetic energy is consumed in failure at high satEs. It appears

11



that another source of energy provides additional energy to compéepaéntation. These obser-
vations underline the limitations of the energy arguments. The physical nisoigimvolved in
energy transfers are more complex than simple energy conversions.ridainsanulations have
the ability to track the time evolution of the energies, and allow us to access miaits.den
the following section, we explain the origins of these limitations raised by ermaagels, and
describe qualitatively the energetic and dynamic processes involvedyméraation.

101 N\
Sov/(4.S0s) ¥ (2.5as)/(2.505)

Sov/Sas \ \

--Mat.1
-+ Mat.10
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//
1
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--Mat.1 \\
-+ Mat.10
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Figure 7: Fragment sizes evolving with strain rate in log-log axes for matdfialsl and Mat.9
(table 1).saver is the computed average fragment sigs andspy are the theoretical quasi-static
and dynamic sizes. (a) Energy models only provide trends. (b) With ateegescaling o$os and
Spy, we can deduce empirically the proportion of energy used in failure.

6.2 Physical mechanisms underlying energy transfers in frgmentation

The energy transfers described previously involve two fundamergahggtions: the input en-
ergy (kinetic or potential) is fully consumed in failure, and the energy teaasinly occur at the
fragment scale. The first argument implies that, once a fragment is gedgitehas a rigid body
motion and does not vibrate elastically, which is not necessarily true. Tdomdergument in-
fers failure instantaneity and the absence of interactions. Indeed, atieosi 17 to 22, fragment
scale is assumed independent from structure scale; the equationstter inrthe fragment ref-
erence frame. The energy contained in a fragment only stems from itsslzbervalue of peak
stress at failure time. However, there exists an external source @fyeeiginating from energy
exchanges between the forming fragments and the plate, and occurring the fragmentation
process. While cracks propagate and while a fragment is not fully creidt@ccumulates addi-
tional energy, which should appear in the energy balance. From our siomslait is clear that
fragmentation is not an instantaneous process and that dynamic effgctskag role.

Figures 8(a) and 8(b) display the time evolution of potential, kinetic, and éadnergies con-
tained in the entire plate at strain raées 100s™* ands = 10° s for material Mat.9 (see table 1).
They are typical responses at low and high strain rates, and involyaliginct mechanisms.

In both plots, since the material is elastic, potential energy first increasafragically with
time. Meanwhile, kinetic energy is constant and cohesive energy remalinslincorresponds

1



150 150 0.8
€r lo0.2
06 v
o~ €kin
=100 100 € 90.0 @
£ 2 = z
E\ er il E =
X = 04 2
N— N
g 3" 3
2 2 o3 89.8
9 50 €kin [50 ()]
| €pot €pot I89'6
0 } 0 O 0.01 007 0035 004 005 0.06
0 2 4 6 8 10 : R : : :
Time (ps) Time (ps)

€Y (b)

Figure 8: Time evolution of the volumetric energies for material Mat.9 (table Eft dcale is
associated to volumetric potentiglo: and volumetric cohesiver energies, while right scale is
associated to volumetric kinetic energy,. Strain rate is (a§ = 1006571, and (b)e = 10°s 1.

to the loading phase. Then, stress is high enough (compared to theveostesngths) and fail-
ure initiates. In the failure phase, cohesive and kinetic energy ingreageeas potential energy
decreases. In comparison to the loading phase, the duration of the failase may vary signifi-
cantly, depending on the strain rate. This results in very distinct response

At low strain rates (figure 8(a)), the loading phase is much longer thaaithesfphase . Energy
variations after peak stress occur very briefly. When the loading ig-gtat, fragmentation is
a highly dynamic process. Stress waves propagate very fast contpatteel body motion and
release quickly the structure. An extensive network of stress wavaatitems establishes, and the
plate undergoes a rapid and chaotic fragmentation process. The instgnéasumption, made in
energy models, is thus acceptable. However, the assumption which statestémdial energy is
fully converted into failure energy, is not verified. While it is true that falenergy mainly stems
from potential energy and that the conversion is rapid, as highlightedghyefi8(a), potential
energy is not fully employed in failure. It is also used to accelerate theneats and increase
their kinetic energies. Therefore, equation 20 provides a lower bolitieedragment size. The
actual fragment size is necessarily larger tisga In summary, whert < €rg, peak potential
energy (which is related to the distribution of cohesive strengths) mainlgrgesthe amount of
energy dissipated in failure. Kinetic energy at failure onset is lower tluenpial energy, and
plays a secondary role in energy conversion processes. The distilmi cohesive strengths
governs the global fragmentation response. As a result, we state thatefinéation is strength
controlled.

By contrast, at high strain rates (figure 8(b)), the loading phase isbtledn the failure phase.
Failure initiation is influenced by a decrease in potential energy. Howineedrop is not instan-
taneous, as assumed in the energy models. Fragmentation is a time depencksd. prhe reason
for this lies in the ratio between stress wave velocity and material velocity (tpadfpertional to
the loading rate and the plate dimension). Since they are initiated almost simukbneefects
barely undergo any stress wave effect. The stress field evolves dynleatting to few stress wave
interactions that grow independently from each other. The fragmentat@ess continues until
stress is low enough everywhere (at least smaller than the minimum cols&singth). Then,
the energy involved in failure has released the plate from further danvagigien, and failure is
completed. Moreover, it is obvious from figure 8(b) that peak potentiatgy is not high enough
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to provide this failure energy. An additional conversion of energy t@kase: kinetic energy is
indirectly employed. It is used to stretch the plate, while cracks continueilggowand potential
energy is constantly supplied. Since this second conversion requires toneun energy models
do not take it into account. As a result, they underestimate fragment sizeavEnage fragment
size that we have computed confirms this interpretation (figures 7(a) ahd Therefore, when
€ > €1R, the governing mechanism is related to the amount of energy dissipatechimézoc-
rack, and not to the cohesive strengths values. We call it the tougboesslled regime.

7 Conclusion

We simulated the fragmentation of a thin plate subjected to biaxial tension, forearange
of strain rates. A hybrid numerical framework, coupling discontinuougs®&m and cohesive ap-
proaches, has been used. In the context of fragmentation, the mamagivaf the discontinuous
Galerkin framework is its ability to handle naturally discontinuities like fractureslimad to be
easily parallelized. Cohesive elements are activated dynamically, as sdocehstress reaches
the cohesive strength. By defining Weibull distributions of cohesivengths, we modeled the
micro-structural heterogeneity of the material. Varying the parametersutiegimaterial param-
eters (Young’s modulus, volumetric mass, toughness, minimum cohesingtstrecale parame-
ter, and Weibull modulus) allowed us to quantify their influence on fragmentati@ tackled the
issue of convergence and showed that, for fine enough meshes nihenof fragments, and the
distribution of fragment masses are independent from the number adfategf freedom.

The study of the average fragment size and its comparison to energy nhedaisvealed the
prevailing role of the dynamics of stress waves and energy transfeagmé&ntation. First, we
observed that, although the average fragment size is highly depermenmaterial parameters,
an adequate scaling gathered the scattered responses into a reasendblélso valid in one-
dimension, this general response is characteristic of the fragmentatiohaté@geneous plate
loaded in biaxial tension. It highlights the limitations of energy models, as wétleasxistence of
two regimes, the strength and the toughness controlled regimes. The trahagiteen derived
analytically as a function of material properties.

The strength controlled regime occurs at low and intermediate strain raissddininated by
the quasi-instantaneous conversion of potential energy into failurgyengre extensive network
of stress waves accompanies this highly dynamic fragmentation respodsevafragments are
generated. The toughness controlled regime is characterized by aalgl&iinger fragmentation
response, and occurs at high strain rates. Since stress wavegaimaha speed close to the ma-
terial point velocities, defects barely undergo any stress wave effeet: do not interact as much
with each other and damage evolves smoothly. Both kinetic and potentialyemergmployed
in failure. In this toughness controlled regime, the amount of dissipatedyepesvails, irrespec-
tive of the cohesive strengths values. Future work will extend thesgeticeconsiderations to a
broader class of loading conditions, including impacts.
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